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Abstract	11	

Here	we	revisit	whether	the	common	mixed-valent	Fe	mineral,	magnetite,	is	a	viable	reductant	for	the	12	

abiotic	 natural	 attenuation	 of	 perchloroethylene	 (PCE)	 and	 trichloroethylene	 (TCE)	 in	 anoxic	13	
groundwater	plumes.	We	measured	PCE	and	TCE	reduction	by	stoichiometric	magnetite	as	a	function	14	

of	 pH	 and	 Fe(II)	 concentration.	 In	 the	 absence	 of	 added	 Fe(II),	 stoichiometric	magnetite	 does	 not	15	

reduce	PCE	and	TCE	over	a	three	month	period.	When	Fe(II)	is	added	to	magnetite	suspensions,	PCE	16	

and	TCE	are	reduced	under	Fe(II)	and	pH	conditions	that	appear	to	be	controlled	by	the	solubility	of	17	

ferrous	hydroxide,	Fe(OH)2(s).	Reduction	rates	are	slow	with	only	1	to	30%	carbon	products	(primarily	18	

acetylene)	 accumulating	 over	 several	 months.	 We	 conducted	 a	 similar	 set	 of	 experiments	 with	19	

Fe(OH)2(s)	alone	and	found	that,	compared	to	in	the	presence	of	magnetite,	Fe(OH)2(s)	reduces	PCE	20	

and	TCE	only	at	Fe(II)	concentrations	that	are	too	high	(≥	13	mM,	726	mg/L)	to	be	representative	of	21	

natural	aquifer	conditions.	Our	results	suggest	that	magnetite	present	in	aquifer	sediments	alone	is	22	

unlikely	to	reduce	PCE	and	TCE	sufficiently	fast	to	contribute	to	natural	attenuation	of	PCE	and	TCE.	23	

The	lack	of	compelling	evidence	for	PCE	and	TCE	reduction	by	magnetite	raises	important	questions	24	

regarding	the	current	application	of	using	magnetic	susceptibility	as	a	potential	indicator	for	abiotic	25	

natural	attenuation.	Dynamic	conditions	and	high	Fe(II)	concentrations	that	favor	active	precipitation	26	

of	minerals,	such	as	Fe(OH)2(s)	in	the	presence	of	magnetite	(or	other	Fe	minerals),	however,	may	lead	27	

to	PCE	and	TCE	reduction	that	could	help	attenuate	PCE	and	TCE	plumes.		28	

Environmental	significance	29	

We	present	evidence	that	suggests	magnetite	alone	is	unlikely	to	reduce	PCE	and	TCE	fast	30	

enough	to	significantly	contribute	to	the	natural	attenuation	of	PCE	and	TCE	in	31	

contaminated	aquifer	plumes.		Under	reducing	conditions	where	high	concentrations	of	32	

ferrous	iron	may	be	present,	however,	active	precipitation	of	metastable	phases	in	the	33	

presence	of	magnetite	(or	other	Fe	minerals)	may	contribute	to	abiotic	natural	attenuation	34	

of	PCE	and	TCE.		35	
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Introduction	40	

Perchloroethene	(PCE)	and	trichloroethene	(TCE)	are	chlorinated	ethenes	that	were	used	at	41	

thousands	of	industrial	and	commercial	facilities	as	cleaning	and	metal	degreasing	42	

solvents.
1,2
	For	decades,	PCE	and	TCE	have	been,	and	continue	to	be,	the	most	prevalent	43	

priority	pollutants	in	groundwater	at	hundreds	of	sites	and	a	major	concern	for	the	44	

environment	and	human	health.
3-7
	Despite	extensive	cleanup	efforts	costing	billions	of	45	

dollars,	PCE	and	TCE	are	still	detected	at	many	groundwater	sites	at	concentrations	above	46	

regulatory	limits.
4,8,9

		Recent	concerns	regarding	energy	consumption	and	carbon	emissions	47	

have	made	it	even	more	critical	to	assess	whether	it	is	feasible	for	site	managers	to	rely	on	48	

natural	biological,	chemical,	and	physical	processes	(i.e.,	natural	attenuation)	to	remediate	49	

chlorinated	ethene	plumes.
10
	50	

	 Biological	natural	attenuation	of	PCE	and	TCE	via	reductive	dechlorination	has	been	51	

extensively	studied.	These	investigations	have	resulted	in	several	tools	that	can	be	used	to	52	

provide	lines	of	evidence	for	biological	natural	attenuation	including	methods	for	53	

determining	the	numbers	of	Dehalococcoides	sp.	(Dhc)	bacteria,	vinyl	chloride	reductase	54	

gene	copy	numbers	(vcrA),
11-14

	and	compound-specific	isotope	analysis	of	PCE	and	TCE.
15,16

	55	

In	addition,	significant	evidence	has	accumulated	for	biotic	oxidation	of	chlorinated	ethenes	56	

in	aerobic	plumes,
17,18

	and	there	are	hints	that	anaerobic	oxidation	may	also	occur	coupled	57	

to	metal	reduction.
19
	There	still	remains	significant	uncertainty,	however,	about	how	much	58	

abiotic	reduction	reactions,	such	as	reduction	by	ferrous	iron	(Fe(II))	bearing	minerals,	59	

natural	organic	matter,	and	reduced	sulfur	species	contribute	to	natural	attenuation.		60	

Of	the	abiotic	natural	attenuation	processes,	reduction	by	Fe(II)-containing	minerals	has	61	

been	discussed	as	a	potentially	promising	degradation	pathway	for	chlorinated	solvents	for	62	

over	two	decades.
20-23

	Abiotic	PCE	and	TCE	degradation	remains	of	significant	interest	63	

largely	because	abiotic	reduction	most	often	occurs	by	reductive	elimination	with	acetylene	64	

observed	as	the	primary	end-product.	Acetylene	is	a	preferred	end-product	because	it	is	65	

benign	and	avoids	the	dichloroethene	and	vinyl	chloride	stall	that	commonly	occurs	with	66	

biotic	reductive	dechlorination	pathways.
20-24

		67	

Of	the	Fe(II)-containing	minerals,	magnetite	(Fe3O4),	a	common	mixed-valent	Fe	mineral,	68	

has	been	suggested	to	be	responsible	for	chlorinated	ethene	attenuation	at	some	field	69	

sites
24-26

	despite	slow	rates	of	reduction	by	magnetite	observed	in	laboratory	70	

experiments.
24,27-29

	Indeed,	the	promise	of	magnetite	as	a	reductant	for	chlorinated	ethenes	71	

has	recently	led	some	to	suggest	that	high	magnetic	susceptibility	of	aquifer	sediments	72	

could	be	used	as	a	potential	indicator	for	abiotic	natural	attenuation	at	a	site.
25
	Such	proxy	73	

methods	are	desirable	due	to	the	difficulty	in	measuring	biologically	labile	products	such	as	74	

acetylene.	We	also	note	that	more	recent	evidence	alternatively	implicates	an	oxidative	75	

abiotic	pathway
30,31

	based	on	a	Fenton-like	process	involving	OH	radical	in	chlorinated	76	

ethene	degradation	by	pyrite	(FeS2)	in	the	presence	of	oxygen.	77	

Here	we	revisit	whether	the	common	mixed-valent	Fe	mineral,	magnetite,	is	a	viable	78	

reductant	to	contribute	to	abiotic	natural	attenuation	of	PCE	and	TCE	in	anoxic	groundwater	79	

plumes.	Our	results	suggest	that	magnetite	present	in	aquifer	sediments,	alone,	is	unlikely	80	

to	reduce	PCE	and	TCE	sufficiently	fast	to	contribute	to	natural	attenuation	of	PCE	and	TCE	81	

in	anoxic	plumes.	Under	dynamic	conditions	that	result	in	active	precipitation	of	minerals	82	

such	as	Fe(OH)2(s),	however,	PCE	and	TCE	may	be	reduced	sufficiently	fast	to	help	attenuate	83	

PCE	and	TCE	plumes.		84	
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Materials	and	Methods	85	

Chemicals	86	

Tetrachloroethylene	(PCE,	≥	99%)	and	trichloroethylene	(TCE,	≥	99%)	were	purchased	from	87	

Sigma-Aldrich.	Non-chlorinated	C2	gases	were	used	from	a	certified	mixture	containing	2.0%	88	

ethane,	1.97%	ethylene	and	1.9%	acetylene	mixture	in	N2	(Praxair).	Hexanes	and	methanol	89	

(Fisher	Scientific)	were	pesticide	residue	grade	and	ACS	reagent	grade	≥	99.8%,	respectively.	90	

