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ABSTRACT: Although pairwise comparisons have been seen by many as an effective and intuitive way for eliciting
qualitative data for multi-criteria decision making problems, a mgjor drawback is that the number of the required
comparisons increases quadratically with the number of the entities to be compared. Thus, often even data for medium
size decision problems may be impractical to be élicited via pairwise comparisons. The more the comparisons are, the
higher isthe likelihood that the decision maker will introduce erroneous data. This paper introduces a dual formulation to
a given multi-criteria decison making problem, which can significantly aleviate the previous problems. Some
theoretical results establish that this is possible when the number of aternatives is greater than the number of decision
criteriaplus one.
KEY WORDS: Pairwise comparisons, multi-criteria decision making, the Analytic Hierarchy Process (AHP), duality.

1 Some Background I nformation

This paper dedls with a critical problem in decision analysis. It examines the issue of diciting quditative
information by using a short sequence of pairwise comparisons. Pairwise comparisons have long been proposed as an
effective and intuitive way for diciting qualitative data for multi-criteria decision making (MCDM) problems. Probably,
they became best known as part of the Analytic Hierarchy Process (AHP) (Saaty,1980 and 1994). However, pairwise
comparisons can be used in conjunction with any decision method that requires to quantify qualitative data. This paper
proposes an alternative approach on how such comparisons should be dlicited.

In the typicadl MCDM problem the decision maker is given m aternatives (denoted as A1, As, As, ..., Am) tO
evauate in terms of n decision criteria (denoted as Cy, Cy, Cs, ..., Cn). The decision maker's task is to determine the
relative performance of the m aternatives. First of al, the decision maker needs to form the entries of a decision matrix
A and also determine the vector W with the weights of importance of the n criteria. Usually, the entry a; of the decision
matrix A represents the performance of aternative Ai when it is examined in terms of criterion C;. Next the decision
maker has to use the datain the decision matrix along with the criteria weights and somehow evaluate the performance of
each dternative in terms of al the decision criteria considered simultaneously. This problem becomes difficult to solve
when the decision criteria are expressed in different units of measure (e.g, dollars, hours, pounds, etc.). How to evaluate
alternativesin amulti-dimensional setting, isacentra problem in MCDM.

There is a plethora of different schools of thought and proposed methodol ogies on how such problems can be



solved. The focus of this paper is not on an evaluation of such methods. For some comparative studies and evaluations
of such methods the interested reader may wish to consult with the studies reported by Lootsma (1990), and
(Triantaphyllou, and Mann, 1989). Among these methods the Analytic Hierarchy Process (AHP) (Saaty, 1980 and
1994) enjoys a wide acceptance by practitioners (especialy by those who use the Expert Choice (1990) computer
package) and theoreticians. However, it also has its critics (e.g., (Belton and Gear, 1983), (Dyer and Ravinder, 1983),
(Dyer and Wendell, 1985), (Dyer, 1990a and 1990b), (Triantaphyllou and Mann, 1994), and (Winkler, 1990)).

A centra issue in the AHP is the dlicitation of qualitative data via a sequence of pairwise comparisons. It is
noticeable that a central role for the commercia acceptance of the AHP is that practitioners find pairwise comparisons to
be an effective and intuitive way for diciting qualitative information. Some theoretical issues on the use of comparisons
and scales of measurement can be found in (Saaty, 1980) and (Triantaphyllou et al., 1994).

Suppose that a decision maker wishes to dlicit the relative priorities, or weights of importance, of n entities.
These n entities could be n decision criterig, or n dternativesto be examined in terms of asingle decision criterion. Then,
the decision maker must elicit the value of n(n-1)/2 pairwise comparisons. If a decision problem involves m dternatives
and n decision criteria (multiple hierarchical levels are not considered at this point), then the total number of the required
pairwise comparisonsis. n(n-1)/2 + n(m(m-1)/2).

