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REDUCTION OF OPIAL-TYPE INEQUALITIES
TO NORM INEQUALITIES

GORD SINNAMON

(Communicated by Jonathan M. Borwein)

Abstract. Weighted Opial-type inequalities are shown to be equivalent to
weighted norm inequalities for sublinear operators and for nearly positive op-
erators. Examples involving the Hardy-Littlewood maximal function and the
nonincreasing rearrangement are presented.

Opial-type inequalities are related to norm inequalities much as quadratic forms
are related to bilinear forms. A linear operator T on Hilbert space gives rise to the
bilinear form (f, g) 7→ 〈Tf, g〉 and the quadratic form f 7→ 〈Tf, f〉. Duality shows
that the norm of T and the norm of the bilinear form coincide, and a standard
polarization argument shows that this norm is equivalent to but not necessarily
equal to the norm of the quadratic form, called the numerical radius of T .

In this paper, far from the luxuries of Hilbert spaces and linear operators, we
show that the equivalence of operator norm and numerical radius persists. The work
is in response to Richard Brown’s suggestion that Steven Bloom’s result [2, The-
orem 1] which gives the equivalence for positive operators should apply in greater
generality. Opial-type inequalities have been much studied since Opial’s original
paper in 1960 and the papers [2], [3] and [4] include many references.

After the main theorem showing equivalence of Opial-type and norm inequali-
ties, an example involving the Hardy-Littlewood maximal function is included to
illustrate that the equivalence cannot be taken in a pointwise sense.

To show that the method can be readily applied to generate nontrivial inequal-
ities from known norm inequalities we give a simple weight characterization of an
Opial-type inequality for the nonincreasing rearrangement.

Begin with a σ-finite measure space and consider the real or complex-valued
measurable functions. The simple functions are those that take finitely many val-
ues and vanish off a set of finite measure. A map T taking simple functions to
measurable functions is nearly positive provided there exists a D > 0 such that

|Tf | ≤ D(Tg) whenever |f | ≤ g
and is sublinear provided there exists a D > 0 such that

|T (f + g)| ≤ D(|Tf |+ |Tg|)
for all simple f , g.
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376 GORD SINNAMON

We write ‖f‖p =
(∫
|f |p

)1/p for 0 < p < ∞ and ‖f‖∞ = ess sup |f |. Note that
for all f and g, ‖f +g‖p ≤ c(p)(‖f‖p+‖g‖p) where c(p) ≡ max(1, 2(1/p)−1). Where
it arises we take the product 0 · ∞ to be zero.

Theorem 1. Let p, q and r be positive real numbers and u ≥ 0 and 0 < v <∞ be
measurable functions. Suppose that T is nearly positive or sublinear. Then there
exists a finite C such that the weighted Opial-type inequality

(1)
∫
|Tf |q|f |ru ≤ C‖fv‖q+rp

holds for all simple f if and only if there exists a finite B such that

(2)
∫
|Tf |q|g|ru ≤ B‖fv‖qp‖gv‖rp

holds for all simple f, g. If r ≤ p, then (2) holds if and only if the weighted norm
inequality

(3) ‖(Tf)u1/qv−r/q‖pq/(p−r) ≤ B1/q‖fv‖p

holds for all simple f .

Proof. It is clear that if (2) holds, then (1) holds. To prove the converse we suppose
that (1) holds and fix simple functions f and g. If ‖gv‖p = 0, then g = 0 almost
everywhere; so (2) holds because both sides vanish. If ‖fv‖p = 0, then f = 0
almost everywhere. Since the underlying measure is σ-finite and v <∞, there is a
sequence of sets En ⊂ {x : v(x) < n}, each of finite measure, whose union is the
whole space. If T is nearly positive, then for any λ > 0 we have∫

|T (0)|q|λχEn |ru ≤ Dq

∫
|T (λχEn)|q|λχEn |ru ≤ CDq‖λχEnv‖q+rp <∞.

Dividing by λr and then letting λ→ 0 shows that u|T (0)|q is zero almost everywhere
on each En and hence uT (0) vanishes almost everywhere. If T is sublinear we have∫

|T (0)|q|λχEn |ru ≤ Dq2q−1

∫
|T (λχEn)|q|λχEn |ru

+ Dq2q−1

∫
|T (−λχEn)|q| − λχEn |ru

≤ CDq2q‖λχEnv‖q+rp <∞.

Again we conclude that uT (0) vanishes almost everywhere. Therefore, whether T
is nearly positive or sublinear, we see that (2) holds when ‖fv‖p = 0 because both
sides vanish.

In the remaining case both ‖fv‖p and ‖gv‖p are positive and we may assume
that both are finite since otherwise (2) holds with infinite right-hand side. The
inequality (2) is r-homogeneous in g; so we may normalize g so that ‖gv‖p = ‖fv‖p.
If T is nearly positive, set h = |f | + |g| and note that |f | ≤ h, |g| ≤ h, and
‖hv‖p ≤ 2c(p)‖fv‖p. We have∫

|Tf |q|g|ru ≤ Dq

∫
|Th|q|h|ru ≤ CDq‖hv‖q+rp ≤ (2c(p))q+rCDq‖fv‖qp‖gv‖rp,
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which gives (2). If T is sublinear, then set

h1 =

{
2f + 3|g|, Re(f) + |g| ≥ 0,
3f + |g|, Re(f) + |g| < 0,

h2 =

{
−f − 3|g|, Re(f) + |g| ≥ 0,
−2f − |g|, Re(f) + |g| < 0

and check that f = h1 + h2, |g| ≤ |h1|, |g| ≤ |h2|, ‖h1v‖p ≤ 6c(p)‖fv‖p, and
‖h2v‖p ≤ 6c(p)‖fv‖p. We have∫

|Tf |q|g|ru ≤ Dq2q−1

∫
|T (h1)|q|h1|ru+Dq2q−1

∫
|T (h2)|q|h2|ru

≤ CDq2q−1‖h1v‖q+r + CDq2q−1‖h2v‖q+r

≤ CDq2q(6c(p))q+r‖fv‖qp‖gv‖rp.
This completes the proof of the equivalence of (1) and (2).