PCE	and	TCE	(24,	250	&	500)	mM	stock	solutions	were	gravimetrically	prepared	in	N2-91	

sparged	methanol,	sealed	with	viton	septa	and	stored	in	a	glovebox.	92	

All	deionized	water	was	deoxygenated	by	purging	with	N2	and	stored	for	24	hours	in	an	93	

anoxic	glovebox	(93%	N2/7%	H2)	before	being	used	in	any	experiments.	Buffer	solutions	of	94	

10	mM	3-(N-	Morpholino)propanesulfonic	acid	(MOPS,	RPI	Corp.)	buffer	solution,	or	10	mM	95	

Piperazine-N,N”–bis(3-propanesulfonic	acid)	(PIPPS,	GFS	Chemicals)	with	10	mM	sodium	96	

chloride	(NaCl)	background	electrolyte	were	prepared.	All	pH	adjustments	were	done	with	97	

deoxygenated	hydrochloric	acid	(HCl)	or	sodium	hydroxide	(NaOH).	98	

Ferrous	chloride	stock	solutions	(~1.4	M	FeCl2·4H2O)	were	further	purified	by	adjusting	99	

the	pH	to	~4.5	and	filtering	to	remove	any	Fe(III)	precipitates.	100	

	101	

Magnetite	synthesis	102	

Magnetite	was	synthesized	using	iron	chloride	salts	following	the	method	used	as	previously	103	

described.	
32,33

	Briefly,	0.1	M	ferrous	chloride	(FeCl2·4H2O)	and	0.2	M	ferric	chloride	104	

(FeCl3·6H2O)	solutions	were	prepared	in	deoxygenated	deionized	water	within	the	glovebox.	105	

Both	solutions	were	combined.	The	mixture	was	vigorously	stirred	and	titrated	using	10	M	106	

NaOH	to	set	the	pH	between	10.0	and	11.5.	The	magnetite	suspension	was	sealed	and	left	107	

overnight	before	filtering.	The	minerals	were	removed	from	the	glovebox	in	a	sealed	vessel	108	

and	freeze-dried.	Freeze	dried	minerals	were	ground	with	a	mortar	and	pestle	and	sieved	109	

through	a	150-micron	sieve	and	stored	in	the	glovebox.	With	this	approach,	the	(∼20	nm)	110	

magnetite	particles	have	surface	area	values	close	to	the	previously	reported	63	±	7	m
2
	g

-1
	111	

using	N2-BET	analysis.
33
		112	

	113	

Mineral	characterization	114	

Magnetite	stoichiometries	(x	=	Fe
2+
/Fe

3+
)	were	determined	using	previously	established	115	

methods.
32
	The	first	approach	was	by	acid	dissolution	(xd)	of	the	magnetite	in	5	M	HCL	under	116	

glovebox	atmosphere.	Using	the	1,10-phenathroline	method,
32,34

	we	evaluated	the	Fe
2+	
and	117	

total	Fe	concentrations	to	determine	the	stoichiometric	ratio.	Powder	X-ray	diffraction	(xxrd)	118	

was	the	second	approach	using	a	Rigaku	MiniFlex	II	system	equipped	with	a	Co	source.	119	

Magnetite	powders	were	mixed	into	two	drops	of	glycerol	to	form	a	well-mixed	paste	in	the	120	

glovebox	to	avoid	oxidation	of	the	mineral	during	analysis.	The	powder	X-ray	diffraction	121	

stoichiometries	(xxrd)	were	then	derived	from	unit-cell	dimension.
32
	Transmission	Mössbauer	122	

spectroscopy	was	performed	with	a	variable	temperature	He-cooled	system	with	a	
57
Co	123	

source.	Unless	otherwise	noted,	Mössbauer	spectra	were	collected	at	140	K.	Spectra	were	124	

fit	using	the	Recoil	software
35
	and	procedures	outlined	by	Gorski	and	Scherer.

32
	To	prepare	125	

samples	and	avoid	oxidation,	we	sealed	samples	with	Kapton	tape	in	the	glovebox.	To	126	

characterize	minerals	after	reaction,	we	shook	the	reactor	and	filtered	a	5	mL	aliquot.	These	127	

post-reaction	samples	were	sealed	for	XRD	using	a	layer	of	Kapton	tape	over	the	sample	to	128	

prevent	rapid	oxidation	of	Fe(OH)2.		129	
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	130	

Reactor	design	131	

Reactors	were	160	mL	glass	serum	bottles	sealed	with	Viton	fluoroelastomer	septas	(20	mm	132	

x	8	mm	depth,	Wheaton)	and	contained	150	mL	of	liquid	and	10	mL	of	headspace.	All	batch	133	

reactors	were	prepared	in	a	N2/H2	filled	glovebox	with	an	oxygen	content	below	1	ppm.	134	

Each	system	was	covered	with	foil,	stored	and	mixed	(~100	rpm)	upside	down	to	have	the	135	

headspace	in	contact	with	glass	rather	than	the	septum.	Mixing	reactors	upside	down	was	136	

important	to	minimize	headspace	gas	loss	through	the	septum.	The	desired	mass	of	iron	137	

oxides	was	added	to	the	buffer	solution,	then	the	reactor	pH	was	adjusted	(when	needed)	138	

and	the	chlorinated	solvent	added	via	a	spike	from	the	stock	solution.	A	PCE	and	TCE	139	

concentration	of	50	µM	(8,291	and	6,570	µg/L	of	PCE	and	TCE,	respectively)	was	used	for	140	

most	experiments.	Reactors	contained	either	10	mM	MOPS	(pH	range	of	7.5	to	8.0)	and	10	141	

mM	NaCl	or	10	mM	PIPPS	(pH	>	8.0)	and	10	mM	NaCl	as	buffer	and	background	electrolyte,	142	

respectively.		143	

In	magnetite	reactors	containing	Fe(II),	bottles	containing	buffer	and	background	144	

electrolyte	were	first	spiked	with	Fe(II)	from	an	1.4	M	FeCl2	stock,	and	then	the	initial	Fe(II)	145	

concentration	was	measured.	In	reactors	containing	magnetite,	magnetite	was	added,	and	146	

then	the	systems	were	titrated	to	the	desired	pH	using	2.5	or	10	M	NaOH.	Because	titration	147	

of	Fe(II)	solutions	results	in	a	pH	plateau	near	pH	8.0,	we	took	care	to	add	the	same	volume	148	

of	NaOH	to	reactors	that	were	prepared	as	replicates.	Once	the	pH	was	adjusted,	a	500	µL	149	

sample	was	collected	after	filtration	and	the	final	Fe(II)	concentration	([Fe(II)]f)	of	the	filtrate	150	

was	determined.	Reactors	containing	only	Fe(II)	were	prepared	as	described	above,	but	151	

without	the	addition	of	magnetite.	152	

	153	

Analytical	Procedures	154	

Analyses	of	parent	and	product	analytes	were	performed	using	an	Agilent	6890	gas	155	

chromatograph	equipped	with	electron	capture	(ECD)	and	flame	ionization	(FID)	detectors.	156	

PCE	and	TCE	were	quantified	with	GC-ECD	after	a	liquid-liquid	extraction	of	0.25	to	1	mL	of	157	

sample	containing	both	the	aqueous	and	solid	phases	added	to	2	mL	of	hexanes.	The	158	

daughter	products	ethane,	ethylene,	acetylene,	the	dichloroethenes,	and	vinyl	chloride	159	

were	detected	using	GC-FID.	Further	details	on	analytical	methods	are	provided	in	the	160	

Supporting	Information.	161	

	162	

Results	and	Discussion	163	

Reduction	of	PCE	and	TCE	by	Magnetite	164	

									To	evaluate	whether	magnetite	reduces	PCE	and	TCE,	we	measured	PCE	and	TCE	165	

reduction	by	stoichiometric	magnetite	(x	=	Fe
2+
/Fe

3+
	≈	0.5)	over	a	range	of	pH	values	(7.0	–	166	

8.0)	and	solids	loading	(5	–	20	g/L).	In	all	experiments,	we	observed	negligible	loss	of	both	167	

PCE	and	TCE	over	140	days	(Figure	1	and	Table	S1	in	the	Supporting	Information).	Further,	168	

no	carbon	products	were	observed,	and	we	were	able	to	recover	nearly	all	of	the	carbon	169	

initially	present	in	the	system	(recoveries	were	TCE:	105	±	8%	for	n	=	7;	PCE:	98	±	6%for	n	=	170	

5,	details	in	Table	S1).	We	originally	anticipated	that	magnetite	stoichiometry	would	affect	171	

the	rate	of	PCE	and	TCE	reduction	by	magnetite	as	we	have	previously	observed	that	172	

magnetite	stoichiometry	strongly	influenced	the	rates	and	extent	of	uranium,	mercury,	and	173	
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nitroaromatic	compound	reduction.
36-38