The above number can be quite large, even for moderate values of mand n. For instance, for m= 15 and n = 10,
the total number of the required comparisons is equal to 1,095. This number increases quadratically as the values of m
and n increase. If the decision maker is inaccurate in the elicitation of some of the comparisons, then the accuracy of the
rest of the comparisons can dleviate the burden caused from the inaccurate ones (Saaty, 1980). That is, small
inaccuracies in some of the comparisons may not be critical due to the redundancy from the rest of the comparisons.
Thisisthe main reason why all the comparisons are needed. However, ahigh number of comparisons can make the data
elicitation process tedious and thus it may compromise the accuracy of the individua judgments. This, in turn, can
become the reason to introduce errors in the elicitation process. Therefore, it is important to seek methods for reducing
pairwise comparisons, without jeopardizing the benefits of having redundant ones. Some methods (e.g., (Harker, 1987a
and 1987b)) have proposed to skip certain comparisons. However, such a measure reduces the redundancy in the
judgments and then a single error may have a bigger impact and lead to the wrong ranking of the aternatives.

This paper presents an aternative approach. It dightly changesthe way for eliciting pairwise comparisons and it
does not skip any comparisons. This is done by formulating a type of a dual problem. As a result, the proposed
approach can reduce the total number of required pairwise comparisons when the number of aternatives is larger than
the number of decision criteriaplusone (i.e, whenm>n + 1).

This paper is organized as follows. The next section briefly overviews the traditional way for diciting pairwise
comparisons. This proposed dual approach is presented in the third section. The fourth section demonstrates the

proposed approach in terms of an illustrative example. The fifth section presents some numerica results on how much



the number of comparisons can be reduced for problems of different size. Some concluding remarks, and areas of

possible extensions, are presented in the last section.

2. Eliciting Relative Weights from Pairwise Comparisons

Suppose that an MCDM problem calls for the evaluation of m aternatives in terms of n decision criteria. Then
the decision maker needs to extract the relative weights of the n criteria and aso the relative (if the criteria are defined in
different units of measure) performance values of the m aternatives in terms of each one of the decision criteria. The
first task is accomplished by forming an nxn judgment (also called pairwise comparison) matrix. The (i,j) element of this
matrix refers to the evaluation of the importance of the i-th criterion when it is compared with the j-th criterion. The
second task is accomplished by forming n matrices of order mxm each. In this paper these matrices will be denoted as P
k. The (i,)) element of the k-th matrix (for k = 1,2,3,...,n), denoted as pi,-k, refers to the evauation of the importance of the
i-th aternative when it is compared with the j-th aternative in terms of the k-th criterion. That is, the decison maker is
asked to answer a sequence of questions of the following form:

"What is the relative importance pi,-k of alternative A; when it is compared with alternative A; in terms of
the decision criterion C¢?"

Often the value of pi,-k cannot be determined directly. This happens when the decision criterion Cy expresses a
qualitative aspect of the alternatives. In such a case the decison maker first assigns a linguistic statement that best
expresses higher opinion of the relative importance of the two alternatives A; and A; when they are compared in terms of
criterion Cy. Next, this linguistic statement is assigned to some numerical value according to a predetermined scale of
measurement (Saaty, 1980), (Triantaphyllou et al., 1994). A judgment matrix P ¥ derived by using the previous pairwise
comparisonsisareciprocal one. That is, the property pijk = 1/p]ik holds for any element (pairwise comparison) pi,-k.

The next step is to extract the relative importances (or weights) implied by the previous comparisons. Saaty
asserts that to answer this question one has to estimate the right principal eigenvector of the previous matrix. Given a
judgment matrix with pairwise comparisons, the corresponding right principa eigenvector can be approximated by using
the geometric mean of each row (Saaty, 1980). That is, the elementsin each row are multiplied with each other and then
the n-th root is taken (where n is the number of elements in the row). Next these numbers are normalized by dividing
them with their sum.

