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ABSTRACT:  Although pairwise comparisons have been seen by many as an effective and intuitive way for eliciting 
qualitative data for multi-criteria decision making problems, a major drawback is that the number of the required 
comparisons increases quadratically with the number of the entities to be compared.  Thus, often even data for medium 
size decision problems may be impractical to be elicited via pairwise comparisons.  The more the comparisons are, the 
higher is the likelihood that the decision maker will introduce erroneous data. This paper introduces a dual formulation to 
a given multi-criteria decision making problem, which can significantly alleviate the previous problems.  Some 
theoretical results establish that this is possible when the number of alternatives is greater than the number of decision 
criteria plus one. 
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1. Some Background Information 

 This paper deals with a critical problem in decision analysis.  It examines the issue of eliciting qualitative 

information by using a short sequence of pairwise comparisons.  Pairwise comparisons have long been proposed as an 

effective and intuitive way for eliciting qualitative data for multi-criteria decision making (MCDM) problems. Probably, 

they became best known as part of the Analytic Hierarchy Process (AHP) (Saaty,1980 and 1994). However, pairwise 

comparisons can be used in conjunction with any decision method that requires to quantify qualitative data.  This paper 

proposes an alternative approach on how such comparisons should be elicited.  

 In the typical MCDM problem the decision maker is given m alternatives (denoted as A1, A2, A3, ..., Am) to 

evaluate in terms of n decision criteria (denoted as C1, C2, C3, ..., Cn).  The decision maker's task is to determine the 

relative performance of the m alternatives.  First of all, the decision maker needs to form the entries of a decision matrix 

A and also determine the vector W with the weights of importance of the n criteria.  Usually, the entry aij of the decision 

matrix A represents the performance of alternative Ai when it is examined in terms of criterion Cj.  Next the decision 

maker has to use the data in the decision matrix along with the criteria weights and somehow evaluate the performance of 

each alternative in terms of all the decision criteria considered simultaneously.  This problem becomes difficult to solve 

when the decision criteria are expressed in different units of measure (e.g, dollars, hours, pounds, etc.).  How to evaluate 

alternatives in a multi-dimensional setting, is a central problem in MCDM. 

 There is a plethora of different schools of thought and proposed methodologies on how such problems can be 
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solved.  The focus of this paper is not on an evaluation of such methods.  For some comparative studies and evaluations 

of such methods the interested reader may wish to consult with the studies reported by Lootsma (1990), and 

(Triantaphyllou, and Mann, 1989).  Among these methods the Analytic Hierarchy Process (AHP) (Saaty, 1980 and 

1994) enjoys a wide acceptance by practitioners (especially by those who use the Expert Choice (1990) computer 

package) and theoreticians.  However, it also has its critics (e.g., (Belton and Gear, 1983), (Dyer and Ravinder, 1983), 

(Dyer and Wendell, 1985), (Dyer, 1990a and 1990b), (Triantaphyllou and Mann, 1994), and (Winkler, 1990)).  

 A central issue in the AHP is the elicitation of qualitative data via a sequence of pairwise comparisons. It is 

noticeable that a central role for the commercial acceptance of the AHP is that practitioners find pairwise comparisons to 

be an effective and intuitive way for eliciting qualitative information.  Some theoretical issues on the use of comparisons 

and scales of measurement can be found in (Saaty, 1980) and (Triantaphyllou et al., 1994).  

 Suppose that a decision maker wishes to elicit the relative priorities, or weights of importance, of n entities. 

These n entities could be n decision criteria, or n alternatives to be examined in terms of a single decision criterion. Then, 

the decision maker must elicit the value of n(n-1)/2 pairwise comparisons.  If a decision problem involves m alternatives 

and n decision criteria (multiple hierarchical levels are not considered at this point), then the total number of the required 

pairwise comparisons is:  n(n-1)/2 + n(m(m-1)/2).  

 The above number can be quite large, even for moderate values of m and n.  For instance, for m = 15 and n = 10, 

the total number of the required comparisons is equal to 1,095.  This number increases quadratically as the values of m 

and n increase.  If the decision maker is inaccurate in the elicitation of some of the comparisons, then the accuracy of the 

rest of the comparisons can alleviate the burden caused from the inaccurate ones (Saaty, 1980). That is, small 

inaccuracies in some of the comparisons may not be critical due to the redundancy from the rest of the comparisons.  