	Here,	however,	we	observed	no	measurable	174	

reduction	of	PCE	and	TCE	by	magnetite	even	with	stoichiometric	magnetite	(x	≈	0.5)	and	175	

therefore	did	not	further	explore	reduction	of	PCE	and	TCE	by	non-stoichiometric	176	

magnetite.		177	

	 The	complete	lack	of	PCE	and	TCE	178	

reduction	by	stoichiometric	magnetite	179	

was	unexpected	as	PCE	and	TCE	180	

reduction	by	magnetite	has	been	181	

previously	reported.
26-29

	A	close	look	at	182	

the	data,	however,	reveals	that	prior	183	

evidence	for	reduction	of	PCE	and	TCE	184	

by	magnetite	is	somewhat	limited.	185	

While	an	early	study	by	Sivavec	and	186	

Horney	reported	fast	rates	of	TCE	187	

reduction	by	magnetite	with	a	surface-188	

area	normalized	rate	coefficient	(kSA)	of	189	

4.5	x	10
-4
	L	m

-2
	d

-1
	(half-life	of	19	190	

days),
28
	more	recent	studies

26-29
	191	

reported	about	100-fold	slower	rates	192	

(kSA	≈	10
-6
	L	m

-2
	d

-1
)	than	those	in	193	

Sivavec	and	Horney.
28
	.	In	addition,	194	

carbon	reduction	products	were	only	195	

reported	in	one	study
29
,	and	in	that	196	

study	the	uncertainties	on	product	197	

measurements	were	quite	large	(30	–	198	

200%).	Based	on	the	high	199	

uncertainties,	the	authors	200	

appropriately	chose	not	to	quantify	201	

rates	of	reduction.
29
	Of	the	other	two	studies,	the	anomalously	high	rate	of	reduction	was	202	

based	on	TCE	loss	alone	with	no	report	of	products
28
	and	the	other	study	relied	on	chloride	203	

accumulation	to	indicate	that	reduction	had	occurred.
27
		Given	the	rather	limited	204	

observations	of	reduced	carbon	products	and	high	uncertainties	in	the	previously	reported	205	

data,	we	suggest	that	our	observation	of	negligible	reduction	of	PCE	and	TCE	by	magnetite	is	206	

not	so	surprising.		207	

	 Despite	the	limited	laboratory	evidence	for	PCE	and	TCE	reduction	by	magnetite,	208	

degradation	rates	extrapolated	from	fate	and	transport	modelling	of	monitoring	well	209	

concentrations	in	the	field	have	sometimes	been	attributed	to	abiotic	attenuation	of	210	

chlorinated	ethenes	by	magnetite.
24-26,39

		For	example,	aquifer	degradation	rate	coefficients	211	

(kaquifer)	on	the	order	of		~	1	yr
-1
	were	extrapolated	from	contaminated	groundwater	at	Twin	212	

Cities	Army	Ammunition	Plant	(TCAAP)	to	describe	chlorinated	ethene	plumes	that	were	213	

smaller	than	expected	based	on	dilution.
26,44,45

	More	extensive	data	was	collected	for	cis	214	

and	1,1-DCE	and	the	combination	of	plume	attenuation	beyond	dilution,	microcosm	data	215	

showing	similar	degradation	rates	with	sterile	and	autoclaved	sediments,	and	the	presence	216	

of	magnetite	in	the	sediments	led	the	authors	to	conclude	that	the	loss	of	DCE	may	be	due	217	

to	reaction	with	magnetite.
26	
While	this	a	reasonable	conclusion	to	draw,	it	is	not,	as	was	218	

noted	by	Ferrey	et.	al.,	the	only	potential	explanation	for	their	observations.
26
			219	

	

Fig.	1.	PCE	and	TCE	concentration	versus	time	in	

the	presence	of	stoichiometric	magnetite	(x	=	

Fe
2+
/Fe

3+
	=	0.46	–	0.50).	Experimental	

conditions:	50	µM	PCE/TCE,	10	mM	MOPs/NaCl	

at	pH	7.0,	7.5,	and	8.0	for	TCE	reactors	and	pH	

7.5	for	PCE	reactors,	mass	loading	5	-	20	g/L.	

Average	carbon	recoveries,	TCE	(105	±	8%)	for	(n	

=	7),	and	PCE	(98	±	6%),	for	(n	=	5).	Error	bars	

represent	1σ	for	a	set	of	triplicate	reactors	(pH	

8.0,	5	g/L,	TCE)	
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	 Nevertheless,	this	work
26
	is	often	cited	as	evidence	for	chlorinated	ethene	(PCE,	TCE,	220	

and	DCE)	reduction	by	magnetite
24-26,39

	despite	the	data	only	being	for	DCEs,	a	need	to	use	221	

rate	constants	from	batch	reactors	containing	high	Fe(II)	concentrations,	and	the	authors	222	

carefully	stating	that	the	loss	of	DCE	may	be	due	to	reaction	with	magnetite	and	further	223	

research	into	the	mechanisms	of	loss	is	needed.	Collectively,	the	limited	field	and	laboratory	224	

data	for	reduction	of	PCE	and	TCE	by	magnetite,	and	our	observation	of	negligible	reduction	225	

of	PCE	and	TCE	by	magnetite,	suggests	that	reduction	by	magnetite	alone	is	unlikely	226	

responsible	for	field	extrapolated	degradation	rates	of	PCE	and	TCE	that	have	been	227	

previously	attributed	to	magnetite.	We	note	that	there	are	some	important	differences	228	

between	our	experiments	and	aquifer	plume	conditions	(e.g.,	buffers,	magnetite	229	

crystallinity,	flow	environment,	etc.).	Taken	together	however,	the	existing	literature	and	230	

our	findings	provide	no	rigorous	evidence	that	magnetite	reduces	PCE	and	TCE	under	anoxic	231	

conditions,	and	in	fact,	suggest	that	magnetite	does	not	reduce	PCE	and	TCE	under	a	variety	232	

of	conditions.		233	

	234	

Reduction	of	PCE	and	TCE	by	Magnetite	and	Fe(II)	235	

To	investigate	whether	magnetite	236	

plus	aqueous	Fe(II)	can	abiotically	237	

degrade	PCE	and	TCE,	we	238	

measured	the	reduction	of	PCE	239	

and	TCE	by	magnetite	in	the	240	

presence	of	Fe(II)	over	a	range	of	241	

Fe(II)	concentrations	and	pH	242	

values	(Table	S2	and	S3).	243	

Consistent	with	previous	244	

chlorinated	ethene	work,
27,40

	we	245	

found	that	adding	Fe(II)	to	246	

magnetite	suspensions	did,	in	247	

some	cases,	result	in	PCE	and	TCE	248	

reduction.	For	example,	we	249	

observed	measurable	loss	of	PCE	250	

and	TCE	and		251	

accumulation	of	25%	carbon	products	(primarily	as	acetylene)	with	5	g/L	magnetite	and	9.3	252	

mM	Fe(II)	or	33	mM	Fe(II),	for	PCE	and	TCE,	respectively	(Figure	2).	Our	observation	of	253	

acetylene	as	the	primary	product	in	all	reactors	suggests	that	reductive	β-elimination	of	PCE	254	

and	TCE	was	likely	the	primary	mechanism	for	reduction.
41
	Carbon	recovery	was	higher	with	255	

TCE	(99	±	4.3%)	than	PCE	(78%).	In	an	attempt	to	better	close	the	PCE	mass	balance,	we	256	

measured	for	reductive	dechlorination	products,	including	dichloroethenes	and	vinyl	257	

chloride,	but	did	not	detect	any.	It	is	unclear	if	the	mass	balance	loss	of	PCE	is	due	to	258	

reduction	to	an	unknown	product	or	loss	due	to	sorption	or	volatilization,	however,	we	did	259	

observe	up	to	30%	PCE	and	TCE	loss	in	controls	sampled	more	frequently	than	these	260	

reactors	(Table	S1),	suggesting	volatilization	was	likely	the	main	contributor	to	loss.	261	

To	avoid	including	potential	sorption	and/or	volatilization	losses	in	estimated	rates	of	PCE	262	

and	TCE	reduction,	we	quantified	reduction	rates	based	solely	on	accumulation	of	carbon	263	

reduction	products	(primarily	acetylene).	We	modeled	product	accumulation	over	time	264	

using	an	exponential	product	in-growth	equation	(Equation	1),	where	P(t)	is	the	mass	of	265	

	
Fig.	2.	Reduction	of	(A)	PCE	and	(B)	TCE	over	time	

with	magnetite	and	aqueous	Fe(II).	Experimental	

conditions:	(A)	54	µM	PCE,	5	g/L	Fe3O4	(s),	33	mM	

Fe(II),	10	mM	MOPs/NaCl,	pH	7.9,	single	reactor.	(B)	

