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We consider the synchronization of oscillators in complex networks where there is an interplay between the
oscillator dynamics and the network topology. Through a remarkable transformation in parameter space and the
introduction of virtual frequencies we show that Kuramoto oscillators on annealed networks, with or without
frequency-degree correlation, and Kuramoto oscillators on complete graphs with frequency-weighted coupling
can be transformed to Kuramoto oscillators on complete graphs with a rearranged, virtual frequency distribution
and uniform coupling. The virtual frequency distribution encodes both the natural frequency distribution
(dynamics) and the degree distribution (topology). We apply this transformation to give direct explanations
to a variety of phenomena that have been observed in complex networks, such as explosive synchronization and
vanishing synchronization onset.

DOI: 10.1103/PhysRevE.101.022302

I. INTRODUCTION

Synchronization is an important natural phenomenon, that
is relevant in many processes, such as the flashing of fireflies
[1], pacemaker cells in the heart [2], and synchronous neural
activities [3]. In addition, synchronization also has practical
importance in aspects of modern life, such as the functioning
of power grids which is based on the synchronization of
power generators [4]. With various applications in physics,
biology, and social systems, Kuramoto-like oscillators are the
most widely employed and useful analytical models for the
exploration of synchronization [5].

When oscillators with different natural frequencies are
connected in a complex network the interplay between the
natural frequency distribution (dynamics) and the degree
distribution (topology) leads to several phenomena that are
not found in the standard Kuramoto model on a complete
graph. For example, recently, explosive synchronization has
been found in scale-free networks where each oscillator’s
natural frequency is linearly correlated with its degree [6].
Such transition process is first-order-like, discontinuous, and
irreversible, and is closely related to explosive percolation
and cascading failures [7]. Explosive synchronization has also
been found in oscillators on a complete graph with frequency-
weighted coupling [8]. At the same time, oscillators on scale-
free networks without frequency-degree correlation exhibit
the opposite phenomenon, that is, a continuous transition
with vanishing onset [9]. In both cases the scaling exponent
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γ of the scale-free networks is a critical parameter [9,10].
Even though these phenomena have been extensively studied
[11–13], their mechanism is still unclear.

In this work, we approach the study of such systems
through the self-consistent method. For certain systems de-
fined on complex networks or with nonuniform coupling
we introduce parameter transformations that change the self-
consistent equation to the one for Kuramoto systems on
complete graphs. The transformations incorporate the natu-
ral frequency distribution and degree (or coupling strength)
distribution of the original system into a new distribution
of quantities, which we call virtual frequencies since they
play the role of natural frequencies in the derived Kuramoto
system. The particular cases we consider include scale-free
networks with or without frequency-degree correlation (where
explosive synchronization and vanishing onset are found), and
frequency-weighted coupling models (exhibiting explosive
synchronization). By reducing the study of Kuramoto-like os-
cillators on complex networks to that of Kuramoto oscillators
on complete graphs we give straightforward explanations of
the different dynamical phenomena that appear based on the
properties of the virtual frequency distribution.

The outline of the paper is as follows. In Sec. II we
review the self-consistent method for the Kuramoto model on
complete graphs. In Sec. III we present the virtual frequency
method in annealed networks, first, for networks with linear
frequency-degree correlation and, second, for networks with
no frequency-degree correlation. We then apply the method to
provide an alternative explanation for explosive synchroniza-
tion and the vanishing onset. In Sec. IV we present the vir-
tual frequency method for networks with frequency-weighted
coupling and we use it to explain explosive synchronization in

2470-0045/2020/101(2)/022302(6) 022302-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3301-791X
https://orcid.org/0000-0002-3870-6901
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022302&domain=pdf&date_stamp=2020-02-10
https://doi.org/10.1103/PhysRevE.101.022302


JIAN GAO AND KONSTANTINOS EFSTATHIOU PHYSICAL REVIEW E 101, 022302 (2020)

this context. We conclude in Sec. V with a discussion of the
limitations of the method and directions for further research.