This is the main reason why all the comparisons are needed.  However, a high number of comparisons can make the data 

elicitation process tedious and thus it may compromise the accuracy of the individual judgments.  This, in turn, can 

become the reason to introduce errors in the elicitation process.  Therefore, it is important to seek methods for reducing 

pairwise comparisons, without jeopardizing the benefits of having redundant ones.  Some methods (e.g., (Harker, 1987a 

and 1987b)) have proposed to skip certain comparisons.  However, such a measure reduces the redundancy in the 

judgments and then a single error may have a bigger impact and lead to the wrong ranking of the alternatives.  

 This paper presents an alternative approach.  It slightly changes the way for eliciting pairwise comparisons and it 

does not skip any comparisons.  This is done by formulating a type of a dual problem.  As a result, the proposed 

approach can reduce the total number of required pairwise comparisons when the number of alternatives is larger than 

the number of decision criteria plus one (i.e., when m > n + 1). 

 This paper is organized as follows. The next section briefly overviews the traditional way for eliciting pairwise 

comparisons.  This proposed dual approach is presented in the third section.  The fourth section demonstrates the 

proposed approach in terms of an illustrative example.  The fifth section presents some numerical results on how much 
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the number of comparisons can be reduced for problems of different size.  Some concluding remarks, and areas of 

possible extensions, are presented in the last section. 

 

2. Eliciting Relative Weights from Pairwise Comparisons 

 Suppose that an MCDM problem calls for the evaluation of m alternatives in terms of n decision criteria.  Then 

the decision maker needs to extract the relative weights of the n criteria and also the relative (if the criteria are defined in 

different units of measure) performance values of the m alternatives in terms of each one of the decision criteria.  The 

first task is accomplished by forming an nHn judgment (also called pairwise comparison) matrix.  The (i,j) element of this 

matrix refers to the evaluation of the importance of the i-th criterion when it is compared with the j-th criterion.  The 

second task is accomplished by forming n matrices of order mHm each.  In this paper these matrices will be denoted as P 

k.  The (i,j) element of the k-th matrix (for k = 1,2,3,...,n), denoted as pij
k, refers to the evaluation of the importance of the 

i-th alternative when it is compared with the j-th alternative in terms of the k-th criterion.  That is, the decision maker is 

asked to answer a sequence of questions of the following form:  

  "What is the relative importance pij
k of alternative Ai when it is compared with alternative Aj in terms of 

the decision criterion Ck?" 

 Often the value of pij
k cannot be determined directly.  This happens when the decision criterion Ck expresses a 

qualitative aspect of the alternatives.  In such a case the decision maker first assigns a linguistic statement that best 

expresses his/her opinion of the relative importance of the two alternatives Ai and Aj when they are compared in terms of 

criterion Ck.  Next, this linguistic statement is assigned to some numerical value according to a predetermined scale of 

measurement (Saaty, 1980), (Triantaphyllou et al., 1994).  A judgment matrix P k derived by using the previous pairwise 

comparisons is a reciprocal one.  That is, the property pij
k = 1/pji

k holds for any element (pairwise comparison) pij
k. 

 The next step is to extract the relative importances (or weights) implied by the previous comparisons.  Saaty 

asserts that to answer this question one has to estimate the right principal eigenvector of the previous matrix.  Given a 

judgment matrix with pairwise comparisons, the corresponding right principal eigenvector can be approximated by using 

the geometric mean of each row (Saaty, 1980).  That is, the elements in each row are multiplied with each other and then 

the n-th root is taken (where n is the number of elements in the row).  Next these numbers are normalized by dividing 

them with their sum. 

 An evaluation of the eigenvalue approach can be found in (Triantaphyllou and Mann, 1990).  It should be stated 

here that there is a number of alternative approaches which do not use the eigenvector concept and can extract relative 

priorities from pairwise matrices.  These include techniques by Fichtner (1986) and Bryson (1995).  In (Triantaphyllou et 

al., 1990) a least squares formulation is presented and it is compared with some other priority extraction approaches.  

The relevance and usefulness of the proposed duality approach is not restricted to those cases when the right principal 

eigenvector method is used. 
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 One of the most practical issues in the pairwise comparisons approach is that it allows for slightly inconsistent 

pairwise comparisons.  If all the comparisons are perfectly consistent, then the relation pij
k = piy

kHpyj
k should always be 

true for any combination of comparisons taken from the judgment matrix. 

