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Summary

Physical processes described by partial differential equations (PDE’s) are usu-
ally simulated by discretizing the spatial and the temporal domain of the
variables (temperature, velocity). In this way, numerical approximations of
the dynamic behavior of these processes are obtained. As a general rule, the
finer the discretization, the more accurate the numerical solution of the PDE’s
will be. However, a fine discretization leads to a large number of equations
which need to be solved simultaneously at every time step. Hence, the model
complexity increases with increasing requirements on model accuracy.

The objective of this PhD thesis is to develop generic methods to reduce the
complexity of a system of PDE’s to not more than 100 equations. In doing
so, the reduced model should maintain a maximum level of accuracy, while for
simulation purposes it is desired that the computational speed of the reduced
order model is at least 50 times faster1 than real-time. The last requirement is
relevant for the synthesis of (real-time) dynamic optimization. In this thesis,
mainly models for heat conduction of conductive and convective processes are
considered, with a focus on applications in glass furnaces.

A technique based on the orthogonal decomposition of a collection of measure-
ments of physical quantities (such as temperature) in position and time (sig-
nals) is used to reduce the complexity of models. Following ideas from Fourier
series expansions, signals are represented as series of orthonormal functions.
These so-called basis functions approximate the spatial distribution of the
signal while the coefficients of the basis functions represent the time-varying
dynamics. The basis functions are derived from measured or simulated data
and are physically relevant. The reduced order model is obtained by applying
a Galerkin projection of the equations of the original model onto the space
spanned by a finite set of well selected basis functions.

In this PhD thesis, this technique is applied and implemented to heat conduc-
tion models and a Computational Fluid Dynamics model of an industrial glass
melt feeder. From all applications described in this PhD thesis, the reduced
order model consists of less than 1% of the number of equations of the original
model. The examples show that with such a reduction a maximum error of

1This factor is based on experience for achieving high performance (real-time) dynamic
optimization.



2 Summary

1% in the variation of the physical variables (signals) is achievable.

The low complexity of the reduced order model enables the design and synthe-
sis of optimal model-based controllers. Using the reduced order models, var-
ious linear controllers have been synthesized to optimally control both linear
and nonlinear heat conduction processes. The controller minimizes a quadratic
criterion function in deviation between the desired and actual state and the
input variables of the system. The application of such a controller to heat con-
duction processes shows that the tracking of an arbitrary desired temperature
profile can be achieved in an optimal manner.

Despite the drastic reduction of the number of equations, the computational
gain for the reduction of nonlinear processes is low. To reduce the computation
time, a method of ’missing point estimation’ (MPE) is proposed in this PhD
thesis and combined with the POD reduction technique. The reduced model
is then based on a selected set of points in the spatial domain.

On the basis of two selection criteria, an ordening of the relevant points in the
spatial domain is proposed. The most relevant points are selected for describ-
ing the process dynamics, while the dynamical features of the process in the
remaining points are estimated. In combination with the reduction technique
of orthogonal basis functions, this leads to a reduction of computation time.
For nonlinear heat conduction model of a heated plate, a reduced order model
that is 100 times faster than real-time can be achieved.

In particular, these reduction and acceleration techniques (POD and MPE)
are applied to simulate a transition of operating point in a glass melt feeder.
This transition concerns a color change of glass in a glass melt feeder and
leads to a drastic change of many physical quantities in the glass melt. For
this transition, an optimal set of basis functions is determined from simulation
data. A reduced order model for the temperature distribution in the feeder has
been constructed from the nonlinear model by applying the POD and MPE
technique. It is shown that a reduced model of order 18 attains a resolution
with a maximum error of 1% in the variations of the physical quantities, while
achieving a computational speed that is about 8 times faster than real-time.
The attained accuracy and acceleration are adequate for the anticipation of
the process dynamics and for process monitoring. However, the computational
speed is not sufficient for on-line control design. If, apart from temperature,
also the dynamics of the velocity and pressure field of the nonlinear model
are incorporated in the reduction procedure, then a computational speed of
about 30 times faster than real-time is feasible. For control design, the desired
computational speed is minimally 50 times faster than real-time. The reduc-
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tion techniques presented in this thesis therefore have sufficient potential and
perspective to enable model-based control system design in the near future,
for example by further improvement of the MPE method, or by improving the
speed of convergence in the numerical simulations. Further enhancement of
the computational gain can be achieved by exploiting the advantages of par-
allel computing. Parallel computing is already enabled in the new generation
software for glass furnaces but it is not used in this PhD thesis.
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Samenvatting

Fysische processen waarvan het gedrag beschreven wordt door partiële diffe-
rentiaalvergelijkingen (PDV’s) worden doorgaans gesimuleerd door zowel het
spatiële (plaats) als temporele (tijd) domein van de variabelen (temperatuur,
snelheden) te discretiseren. Zodoende worden numerieke benaderingen ver-
kregen van het dynamische gedrag van dergelijke systemen. Als regel geldt
dat naarmate de discretisatie fijner is, de benadering van de oplossingen van
de PDV’s beter zal zijn. Echter, een fijne discretisatie heeft een groot aantal
vergelijkingen tot gevolg. Deze dienen simultaan in de tijd opgelost te worden.
De complexiteit zal toenemen, naarmate een grotere nauwkeurigheid is vereist.