An evaluation of the eigenvalue approach can be found in (Triantaphyllou and Mann, 1990). It should be stated
here that there is a number of aternative approaches which do not use the eigenvector concept and can extract relative
priorities from pairwise matrices. These include techniques by Fichtner (1986) and Bryson (1995). In (Triantaphyllou et
al., 1990) a least squares formulation is presented and it is compared with some other priority extraction approaches.
The relevance and usefulness of the proposed duality approach is not restricted to those cases when the right principa
eigenvector method is used.



One of the most practical issues in the pairwise comparisons approach is that it alows for dightly inconsistent
pairwise comparisons. If al the comparisons are perfectly consistent, then the relation pijk = pikapyjk should aways be
true for any combination of comparisons taken from the judgment matrix.

However, perfect consistency rarely occurs in practice. In the AHP the pairwise comparisons in a judgment
matrix are considered to be adequately consistent if the corresponding consistency ratio (CR) is less than 10% (Saaty,
1980). The CR coefficient is calculated asfollows. First the consistency index (Cl) needs to be estimated. Thisis done
by adding the columns of the judgment matrix and multiplying the resulting vector by the vector of priorities (i.e., the
approximated right principal eigenvector) obtained earlier. This yields an approximation of the maximum eigenvalue,
denoted by © ma. Then, the Cl valueis calculated by using the formula: Cl = (° ma - N)/(N - 1).

The concept of the RCI (Random Consistency Index) isused next. Given avaue of n (e.g., the number of items
to be compared) the RCI value corresponds to the average random consistency index (calculated by using the formula Cl
= (°max - N)/(n - 1) ) derived from a sample of size 500 of randomly generated reciprocal matrices with entries from the
set {19, 1/8, 1/7,...,1,2,..,7,8,9} (Saaty, 1980). The concept of the RCI was introduced by Saaty in order to establish
(by means of a dtatistical test of hypothesis) an upper limit on how much inconsistency may be tolerated in a decision
process. Next, the CR value of ajudgment matrix is obtained by dividing the ClI vaue by the corresponding RCI value as
givenin Table 1. If the CRvaueis greater than 0.10, then a re-evaluation of the pairwise comparisons is recommended
(because the corresponding consistency ratio is considered as high). Thisis repeated until a CR value of 0.10 or lessis
achieved. Some alternative consistency indicators have also been proposed (e.g., the ones by (Golden and Wang, 1989)
and (Bryson, 1995).

Table 1: RCI valuesfor different values of n (Saaty, 1980).

n 1 2 3 4 5 6 7 8 9

RCI 0 0 0.58 0.90 112 124 132 141 145

After the dternatives are compared with each other in terms of each one of the decision criteria and the
individual priority vectors are derived, the synthesis step is taken. The priority vectors become the columns of the
decision matrix (not to be confused with the judgment matrices with the pairwise comparisons). The weights of

importance of the criteria are also determined by using pairwise comparisons.

3. A Duality Approach for Eliciting Comparisons
Recall that when two alternatives are considered in the traditiona approach, the decision maker is asked to

estimate the value of pi,-k, the relative importance of aternative A when it is compared with alternative A in terms of the



decision criterion Cy, by answering the following type of questions:

"What is the relative importance pi,-k of alternative A; when it is compared with alternative A; in terms of

the decision criterion C¢?"

We will call this kind of questions the prime pairwise comparisons and the corresponding judgment matrices will be
called the prime judgment matrices and they will be denoted asP* = (p;), for k=1, 2, 3, ...n.

In the proposed dual approach the previous question takes a different form. Instead of comparing two
aternatives at atime, now the relative performance of two decision criteria is examined within a given alternative. That
is, now thetypical question is of the following form:

"What is the relative importance di,-k of criterion C; when it is compared with criterion C; in terms of

alternative A?"

In analogy to the prime pairwise comparisons, we will call thiskind of questions the dual pairwise comparisons and the
corresponding judgment matrices are cdled the dual judgment matrices and they will be denoted as D K= (di,-k), fork=
1,23 .m

In the conventional AHP it is assumed that the criteria are independent of the aternatives. The relative weights
of the criteria are extracted by comparing the criteria anong themselves. Also the aternatives are compared among
themselves in terms of each criterion. If the criteria are assumed to depend on the alternatives, then Saaty (1994, Chapter
8) proposes the dicitation of questions that compare criteria among themselves in terms of each of the alternatives asis
the case with the dual comparisons.