To see that (2) implies (3) in the case r ≤ p take the supremum of both sides of
(2) over all simple g with ‖gv‖p ≤ 1 and then take qth roots. The converse follows
by Hölder’s inequality with indices p/(p−r) and p/r. This completes the proof. �

The same proof shows the equivalence of (1) and (2) when the norm ‖ · ‖p is
replaced by any Banach Function Space norm.

There is no simple analogue of (3) in the case r > p because if the underlying
measure is non-atomic, then (2) can hold only if uT is trivial, but for atomic
measures, nontrivial inequalities of the form (2) may hold when r > p.

Suppose now that r ≤ p. The implication (3) =⇒ (1) holds pointwise. That is,
if (3) holds for a particular function or class of functions, then (1) holds for that
function or that class. It is important to point out that the implication (1) =⇒ (3)
does not hold pointwise. To illustrate this point we fix a positive weight w, take
p > 1, q = 1, r = p − 1, u = w, v = w1/p and let T = M , the Hardy-Littlewood
maximal function on R. This operator, defined by

Mf(x) = sup
x∈(a,b)

1
b− a

∫ b

a

|f |,

is clearly positive. The norm inequality corresponding to (3) is

(4)
∫ ∞
−∞

(Mf)pw ≤ Bp
∫ ∞
−∞
|f |pw

and the Opial-type inequality corresponding to (1) is

(5)
∫ ∞
−∞

(Mf)|f |p−1w ≤ C
∫ ∞
−∞
|f |pw.

If we restrict our attention to the class of functions {w1−p′χ
(a,b) : a < b}, then (4)

implies

(6)
∫ b

a

M(w1−p′χ
(a,b))pw ≤ Bp

∫ b

a

w1−p′

and (5) becomes

(7)
∫ b

a

M(w1−p′χ
(a,b)) ≤ C

∫ b

a

w1−p′ .
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Considered as conditions on the weight w, the theorem above shows that (4) and
(5) are equivalent. Using [6, IX.4.1 and IX.8.13] we see that (4), (5) and (6) are all
equivalent to Muckenhoupt’s Ap condition. The weight condition (7), however, is
genuinely weaker than Ap. Specifically, the weight w(x) = |x|−1 is not in Ap (see
[6, IX.4.4]), but we argue that it does satisfy (7). By symmetry it is enough to
prove (7) for intervals (a, b) satisfying −b ≤ a < b and in this case we have∫ b

a

M(|x|p′−1χ
(a,b)) dx ≤

∫ b

a

bp
′−1 dx

≤ 4
∫ b

max(b/2,a)

bp
′−1 dx

≤ 4
∫ b

max(b/2,a)

(2x)p
′−1 dx

≤ 2p
′+1

∫ b

a

|x|p′−1 dx.

Thus, the requirement that the Opial-type inequality (5) hold for this class of
functions is a strictly weaker condition on w than requiring that the norm condition
(4) hold for this class. We thank the referee for suggesting this example.

For f ≥ 0 defined on [0, 1], let f∗ denote the nonincreasing rearrangement of f .
The operator f 7→ f∗ is positive. So we can use the above theorem to understand
the relationship between f and f∗.

Example 2. If u ≥ 0 and v > 0, then there exists a C > 0 such that

(8)
∫ 1

0

f∗fu ≤ C
∫ 1

0

f2v

holds for all f ≥ 0 if and only if

(9)
(∫ x

0

u2/v

)(∫ 1

1−x
v∗
)−1

is a bounded function of x ∈ [0, 1].

Proof. Take Tf = f∗, p = 2, q = r = 1 and replace v by v1/2 in the theorem to see
that (8) holds if and only if there is a B such that

(10)
∫ 1

0

(f∗)2u2/v ≤ B2

∫ 1

0

f2v

holds for all f ≥ 0. (The passage from simple functions to all functions is standard.)
Since the left-hand side of (10) is unaffected when f is replaced by something
equimeasurable, we may replace the right-hand side by

B2 inf
{∫ 1

0

g2v : g equimeasurable with f

}
.

An application of [1, Theorem II.2.2] shows that this is

B2

∫ 1

0

(f∗)2v?,
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where v? denotes the nondecreasing rearrangement of v. With this observation,
(10) reduces to the inequality∫ 1

0

Fu2/v ≤ B2

∫ 1

0

Fv?,

for all nonincreasing F , and it is easy to deduce (or see [5, Proposition 1]) that this
is equivalent to the boundedness of(∫ x

0

u2/v

)(∫ x

0

v?
)−1

for x ∈ [0, 1]. Since v?(x) = v∗(1− x), this is (9). �
This example readily extends to general indices p, q and r < p by the same

method.
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