Het doel van dit proefschrift is om generieke methoden te ontwerpen om de
complexiteit van een dergelijk door PDV’s beschreven model te reduceren tot
hoogstens een 100-tal vergelijkingen met maximaal behoud van nauwkeurig-
heid en zodanig dat voor simulatiedoeleinden een rekentijd van minimaal 50
keer2 sneller dan ‘real-time’ verkregen wordt. De laatste eis is relevant voor de
synthese van (real-time) dynamische optimalisatie. In dit proefschrift worden
hiertoe hoofdzakelijk modellen van warmteoverdracht zoals warmtegeleiding,
conductieve en convectieve processen beschouwd.

Een techniek gebaseerd op orthogonale decompositie van een verzameling van
metingen van fysische grootheden (zoals temperatuur) in tijd en plaats (sig-
nalen) wordt gebruikt om de complexiteit van modellen te reduceren. Hier-
in, worden signalen gerepresenteerd door reeksen van orthonormale functies
naar voorbeeld van Fourier reeks expansies. Deze zogenaamde basisfuncties
benaderen de spatiële distributie van het signaal terwijl de coefficiënten het
tijdsafhankelijke gedrag representeren. De basisfuncties worden afgeleid uit
gemeten of experimentele data en zijn daarmee fysisch relevant. Het geredu-
ceerde model wordt verkregen door het procesgedrag van het oorspronkelijke
(complexe) systeem te projecteren op de geselecteerde basisfuncties volgens
een Galerkin projectie.

Deze techniek is in dit proefschrift op modellen voor warmtegeleidingsproces-
sen en een Computational Fluid Dynamics (CFD) model van een industrieel
glas smelt kanaal (glass melt feeder) toegepast en gëımplementeerd in de CFD

2De factor 50 is een op ervaring gebaseerde grens voor goed presterende ‘real-time’ dy-
namische optimalisatie.
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software omgeving. Uit alle toepassingen die in dit proefschrift zijn beschreven
bestaat het gereduceerde model uit slechts 1% van het aantal vergelijkingen
van het oorspronkelijke systeem. Voor de in dit proefschrift beschreven voor-
beelden wordt een fout verkregen van maximaal 1% van de variaties in de
fysische grootheden (signalen).

De complexiteit van het gereduceerde model is dermate laag dat daardoor het
ontwerp van optimale modelgebaseerde regelaars mogelijk is. Met behulp van
de verkregen gereduceerde modellen zijn optimale lineaire regelaars ontwor-
pen voor lineaire en niet-lineaire warmtegeleidingsprocessen. Deze regelaar
minimaliseert een kwadratische functie in de afwijking tussen gewenste en
werkelijke toestand en de ingangsvariabelen van het systeem. In de toepassing
van een dergelijke regelaar op warmtegeleidingsprocessen is aangetoond dat
een willekeurig gewenst temperatuurprofiel realiseerbaar is.

Ondanks de grote reductie van het aantal vergelijkingen, is voor niet-lineaire
modellen de winst in rekentijd echter nog gering. Om de rekentijd te vermin-
deren is in dit proefschrift een methode van ‘schatting voor ontbrekende data’
(missing point estimation of MPE) beschreven en gecombineerd met de reduc-
tie techniek van orthogonale decomposities. Het gereduceerde model wordt
daarin gebaseerd op een selectie van punten in het spatiële domein.

Op grond van een tweetal selectie criteria is een ordening voorgesteld van rele-
vantie van punten in het spatiele domein. De meest relevante punten worden
geselecteerd voor de beschrijving van de procesdynamica, terwijl met behulp
van schattingen de dynamica in de overige punten wordt beschreven. In com-
binatie met de reductietechniek van orthogonale basis functies, leidt dit zowel
tot een reductie van het aantal vergelijkingen (99% reductie) als een verminde-
ring van de rekentijd (tot een factor 100 ten opzichte van het originele model in
het geval van niet-lineaire warmtegeleiding process van een verwarmde plaat).

In het bijzonder zijn deze technieken toegepast voor het simuleren van de
omschakeling van werkpunt in een glas-smelt oven. Deze omschakeling be-
treft een kleurverandering van glas in een glas smelt kanaal. Een omkleuring
leidt in dynamisch opzicht tot een drastische wijziging van een groot aantal
fysische grootheden in een glas smelt kanaal. Voor dit niet-lineaire proces
zijn optimale basisfuncties bepaald en is een gereduceerd model afgeleid op
grond van projecties van basisfuncties en de MPE techniek. Aangetoond is
dat voor de beschrijving van de temperatuur in de glasoven met een eenvoudig
model van 18 basisfuncties een maximale fout van 1% van de variaties in de
fysische grootheden haalbaar is terwijl de rekentijd ongeveer 8 keer sneller is
dan real-time. Deze nauwkeurigheid en versnellingsfactor zijn voldoende voor