However, one can argue that seldomly a decision maker examines a set of criteria without having in mind the
alternatives to be evaluated and vice-versa. In other words, since criteria and dternatives are the key entitiesin a given
MCDM problem, one has to simultaneously keep them on focus all the time during the decision making process.

For instance, if one considers the two criteria "cost" and "functionality” in purchasing a product, then these two
criteria have different relative importance if the problem isto purchase a TV set or anew house. In thefirst case a 20%
price change may not be so critical, while in the case of purchasing a new house a 20% price change may be more
detrimental. Therefore, it is also natura to accept the premise that perfect independence of the criteria and the
aternatives seldomly exists. This is a highly debatable issue in the decision anaysis community and different authors
have expressed different positions (Saaty, 1994, Chapter 8). Thus, the use of the proposed question format is not totally
new. At this point we state thefirst key assumption that governs the developments described in this paper.

Assumption #1:

In a given MCDM problemthe criteria influence the perception of the alternatives and vice-versa.

When the above assumption is not acceptable, Saaty (1994) proposes to use the so-called supermatrix technique.

When the decision maker dlicits all possible dual comparisons of the criteria in terms of a given dternative (say



aternative A, for i = 1,2,3,...,m), then the normalized weight vector of this judgment matrix D' corresponds to a
normalized row (actually the i-th row) of the decision matrix. Therefore, by using the previous type of dua comparisons
the decision maker can determine all the rows of the decision matrix in a normalized manner (i.e., the eements in each
row sum up to one or are divided by the maximum entry of that row). We call this decision matrix H, since each row has
been normalized horizontally.

Let h; (for i=1,2,3,....m and j=1,2,3,...,n) denote the (i,j) element of the decision matrix normalized in terms of
each row via a sequence of m (dua) judgment matrices with dual comparisons. It can be noticed that now there are m
judgment matrices of size nxn each, whilein the traditional (prime) approach there are n such matrices of size mxm each.

Moreover, suppose that the decison maker also forms the pairwise comparisons of a single judgment matrix in the
traditional (prime) fashion. That is, the decision maker forms a single mxm judgment matrix.

To help fix ideas, suppose that the judgment matrix formed in the traditional (prime) fashion examines all them
alternatives in terms of the first decision criterion. According to our previous notation, this matrix is denoted as P*, since
it involves the (prime) comparisons of the aternatives in terms of the first criterion. Let vi; (fori =1, 2, 3, ..., m) bethe
elements of the corresponding weight (column) vector derived from this prime judgment matrix. Note that the elements
vi1 are normdized vertically.

Given the values of the m rows of the decision matrix normalized in terms of each row (e.g., the h; values) and
the vaues of the single normalized column (e.g., the vi; values), then it is algebraicdly straightforward to derive the
elements of any column in the decision matrix normalized in terms of each column (i.e., normalized vertically). We call
this matrix V, since it represents the decision matrix with its elements normalized vertically. It can be easily verified that

this can be achieved by employing the following formula (3.1):
ah, o

hi = gv—;v 3D

It is important to note here that the sum of al the hij/ dements in a given column (except the first one) does not
necessarily add up to one.

In genera (if the k-th column is selected for normalization via an additional prime judgment matrix derived

according to the traditional approach), the previous expression becomes:
h = g’v‘—gv (32)

When the previoudy derived elements hi,-’ are normalized by dividing each element by the sum of the entries of its

column, the last expression yields:

ah, 0
g73vu
Vik @
v % 6 0
ag i:\/w:
y=18 Vg g

h = for i=1,2,3,...,m and j=1,2,3,...,n. (33

Therefore, it is possible for one to derive the decision matrix normalized in any desirable way by using dual pairwise

comparisons. At this point we state the second key assumption that governs these devel opments:



Assumption #2:
Given matrix V and one row of matrix H, then matrix H can be derived according to relation (3.3), assuming

invariance of proportions.