50	µM	TCE,	5	g/L	Fe3O4	(s),	9.3	±	0.6	mM	Fe(II),	10	

mM	MOPs/NaCl,	pH	8,	for	n	from	3	to	12.		
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products	(in	µmoles	C)	at	time	t,	C0	is	the	initial	PCE	or	TCE	amount	(in	µmoles	C),	and	kobs	is	266	

the	first-order	rate	coefficient.	Data	for	total	products	was	linearized	(Equation	2),	and	the	267	

slope	of	the	linearized	product	accumulation	versus	time	equation	was	used	to	determine	268	

kobs.		269	

	270	

𝑃(𝑡) = 𝐶( 1 − 𝑒
,-./0∙2 																	(1)	271	

	272	

34 5,
6(7)

89

2
= −𝑘;<=																						(2)	273	

	274	

First-order	rate	coefficients	for	PCE	and	TCE	reduction	determined	from	product	275	

accumulation	varied	considerably	depending	on	the	Fe(II)	concentration	and	pH	and	ranged	276	

from	zero	to	5.2	×	10
-8
	s
-1
	(Table	S2	and	S3).		277	

We	plotted	kobs	values	versus	278	

initial	Fe(II)	concentration	and	pH	to	279	

explore	trends	in	reduction	rate,	as	280	

we	anticipated	reduction	rates	might	281	

increase	with	both	pH	and	Fe(II)	282	

concentration		(Figure	3).	Although	283	

our	data	are	concentrated	around	284	

our	most	common	condition	(~	pH	8	285	

and	~	10	mM	Fe(II)),	there	are	still	286	

sufficient	data	to	conclude	that	there	287	

is	no	clear	trend	with	Fe(II)	288	

concentration.	With	pH,	there	is	a	289	

pattern	of	higher	pH	reactors	having	290	

measurable	reduction	(kobs	>	0),	but	291	

no	obvious	trend	of	increasing	rates	292	

at	higher	pH	values.	In	addition,	there	293	

was	visual	evidence	from	our	reactors	294	

that	experimental	conditions	had	295	

some	influence	on	whether	products	296	

were	observed.	More	specifically,	we	297	

observed	a	white	precipitate	forming	298	

in	reactors	in	which	products	were	299	

observed	(Figure	S1).	Given	the	pH	300	

and	Fe(II)	concentrations	we	used,	301	

we	suspected	that	the	white	302	

precipitate	was	ferrous	hydroxide,	303	

Fe(OH)2(s),	which	was	confirmed	by	304	

X-ray	diffraction	of	the	filtered	reactor	solids	(Figure	S2).		305	

To	quantitatively	evaluate	if	Fe(OH)2(s)	precipitation	was	necessary	for	PCE	and	TCE	306	

reduction,	we	plotted	kobs	values	versus	the	saturation	index	(SI)	for	Fe(OH)2(s)	(Figure	4).	307	

We	calculated	the	SI	as	log(IAP/Ksp)	using	the	initial	Fe(II)	concentration	and	an	Fe(OH)2(s)	308	

Ksp
	
of	5	×	10

-15
.
42-44	

A	noticeable	pattern	emerges	with	PCE	and	TCE	reduction	corresponding	309	

to	conditions	where	the	initial	SI	>	0.		This	pattern	implies	that	PCE	and	TCE	reduction	only	310	

	
Fig.	3.	Plots	of	kobs	for	PCE	and	TCE	reduction	as	a	

function	of	[Fe(II)]0	(initial	Fe(II)	concentration)	(a)	

and	pH	(b).	

	

	
Fig.	4.	Plot	of	kobs	for	PCE	and	TCE	reduction	vs.	

the	Fe(OH)2(s)	initial	saturation	index	(	<0	

undersaturated,	0	at	saturation,	>0	

oversaturated).	
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occurs	under	experimental	conditions	that	are	saturated	(or	super-saturated)	with	respect	311	

to	Fe(OH)2(s)	based	on	the	amount	of	Fe(II)	added	and	the	pH	value	the	reactor	was	set	at.	312	

We	note	that	after	precipitation	of	Fe(OH)2,	the	SI	is	likely	closer	to	0.	For	experiments	that	313	

were	saturated	or	super-saturated,	314	

93%	(27	of	29)	had		315	

measurable	reduction	products	form.	316	

Conversely,	for	experiments	that	were	317	

undersaturated	only	18%	(2	of	11)	had	318	

measurable	reduction	products	form.		319	

To	better	visualize	the	influence	of	320	

Fe(OH)2(s)	precipitation	on	PCE	and	321	

TCE	reduction,	we	also	plotted	the	322	

initial	pH	and	Fe(II)	concentration	of	323	

these	magnetite	plus	Fe(II)	324	

experiments	on	an	Fe(OH)2(s)	solubility	325	

diagram	(Figure	5).	In	Figure	5,	solid,	326	

red	markers	indicate	conditions	where	327	

reduction	products	were	observed,	328	

whereas	open	markers	indicate	329	

conditions	where	no	reduction	330	

products	were	observed.	In	addition,	331	

we	scaled	the	size	of	the	red	markers	332	

to	the	relative	amount	of	products	333	

formed.	334	

A	clear	visual	picture	emerges	335	

highlighting	that	products	were	336	

observed	(i.e.,	red	markers)	only	when	337	

Fe(II)	concentration	and	pH	values	338	

were	such	that	Fe(OH)2(s)	was	339	

expected	(and	visually	observed)	to	340	

precipitate.	Of	the	forty	experiments	341	

we	conducted,	thirty-six	(90%)	342	

followed	the	trend	of	reduction	343	

occurring	only	when	conditions	were	344	

such	that	Fe(OH)2(s)	was	expected	to	345	

precipitate.	These	results	provide	346	

compelling	evidence	that,	under	our	347	

experimental	conditions,	precipitation	348	

of	ferrous	hydroxide	is	necessary	for	349	

PCE	and	TCE	reduction	to	be	observed	350	

in	the	presence	of	magnetite.	Note	351	

that	in	the	presence	of	different	buffers,	such	as	carbonate,	other	minerals	would	likely	352	

precipitate	(such	as	siderite	or	carbonate	green	rust).		353	

Although	adding	Fe(II)	to	the	magnetite	suspensions	resulted	in	reduction	of	PCE	and	TCE	354	

when	Fe(OH)2(s)	precipitated,	the	rates	of	reduction	are	still	quite	slow.	Only	1	to	30%	355	

carbon	products	(primarily	acetylene)	accumulated	over	a	three	to	five	month	time	period.	356	

	
Fig.	5.	Fe(OH)2(s)	solubility	diagram	with	

magnetite	plus	Fe(II)	reactor	conditions	overlaid	

for	(a)	PCE	and	(b)	TCE	reactors.		Fe(II)	is	plotted	

as	the	initial	Fe(II)	concentration	–	[Fe(II)]0.	Red	

markers	represent	PCE	and	TCE	reactors	where	

carbon	products	were	observed	and	the	markers	

are	scaled	relative	to	the	amount	of	products	

produced	(ranging	up	to	46%).	Black	open	

markers	represent	reactors	where	no	products	

were	observed..The	grey	hatched	area	

represents	a	range	of	ferrous	hydroxide	

solubility	product	Ksp	([Fe(OH)2(s)]	=	[Fe
2+
]	[OH

-

]
2
)	of	10

-14.51
	to	10

-15.11
.
42-44

	The	grey	hatched	and	

shaded	areas	represent	the	region	where	

Fe(OH)2	is	expected	to	precipitate.	Speciation	

diagrams	were	calculated	with	Visual	MINTEQ	

for	10	mM	Na
+
	and	30	mM	Cl

-
	to	represent	Cl

-
	

added	with	a	nominal	Fe(II)	spike	of	10	mM.	
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Surface-area	normalized	first-order	rate	coefficients	(kSA)	estimated	from	carbon	product	357	

accumulation	ranged	from	3.7	×	10
-7	
to	1.5	×	10

-5	
L	m

-2
	d

-1
,	corresponding	to	half-lives	(t1/2)	358	

ranging	from	0.42	to	17	years	(Table	S2	and	S3).	These	rates	are	much	slower	than	those	for	359	

TCE	reported	by	Sivavec	in	experiments	conducted	at	pH	6.0	and	200	mM	Fe(II)	with	217	g/L	360	

magnetite	(t1/2
	
~	3	d).