Samenvatting 7

de anticipatie van het procesgedrag en voor proces monitoring. Echter nog
niet voor (on-line) regelaarontwerp. Indien naast temperatuur eveneens de
dynamica van het snelheidsveld en de drukprofielen wordt meegenomen in de
model reductie procedure, dan is een rekentijd van ongeveer 30 keer sneller
dan real-time haalbaar. Voor regelaarontwerp zal de gewenste snelheid ten
opzichte van het echte proces minimaal 50 keer sneller moeten zijn dan het
echte proces. De reductietechnieken die in dit proefschrift zijn beschreven bie-
den daarmee voldoende perspectief om model gebaseerde regelaarsynthese in
de nabije toekomst mogelijk te maken; bijvoorbeeld door verdere aanpassingen
in de MPE procedure of door een snellere convergentie in de numerieke simula-
ties. Verdere verhoging van simulatiesnelheid van het gereduceerde model ten
opzichte van het echte proces kan bereikt worden door toepassing van paral-
lelle computer processoren. Parallelle berekeningen worden nu al uitgevoerd
bij de nieuwste generatie programmatuur voor het simuleren van processen in
glasovens, maar zijn niet toegepast in dit proefschrift.
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Ringkasan

Proses-proses fisika yang digambarkan melalui persamaan differensial parsial
(PDE) disimulasikan dengan diskritisasi domain waktu dan domain ruang.
Secara umum, semakin tinggi level diskritisasi, semakin akurat solusi PDE
tersebut. Di lain pihak, akibat diskritisasi ini, jumlah persamaan yang harus
diselesaikan secara simultan pun meningkat drastis.

Tujuan dari disertasi doktoral ini adalah pengembangan metoda generik un-
tuk mengurangi tingkat kompleksitas model numerik yang dihasilkan melalui
diskretisasi PDE. Model yang dihasilkan disebut sebagai model tereduksi.
Model yang dihasilkan harus mengandung sedikit mungkin persamaan (maksi-
mum dalam orde 100 persamaan) namun tetap mengandung tingkat keakurasi-
an yang tinggi. Dalam disertasi ini, model-model yang digunakan terutama
adalah model perpindahan panas.

Dalam disertasi ini, teknik yang digunakan didasarkan pada dekomposisi or-
thogonal dari sinyal yang bergantung pada tempat dan waktu. Sinyal tersebut
direpresentasikan sebagai deret dari sekumpulan fungsi orthonormal. Fungsi-
fungsi yang dinamakan fungsi-fungsi basis ini menggambarkan distribusi spasial
dari sinyal sementara koeffisien dari fungsi-fungsi tersebut menggambarkan di-
namika sinyal terhadap waktu. Fungsi-fungsi basis ini diturunkan dari data
pengukuran atau data simulasi dan memenuhi kriteria optimal. Model tere-
duksi didapat melalui proyeksi model asal pada fungsi-fungsi basis melalui
proyeksi Galerkin.

Teknik ini diaplikasikan untuk model-model perpindahan panas melalui kon-
duksi dan juga model dari glass feeder. Untuk aplikasi pada glass feeder, teknik
ini diimplementasikan pada perangkat lunak untuk Computational Fluid Dy-
namics. Dari semua aplikasi yang dijabarkan di disertasi ini, model tereduksi
hanya mengandung 1% dari jumlah persamaan model asal. Selain itu, model
tereduksi juga memiliki tingkat keakurasian yang cukup tinggi, di mana peny-
impangan maksimum hanya 1% dari besarnya variabel proses yang diamati.

Kompleksitas dari model tereduksi cukup rendah sehingga rancangan pengen-
dali (control design) dimungkinkan. Berdasarkan model tereduksi, pengendali
dengan tipe optimal linear quadratic regulator (LQR) dirancang untuk per-
pindahan panas secara konduksi. Pengendali tersebut meminimalkan sebuah
fungsi kuadratik yang didefinisikan sebagai fungsi penyimpangan dari set point
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dan penggunaan energi. Dalam disertasi ini ditunjukkan bahwa profil temper-
atur yang diinginkan dapat dicapai secara optimal.

Meskipun model tereduksi mengandung jumlah persamaan yang jauh lebih
sedikit dibandingkan model asal, waktu simulasi untuk model nonlinear tidak
menurun secara drastis. Untuk meningkatkan kecepatan simulasi, dalam diser-
tasi ini digunakan teknik ”Missing Point Estimation (MPE)’. Model tereduksi
dibangun berdasarkan seleksi dari beberapa sel diskrit dalam domain ruang.

Sel diskrit yang digunakan dipilih berdasarkan dua kriteria pemilihan. Sel
diskrit yang relevan dipilih berdasarkan deskripsi dari dinamika proses, dan
sel diskrit yang tidak terpilih diestimasi. Kombinasi dari teknik MPE dengan
model reduksi berdasarkan dekomposisi orthogonal menghasilan model tere-
duksi yang jauh lebih cepat daripada model tereduksi yang dihasilkan melalui
cara yang konvensional (hingga lebih dari 100 kali lebih cepat daripada model
asal untuk model nonlinear dari perpindahan panas secara konduksi).

Dalam disertasi ini teknik-teknik ini digunakan juga untuk mensimulasikan job
change di dalam feeder gelas, yang merupakan bagian dari tungku gelas. Job
change yang dideskripsikan di disertasi ini adalah perubahan warna pada gelas
dalam feeder gelas. Perubahan warna membawa perubahan drastis pada di-
namika proses karena beberapa parameter fisik seperti konstanta perpindahan
panas juga berubah drastis. Untuk proses ini fungsi-fungsi basis yang opti-
mal ditentukan dan model tereduksi diturunkan melalui teknik dekomposisi
orthogonal dan juga MPE.