 However, perfect consistency rarely occurs in practice. In the AHP the pairwise comparisons in a judgment 

matrix are considered to be adequately consistent if the corresponding consistency ratio (CR) is less than 10% (Saaty, 

1980).  The CR coefficient is calculated as follows.  First the consistency index (CI) needs to be estimated.  This is done 

by adding the columns of the judgment matrix and multiplying the resulting vector by the vector of priorities (i.e., the 

approximated right principal eigenvector) obtained earlier.  This yields an approximation of the maximum eigenvalue, 

denoted by ºmax. Then, the CI value is calculated by using the formula: CI = (ºmax - n)/(n - 1).  

 The concept of the RCI (Random Consistency Index) is used next.  Given a value of n (e.g., the number of items 

to be compared) the RCI value corresponds to the average random consistency index (calculated by using the formula CI 

= (ºmax - n)/(n - 1) ) derived from a sample of size 500 of randomly generated reciprocal matrices with entries from the 

set {1/9, 1/8, 1/7, ..., 1, 2, ..., 7, 8, 9} (Saaty, 1980).  The concept of the RCI was introduced by Saaty in order to establish 

(by means of a statistical test of hypothesis) an upper limit on how much inconsistency may be tolerated in a decision 

process.  Next, the CR value of a judgment matrix is obtained by dividing the CI value by the corresponding RCI value as 

given in Table 1.  If the CR value is greater than 0.10, then a re-evaluation of the pairwise comparisons is recommended 

(because the corresponding consistency ratio is considered as high).  This is repeated until a CR value of 0.10 or less is 

achieved.  Some alternative consistency indicators have also been proposed (e.g., the ones by (Golden and Wang, 1989) 

and (Bryson, 1995). 

 

 Table 1: RCI values for different values of n (Saaty, 1980). 

n 1 2 3 4 5 6 7 8 9 

RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

 

   After the alternatives are compared with each other in terms of each one of the decision criteria and the 

individual priority vectors are derived, the synthesis step is taken.  The priority vectors become the columns of the 

decision matrix (not to be confused with the judgment matrices with the pairwise comparisons).  The weights of 

importance of the criteria are also determined by using pairwise comparisons.   

 

3. A Duality Approach for Eliciting Comparisons 

 Recall that when two alternatives are considered in the traditional approach, the decision maker is asked to 

estimate the value of pij
k, the relative importance of alternative Ai when it is compared with alternative Aj in terms of the 
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decision criterion Ck, by answering the following type of questions:  

 "What is the relative importance pij
k of alternative Ai when it is compared with alternative Aj in terms of 

the decision criterion Ck?" 

We will call this kind of questions the prime pairwise comparisons and the corresponding judgment matrices will be 

called the prime judgment matrices and they will be denoted as P k = (pij
k), for k = 1, 2, 3, ...,n.   

 In the proposed dual approach the previous question takes a different form.  Instead of comparing two 

alternatives at a time, now the relative performance of two decision criteria is examined within a given alternative. That 

is, now the typical question is of the following form: 

 "What is the relative importance dij
k of criterion Ci when it is compared with criterion Cj in terms of 

alternative Ak?" 

In analogy to the prime pairwise comparisons, we will call this kind of questions the dual pairwise comparisons and the 

corresponding judgment matrices are called the dual judgment matrices and they will be denoted as D k = (dij
k), for k = 

1, 2, 3, ...,m. 

 In the conventional AHP it is assumed that the criteria are independent of the alternatives.  The relative weights 

of the criteria are extracted by comparing the criteria among themselves.  Also the alternatives are compared among 

themselves in terms of each criterion.  If the criteria are assumed to depend on the alternatives, then Saaty (1994, Chapter 

8) proposes the elicitation of questions that compare criteria among themselves in terms of each of the alternatives as is 

the case with the dual comparisons. 

 However, one can argue that seldomly a decision maker examines a set of criteria without having in mind the 

alternatives to be evaluated and vice-versa.  In other words, since criteria and alternatives are the key entities in a given 

MCDM problem, one has to simultaneously keep them on focus all the time during the decision making process.   