II. SELF-CONSISTENT METHOD

We first review the self-consistent method as it applies
to the Kuramoto model with all-to-all coupling and arbitrary
(not necessarily unimodal) natural frequency distribution. The
basic idea of the Kuramoto model [14] to explore synchro-
nization is to consider a group of coupled oscillators with
different natural frequencies as

θ̇i = ωi − λ

N

N∑
j=1

sin(θi − θ j ), 1 � i � N, (1)

where θi is the oscillator’s phase and ωi is its natural fre-
quency. The coupling strength is given by λ and N is the size
of the system. To describe the coherent state of oscillators, the
order parameter

r exp(iφ) = 1

N

N∑
j=1

exp(iθ j )

is introduced. Using the order parameter, the dynamics in
Eq. (1) can be rewritten in mean field form as

θ̇i = ωi − λr sin(θi − φ), 1 � i � N. (2)

In this work, we are only interested in the steady states
where r(t ) = r > 0 is constant and φ = �t + φ0. In this case,
analytical results on the onset of synchronization can be
obtained from the analysis of each single oscillator through
the self-consistent method [14,15]. The dynamics in Eq. (2)
can be further rewritten in the frame rotating as �t + φ0 and
using a rescaled time τ = (λr)t as

θ̇ = b − sin θ, (3)

where

b = ω − �

λr
,

and we have suppressed the indices of oscillators. When |b| �
1 the oscillator synchronizes with the mean field (it is locked,
with phase θl given by sin θl = b and cos θl = √

1 − b2),
while if |b| > 1 it keeps running. In the latter case, the average
values of cos θ and sin θ are given by

〈cos θr〉 = 0, 〈sin θr〉 = b

(
1 −

√
1 − 1

b2

)
.

In the continuous limit N → ∞, combining steady states
of these two kinds of oscillators, we obtain the self-consistent
equations for the parameters r and �. Denoting by gω(ω) the
distribution of natural frequencies the self-consistent equa-
tions become

r =
∫
R

gω(ω)[1b cos θl + (1 − 1b)〈cos θr〉] dω,

(4)

0 =
∫
R

gω(ω)[1b sin θl + (1 − 1b)〈sin θr〉] dω,

where the indicator function 1b takes the value 1 if |b| �
1 corresponding to locked oscillators and zero otherwise.

Therefore, we obtain the self-consistent equations

1

λ
= 1

q

∫
R

gω(ω)1b

√
1 − b2 dω,

(5)

0 =
∫
R

gω(ω)

[
1bb + (1 − 1b)b

(
1 −

√
1 − 1

b2

)]
dω,

where we have divided both sides of the first self-consistent
equation by q = λr. Further details on the self-consistent
method can be found in [5,14–16]. The discussion and the
notation here have been adapted from [17].

III. VIRTUAL FREQUENCIES IN ANNEALED NETWORKS

In complex networks, the model for coupled oscilla-
tors reads

θ̇i = ωi + λ

N∑
j=1

Ai j sin(θ j − θi ), i = 1, . . . , N. (6)

The adjacency matrix Ai j describes the connection of oscilla-
tors. If there is a link between the oscillators i and j, we have
Ai j = 1, and Ai j = 0 otherwise. For uncorrelated networks
with randomly picked links and large order N (annealed
networks), the adjacency matrix can be approximated with the
mean field assumption

Ai j = kik j

N〈k〉 ,

where ki is the degree of the ith node (oscillator) and 〈k〉 is the
mean degree [7,9]. The model now reads

θ̇i = ωi + λ

N∑
j=1

kik j

N〈k〉 sin(θ j − θi ), i = 1, . . . , N. (7)

A generalized order parameter (mean field) can be defined as

r exp(iφ) =
N∑

j=1

k j

N〈k〉 exp(iθ j ). (8)

Substituting the order parameter into Eq. (7), we obtain

θ̇i = ωi − λrki sin(θi − φ), 1 � i � N,

which then reduces to the same mean field form as Eq. (3)
with parameter

b = ω − �

kλr
depending on both natural frequency ω and degree k.

A. Linear frequency-degree correlation

We first consider the case where each oscillator’s natural
frequency ω is linearly correlated to its degree k as ω =
Ak. The corresponding self-consistent equations, obtained by
considering the continuous limit of Eq. (8), read

1

λ
= 1

q〈k〉
∫ ∞

0
k gk (k)1b

√
1 − b2 dk,

(9)

0 =
∫ ∞

0
k gk (k)

[
1bb + (1 − 1b)b

(
1 −

√
1 − 1

b2

)]
dk,
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where

b = Ak − �

kq

and gk (k) is the degree density; cf. [10].
We then define new parameters (	, Q,W ) and a virtual

frequency ν by

ν = 1

k
, W = A

�
, Q = − q

�
, 	 = − λ

�
. (10)

In terms of the new parameters and the virtual frequency we
have

b = ν − W

Q
.