Hasil simulasi menunjukkan bahwa model dengan 18 persamaan dapat meng-
gambarkan proses perubahan warna secara cukup akurat. Model tereduksi
yang dihasilkan sekitar 7-8 kali lebih cepat dari real time. Hal ini dikarenakan
dalam disertasi ini variabel proses yang diperhitungkan hanya temperatur.
Waktu simulasi ini cukup memadai untuk analisa proses, on-line tuning dan
antisipasi namun tidak cukup memadai untuk perancangan pengendali secara
online. Jika variabel proses yang lain seperti kecepatan fluida dan tekanan juga
direduksi, maka waktu simulasi yang dicapai bisa mencapai 30 kali lebih cepat
dari real time. Teknik-teknik yang dideskripsikan dalam disertasi ini dapat
juga diterapkan pada variabel proses yang lain. Pengurangan waktu simulasi
dapat pula dicapai melalui aplikasi perhitungan paralel (parallel computing) di
mana parameter model dapat dihitung secara paralel oleh beberapa prosesor
komputer. Hal ini tidak diaplikasikan selama penelitian S3 ini, namun fitur
perhitungan paralel sudah tersedia dalam perangkat lunak yang digunakan
untuk simulasi proses.
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contribution of this thesis

1.6 Thesis outline

1.1 Application of computational models in pro-

cess industries

Mass, momentum, and energy transfer are the main physical phenomena sim-
ulated in many computational models. The time-dependent characteristics of
these phenomena determine the state of the process variables such as temper-
ature, flow fields, and chemical concentrations. In chemical reactors for exam-
ple, temperature, flow and concentration are very important process variables
which determine the quality of the end-product. The quality of the end prod-
uct can be enhanced by manipulating the relevant process variables in the
chemical reactors.

Typically, mass, momentum and energy transfer are described by a set of
partial differential equations, defined over a specified spatial domain (such as
three dimensional reactors, distillation columns, tubes) and over a specified
time period.

One of the prominent modeling tools for transport phenomena in fluids is the
Computational Fluid Dynamics (CFD). In CFD, the transport phenomena are
described by discretizing the spatial (position) and temporal domain (time) of
the governing equations. The CFD models provide the simulation data of the
process variables at every discretized spatial domain and at every time step.
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The availability of the simulation models will give better insight in the process
in many ways. For example, simulations can be used for prediction of future
process conditions, process monitoring, and for understanding of the real pro-
cess itself. The simulation models can also be used as a tool to improve the
existing engineering designs. An example of the application of process simula-
tion models in industry is for instance the application of CFD models in glass
furnaces [8],[9], [17],[18]. A sketch of glass furnace is depicted in Figure 1.1.
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Figure 1.1: A schematic view of glass furnace, the spatial domain for the CFD
models. Abbreviations in the figure refer to different parts of the furnace:
combustion chamber (com), burners (bur), refiner (refi), feeder (feed), throat
(thr). The sensors installed are termocouples (TT) and pressure sensor of
gases (pO for oxygen, pCO for carbonmonoxide). The glass product flows
through a dosing mechanism at the end of the furnace, the product is called
gob (g)

The modeling of heat and mass transfer in the glass furnaces by Computational
Fluid Dynamics has advanced since the last two decades of the 20th century.
In the glass industries, the CFD models have been used as a tool for [9]:

• improvement of glass furnace design [18]

• optimization of process operation parameters [18]

• understanding of the physics and chemistry of glass melting and com-
bustion [9]

• process monitoring
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• control of glass-melting operations [8],[18]

The use of CFD models for improving process design and optimization is also
applicable to other industries, such as oil and aviation industries. CFD mod-
els allow engineers to improve the existing design, understand the influence
of physical parameters on the product quality and eventually to control the
processes.

If the CFD models are representative enough for a real process, then the
model can be used as a base-model for online control design. The process can
be controlled to reach a desired condition by optimally controlling the required
amount of energy, costs, and labor needed to manufacture a product.

In model based control, the simulation models are used to extract the pro-
cess states to the controller modules. Sometimes, the simulation models are
referred to as ”soft-sensors”since they provide the data of the process states
without performing measurements by physical sensors. If the process is operat-
ing in volatile conditions, such as extremely high temperature, the information
from physical sensors is limited due to the restrictive durability of the sensors.
In this situation, it is beneficial to have simulation models which can provide
information about the process states which are not measured by the physical
sensors.

Additionally, the simulation models may also predict future process conditions
provided that the simulation models are faster than real time. In addition, such
models can be used as base models for Model Predictive Control (MPC), which
has been applied extensively in process industry [8], [31]. The knowledge of
the desired condition in the future and the predicted conditions of the process
will help the controller to optimize the energy inputs or manipulating variables
to reach a desired process condition.