It should be mentioned at this point that the above considerations hold true for consistent or inconsistent
judgment matrices (assuming that the inconsistences are less than 10% (Saaty, 1980)). The presence of high
inconsistency can cause the pairwise comparisons of a (prime or dual) judgment matrix to be re-elicited by the decision
maker(s). The present developments refer to the number of such comparisons. Once an acceptable (that is, with the
value of the CR coefficient less or equa than the 10% limit) judgment matrix has been derived, the next step is to extract
the pertinent weights or relative importances.

When the dual comparisons are used, a different sequence of judgment matrices is formed of dimensions
different than those formed when comparisons are elicited in the traditional approach. It should be emphasized here that
Vij represent the entries of the decision matrix normalized verticaly (i.e., the entries of each column add up to one). On
the other hand, hj; represent the entries normalized horizontally (i.e., the entries of each row add up to one). Next, the
question which is naturally raised at this point is under what conditions the number of comparisons in the dua approach

issmaller. Thisisthe subject of the following theorem and corollaries.

Theorem 1:
The percent (%) of change of the number of comparisons between the prime and the dual problem is given by the
following formula:

m(n-1)(m-n-1)
n(n-1+ m(m-1))

x100. (34)

Proof: Since the problem has m aternatives and n decision criteria, one nxn judgment matrix is required to derive the
criteria weights and n judgement matrices of size mxm each are required to derive (under the traditional approach) the
relative weights of the m aternatives in terms of each one of the n decision criteria. Thus, the total number of required
pairwise comparisons according to the traditional (primal) approach is equal to:

n(n-1) m(m- 1)
R (359)

Similarly, for the dua problem the decision maker must form one matrix of size nxn for the weights of the
decision criteria, plus m judgement matrices of size nxn (one for each of the m rows of the decision matrix), plus one
matrix of size mxm (in order to normalize any one of the n columns of the decision matrix). Therefore, the total number
of pairwise comparisons under the dual approachis:

n(n-1) + mn(n—l) + m(m-1)
2 2 2

(36)

Then, the net decrease on the number of comparisons can be found as the difference of expression (3.6) from expression



(3.5), given as (3.7), below (after some elementary algebraic simplifications take place):
%m(n-l)(m- n-1). (3.7)
Therefore, the percent (%) change of the number of comparisons between the prime and the dual problem is given as

expression (3.4). B

Corallary 1:

The dual problem requires less pairwise comparisons if the number of alternatives in the problem is greater than the
number of decision criteria plus one.

Proof: Thisfollowsdirectly from the fact that expression (3.7) must be greater than zero. Thus, m-n-1>0,orm>n+

1. Thisistrue because the value of nisaways greater than 1 (and alsom>0). W

Therefore, if aproblem has more alternatives than decision criteria (plus one), then the decision making process
can explicitly benefit from the smaller number of comparisons needed by the proposed dual approach. It should be stated
here that in many red-life problems there are more decision criteria than aternatives. However, in some real-life
problems the number of aternatives may be dramaticaly high. For instance, in ranking a number of employees for
possible pay raises, the number of aternatives (i.e., the individual employees) is often very large, when compared to the
decision criteria (which describe their job performance). The rate of reduction on the number of required comparisonsis
given by expression (3.4) in Theorem 1. The next corollary states that these reduction rates converge to afixed quantity

when the number of criteriais kept constant and the number of aternatives approachesto infinity.

Corallary 2:

The percent (%) of change of the number of comparisons between the prime and the dual problem, for a given number of
criteria N, approaches the value (N - 1)/N when the number of alternatives approaches infinity.

Proof: This follows directly from expression (3.4), in Theorem 1, if one sets n = N and then takes the limit when m
approaches to infinity. Also, the function in (3.4) is continuous and increases monotonically. Therefore, this limit can

also serve as an upper bound on the reduction rate which can be achieved by using the proposed duality approach. B

A related issue is to examine what happens if a problem is defined in a multi-level hierarchy. The previous
considerations can easily be extended to this general case. The proposed duality approach can directly be applied on
each individua level of the hierarchy. In particular, the duality approach will be beneficia if the number of sub-criteria



in onelevel, is greater than the number of criteriain the previouslevel plusone.