40
		We	attempted	to	reproduce	the	experimental	conditions	used	in	361	

the	Sivavec	patent	but	observed	no	measurable	TCE	reduction	(Figure	S3).	One	possible	362	

explanation	for	the	rapid	TCE	reduction	observed	by	Sivavec	is	that	the	conditions	may	have	363	

led	to	formation	of	green	rust,	which	has	been	shown	to	reduce	PCE	and	TCE.
45
	Note	that	364	

our	replication	of	Sivavec’s	conditions	(marked	by	×	in	Figure	5)	are	well	below	ferrous	365	

hydroxide	saturation	and	therefore	consistent	with	our	finding	that	no	reduction	by	366	

magnetite	occurs	under	these	conditions.			367	

	368	
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Reduction	of	PCE	and	TCE	by	Fe(II)	and	ferrous	hydroxide	369	

Our	observation	that	Fe(OH)2(s)	precipitation	is	necessary	for	PCE	and	TCE	reduction	to	370	

occur	in	the	presence	of	magnetite	led	us	to	wonder	whether	Fe(OH)2(s)	or	even	aqueous	371	

Fe(II)	alone	can	reduce	TCE.	To	evaluate	whether	Fe(OH)2(s)	alone	or	aqueous	Fe(II)	alone	372	

could	reduce	TCE,	we	measured	TCE	reduction	over	a	wide	range	of	Fe(II)	concentrations	373	

and	pH	values	(in	the	absence	of	magnetite)	and	plotted	the	results	on	an	Fe(OH)2(s)	374	

solubility	diagram	(Figure	6).	As	375	

expected,	no	reduction	of	PCE	and	TCE	376	

was	observed	by	aqueous	Fe(II)	377	

(denoted	by	open	markers).	For	most	378	

conditions,	no	PCE	and	TCE	reduction	379	

were	observed	even	when	Fe(OH)2(s)	380	

had	precipitated.	However,	at	very	high	381	

concentrations	of	initial	Fe(II)	(>	13	382	

mM,	726	mg/L)	some	slow	PCE	and	TCE	383	

reduction	was	observed	with	0.3	to	384	

13%	products	accumulating	over	a	five	385	

to	six	month	time	period.	First-order	386	

rate	coefficients	for	PCE	and	TCE	387	

reduction	determined	from	product	388	

accumulation	for	these	high	Fe(II)	389	

experiments	(in	absence	of	magnetite)	390	

ranged	from	1.8	×	10
-10
	s
-1
	to	1.8	×	10

-8
	391	

s
-1
	(Table	S4	and	S5).	We	thought	the	392	

high	Fe(II)	concentrations	might	have	393	

resulted	in	precipitation	of	an	394	

additional	phase	possibly	via	secondary	395	

mineral	transformation	of	the	396	

Fe(OH)2(s).	However,	XRD	and	397	

Mössbauer	spectroscopy	of	the	solids	398	

after	150	days	indicated	no	additional	399	

phases	present	other	than	Fe(OH)2(s)	400	

(Figures	S4	and	S5).	While	these	results	401	

are	interesting,	we	would	like	to	402	

emphasize	that	the	high	403	

concentrations	of	Fe(II)	(>	13	mM,	726	404	

mg/L)	make	these	conditions	unlikely	405	

to	be	relevant	in	groundwater	aquifers	406	

where	Fe(II)	concentrations	rarely	407	

exceed	50	mg/L.
46-49

	Finally,	we	caution	408	

that	we	are	using	Fe(OH)2	saturation	409	

index	and	the	plot	in	Figures	5	and	6	as	410	

a	graphical	aid	to	explain	our	data.	The	411	

figures	should	not	be	used	as	a	412	

predictive	tool	because	if	Fe(OH)2	precipitates	the	saturation	index	will	likely	be	near	0.	413	

	
Fig.	6.	Fe(OH)2(s)	solubility	diagram	with	

aqueous	Fe(II)	reactors	without	magnetite	

conditions	overlaid	for	PCE	and	TCE	reactors.		

Fe(II)	is	plotted	as	the	initial	Fe(II)	concentration	

–	[Fe(II)]0.	Red	markers	represent	PCE	and	TCE	

reactors	where	products	were	observed	and	the	

markers	are	scaled	relative	to	the	amount	of	

products	produced	(ranging	up	to	46%).	Black	

open	markers	represent	reactors	where	no	

products	were	observed.	The	grey	hatched	area	

represents	a	range	of	ferrous	hydroxide	

solubility	product	Ksp	([Fe(OH)2(s)]	=	[Fe
2+
]	[OH

-

]
2
)	of	10

-14.51
	to	10

-15.11
.
42-44

	The	grey	hatched	and	

shaded	areas	therefore	represent	the	region	

where	Fe(OH)2	is	expected	to	precipitate.	

Speciation	diagrams	were	calculated	with	Visual	

MINTEQ	for	10	mM	Na
+
	and	30	mM	Cl

-
	to	

represent	Cl
-
	added	with	a	nominal	Fe(II)	spike	

of	10	mM.	
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Conclusions	and	Environmental	Implications	414	

Environmental	Implications	415	

Our	results,	combined	with	previous	laboratory	studies,
27,29

	suggest	that	magnetite	in	416	

aquifer	sediments	is,	on	its	own,	unlikely	to	reduce	PCE	and	TCE	and	contribute	significantly	417	

to	natural	attenuation	of	PCE	and	TCE	in	anoxic	plumes.	We	did,	however,	find	that	418	

precipitation	of	ferrous	hydroxide	in	the	presence	of	aquifer	minerals	such	as	magnetite	419	

might	provide	a	mechanism	for	abiotic	attenuation	of	chlorinated	ethenes.	To	evaluate	420	

whether	PCE	and	TCE	reduction	by	magnetite	in	the	presence	of	ferrous	hydroxide	could	be	421	

important	in	natural	(or	engineered)	attenuation	strategies	at	contaminated	sites,	we	scaled	422	

our	laboratory	rate	coefficients	(kSA)	to	reflect	aquifer	conditions	(kfield)	(example	423	

calculations	in	Supporting	Information).	Using	a	field	magnetite	content	of	1	g	kg
-1
,	we	424	

estimated	field-scaled	first-order	rate	coefficients	(kfield)	ranging	from	0.070	to	2.8	yr
-1
	(t1/2	425	

from	0.25	to	9.9	years)	(Table	S2).	These	rates	are	comparable	to	both	sediment	microcosm	426	

rates	and	field	rates	that	have	been	attributed	to	abiotic	degradation.
24,26

	However,	in	427	

nearly	all	of	our	experiments	the	amount	of	Fe(II)	added	exceeds	typical	concentrations	of	428	

Fe(II)	in	groundwater	(typically	<	50	mg/L	or	1	mM),	
46-49

	making	the	precipitation	of	ferrous	429	

hydroxide	unlikely	to	be	relevant	to	field	conditions.	Furthermore,	precipitation	of	ferrous	430	

hydroxide	is	unlikely	in	natural	aquifers	due	the	ubiquitous	presence	of	carbonate,	making	431	

siderite	and	ferrous	hydroxy-carbonate	species	more	likely	candidates	for	Fe(II)	precipitates.	432	

Our	work	does,	however,	highlight	that	active	precipitation	of	reactive	Fe(II)	phases	may	be	433	

important	in	assessing	abiotic	natural	attenuation.	434	

The	lack	of	compelling	evidence	for	PCE	and	TCE	reduction	by	magnetite	raises	important	435	

questions	regarding	whether	magnetic	susceptibility	of	aquifer	sediments	is	a	useful	436	

indicator	for	abiotic	degradation	of	chlorinated	ethenes	by	magnetite.
25
	Recent	work	has	437	

suggested	that	in	situ	magnetic	susceptibility	measurements	might	be	used	along	with	438	

chlorinated	ethene	concentration	decreases	in	monitoring	wells	as	a	line	of	evidence	for	the	439	

occurrence	of	natural	attenuation	by	sediment	magnetite	in	an	aquifer.
25
		Our	findings,	440	

however,	suggest	that	magnetic	susceptibility	may	not	be	a	useful	indicator	for	abiotic	441	

natural	attenuation	of	chlorinated	ethenes	by	reductive	elimination.	While	magnetite	and	442	

maghemite	have	magnetic	susceptibilities	of	2-3	orders	of	magnitude	greater	than	the	other	443	

Fe	oxides,	making	magnetic	susceptibility	a	reasonable	proxy	for	sediment	magnetite	and/or	444	

maghemite	content,	the	magnetic	susceptibility	of	magnetite	and	fully-oxidized	maghemite	445	

are	within	20%	of	each	other.
50
		The	similarity	between	maghemite	and	magnetite	makes	446	

magnetic	susceptibility	measurements	at	the	field	level	nearly	insensitive	to	Fe	redox	447	

speciation.	Furthermore,	the	correlation	shown	in	Weidemier	et	al.
25
	between	chlorinated	448	

ethene	degradation	and	magnetic	susceptibility	is	weak,	with	r
2
	=	0.18	and	a	Spearman’s	449	

rank-order	correlation	coefficient	of	0.41,	making	the	correlation	statistically	non-significant	450	

at	even	a	90%	confidence	interval	(critical	ρ	=	0.49).		451	

Our	work,	together	with	the	poor	mechanistic	and	statistical	correlation	between	452	

magnetic	susceptibility	and	abiotic	chlorinated	ethene	reduction	by	magnetite	suggests	that	453	

further	measurements	are	needed	to	link	iron	mineralogy	to	abiotic	natural	attenuation.	454	