Although various controllers have been successfully implemented in the pro-
cess industry, the application of model- based control based on CFD models
remains very restrictive. Control designs for such processes are usually based
upon a simple model derived from the input-output data generated by the
CFD models. For control, models faster than real time are required so that
the controller can anticipate future conditions. Fast models are not only useful
for control system design. Fast models can also be used for online tuning of
the process parameters, for better anticipations of the process conditions, and
many others. For example, for most applications in Model Predictive Control,
the model needs to be at least 50 times faster than real time to implement
such a controller.
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Despite the fact that CFD models have been proven to be reliable representa-
tions of various chemical processes and fluid flows, such models are generally
too slow and too large to be useful for online control system designs and real
time prediction.

In CFD models, the relevant spatial domain is discretized into into very small
grid cells. The dimension of the grid cells is small enough so that the numerical
models can approximate the continuous dynamics. In general, the number of
grid cells used in CFD models range from 103 − 108 grid cells. For every
grid cell, the governing mass, momentum, and energy equations are assumed
to hold. Hence, for every partial differential equation, a set of discretized
equations equal to the number of grid cells has to be solved. The CFD models
then typically consist of 103 − 108 equations that need to be solved at every
time sample. These types of models are called high order or large scale models
with “order” referring to the number of equations to be solved at every time
step.

CFD models generally are very slow and numerically intractable. In addi-
tion to the large dimension, CFD models also have to take nonlinearities into
account which may be present in the models due to the variable-dependent pa-
rameters such as temperature-dependent density and temperature dependent
viscosity. Consideration of the nonlinearities and the fact that the mass, mo-
mentum, and energy balances are coupled, substantially add the complexity
of CFD models.

It would be beneficial to have a simpler model (in the sense that it comprises
less number of equations) which approximate the original CFD models and
provides the estimates of the current and future process variables in a fast and
reliable manner. It is also desirable to derive such models through an auto-
mated and integrated procedure, so that without the requirement of physical
insights, a simpler model can be derived from the high-fidelity and high res-
olution CFD models. Furthermore, it is also desired that the simpler models
still take the original physical relationship into account as well.

The topic of this thesis is how to obtain such simplified models.

1.2 Derivation of simpler computation models

There exist many ways to derive a simple model from a complex one. Deriva-
tion of simple models in general means derivation of models which comprise
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less number of equations and which are numerically fast for computations or
simulations.

The simple models can be derived based on physical insights or based on the
study of data collected from simulations or experiments. Hence there are
usually two approaches for the derivation of simpler models:

• Physical-insight based approach
Using physical insight, an initially complex model can be transformed
into a simpler one by considering its physical phenomena. For example,
the CFD model of a glass furnace can be replaced by a model which as-
sumes that the glass furnace is a series of continuous-stirred tank chem-
ical reactors (CSTR) [30]. This assumption leads to a simpler model
since the original CFD model can be approximated by a smaller number
of ordinary differential equations. The disadvantage of this approach is
that detailed physical insight is required. If the process is substantially
changed, then the physical insights may become obsolete.

• Black-box modeling approach
With the advent of system identification techniques, such as subspace
identification and neural networks, empirical models can be derived from
the input output data. The number of actuators (energy sources, elec-
trodes, or stirrers) and the number of outputs of interest are generally
limited (less than 20). System identification techniques can be used to
derive a model based on a set of input-output data. The advantage
of this approach is that, there is no detailed physical insight required.
However, the physical interpretation of the original model is often lost.

1.3 Problem formulation

The main advantage of the physical-insight based approach is that the physical
relationship is taken into account in the resulting models. If there are changes
in the physical parameters, then they can be related directly to the models.

The main advantage of the black-box modeling is the generic characteristic
of the approach. The approach remains applicable as long as input-output
data is provided and there is no need to conduct detailed and time-consuming
studies for the modeling of such processes.

It would be desirable to combine the advantages of the physical-insight and
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the black-box modeling approaches in the derivation of a simpler model. This
is the main motivation of this PhD study.

Given a model described by discretized partial differential equa-
tions, find a simpler model which meets the following characteris-
tics:

1. the model should be derived from a generic and repeatable
procedure such that there is no need to study the physical
relationships in detail;

2. the model should take the original physical relationships into
account;

3. the model should have significantly lower number of equa-
tions, less than 100 equations is the target;

4. the model should retain sufficient accuracy level (less than
10% of the variations of process variables);

5. the model should compute faster than the original model that
it is feasible to perform online prediction, online tuning and
online control design. A factor 50 faster than real time is the
target;

6. the model should have a structure which enables controller
synthesis.

In this PhD study, it is desired that the simple models have substantially lower
number of equations than the given (original) model. Hence, the problem of
finding a simple model becomes the problems of finding a reduced order model.

In the system theory literature, reduced order models can be derived by vari-
ous methods. One of the most popular reduction methods include the method
by balancing [45],[62], which was introduced by Moore [45] in 1981 and ex-
tended for nonlinear systems by Scherpen [62]. In the balanced model reduc-
tion, a given model is reduced by balancing the contribution from the outputs
of interest and the other variables (usually referred to as states in the con-
trol engineering literature). The computation of balanced model reduction is
demanding for nonlinear cases [62], and therefore the application domain is re-
stricted to linear and small scale nonlinear models. The optimal Hankel norm
approximation used in the balancing method has been introduced by Adam-
jan, Arov and Krein in [1] and has been developed in a state space setting
by Glover in [24]. This method produces explicit bounds on the Hankel and



1.4. Conceptual introduction to proper orthogonal decomposition 21

H∞ norm of the error system defined as the difference between the original
and reduced order system. However, from a computational point of view, the
method is numerically intractable for systems whose state dimension exceeds
the order of 100.