4, A Numerical Example

The previous analyses are next demonstrated in terms of an illustrative example. Suppose that a single-level
hierarchy multi-criteria decision making problem involves the five adternatives Aq, Ay, As, A4, and As, which have to be
evaluated in terms of the three decision criteria Ci, Cy, and Cs. These three criteria are assumed to have weights of
importance equa to: W= (5/8, 1/8, 2/8). Let the actual values of these alternatives in terms of the three decision criteria

be asin the following decision matrix:
Ci C Cs
5/8 18 2/8

FeEE2P
WNBDNO
wWhDNOTW
N OTWwhs

In redlity the decision maker does not know the above actual data. However, asit will be shown next, the decision maker

can extract their relative values by using pairwise comparisons.

41. ThePrimal Approach

Under the traditional approach, the decision maker compares the aternatives with each other in terms of one
decision criterion a atime. This is done by means of three judgment matrices of size 5x5 each. Next, we assume for
simplicity in the caculations that the decison maker is aways perfectly consistent. Then, the three judgment matrices

with the pairwise comparisons for each one of the decision criteria are asfollows:

For Criterion C; For Criterion C,
¢ 1 52 54 52 530 ¢ 1 35 32 4 330
&25 1 24 22 23] &53 1 52 54 53]
Matrix P = §45 42 1 42 43l Matrix P = £213 215 1 214 23!
22/5 22 24 1 23 3 24/3 45 42 1 43 3
835 32 34 32 1 833 35 32 34 1

For Criterion Cs
¢ 1 43 45 41 420

834 1 35 ;1 32y
Matrix P = §54 53 1 51 52
€ys 13 us 1 12U
2 23 25 21 18

> (D: >



For instance, element (2,3) (= 5/2) in the second matrix denotes that when alternative A, is compared with aternative Az
in terms of criterion Cy, then the decision maker feelsthat their relative importance is best represented by theratio 5/2. A
similar interpretation holds for the rest of the entries. The decision maker also forms a single judgment matrix of size

3x3 for the three decision criteria. This judgment matrix, denoted as C, is asfollows:

¢ 1 51 520

é a
Matrix C = a1/5 1 12y
é a
a25 21 14

As it was mentioned in section 3, athough alternatives are not explicitly mentioned in deriving the relative
weights of the three decision criteria, the decision maker aways keeps them as reference during the elicitation process.
Furthermore, the primal and dual judgment matrices can be dightly inconsistent. Thisis not the case in this example for
simplification reasons.

Next, the relative priorities are extracted from each one of the previous four judgment matrices. Since these
matrices are perfectly consistent, it is easy to verify that the extracted priorities are the same regardless of which method

(i.e., the eigenvector approach or aleast squares approach) isused. These vectors are asfollows:
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FromP" FromP? FromP® FromC

65/16 0 6317 0 64/151
e u e u e u ; N
.:32/16@ @5/17@ .:33/15@ 25/83

vi=(via)= g4/16 v.= (v )= g2117 v.= (s )= g5/15 W=g1/8
é,16 U &417 0 1150 €5l
8216 § g7y g5 6284
&3/16 83176 2156

These vectors form the normalized columns and the criteriaweights of the decision matrix as follows:

Ci C Cs
5/8 18 2/8

516 3/17  4/15
2/16  5/17  3/15
416 2/27  5/15
2/16  4/17 115
316 317  2/15

FrrE>

From the above considerations it follows that for this illustrative example, and under the traditiona (primal)
approach, the decision maker needs to form 4 (= 3 + 1) judgment matrices with atotal of 33 (= 3(3-1)/2 + 3[5(5-1)/2] )

pai rwi se compari sons.