 For instance, if one considers the two criteria "cost" and "functionality" in purchasing a product, then these two 

criteria have different relative importance if the problem is to purchase a TV set or a new house.  In the first case a 20% 

price change may not be so critical, while in the case of purchasing a new house a 20% price change may be more 

detrimental.  Therefore, it is also natural to accept the premise that perfect independence of the criteria and the 

alternatives seldomly exists.  This is a highly debatable issue in the decision analysis community and different authors 

have expressed different positions (Saaty, 1994, Chapter 8).  Thus, the use of the proposed question format is not totally 

new.  At this point we state the first key assumption that governs the developments described in this paper. 

 Assumption #1: 

 In a given MCDM problem the criteria influence the perception of the alternatives and vice-versa.  

 

 When the above assumption is not acceptable, Saaty (1994) proposes to use the so-called supermatrix technique. 

 When the decision maker elicits all possible dual comparisons of the criteria in terms of a given alternative (say 
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alternative Ai, for i = 1,2,3,...,m), then the normalized weight vector of this judgment matrix Di corresponds to a 

normalized row (actually the i-th row) of the decision matrix.  Therefore, by using the previous type of dual comparisons 

the decision maker can determine all the rows of the decision matrix in a normalized manner (i.e., the elements in each 

row sum up to one or are divided by the maximum entry of that row).  We call this decision matrix H, since each row has 

been normalized horizontally.  

 Let hij (for i=1,2,3,...,m and j=1,2,3,...,n) denote the (i,j) element of the decision matrix normalized in terms of 

each row via a sequence of m (dual) judgment matrices with dual comparisons.  It can be noticed that now there are m 

judgment matrices of size nHn each, while in the traditional (prime) approach there are n such matrices of size mHm each. 

 Moreover, suppose that the decision maker also forms the pairwise comparisons of a single judgment matrix in the 

traditional (prime) fashion.  That is, the decision maker forms a single mHm judgment matrix.  

 To help fix ideas, suppose that the judgment matrix formed in the traditional (prime) fashion examines all the m 

alternatives in terms of the first decision criterion.  According to our previous notation, this matrix is denoted as P1, since 

it involves the (prime) comparisons of the alternatives in terms of the first criterion.  Let vi1 (for i = 1, 2, 3, ..., m) be the 

elements of the corresponding weight (column) vector derived from this prime judgment matrix. Note that the elements 

vi1 are normalized vertically.  

 Given the values of the m rows of the decision matrix normalized in terms of each row (e.g., the hij values) and 

the values of the single normalized column (e.g., the vi1 values), then it is algebraically straightforward to derive the 

elements of any column in the decision matrix normalized in terms of each column (i.e., normalized vertically).  We call 

this matrix V, since it represents the decision matrix with its elements normalized vertically.  It can be easily verified that 

this can be achieved by employing the following formula (3.1): 

   v 
v

h
  =  h ij

i

/ 
ij

i










1

1

 (3.1) 

It is important to note here that the sum of all the hij
/ elements in a given column (except the first one) does not 

necessarily add up to one.   

 In general (if the k-th column is selected for normalization via an additional prime judgment matrix derived 

according to the traditional approach), the previous expression becomes: 

   v 
v

h  =  h ij

ik

ik/ 
ij 








 (3.2) 

When the previously derived elements hij
/ are normalized by dividing each element by the sum of the entries of its 

column, the last expression yields: 

  . n ..., 3, 2, 1, =j    and  m, ..., 3, 2, 1, = i  for      ,
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ij

ik
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ij





























∑
 (3.3) 

Therefore, it is possible for one to derive the decision matrix normalized in any desirable way by using dual pairwise 

comparisons.  At this point we state the second key assumption that governs these developments: 
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 Assumption #2: 

 Given matrix V and  one row of matrix H, then matrix H can be derived according to relation (3.3), assuming 

invariance of proportions.  

 

 It should be mentioned at this point that the above considerations hold true for consistent or inconsistent 

judgment matrices (assuming that the inconsistences are less than 10% (Saaty, 1980)).  The presence of high 

inconsistency can cause the pairwise comparisons of a (prime or dual) judgment matrix to be re-elicited by the decision 

maker(s).  The present developments refer to the number of such comparisons.  Once an acceptable (that is, with the 

value of the CR coefficient less or equal than the 10% limit) judgment matrix has been derived, the next step is to extract 

the pertinent weights or relative importances. 