Although	our	work	suggests	that	magnetite	is	not	likely	to	contribute	significantly	to	abiotic	455	

degradation	of	PCE	and	TCE,	there	is	substantial	laboratory	evidence	that	other	Fe(II)-456	

containing	Fe	minerals,	such	as	mackinawite	(FeS)	and	green	rust,	reduce	chlorinated	457	

ethenes	much	faster	(see	reviews	by	He;	Fan).
24,51

	The	faster	PCE	and	TCE	reduction	rates	458	
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for	mackinawite	and	green	rust	suggest	that	reduction	by	these	minerals	may	be	an	459	

important	degradation	process	in	contaminated	plumes.	Indeed,	sulfate	amendments	to	460	

induce	biological	formation	of	mackinawite	in-situ	has	been	demonstrated	in	the	field	and	in	461	

the	laboratory.
52-56

	Consistent	with	active	precipitation	of	FeS	being	important	for	continued	462	

degradation	of	PCE	and	TCE	in	sulfate-reducing	field	sites,
54
	it	is	possible	that	Fe(II)	463	

precipitation	as	Fe(OH)2	and	green	rusts	might	occur	in	dynamic	environments	receiving	a	464	

constant	flux	of	Fe(II)	from	dissimilatory	Fe	reduction,	or	in	zones	where	a	change	in	pH	465	

occurs.	We	suggest	that	field	screening	methods	for	acid	volatile	sulfides	targeting	FeS
57
	and	466	

citrate-bicarbonate	(CB)	extractable	Fe	targeting	green	rusts	and	labile	Fe(II)	phases
58,59

	467	

might	provide	a	measure	of	the	potential	for	abiotic	chlorinated	ethene	reduction	by	Fe(II)	468	

and	sulfide	minerals,	although	further	study	is	needed.	Zones	of	active	Fe(II)	precipitation	in	469	

anoxic	aquifer	could	result	in	PCE	and	TCE	reduction	that	is	sufficiently	fast	to	help	470	

attenuate	PCE	and	TCE	plumes.		471	
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Analytical methods for chlorinated ethenes and reduction products 

PCE and TCE were quantified with GC-ECD after a liquid-liquid extraction of 0.25 to 1 

mL of sample containing both the aqueous and solid phases added to 2 mL of hexanes. The ECD 

column was a Supelco Equity-5 (0.25 mm diameter x 30 m length, 0.5 µm film thickness). The 

carrier gas was nitrogen at a constant total flow velocities of 1.0 mL/min and a 10:1 inlet split 

ratio. The detector make-up gas was 95% Argon: 5% methane with flow of 30 mL/min. The 

oven was programmed for an initial hold of 1 min at 45 oC, then 10 oC/min to 200 oC. The ECD 

method detection limits are 0.05 µmoles/L PCE and 0.02 µmoles/L TCE for (n = 15). 

The daughter products ethane, ethylene, acetylene, the dichloroethenes, and vinyl 

chloride were detected using a GC-FID. The column used was an Agilent GS-GasPro column 

(0.320 mm diameter x 30 m length). The carrier gas was nitrogen at a constant total flow of 1.4 

mL/min and 7.5:1 inlet split ratio. The detector air flow was 450 mL/min, hydrogen flow 40 

mL/min, and make-up gas type was nitrogen and a combined flow rate of 35 mL/min. The oven 

was set for an isothermal run of 4.5 min at 70 oC. The C2 gas analysis was done with 100 µL 

headspace injections into the column. The detection limits for the FID method are 1.35 µmoles/L 

ethane, 1.36 µmoles/L ethylene and 1.34 µmoles/L acetylene for (n = 10). Products with carbon 

number >C2 were not analyzed in this study. We used Henry’s law and the specific 
dimensionless coefficient Hcc to calculate dissolved C2 gases and headspace PCE and TCE.1 The 

averaged values for the Hcc are as follows: PCE = 1.54, TCE = 2.447, Ethane = 0.0471, and 

Ethylene = 0.146 and Acetylene = 1.016.1 

 

Calculation of kfield and t1/2-field 

In order to estimate field rates for PCE and TCE reduction, we have calculated a kfield value (in 

yr-1) following a scheme used in Wiedemeier  et al.2 In that study, the authors used magnetic 

susceptibility data to calculate the amount of magnetite in their field samples. They used a value 

for the magnetic susceptibility of their field sediments of 4 x 10-8 m3/kg. They then used this 

value to derive the amount of magnetite per kg of aquifer material based on the magnetic 

susceptibility of magnetite (1.117 x 10-3 m3/kg), the density of magnetite (5,170 kg/m3), and the 

bulk density of an aquifer sediment (1,700 kg/m3). Based on this calculation, estimated magnetite 

concentrations were ~0.1 g magnetite/kg sediment. The maximum magnetic susceptibility that 

they report in their paper is ~1 x 10-6 m3/kg. Based on their magnetic susceptibility data, one 

could expect masses of magnetite from 0.1 g to 10 g/kg. 

 

Using this value, we calculated the in-aquifer 1st order decay constant (kaquifer) based on our rate 

constant for PCE and TCE degradation: 

For example, the average kSA for our pH ~8.0, 5 g/L magnetite, ~10 mM Fe(II) experiments is:  

kSA = kobs/SA = 1.9 x 10-8 s-1/(5 g/L·60 m2/g)·3.1536 x 107 s/year = 2.0 x 10-3 L m-2 yr-1 

Assuming ρbulk = 1700 kg/m3, effective porosity: ηe = 0.2, that the aquifer magnetite specific 

surface area is consistent with that used in our study (SSA ~ 60 m2/g), and 1 g magnetite/kg 

sediment (mmag): 
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𝑘𝑓𝑖𝑒𝑙𝑑 = 
𝑚𝑚𝑎𝑔∙𝜌𝑏𝑢𝑙𝑘∙𝑆𝑆𝐴𝑚𝑎𝑔∙𝑘𝑆𝐴𝜂𝑒 ×

1𝑚3 1000 𝐿 

𝑘𝑓𝑖𝑒𝑙𝑑 = 1 
g magnetite
kg sediment

×1,700 
kg sediment

m3 × 60 𝑚2𝑔  × 10.2 𝑚3 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑚3 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟  × 2.0 ×  10−3 𝐿𝑚2 ∙ 𝑦𝑟  ×  1𝑚3 1000 𝐿  = 1.0 𝑦𝑟−1 

 

We estimate kfield = 1.0 yr-1. Which gives a half-life of ln(2)/1 = 0.69 year. 

 

 

 

Table S1. PCE/TCE with Magnetite alone 

[C]o  

(µM)a pH 

Mass 

loading 

(g/L) 

Stoichiometry 
% 

lossb 

% 

Productsb 

% C 

recoveryb 

Duration 

(days)b xms xd xXRD 

PCE          

~50c 7.5 5 0.50 0.55 ± 0.02 0.53 7.0 0 88 139 

~50c 7.5 5 0.50 0.55 ± 0.02 0.53 7.0 0 97 139 

~50c 7.5 5 0.50 0.55 ± 0.02 0.53 6.9 0 101 105 

~50c 7.5 5 0.50 0.55 ± 0.02 0.53 6.87 0 96 105 

~50c 7.5 5 0.50 0.55 ± 0.02 0.53 6.87 0 106 105 

TCE          

48 7.0 10 0.46 0.5 ± 0.02 n.d.d -10.7 0 111 91 

52 7.5 5 0.50 0.55 ± 0.02 0.53 9.9 0 93 56 

45 7.5 20 0.46 0.5 ± 0.02 n.d. -6.3 0 106 140 

49 8.0 10 0.45 0.5 ± 0.02 n.d. -7.8 0 111 91 

56e 8.0 5 0.50 n.d.d 0.52 -2.3e 0 102e 142e 

PCE Controle         

55 7.5 0 - - - 30 0 70 172 

TCE Controle         

55 7.5 0 - - - 29 0 71 135 
a [C]o is the initial concentration of the analyte spiked within reactor.  
b % products, % analyte loss, and % C recovery are evaluated at the final reported time point.  
c~50 is the nominal concentration of PCE or TCE added. Calculations in b are based on nominal concentrations.  
d n.d. measurement not determined. 
e Averages of triplicate reactors. 
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TABLE S2. PCE/TCE Magnetite + aqueous Fe(II) reactors with products. 