4.2. The Dual Approach

Under the dual approach the decision maker isfirst required to derive the decision matrix normalized in terms of
the rows. This is accomplished by forming five judgment matrices which compare the criteria among themselves in
terms of each one of the five adternatives. These matrices are as follows (again, perfect consistency is assumed in the

elicitation of the pairwise comparisons):

é 1 53 540 é 1 2/5 230
é a é a
Matrix p* = a3/5 1 34y Matrix p* = a5/2 1 53y
é a é a
g4l5 43 1§ 832 35 1
é 1 42 4/5u é 1 214 21q
. é a ) é a
Matrix P’ = a2/4 1 2/5q Matrix D* = a4/2 1 41y
é a é a
&54 52 1y gliz va 1y
é 1 33 320
) é a
Matrix D° = a3/3 1 32g
é a
8213 23 1

For the case of the three criteria, the decision maker forms a judgment matrix which is identical to matrix C formed

11



during the primal approach. Working as in the previous sub-section, the priority vectors are derived from each one of the

previous matrices. These vectors are as follows:

FromD* From D? FromD?
é5/12 0 62/100 é4/11u
e u e u e u
h'=(h, )=83/12( h*=(h, )=@5/10¢ h'=(hy )=82/1ly
& .0 &, U é_.. 0
g2 €3/104 g5/11 4
4 5
FromD FromD FromC
64/110 é3/80 é5/8U
e u e u e u
h'=(h, )=8211y h'=(hs; )=83/8¢ W=gal8q
&0 &0 &0
&5/11 828 a2/8 g

These vectors form the normalized rows and the criteria weights of the decison matrix. Thus, the normalized decision

matrix isasfollows:

C1 C Cs
5/8 18 2/8

512 312  4/12
2/10 510 310
411 211 511
27 4f7 u7
3/8 3/8 2/8

FrEE>

The previous decision matrix can be normalized in terms of the columns, by using one more judgment matrix of
size 5x5. Thisextramatrix represents the pairwise comparisons derived when the five alternatives are compared in terms
of any one of the three decision criteria. For easy demonstration, suppose that the decision maker chooses to compare the
five dternatives in terms of the first decision criterion (the case of using the second or the third decision criterion can be
developed in an identicadl manner). The corresponding judgment matrix was provided in the previous sub-section as
matrix P*. Therefore, the normalized columnis: (5/16, 2/16, 4/16, 2/16, 3/16)T.

The next step is to use the previous five normaized rows and the normalized column to derive the normalized
columns of the decision matrix. It can be observed that only the last two columns of the decision matrix need to be
caculated in this example. For instance, when formula (3.3) is applied to caculate the value of v, it turns out that its

valueisequd to 3/17. Thisistrue because from relation (3.3) the value of v1,2 should be equal to:

a/ll 6
—=h,
§hep

Vie= ————— %
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516 x3/12
5/12

/16 6 2216
€512

3/16

6, /16

x3/ 12—+ ¢~ X510+ ¢ X
22/10 g é4/11

3/16+5/16+ 2/16+ 4/16+ 3/16

= 3/17.

0, a2/16 0, a8/16

2/ll—+ C——X 4/7—+ C—— X3/8—
& 27 & 3/8

Inasimilar manner, it can be shown that the second column (after normalization) is equa to:

(3/17, 5/17, 2/17, 4117, 3/17)".

Similarly, the third column (after normalization) is equd to:

(4/15, 3/15, 5/15, 1/15, 2/15)".

Therefore, the normalized decision matrix is as follows:

Ci C Cs

5/8 18 2/8
Ay 516 3/17  4/15
A 2/16  5/17  3/15
Az 416 2/27  5/15
Ay 2/16  4/17 115
As 316 317  2/15

The above matrix isidentical to the matrix derived with the primal approach. However, in the dual approach the
decision maker needed to form 5 (= 1 + 3 + 1) judgment matrices with atotal of 28 (= 3(3-1)/2 + 5[3(3-1)/2] + 5(5-1)/2)
pairwise comparisons. This represents a reduction of 15.14% from the total number of pairwise comparisons required
under the primal approach. Although this reduction may not seem to be very significant, when the number of aternatives

is much higher than the number of decision criteria, the benefits of using the dual approach increase dramatically. Thisis

further investigated in the computational results presented in the next section.