The method of Proper Orthogonal Decomposition, which is also known as the
Karhunen-Loève decomposition, was introduced independently by Karhunen
[32], Loève[40], Pougachev[56], and Obukhov[49]. The method is data based
and well suited for the reduction of large scale systems. The derivation of
reduced order models by POD is numerically tractable for very large scale
systems. The method is applied mainly to analyze the statistical properties
of large scale data [41], [43] and has been employed in nonlinear PDE-based
models [29], [60], [61]. Since for the applications in this PhD thesis are PDE-
based models which generate large scale data, the implemented approach in
this thesis for deriving a reduced order model is the Proper Orthogonal De-
composition (POD) approach. The next section will give an introduction to
the main concepts and features of this approach.

1.4 Conceptual introduction to proper orthogonal

decomposition

The method of Proper Orthogonal Decomposition is based on patterns gen-
erated by the simulation data or the experiments. This data is collected by
excitations of the physical process through manipulations of process variables,
external inputs and disturbances, such as variations of the input energy, chem-
ical compositions, influx rate, and many others.

Since the excitation of a physical process is rarely random, the collected data
usually shows regularities, a certain pattern that keeps repeating itself from
one time period to the next time period.

An illustrative example is given as follows: Consider a one dimensional slab
of length L=10 cm. There are three actuators in the slab: at the left end,
the middle, and at the right end. The schematic view of the slab is given
in Figure 1.2. Suppose the slab is heated at the left end and suppose the
temperature distribution along the slab is initially uniform at 200◦C. Then
the temperature at the left end is increased to 400◦C and kept at this level
during a certain time period. Suppose that in the numerical model, the one
dimensional slab is divided into finite number grid cells, for example into 400
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Figure 1.2: One dimensional slab with three actuators

grid cells, hence ∆X = 0.025 cm. The numerical model thus comprises 400
equations describing the temperature of every grid point. From the numerical
model, temperature data can be collected.

The temperature distribution along the slab when it is heated at the left end
is shown in Figure 1.3 at diffferent time step k. It can be observed that the
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Figure 1.3: The snapshots collected from heating at the left end

temperature distribution as a result of the excitation signal at the left end
shows a main repeated pattern. The main repeated pattern of heating at the



1.4. Conceptual introduction to proper orthogonal decomposition 23

left end is shown in Figure 1.4.
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Figure 1.4: The main pattern of the temperature distribution along the slab
when it is heated at the left end

Similarly, if the slab is heated at the middle, the collected temperature data
also shows a repeating pattern. The temperature data is shown in Figure 1.5
and the main pattern is shown in Figure 1.6.

The example shows that even though the slab is discretized into a large num-
ber of grid cells along the spatial domain, the spatial dynamics (such as the
temperature distribution along the slab at every time step) shows regularity
or a repeating pattern.

Although the example given is very simple, in many more rigorous models,
regular patterns are often apparent from the collected simulation data.

This is the basic idea behind Proper Orthogonal Decomposition. If the original
model is governed by partial differential equations, then the spatial domain
is discretized into a high number of grid cells to approximate the continuous
spatial domain as good as possible. As a result, the model comprises a high
number of equations since the governing PDE’s need to hold for every grid
cell.

On the other hand, the spatial dynamics or the distribution of a physical
variable such as temperature along the slab shows repeating patterns. The
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Figure 1.5: The snapshots from the experiment of heating at the middle
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Figure 1.6: The main pattern of the temperature distribution along the slab
when it is heated at the middle

number of the apparent patterns is also generally very small compared to the
number of grids in the spatial discretization.

This leads to the idea that the distribution of a physical variable, such as tem-
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perature at every time step and every location can be expressed, or accurately
approximated as functions of the patterns.

Suppose the values of the temperature distribution along the slab at every
time step T(t) can be expressed as the linear combination of K patterns:

T(t) = a1(t)ϕ1 + a2(t)ϕ2 + · · · + aK(t)ϕK (1.1)

where T(t) is the vector of the variables over the whole spatial domain and
at time step t. Hence T(t) is a vector with K = 400 elements as the spatial
domain of the slab is divided into 400 grid cells. The patterns are denoted by
{ϕi}K

i=1.

In mathematical terminology, the patterns {ϕi}K
i=1 are called the basis func-

tions or the modes. A physical variable such as temperature is thus expressed
or decomposed into a linear combination of spatial patterns. The patterns
or basis functions are independent of each other. In mathematical terms it
means that the basis functions are orthogonal to each other.

Associated with each pattern, there is a time-varying coefficient which varies
according to the temperature distribution at time t. The patterns, however,
do not depend on time. Hence, if the model of the time varying coefficients is
available, we can express or approximate the original variable based on (1.1).

The idea of expanding physical quantities in expansions of the form (1.1) is
certainly not new. In fact, it dates back to the work of Joseph Fourier in his
memoir On the Propagation of Heat in Solid Bodies written in 1805. There
he proposed to expands an arbitrary function in a series of trigonometric ba-
sis functions. The well known Fourier series are examples of (1.1), where
the patterns consist of trigonometric functions. The main difference, how-
ever, the Fourier patterns or Fourier basis functions are not derived from the
data. These trigonometric functions are aimed to approximate any arbitrary
functions. In POD, the basis functions are derived from the data.