 When the dual comparisons are used, a different sequence of judgment matrices is formed of dimensions 

different than those formed when comparisons are elicited in the traditional approach.  It should be emphasized here that 

vij represent the entries of the decision matrix normalized vertically (i.e., the entries of each column add up to one).  On 

the other hand, hij represent the entries normalized horizontally (i.e., the entries of each row add up to one).  Next, the 

question which is naturally raised at this point is under what conditions the number of comparisons in the dual approach 

is smaller.  This is the subject of the following theorem and corollaries. 

 

Theorem 1:   

The percent (%) of change of the number of comparisons between the prime and the dual problem is given by the 

following formula: 

  . 100 x 
1)) - (m m + 1 - (n n

1) - n - (m 1) - (n m
 (3.4) 

 

Proof:  Since the problem has m alternatives and n decision criteria, one nHn judgment matrix is required to derive the 

criteria weights and n judgement matrices of size mHm each are required to derive (under the traditional approach) the 

relative weights of the m alternatives in terms of each one of the n decision criteria.  Thus, the total number of required 

pairwise comparisons according to the traditional (primal) approach is equal to: 

  . 
2

1) - m(m
 n  +  

2

1) - n(n
 (3.5) 

 Similarly, for the dual problem the decision maker must form one matrix of size nHn for the weights of the 

decision criteria, plus m judgement matrices of size nHn (one for each of the m rows of the decision matrix), plus one 

matrix of size mHm (in order to normalize any one of the n columns of the decision matrix).  Therefore, the total number 

of pairwise comparisons under the dual approach is: 

  . 
2

1) - (m m
  +  

2

1) - n(n
 m  +  

2

1) - n(n
 (3.6) 

Then, the net decrease on the number of comparisons can be found as the difference of expression (3.6) from expression 
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(3.5), given as (3.7), below (after some elementary algebraic simplifications take place): 

  . 1) - n - 1)(m - (n m 
2

1
 (3.7) 

Therefore, the percent (%) change of the number of comparisons between the prime and the dual problem is given as 

expression (3.4).  � 

 

Corollary 1: 

The dual problem requires less pairwise comparisons if the number of alternatives in the problem is greater than the 

number of decision criteria plus one. 

Proof:  This follows directly from the fact that expression (3.7) must be greater than zero.  Thus, m - n - 1 > 0, or m > n + 

1.  This is true because the value of n is always greater than 1 (and also m > 0).  � 

 

 Therefore, if a problem has more alternatives than decision criteria (plus one), then the decision making process 

can explicitly benefit from the smaller number of comparisons needed by the proposed dual approach.  It should be stated 

here that in many real-life problems there are more decision criteria than alternatives.  However, in some real-life 

problems the number of alternatives may be dramatically high.  For instance, in ranking a number of employees for 

possible pay raises, the number of alternatives (i.e., the individual employees) is often very large, when compared to the 

decision criteria (which describe their job performance).  The rate of reduction on the number of required comparisons is 

given by expression (3.4) in Theorem 1.  The next corollary states that these reduction rates converge to a fixed quantity 

when the number of criteria is kept constant and the number of alternatives approaches to infinity. 

 

 

Corollary 2: 

The percent (%) of change of the number of comparisons between the prime and the dual problem, for a given number of 

criteria N, approaches the value (N - 1)/N when the number of alternatives approaches infinity. 

Proof:  This follows directly from expression (3.4), in Theorem 1, if one sets n = N and then takes the limit when m 

approaches to infinity.  Also, the function in (3.4) is continuous and increases monotonically.  Therefore, this limit can 

also serve as an upper bound on the reduction rate which can be achieved by using the proposed duality approach.  � 

 

 A related issue is to examine what happens if a problem is defined in a multi-level hierarchy. The previous 

considerations can easily be extended to this general case.  The proposed duality approach can directly be applied on 

each individual level of the hierarchy.  In particular, the duality approach will be beneficial if the number of sub-criteria 
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in one level, is greater than the number of criteria in the previous level plus one.  