Asafina note, it can be observed that the dual matrices are of smaller rank that the prime ones (3 versus 5). As
a result, they are easier to be consistent the first place. However, the lack of the redundancy that occurs in larger
judgement matrices, makes the impact of an individua error to be larger than otherwise. The opposite is true with the

larger prime matrices. The main issue is that with the dual matrices fewer comparisons are required, thus the problems

associated with the elicitation of numerous comparisons are easier to be controlled.
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5. Numerical Resultsfor Problemsof Different Sizes

Consider expressions (3.5), (3.6), and (3.7) which provide the total numbers of comparisons required under the
primal and dua approaches, as well as their net difference. Figures 1, 2, 3, and 4, depict these values when the number
of decision criterian is equa to 10, 15, 20, and 25, respectively. Asit is aso shown in these expressions, the values of
these functionsincrease quadratically with the value of m (number of aternatives).

Moreover, when the condition of corollary 1 is satisfied (i.e., when m > n + 1), then the net decrease due to
duality is positive. It isaso interesting to observe that in all these four representative plots, the number of comparisons
for the dual problem seems to increase almost linearly with the number of aternatives. In redlity the rate of increase is
dtill quadratic with the number of alternatives m, but with the number of criteria chosen in these figures this increase
appears to be almost linear. This, of course, is a nice characteristic of the number of comparisons required by using the
dua approach. The previous observation holds true for the ranges of the m and n parameters examined in this study.
Clearly, if the number of aternatives increases more than 35, then the number of comparisons under the dual approach
will assume amore quadratic rate of increase. However, one may argue that many real-life problemsinvolve less than 35
alternatives (which isthe upper limit in the previous plots).

On the other hand, the number of comparisons required under the traditional (prime) approach noticeably
increases quadraticaly in thesefigures. The previous observations are a compelling reason why the duality approach can
be significantly beneficia to most redl-life decision problems which use pairwise comparisons to elicit quditative data
As it was mentioned in section 3, these developments are identical when dealing with perfectly consistent and dightly
inconsistent (i.e., with CR value less or equal than 10%) judgment matrices.

Figure 5 depicts the net reduction on the number of comparisons (given as expression (3.7)) achieved when the
dual approach is applied, for different size problems. Figure 6 presents the percent (%) reductions achieved when the
dual approach is used on problems of various sizes. As before, these increases follow quadratic patterns on the size of
the decision problems. It is noticeable that in Figure 6 the reduction rates seem to converge to a constant value when the

number of aternativesincreases. Obvioudly, thisisin direct agreement with corollary 2.

5. Concluding Remarks

The previous analyses demonstrate that the number of comparisons required to solve a decision problem which
has m alternatives and n criteria can significantly be reduced when the number of aternativesis greater than the number
of criteriaplusone. Thisisachieved in terms of a duality approach. In this approach the decision maker compares how
well the criteria perform within a single alternative at a time. It should be noticed that in the traditiona way of
implementing pairwise comparisons, the decision maker is asked to compare the alternatives in terms of asingle criterion
at atime or to compare a set of criteria (when their relative weights of importance are extracted).

The achieved reductions on the required totad number of pairwise comparisons are given through some
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anaytical formulas. The main findings of this study are also depicted in a number of figures. It is remarkable to
emphasize here that these reductions become more dramatic when the size of the problem increases. Thus, the proposed

duality approach becomes more practical for large size decision problems.

Although the concept of duality is an old one in decision sciences (e.g., in linear programming), the proposed
duality approach is a novel development in multi-criteria decision making. The proposed method can be applied to the
AHP, or its variants, as well as to any other method which uses pairwise comparisons to dicit qualitative or fuzzy data
from the decison maker(s). More research in this intriguing area may reveal more benefits of using information

extracted from the dua formulation of a given multi-criteria decision problem.
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