Suppose the number of patterns can be reduced only to n patterns such that
T(t) can be expressed as a linear combination of n patterns:

T(t) ≈ a1(t)ϕ1 + a2(t)ϕ2 + · · · + an(t)ϕn (1.2)

where n is substantially smaller than K in (1.1). If the process variables can be
expressed as a linear combination of very few patterns, then an approximate
model of the process variable can be derived by building a model for the first
n time varying coefficients.
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This is the essence of the model reduction by Proper Orthogonal Decomposi-
tion. Starting from a rigorous model, simulation data is collected to generate
patterns which reflect the main dynamics of the data. Then, the number of
patterns are reduced such that the effects of the neglected patterns are mini-
mized.

In the decomposition (1.1) and (1.2), the patterns {ϕi} are ordered according
to their relevance to {T(k)}. Hence the first pattern is always the main pattern
of the data, the second pattern is less dominant than the first one and also
independent of the previous one and so on. Therefore the method is called
Proper Orthogonal Decomposition as it decomposes the original data into a
set of independent (orthogonal) patterns by ordering the level of importance
of each pattern.

The models of the evolution of the time varying coefficients are the reduced
order models. If there are only n patterns used to approximate the original
variable, then only n time-varying coefficients have to be found. This is a
drastic reduction if n is very small compared to the original number of grid
cells.

The models of time varying coefficients can be built by replacing the original
variables in the original equations by the linear combinations of the patterns
or basis functions in (1.2). Once the original variable in the original models
has been replaced by (1.2), the original model is transformed into functions of
the time varying coefficients {ai(t)}n

i=1. The explicit model of the time-varying
coefficients, or the reduced order model can be constructed once the original
models become the functions of the time varying coefficients only.

Hence, in this approach, there is a mixture of physical insight and black-box
modeling approaches in deriving a simpler model from a rigorous one. The
patterns are generated from the collected simulation data or experiments. Fur-
ther, the model of the time varying coefficients of each pattern is derived from
the original model which constitute the physical relationships. The simplifica-
tion here is the reduction of the number of patterns. As a result, the number
of time varying coefficients will decrease and only very few time varying co-
efficients have to be found. Consequently, a model with a lower number of
equations than the original model can be constructed.
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1.5 Objective and contribution of this thesis

The main goal is to provide a fast and reliable model reduction scheme for
process simulation models, in particular Computational Fluid Dynamics mod-
els. It is desired that the resulting model reduction scheme will yield a model
which can be readily integrated with control system design and optimization
techniques.

To meet the goal, the following objectives of this thesis are defined as follows:

1. Investigation of Proper Orthogonal Decomposition as a reduced order
modeling tool for various processes.

2. Implementation of reduced order modeling algorithms in the CFD sim-
ulating software of a glass melting furnace.

3. Integration of the reduced order models with the control system designs
for a number of case studies.

4. Acceleration of reduced order modeling techniques for nonlinear cases

Proper Orthogonal Decomposition has been used extensively as a reduced
order modeling technique [71],[29], [34] in fluid dynamics. The applications
are still restricted within academic research so that the tool remains relatively
unknown to the CFD developers. Though in the control community model
reduction is a relatively established research field, the applications of the tools
in commercial software remain restrictive.

Since 1980s, the CFD-based glass processing simulation software has become
a reliable tool for estimating the process variables in a glass furnace. Despite
the reliability of the glass simulating software, it is still too slow for online
process monitoring, prediction and control system design.

The black-box approach has been used to accelerate the simulating software,
but this approach is very ad-hoc. During this PhD study, for the first time, an
integrated model reduction scheme is built for a glass simulation software. As
a main feature, a reduced order model based on a solid theoretical approach
can be built directly from the original CFD models to allow fast simulations,
online and real time predictions.

This thesis provides an extensive guideline of how to implement POD method
on the existing software. In this thesis, it is shown explicitly how to calculate a
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reduced order model from a model discretized by a CFD discretization scheme.
It will help CFD developers in the future to implement the algorithm in the
computational software.

Although reduced order models of very low order can be derived for nonlinear
systems, the resulting reduced order models are usually not significantly faster
than the original models. This is due to the fact that the nonlinear reduced
order models are built from the original models.

If the original models are time-varying because the physical parameters are
variable dependent, the nonlinear models will also be time varying. In this the-
sis, an acceleration scheme is introduced by building the reduced order model
from a subset of the original equations. This acceleration scheme is based on a
method first introduced in [22] as a scheme to estimate the missing data from
a static image. In this thesis, the method is extended for dynamical systems.
The investigation is among the first in model reduction field which considers
an acceleration of model reduction computation by building the reduced order
model only by a partial set of the original equations. Chapter 4 gives the
detailed description of this acceleration method. In Chapter 4, integration of
the reduced order model obtained by the acceleration technique is obtained
for a nonlinear heat conduction model. It is shown that the original process
can be controlled by using the reduced order model as the base model. The
implementation of controller design based on the reduced CFD models will
serve as a good basis in the future for the integration of commercial CFD
softwares with the controller design.