 

4. A Numerical Example 

 The previous analyses are next demonstrated in terms of an illustrative example.  Suppose that a single-level 

hierarchy multi-criteria decision making problem involves the five alternatives A1, A2, A3, A4, and A5, which have to be 

evaluated in terms of the three decision criteria C1, C2, and C3.  These three criteria are assumed to have weights of 

importance equal to: W = (5/8, 1/8, 2/8).  Let the actual values of these alternatives in terms of the three decision criteria 

be as in the following decision matrix: 
   C1 C2 C3 
   5/8 1/8 2/8 
  __________________________ 
  A1 5 3 4 
  A2 2 5 3 
  A3 4 2 5 
  A4 2 4 1 
  A5 3 3 2 
 

In reality the decision maker does not know the above actual data.  However, as it will be shown next, the decision maker 

can extract their relative values by using pairwise comparisons. 

 

4.1. The Primal Approach 

 Under the traditional approach, the decision maker compares the alternatives with each other in terms of one 

decision criterion at a time.  This is done by means of three judgment matrices of size 5H5 each.  Next, we assume for 

simplicity in the calculations that the decision maker is always perfectly consistent.  Then, the three judgment matrices 

with the pairwise comparisons for each one of the decision criteria are as follows: 
 
 
 For Criterion C1   For Criterion C2  

























 

1  3/2  3/4  3/2  3/5

2/3  1  2/4  2/2  2/5

4/3  4/2  1  4/2  4/5

2/3  2/2  2/4  1  2/5

5/3  5/2  5/4  5/2  1

   =  P1  Matrix   

























 

1  3/4  3/2  3/5  3/3

4/3  1  4/2  4/5  4/3

2/3  2/4  1  2/5  2/3

5/3  5/4  5/2  1  5/3

3/3  3/4  3/2  3/5  1

   =  P2  Matrix  

 
 For Criterion C3 

























 

1  2/1  2/5  2/3  2/4

1/2  1  1/5  1/3  1/4

5/2  5/1  1  5/3  5/4

3/2  3/1  3/5  1  3/4

4/2  4/1  4/5  4/3  1

   =  P3  Matrix  
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For instance, element (2,3) (= 5/2) in the second matrix denotes that when alternative A2 is compared with alternative A3 

in terms of criterion C2, then the decision maker feels that their relative importance is best represented by the ratio 5/2.  A 

similar interpretation holds for the rest of the entries.  The decision maker also forms a single judgment matrix of size 

3H3 for the three decision criteria.  This judgment matrix, denoted as C, is as follows: 
 

  
















 

1  2/1  2/5

1/2  1  1/5

5/2  5/1  1

   =  C  Matrix  

 

 As it was mentioned in section 3, although alternatives are not explicitly mentioned in deriving the relative 

weights of the three decision criteria, the decision maker always keeps them as reference during the elicitation process.  

Furthermore, the primal and dual judgment matrices can be slightly inconsistent.  This is not the case in this example for 

simplification reasons.   

 Next, the relative priorities are extracted from each one of the previous four judgment matrices.  Since these 

matrices are perfectly consistent, it is easy to verify that the extracted priorities are the same regardless of which method 

(i.e., the eigenvector approach or a least squares approach) is used.  These vectors are as follows: 
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 From P1   From P2   From P3       From C 

























 

3/16

2/16

4/16

2/16

5/16

  = ) v ( = v 1 i,1   

























 

3/17

4/17

2/17

5/17

3/17

  = ) v ( = v i 2,2   

























 

2/15

1/15

5/15

3/15

4/15

  = ) v ( = v i 3,3   
















 

2/8

1/8

5/8

  = W  

 

These vectors form the normalized columns and the criteria weights of the decision matrix as follows: 
 
   C1 C2 C3 
   5/8 1/8 2/8 
  __________________________ 
  A1 5/16 3/17 4/15 
  A2 2/16 5/17 3/15 
  A3 4/16 2/17 5/15 
  A4 2/16 4/17 1/15 
  A5 3/16 3/17 2/15 
 

 From the above considerations it follows that for this illustrative example, and under the traditional (primal) 

approach, the decision maker needs to form 4 (= 3 + 1) judgment matrices with a total of 33 (= 3(3-1)/2 + 3[5(5-1)/2] ) 

pairwise comparisons.  