Substituting the new parameters in Eq. (9) leads to

1

	
= 1

Q

∫ ∞

0
G(ν)1b

√
1 − b2 dν,

(11)

0 =
∫ ∞

0
G(ν)

[
1bb + (1 − 1b)b

(
1 −

√
1 − 1

b2

)]
dν,

where we have defined

G(ν) = 1

〈k〉
1

ν3
gk

(
1

ν

)
. (12)

This is the same form as Eq. (5) which holds for complete
graphs, where (λ, q,�, ω) are replaced by (	, Q,W, ν) and
the natural frequency density gω(ω) is replaced by the new
function G(ν). Since G(ν) appears in Eq. (11) in exactly the
same way as gω(ω) appears in Eq. (5) we call the correspond-
ing quantities ν virtual frequencies and we call the function
G(ν) virtual frequency density. Therefore, the self-consistent
equations for the systems we consider here become the self-
consistent equations for Kuramoto oscillators on complete
graphs and rearranged frequency density G(ν).

As a demonstration of the kind of understanding that can be
offered by the virtual frequency method we briefly explore the
phenomenon of explosive synchronization in networks with
linear frequency-degree correlation. We refer to [10] for a
more thorough discussion of explosive synchronization in this
context.

The rearranged distribution G(ν) is determined by the
degree distribution gk (k). Depending on the divergence of
quadratic mean degree 〈k2〉 of gk (k), there is a clear distinction
between two types of G(ν). Consider, for example, scale-free
networks with gk (k) ∼ k−γ . Then Eq. (12) gives

G(ν) = Cνγ−3, (13)

with ν ∈ (0, 1/k0], where k0 is the minimum degree of the
network and C is the normalization factor.

For γ = 3 the distribution G(ν) is uniform with ν ∈
(0, 1/k0]; see inset in Fig. 1(b). From well-known results of
Kuramoto oscillators on complete graphs [15], the uniform
distribution of natural frequencies (corresponding to γ = 3)
has a hybrid synchronization transition which is abrupt and
without hysteresis. This synchronization transition is shown in
Fig. 1(b) where we compare the theoretical results obtained by
solving the self-consistent equations with virtual frequencies
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FIG. 1. Transition processes (r vs λ) and rearranged distributions
G(ν ) of oscillators with the frequency-degree correlation ω = Ak,
A = 〈k〉−1, in annealed complex networks: (a)–(c) scale-free net-
works g(k) ∼ k−γ with (a) γ = 2.6, (b) γ = 3, and (c) γ = 3.4;
(d) random network with exponential degree distribution g(k) ∼ e−k .
The minimum degree is assumed k0 = 50. Theoretical predictions
(solid and dashed curves) are compared to numerical results obtained
for N = 10 000 oscillators in the forward process (blue 	 with
increasing λ) and backward process (red � with decreasing λ).

to numerical results obtained for networks with N = 10 000
oscillators generated by the static model in [18].

For 2 < γ < 3, corresponding to divergent 〈k2〉, G(ν) is
monotonically decreasing with ν and divergent at ν = 0; see
inset in Fig. 1(a). Thus the weight of oscillators with large
degrees is dramatically enlarged when 2 < γ < 3. In this case
there is discontinuous transition with hysteresis (explosive
synchronization) as has been earlier reported in [10]. The tran-
sition for this case is shown in the comparison of theoretical
and numerical results in Fig. 1(a).

Finally, for γ > 3, corresponding to convergent 〈k2〉, G(ν)
is monotonically increasing and stays finite in the region
ν ∈ (0, 1/k0]; see inset in Fig. 1(c). In this case the transition
is continuous [10]; see Fig. 1(c). Consider now any degree
distribution gk (k) which falls for large enough k faster than
k−3 so that 〈k2〉 is finite. Moreover, we require that k3gk (k)
is monotonically decreasing for large enough k. It follows di-
rectly from Eq. (12) that such distributions gk (k) are monoton-
ically increasing for sufficiently small ν > 0. Consequently,
for networks with several common kinds of distributions
(power law, exponential, uniform, Gaussian) one gets either
monotonically increasing or unimodal distributions G(ν) that
give continuous transitions similar to scale-free networks with
γ > 3. The example of the exponential distribution is shown
in Fig. 1(d).