[CE]0
a 

µM 
pH 

Solids 

loading 

(g/L) 

[Fe(II)]o
 

mM b 

Saturation 

Index c 

[Fe(II)]f
 

mM b 

Stoichiometry 
% 

loss f 
% 

products f 
% C 

recovery f 
Duration 

(days) 

kobs 

s-1 

kSA 

L m-2 d-1 kfield
h 

yr-1 

t1/2 field 

years xd 
d xxrd

 e 

PCE                

53.7 7.9 5 32.9 0.66 29.7 0.52 ± 0.03 0.50 28 6 78 125 6.1 × 10-9 1.8  × 10-6 0.33 2.1 

54.0 8.0 5 0.93 -0.72 n.d.g 0.54 ± 0.03 0.51 18 3 85 140 2.9 × 10-9 8.4 × 10-7 0.16 4.5 

50.1 8.5 5 32.0 1.81 3.60 0.52 ± 0.03 0.50 40 16 76 125 1.7 × 10-8 4.9 × 10-6 0.91 0.76 

55.3 8.6 5 7.58 1.30 1.61 0.52 ± 0.03 0.50 41 13 72 125 1.3 × 10-8 3.7 × 10-6 0.70 0.99 

53.1 9.0 5 0.86 1.24 n.d. 0.54 ± 0.03 0.51 32 12 80 140 1.0 × 10-8 2.9 × 10-6 0.54 1.3 

53.3 9.3 5 7.71 2.71 0.71 0.52 ± 0.03 0.50 32 10 77 125 9.6 × 10-9 2.8 × 10-6 0.52 1.3 

45.8 9.4 5 31.4 3.64 3.86 0.52 ± 0.03 0.50 41 15 74 125 1.6 × 10-8 4.6 × 10-6 0.86 0.81 

TCE                

55.3 8.0 5 0.82 -0.80 n.d. 0.54 ± 0.03 0.51 28 11 83 139 9.6 × 10-9 2.8 × 10-6 0.97 0.72 

50.8 8.0 5 8.23 0.30 4.85 0.53 ± 0.01 0.48 24 24 99 167 1.8 × 10-8 5.2× 10-6 1.3 0.52 

51.6 8.0 5 8.54 0.31 4.23 0.53 ± 0.01 0.48 27 28 101 167 2.1 × 10-8 6.1× 10-6 1.1 0.62 

51.1 7.9 5 9.19 0.15 4.13 0.53 ± 0.01 0.48 26 18 93 167 1.4 × 10-8 4.0× 10-6 1.2 0.59 

49.7 8.0 5 9.19 0.26 5.09 0.53 ± 0.01 0.48 14 24 110 167 1.8 × 10-8 5.2 × 10-6 0.80 0.86 

51.1 8.0 5 9.24 0.29 4.34 0.53 ± 0.01 0.48 31 30 99 167 2.5 × 10-8 7.2 × 10-6 0.86 0.81 

49.7 8.0 5 9.24 0.27 5.2 0.53 ± 0.01 0.48 29 26 97 167 2.1 × 10-8 6.0 × 10-6 0.75 0.92 

50.1 8.0 5 9.42 0.27 5.23 0.53 ± 0.01 0.48 28 30 102 167 2.2 × 10-8 6.3 × 10-6 0.86 0.81 

49.8 8.0 5 9.49 0.28 5.48 0.53 ± 0.01 0.48 25 24 99 167 1.5 × 10-8 4.3 × 10-6 2.8 0.25 

49.3 8.0 5 9.50 0.28 5.36 0.53 ± 0.01 0.48 22 24 102 167 1.6 × 10-8 4.6 × 10-6 0.97 0.72 

50.5 8.0 5 9.52 0.28 4.98 0.53 ± 0.01 0.48 25 19 94 167 1.4 × 10-8 4.0 × 10-6 0.070 9.9 

51.1 8.0 5 9.52 0.29 4.18 0.53 ± 0.01 0.48 24 20 97 167 1.6 × 10-8 4.6 × 10-6 0.31 2.3 

54 8.0 5 10.0 0.30 n.d. 0.48 ± 0.03 0.56 75 46 71 168 5.2 × 10-8 1.5 × 10-5 0.091 7.6 

51.2 8.0 5 10.69 0.41 4.57 0.53 ± 0.01 0.48 27 26 99 167 1.8 × 10-8 5.2 × 10-6 0.49 1.4 

61.2 8.0 5 11.2 0.35 n.d. 0.48 ± 0.03 0.56 10 5 94 287 1.3 × 10-9 3.7 × 10-7 0.11 6.2 

49.5 7.9 5 31.2 0.64 19.56 0.48 ± 0.03 0.45 -0.8 3 103 69 5.7 × 10-9 1.6 × 10-6 0.19 3.7 

69.3 8.4 5 13.1 1.22 n.d. 0.48 ± 0.03 0.56 22 5 83 287 1.7 × 10-9 4.9 × 10-7 0.14 5.0 

53.9 8.5 5 0.67 0.13 n.d. 0.54± 0.03 0.51 25 11 85 139 9.1 × 10-9 2.6 × 10-6 0.21 3.2 

51.1 8.5 5 7.55 1.18 4.18 0.48 ± 0.03 0.45 5 2 97 125 2.1 × 10-9 6.0 × 10-7 0.97 0.72 

51.5 8.6 5 32.9 1.94 3.50 0.48 ± 0.03 0.45 4.5 4 99 125 3.5 × 10-9 1.0 × 10-6 1.3 0.52 

54.2 9.0 5 7.83 2.24 0.58 0.48 ± 0.03 0.45 13 3 90 125 2.6 × 10-9 7.5 × 10-7 1.1 0.62 

52.2 9.1 5 30.9 3.07 1.87 0.48 ± 0.03 0.45 11 4 93 125 4.0 × 10-9 1.2 × 10-6 1.2 0.59 
a [CE]0 = Initial chloroethylene concentration 
b [Fe(II)]0,f = initial or final Fe(II) concentration, respectively 
c Saturation index = log(IAP/Ksp). The ion activity product (IAP) was determined with initial Fe(II) concentration and pH for each experiment.  Ksp = [Fe2+] [OH-]2 = 5 × 10-15.3 
d xd = Magnetite Fe(II)/Fe(III) ratio from dissolution 
e xxrd = Magnetite Fe(II)/Fe(III) ratio from x-ray diffraction. 
f % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.  
g (n.d.) indicates not determined. 
h kaquifer calculated with the assumptions: sediment magnetite content = 1 g/kg, ρbulk = 1700 kg/m3, effective porosity: ηe = 0.2, that the aquifer magnetite specific surface area is 60 m2/g. 
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TABLE S3. PCE/TCE with Magnetite + aqueous Fe(II) reactors without products.  

[C]o
 a 

(µM) 
pH 

Mass 

loading 

(g/L) 

[Fe(II)]o
b 

(mM) 

Saturation 

Index c 

Stoichiometry % 

lossf 

% 

productsf 

% C 

recoveryf 

Duration 

(day) 
xd 

d xxrd
 e 

PCE           

51.7 7.5 5 0.88 -1.7 0.54 ± 0.03 0.51 26 0 74 140 

~50 7.5 5 2.7 -1.3 0.55 ± 0.02 0.53 10 0 90 78 

~50 7.5 5 4.6 -1.0 0.39 ± 0.03 0.54 2.8 0 97 78 

65 7.5 17 10.0 -0.70 0.50 ± 0.06 n.d.g -24.5 0 125 91 

~70  7.5 17 25.0 -0.30 0.50 ± 0.06 n.d. -14.5 0 115 91 

48.9 8.0 5 7.47 0.21 0.52 ± 0.03 0.5 6.4 0 96 125 

TCE           

22h 6.1 147 201h -2.0 0.43 n.d. 3.8 0 96 104 

51 7.5 20 10.0 -0.70 0.50 ± 0.06 n.d. 4.0 0 96 128 

50.5 7.5 20 25.0 -0.30 0.50 ± 0.06 n.d. -2.0 0 102 128 

55.2 8.1 5 8.11 0.45 0.48± 0.03 0.45 6 0 94 195 

55.9 7.5 5 0.92 -1.7 0.54 ± 0.03 0.51 26 0 74 139 

* The magnetite Fe3O4 mineral used in the reactor was freshly precipitated and not freeze dried.  
a [C]0 = Initial chloroethylene concentration 
b [Fe(II)]0,= initial Fe(II) concentration, respectively 
c Saturation index = log(IAP/Ksp). The ion activity product (IAP) was determined with initial Fe(II) concentration and pH 

for each experiment.  Ksp = [Fe2+] [OH-]2 = 5 × 10-15.3 
d xd = Magnetite Fe(II)/Fe(III) ratio from dissolution 
e xxrd = Magnetite Fe(II)/Fe(III) ratio from x-ray diffraction. 
f % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.  
g (n.d.) indicates not determined. 
h 22 g of a mixture of freeze dried magnetite with the stoichiometry determined by a weighted average. 
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Figure S1. Photographs of reactors containing 5 g/L magnetite reacted with low Fe(II) (~1 mM, 

left) and high Fe(II) (~10 mM, right). The solids on the right contain white Fe(OH)2(s). 