 

4.2. The Dual Approach 

 Under the dual approach the decision maker is first required to derive the decision matrix normalized in terms of 

the rows.  This is accomplished by forming five judgment matrices which compare the criteria among themselves in 

terms of each one of the five alternatives.  These matrices are as follows (again, perfect consistency is assumed in the 

elicitation of the pairwise comparisons):  
 

 
















 

1  4/3  4/5

3/4  1  3/5

5/4  5/3  1

   =  D1  Matrix  
















 

1  3/5  3/2

5/3  1  5/2

2/3  2/5  1

   =  D2  Matrix  

 

 
















 

1  5/2  5/4

2/5  1  2/4

4/5  4/2  1

   =  P3  Matrix  
















 

1  1/4  1/2

4/1  1  4/2

2/1  2/4  1

   =  D4  Matrix  

 

 
















 

1  2/3  2/3

3/2  1  3/3

3/2  3/3  1

   =  D5  Matrix  

 
 

For the case of the three criteria, the decision maker forms a judgment matrix which is identical to matrix C formed 
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during the primal approach.  Working as in the previous sub-section, the priority vectors are derived from each one of the 

previous matrices.  These vectors are as follows: 
 
  From D1  From D2   From D3 

 
















 

4/12

3/12

5/12

  = ) h ( = h i 1,
1   

















 

/

/  = ) h ( = h i ,

103

105

10/2

2
2     

















 

5/11

2/11

4/11

  = ) h ( = h i 3,
3    

 
  From D4  From D5   From C 

 
















 

5/11

2/11

4/11

  = ) h ( = h i 4,
4   

















 

2/8

3/8

3/8

  = ) h ( = h i 5,
5     

















 

/8

/8

/8

  = W

2

1

5

   

 

These vectors form the normalized rows and the criteria weights of the decision matrix.  Thus, the normalized decision 

matrix is as follows: 
 
   C1 C2 C3 
   5/8 1/8 2/8 
  __________________________ 
  A1 5/12 3/12 4/12 
  A2 2/10 5/10 3/10 
  A3 4/11 2/11 5/11 
  A4 2/7  4/7  1/7  
  A5 3/8  3/8 2/8  
 

 The previous decision matrix can be normalized in terms of the columns, by using one more judgment matrix of 

size 5H5.  This extra matrix represents the pairwise comparisons derived when the five alternatives are compared in terms 

of any one of the three decision criteria.  For easy demonstration, suppose that the decision maker chooses to compare the 

five alternatives in terms of the first decision criterion (the case of using the second or the third decision criterion can be 

developed in an identical manner).  The corresponding judgment matrix was provided in the previous sub-section as 

matrix P 1.  Therefore, the normalized column is:  (5/16, 2/16, 4/16, 2/16, 3/16)T. 

 The next step is to use the previous five normalized rows and the normalized column to derive the normalized 

columns of the decision matrix.  It can be observed that only the last two columns of the decision matrix need to be 

calculated in this example.  For instance, when formula (3.3) is applied to calculate the value of v1,2, it turns out that its 

value is equal to 3/17.  This is true because from relation (3.3) the value of v1,2 should be equal to: 
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     =  

3/8 x 
3/8

3/16
 + 4/7 x 

2/7

2/16
 + 2/11 x 

4/11

4/16
 + 5/10 x 

2/10

2/16
 + 3/12 x 

5/12

5/16

3/12 x 
5/12

5/16

  =  









































 

 

 . 3/17  =  
3/16 + 4/16 + 2/16 + 5/16 + 3/16

3/16
  =   

 

In a similar manner, it can be shown that the second column (after normalization) is equal to: 

  (3/17, 5/17, 2/17, 4/17, 3/17)T. 

Similarly, the third column (after normalization) is equal to: 

  (4/15, 3/15, 5/15, 1/15, 2/15)T. 

Therefore, the normalized decision matrix is as follows: 
 
   C1 C2 C3 
   5/8 1/8 2/8 
  __________________________ 
  A1 5/16 3/17 4/15 
  A2 2/16 5/17 3/15 
  A3 4/16 2/17 5/15 
  A4 2/16 4/17 1/15 
  A5 3/16 3/17 2/15 
 

 The above matrix is identical to the matrix derived with the primal approach. However, in the dual approach the 

decision maker needed to form 5 (= 1 + 3 + 1) judgment matrices with a total of 28 (= 3(3-1)/2 + 5[3(3-1)/2]  + 5(5-1)/2 ) 

pairwise comparisons.  This represents a reduction of 15.14% from the total number of pairwise comparisons required 

under the primal approach.  Although this reduction may not seem to be very significant, when the number of alternatives 

is much higher than the number of decision criteria, the benefits of using the dual approach increase dramatically.  This is 

further investigated in the computational results presented in the next section. 