The continuity of the transition depends on the concavity
of the distribution G(ν). For networks with truncated distribu-
tions g(k) ∼ k−γ , k0 � k � kmax, one gets the same concavity
as the original G(ν), described by G′′(ν), which depends
only on γ . As a result, for finite size networks—as the one
we used in numerical simulations—explosive, hybrid, and
continuous transitions can also be found. This is contrary to
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the phenomenon of vanishing onset in scale-free networks as
we discuss in the next section.

B. No frequency-degree correlation

Another type of system where the virtual frequency method
can be applied is oscillators on a complex network where
the distribution of natural frequencies gω(ω) is unimodal and
gω(−ω) = gω(ω). Then the dynamical equation (7) implies
that � = 0 and the first self-consistent equation becomes

1

λ
= 1

q

∫ ∞

k0

k

〈k〉gk (k)

(∫
R

gω(ω)1b

√
1 − b2dω

)
dk, (14)

where k0 is the minimum degree of the network. In this case,
given that b = ω/kq, we define the virtual frequency as ν =
ω/k and a corresponding virtual frequency distribution as

G(ν) =
∫ ∞

k0

k2

〈k〉gk (k)gω(kν) dk. (15)

With these choices, the self-consistent equation (14) becomes

1

λ
= 1

q

∫
R

G(ν)1b

√
1 − b2dν,

where b = ν/q; that is, it takes the same form as the self-
consistent equation for Kuramoto oscillators on complete
graphs with unimodal and symmetric (virtual) frequency den-
sity G(ν). Therefore, the interplay of the natural frequency
density gω(ω) (dynamics) and the degree density gk (k) (topol-
ogy) is expressed through the rearranged virtual frequency
density G(ν).

As an example, consider the uniform distribution gω(ω) =
1/2 with ω ∈ [−1, 1]. For scale-free networks gk (k) ∼
k−γ , with γ �= 3, we obtain the symmetric and unimodal
distribution density

G(ν) = C
(|ν|γ−3 − k3−γ

0

)
, (16)

where ν ∈ [−1/k0, 1/k0] and C is the normalization constant
(negative for γ > 3 or positive for 2 < γ < 3). When 2 <

γ < 3, G(ν) diverges at ν = 0, while for γ > 3, the distri-
bution density remains finite. In addition, for γ = 3 one finds
G(ν) = C ln(|ν|k0) for ν ∈ [−1/k0, 1/k0].

The transition onset of Kuramoto oscillators with unimodal
and symmetric (virtual) frequency density G(ν) is determined
by λc = 2/πG(0). Therefore, the divergence of G(ν) at ν =
0 for 2 < γ � 3 results to λc = 0, that is, vanishing onset.
The transition processes and corresponding virtual frequency
distributions are shown in Figs. 2(a) and 2(b) for Gaussian
natural frequency distributions and scale-free networks.

The previous discussion can be extended to other types
of networks. Networks can be divided into two categories
depending on the divergence of the quadratic mean degree
〈k2〉. If and only if 〈k2〉 is convergent (e.g., for exponential
degree distributions), the virtual frequency distribution G(ν)
remains finite at ν = 0, similar to the case γ > 3, and thus
we do not have vanishing onset. This result was previously
obtained in [9].

Since the vanishing onset depends on the convergence of
〈k2〉, it is sensitive to the tail of the distribution. For example,
for broad-scale networks with truncated distributions gk (k) ∼
k−γ , k0 � k � kmax, the corresponding 〈k2〉 is finite, and thus
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FIG. 2. Transition processes (r vs λ) and rearranged distributions
G(ν ) of oscillators without frequency-degree correlation in annealed
complex networks: scale-free networks g(k) ∼ k−γ with (a), (c) γ =
2.6 and (b), (d) γ = 3.4. The minimum degree is k0 = 50. The
maximum degree is km = ∞ (a), (b) and km = 500 (c), (d). In all
cases the distribution of natural frequencies is Gaussian, gω(ω) =
(1/

√
2πσ 2) exp(−ω2/2σ 2) with σ = 〈k〉. In (c), (d) the theoretically

obtained curves are compared to numerical results for N = 10 000
oscillators, shown as in Fig. 1.

the virtual frequency distribution G(ν) is also finite at ν = 0,
as shown in Figs. 2(c) and 2(d). Note that any finite system
has a maximum degree kmax. Hence the vanishing onset can
only be observed for systems with N → ∞.