Conditions: 10 mM MOPs buffer at pH 8.0, and 50 µM TCE. 
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Figure S2. X-ray diffraction pattern of a TCE reactor with magnetite and Fe(II) where 30.0% 

products were observed after 167 days. Blue bars indicate ferrous hydroxide and black bars 

indicate magnetite. The background at 2θ<60° is from the Kapton film used to seal the sample 

from air. Experimental conditions:  51µM TCE, 10 mM MOPs/NaCl, 9.2 mM Fe(II), pH 8.0. 
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Figure S3. TCE reduction (or lack thereof) as reported in the Sivavec patent4 and our attempt to 

reproduce the data under similar conditions. Sivavec:4  7.0 µM TCE, 217 g/L Fe3O4 (s), 200 mM 

Fe(II), pH 6.0. This study: 22 µM TCE, 147 g/L Fe3O4 (s), 201 ± 12 mM Fe(II), 10 mM 

MOPs/NaCl, pH 6.1 
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Table S4. PCE/TCE with aqueous Fe(II) alone and no products 

[C]o
 a 

(µM) 
pH 

[Fe(II)]o
b 

(mM) 

Saturation 

Indexc 

[Fe(II)]f 
b 

(mM) 

% 

lossd 

% 

productsd 

% C 

recovery
d 

Duration 

(day) 

PCE         

58.2 7.0 0.3 -3.0 0.16 20 0 80 138 

55.2 7.0 1.03 -2.7 1.08 29.6 0 82 134 

53.3 7.0 7.79 -1.8 7.52 19.1 0 81 117 

50.2 7.0 27.41 -1.3 n.d.e 16 0 84 140 

56.1 7.5 1.03 -1.6 1.06 20.4 0 70.4 134 

51.2 7.5 7.52 -0.78 7.17 17.7 0 82 117 

49.2 7.5 13.52 -0.52 n.d. 13 0 87 140 

50.3 7.5 27.32 -0.28 n.d. 14 0 78 140 

56.3 7.6 0.21 -2.3 0.21 26.1 0 74 138 

57.2 8.0 1.03 -0.62 1.04 16.4 0 80 134 

57 8.1 0.2 -1.2 0.18 21.9 0 78 138 

53.6 8.5 1.01 0.35 1.02 16.4 0 84 134 

59.1 8.6 0.23 -0.22 0.2 8.5 0 92 138 

51.4 8.6 7.67 1.3 1.56 15.9 0 84 117 

57 9.1 0.28 0.93 0.14 19 0 81 138 

52.7 9.1 1.07 1.4 0.37 15.6 0 85 134 

55.7 9.2 7.58 2.5 1.15 25.2 0 75 117 

TCE         

49.4 7.0 6.71 -1.9 8.08 1 0 99 117 

54.1 7.0 26.54 -1.3 n.d. 21 0 79 140 

51.9 7.1 0.34 -3.0 0.33 1 0 99 138 

53.3 7.1 1.06 -2.5 1.02 4.1 0 96 134 

53.5 7.5 1.04 -1.6 1.08 4.1 0 96 134 

52.6 7.5 13.13 -0.59 n.d. 14 0 86 140 

56.9 7.5 28.16 -0.25 n.d. 16 0 84 140 

53 7.6 0.23 -2.2 0.2 2.4 0 98 138 

51.1 7.6 7.59 -0.70 7.64 1 0 99 117 

51.7 8.0 1.01 -0.71 1.06 2.2 0 98 134 

66.3 8.0 9.84 0.29 n.d. 23.5 0 77 75 

152.9 8.0 9.9 0.30 n.d. -36.6 0 33.2 75 

~50 f 8.0 10.27 0.31 n.d. 2.3 0 98 75 

~50 f 8.0 11.54 0.36 n.d. 3.1 0 97 75 

79.9 8.0 11.64 0.37 n.d. 35 0 65 75 

~50 f 8.0 11.79 0.37 n.d. 6.3 0 94 75 

52.5 8.1 0.2 -1.2 0.24 11.1 0 89 138 

53.5 8.1 7.71 0.21 6.27 5.5 0 95 117 

53.8 8.5 0.16 -0.43 0.25 4.5 0 96 138 

52.7 8.5 1.03 0.35 1 2.7 0 97 134 

52.8 8.5 7.48 1.2 1.99 6.5 0 94 117 

52.1 9.0 0.21 0.55 0.16 1.1 0 99 138 

53.9 9.1 1.04 1.4 0.46 6.3 0 94 134 

52 9.1 7.23 2.3 0.88 2.7 0 97 117 
a [C]0 = Initial chloroethylene concentration 
b [Fe(II)]0,f = initial or final Fe(II) concentration, respectively 
c Saturation index = log(IAP/Ksp). The ion activity product (IAP) was determined with initial Fe(II) concentration and 

pH for each experiment.  Ksp = [Fe2+] [OH-]2 = 5 × 10-15.3 
d % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point.  
e (n.d.) indicates not determined. 
f First time point determined was not at time zero, and thus the [C]0 is reported as a nominal concentration. 
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Table S5. PCE/TCE with aqueous Fe(II) alone, with products 

[C]o
 a 

(µM) 
pH 

[Fe(II)]o
b 

(mM) 

Saturation 

Indexc 

[Fe(II)]f 
b 

(mM) 
% lossd 

% 

productsd 

% C 

recoveryd 

Duration 

(day) 

kobs 

(s-1) 

PCE          

50.2 8.0 31.7 0.80 1.99 27.6 2.7 75 193 1.7 × 10-9 

54.0 8.1 36.80 1.1 33.99 23.3 1.1 77 156 8.5 × 10-10 

52.7 8.5 ~13.34 1.4 n.d.e 14 1.0 86 140 1.3 × 10-8 

54.0 8.6 28.52 1.9 1.39 39.0 0.3 61 188 1.8 × 10-10 

51.2 9.0 ~13.34 2.4 n.d. 19 1.0 74 140 1.8 × 10-8 

44.4 9.0 28.00 2.7 0.63 11.9 2.0 90 188 4.8 × 10-10 

TCE          

196.9 8.0 31.62 0.80 9.39 -21.5 3.8 125 193 2.3 × 10-9 

58.9 8.0 31.98 0.81 15.19 26.6 9 82 193 5.6 × 10-9 

52.6 8.1 35.66 0.95 33.9 7 8 100.6 156 2.5 × 10-9 

50.2 8.5 28.26 1.8 1.73 5 7.2 102 193 4.3 × 10-9 

50.9 8.5 29.21 1.8 1.57 -7.9 1.2 109 193 6.6 × 10-10 

56.2 8.5 ~13.34 1.4 n.d. 29 6 75 140 3.0 × 10-9 

51 8.9 28.55 2.6 0.46 7.4 9 102 193 5.7 × 10-9 

55.6 9.0 ~13.34 2.4 n.d. 24 7 83 140 5.7 × 10-9 

51.5 9.2 28.08 3.1 0.33 23.3 13 90 193 7.7 × 10-9 
a [C]0 = Initial chloroethylene concentration 
b [Fe(II)]0,= initial Fe(II) concentration 
c Saturation index = log(IAP/Ksp). The ion activity product (IAP) was determined with initial Fe(II) concentration and pH 

for each experiment.  Ksp = [Fe2+] [OH-]2 = 5 × 10-15.3 
d % PCE or TCE loss, % Products and % Carbon recovery are taken from the final reported time point. Negative loss 

numbers indicate higher measured TCE concentrations at the final time point that the initial time point. 
e n.d. = not determined.  
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Figure S4. X-ray diffraction pattern of a TCE reactor with Fe(II) alone after 193 days where 

9.0% products were observed. Light green bars indicate ferrous hydroxide. The background 

before 60° 2θ is due to Kapton film used to seal the sample from air. Experimental conditions: 60 

µM TCE, 10 mM MOPs/NaCl, 32 mM Fe(II), pH 8.0. 
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Figure S5. Mössbauer spectrum of the white precipitate in Fe(II) alone reactors after reacting 

with 60 µM TCE, 10 mM MOPs/NaCl, pH 8.0 for 193 days where 9.0% products were observed. 

Note: 32 mM Fe(II) was the initial concentration of dissolved iron added.  
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