 As a final note, it can be observed that the dual matrices are of smaller rank that the prime ones (3 versus 5).  As 

a result, they are easier to be consistent the first place.  However, the lack of the redundancy that occurs in larger 

judgement matrices, makes the impact of an individual error to be larger than otherwise.  The opposite is true with the 

larger prime matrices.  The main issue is that with the dual matrices fewer comparisons are required, thus the problems 

associated with the elicitation of numerous comparisons are easier to be controlled. 
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5. Numerical Results for Problems of Different Sizes 

 Consider expressions (3.5), (3.6), and (3.7) which provide the total numbers of comparisons required under the 

primal and dual approaches, as well as their net difference.  Figures 1, 2, 3, and 4, depict these values when the number 

of decision criteria n is equal to 10, 15, 20, and 25, respectively.  As it is also shown in these expressions, the values of 

these functions increase quadratically with the value of m (number of alternatives). 

 Moreover, when the condition of corollary 1 is satisfied (i.e., when m > n + 1), then the net decrease due to 

duality is positive.  It is also interesting to observe that in all these four representative plots, the number of comparisons 

for the dual problem seems to increase almost linearly with the number of alternatives.  In reality the rate of increase is 

still quadratic with the number of alternatives m, but with the number of criteria chosen in these figures this increase 

appears to be almost linear.  This, of course, is a nice characteristic of the number of comparisons required by using the 

dual approach.  The previous observation holds true for the ranges of the m and n parameters examined in this study.  

Clearly, if the number of alternatives increases more than 35, then the number of comparisons under the dual approach 

will assume a more quadratic rate of increase.  However, one may argue that many real-life problems involve less than 35 

alternatives (which is the upper limit in the previous plots). 

 On the other hand, the number of comparisons required under the traditional (prime) approach noticeably 

increases quadratically in these figures.  The previous observations are a compelling reason why the duality approach can 

be significantly beneficial to most real-life decision problems which use pairwise comparisons to elicit qualitative data.  

As it was mentioned in section 3, these developments are identical when dealing with perfectly consistent and slightly 

inconsistent (i.e., with CR value less or equal than 10%) judgment matrices. 

 Figure 5 depicts the net reduction on the number of comparisons (given as expression (3.7)) achieved when the 

dual approach is applied, for different size problems.  Figure 6 presents the percent (%) reductions achieved when the 

dual approach is used on problems of various sizes.  As before, these increases follow quadratic patterns on the size of 

the decision problems.  It is noticeable that in Figure 6 the reduction rates seem to converge to a constant value when the 

number of alternatives increases.  Obviously, this is in direct agreement with corollary 2. 

 

5. Concluding Remarks 

 The previous analyses demonstrate that the number of comparisons required to solve a decision problem which 

has m alternatives and n criteria can significantly be reduced when the number of alternatives is greater than the number 

of criteria plus one.  This is achieved in terms of a duality approach.  In this approach the decision maker compares how 

well the criteria perform within a single alternative at a time.  It should be noticed that in the traditional way of 

implementing pairwise comparisons, the decision maker is asked to compare the alternatives in terms of a single criterion 

at a time or to compare a set of criteria (when their relative weights of importance are extracted). 

 The achieved reductions on the required total number of pairwise comparisons are given through some 
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analytical formulas.  The main findings of this study are also depicted in a number of figures.  It is remarkable to 

emphasize here that these reductions become more dramatic when the size of the problem increases.  Thus, the proposed 

duality approach becomes more practical for large size decision problems.  
 

 Although the concept of duality is an old one in decision sciences (e.g., in linear programming), the proposed 

duality approach is a novel development in multi-criteria decision making.  The proposed method can be applied to the 

AHP, or its variants, as well as to any other method which uses pairwise comparisons to elicit qualitative or fuzzy data 

from the decision maker(s).  More research in this intriguing area may reveal more benefits of using information 

extracted from the dual formulation of a given multi-criteria decision problem. 
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