IV. NETWORKS WITH
FREQUENCY-WEIGHTED COUPLING

Except for the model with frequency-degree correlation
in scale-free networks, another model that exhibits explo-
sive synchronization is the Kuramoto model with absolute
frequency-weighted coupling [8,19]. It is defined on complete
graphs as

θ̇i = ωi − λ

N

N∑
j=1

Fi j sin(θi − θ j ), 1 � i � N, (17)

where Fi j = |ωi| (in-coupling model) or Fi j = |ω j |/〈|ω|〉 (out-
coupling model), mimicking the frequency-degree correlation
[20,21]. The frequency-weighted coupling model typically
shows explosive synchronization (and also oscillatory states,
such as standing waves and Bellerophon states) [20,21].

For the out-coupling model, an order parameter is
defined as

r exp(iφ) =
N∑

j=1

|ω j |
N〈|ω|〉 exp(iθ j ).

Encoding the frequency-weighted coupling, the self-
consistent equation can be rewritten, using the virtual
frequencies ν = ω, in standard form with rearranged
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FIG. 3. Transition processes (r vs λ) and rearranged distributions
G(ν ) of frequency-weighted-coupling oscillators: (a) out-coupling
model and (b) in-coupling model. The natural frequencies’ den-
sity is Gaussian, gω(ω) = (1/

√
2π ) exp(−ω2/2). The theoretically

obtained curves are compared to numerical results for N = 10 000
oscillators, shown as in Fig. 1.

distribution

G(ν) = |ν|gω(ν)

〈|ω|〉 .

For any normalized distributions gω(ω), G(ν) → 0 as either
ν → 0 or ν → ±∞. Thus for any unimodal symmetric distri-
bution gω(ω) the rearranged distribution G(ν) is bimodal and
symmetric; see Fig. 3(a).

For the in-coupling model, the case becomes more compli-
cated. For the steady-state solution with � = 0, we have b =
ω/|ω|q and thus we define the virtual frequency ν = sgn(ω),
which is naturally bimodal. For � �= 0, we define the virtual
frequency through the transformation

ν = 1

ω
, W = 1

�
, Q = q

�
sgn(ω), 	 = λ

�
sgn(ω),

(18)
with density

G(ν) = 1

ν2
gω

(
1

ν

)
. (19)

The latter is bimodal and symmetric when gω(ω) is unimodal
and symmetric; see Fig. 3(b). Note that in this case the
coupling strength 	 can be either positive or negative, unlike
the standard Kuramoto model.

For coupled oscillators, bimodal frequency distributions
and the coexistence of the positive and negative coupling

strength contribute to abrupt transitions and oscillatory states
(standing wave, π state) [22,23]. The frequency-weighted
coupling model, especially the in-coupling one, includes these
two factors and hence one can anticipate its explosive syn-
chronization and the existence of oscillatory (Bellerophon)
states [20]. The details of this relation can be analyzed in a
more general framework, where the self-consistent method is
related to nonsteady states [24].

V. DISCUSSION

We have shown that with appropriate transformations, cer-
tain oscillator systems on complex networks are transformed
to the standard Kuramoto model on complete graphs with a
rearranged virtual frequency distribution. Such distributions
combine the effect of topology, dynamics, and their cor-
relation, leading to a deeper intuitive understanding of the
onset of synchronization. Our method can be generalized to
more complicated cases, such as the partial degree-frequency
correlation [25] and the degree correlations [26,27]. Including
such systems, we can obtain a more general framework of
Kuramoto-like synchronization, whereas the models studied
in this work are the linear cases [24].

However, there are also situations where the method of
virtual frequencies cannot be applied without modifications.
In particular, our analysis is based on the self-consistent
method and is assuming either complete graphs or annealed
complex networks. We note that annealed complex networks
approximate random complex networks with a large mean-
degree 〈k〉 � 1 [28–30] and therefore the method may not
work equally well for sparse networks.

Another system where the virtual frequencies method
cannot be applied is the Kuramoto-Sakaguchi model. Even
though the Kuramoto-Sakaguchi model can be studied
through the self-consistent method, the effect of phase shifts
cannot be combined into the virtual frequencies and alterna-
tive approaches are necessary.
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