For a highly non-linear change of operating point in a glass melt feeder, by
only reducing the temperature, an acceleration factor of 8 times faster than
real time is achieved. Applications of the techniques to other process variables
such as velocity fields in the future will achieve a computational gain of about
25-30 faster than real time. Note that the development processor technology
is following the Moore’s Law [46] that the capacity of computer processors is
doubled every year. Hence, implementation of the techniques presented in this
PhD thesis will enable real-time model based control of nonlinear processes in
the near future.

1.6 Thesis outline

The thesis is organized as follows.
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Chapter 2 gives the mathematical foundations for Proper Orthogonal Decom-
position. This chapter is mathematically formal, the definitions of basis func-
tions, linear spaces, and model reduction problems are treated from mathemat-
ical perspectives here. As illustrations, a step-by-step procedure of reduced
order modeling of wave propagation equation is given.

Chapter 3 discusses the application of POD to PDE-based models discretized
by the Finite Volume Method, which is one of the most popular discretization
techniques implemented in commercial CFD softwares. In this chapter, one
dimensional and two dimensional heat conduction models are reduced. A
controller is also built based on the reduced order model of the two dimensional
heat conduction model.

Chapter 4 extends the discussion of model reduction to the simulation of
nonlinear PDE-based models. As an example, a nonlinear heat conduction
model is used. In this chapter, the problems encountered with the simulation
time of nonlinear models are discussed. This chapter presents an acceleration
technique of the nonlinear reduced order modeling. The acceleration technique
is developed from the construction of reduced order modeling based on partial
set of original equations only.

In Chapter 5, reduced order modeling strategy for a glass feeder is presented.
The theories discussed in previous chapters, including the acceleration tech-
nique are applied here to a glass feeder model. The reduced order modeling
algorithms are implemented on a CFD simulating software of glass melt fur-
nace.

Finally, in Chapter 6, conclusions and recommendations for future research
are given.
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Proper Orthogonal Decomposition

2.1 Computational models
2.2 The model reduction problem
2.3 Introduction to

orthonormal basis
2.4 Model reduction by proper

orthogonal decomposition

2.5 Application of POD to
wave propagation equation

2.6 Galerkin projection
2.7 Summary

2.1 Computational models

The vast development of computing resources and modeling techniques enables
a reliable modeling of most physical processes such as laminar fluid flows, heat
exchanges, electromagnetic coupling phenomena in semiconductors and many
others. The governing equations of such models are usually differential equa-
tions, either as partial differential equations or (PDE’s, where signals depend
on more than one independent variables such as time and space) or ordinary
differential equations (ODE’s, where signals depend on one independent vari-
able only).

Input/output variables of an ODE based model are considered univariate sig-
nals 1 y : T → R

ny , u : T → R
nu where y is the output signal and u is the

input signal. Here T ⊆ R is the set of the independent variable (usually time)
and R is the set of dependent variables, in this thesis the set of real numbers.
The ODE based models for univariate signals are typically represented as:

f(y,y(1), . . . ,y(n),u,u(1), . . . ,u(n)) = 0 (2.1)

where f is an arbitrary, sufficiently smooth function and

y(i) =
diy

dti
, u(i) =

diu

dti

1univariate: dependent on a single independent variable only
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is the i−th derivative of y and u. The equation (2.1) is understood to be sat-
isfied for all time t ∈ T. The input signal u may be comprised of manipulating
variables, noise, reference signals, or disturbances.

In control engineering, it is common to describe the model (2.1) into an equiv-
alent state space form: 2

ż = f(z,u)

y = g(z,u) (2.2)

where z is the state vector of the systems and y is the output vector.

The transformation of an ODE based model to an equivalent state space sys-
tem can be illustrated in the following example:

Example 2.1.1 Consider a mechanical system of a car suspension. The car
suspension system comprises the car mass m, the suspension spring with spring
constant κ and a damper with a damping constant b. The external input u
is the force applied to the mechanical system. The output of interest is the
displacement y of the body. The time set is T = R

+. The mathematical
relation between u and y is described by the second-order ODE:

m
d2y

dt2
+ b

dy

dt
+ κy = u (2.3)

In the form of (2.1), this reads

f(y,y(1),y(2),u) = my2 + by(1) + κy − u

The model in (2.3) can be transformed into a state space model by considering
the displacement y and the velocity of the displacement ẏ = dy

dt as state
variables. A state vector z is:

z =

(
y
ẏ

)

The model given by (2.3) can be written in state space form as:

ż =

(
ż1

ż2

)

=

(
y(1)

y(2)

)

=

(
z2

− 1
m (bz2 + κz1 − u)

)

= f(z,u)

y = z1 = g(z,u)

In the case of partial differential equations where inputs and outputs are mul-
tivariate signals 3, u : T × X 7→ R

nu , y : T × X 7→ R
ny where T denotes

2In many control literature, the states are denoted as x. Since in this thesis x denote the
spatial coordinates, the state notation is changed into z to avoid confusion

3multivariate: dependent on more than one independent variables
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the set of time as before and X denotes a spatial domain. Typically for one
dimensional space (e.g a slab): X ⊆ R, for a two dimensional spatial space
(e.g a plate) X ⊆ R

2 and X ⊆ R
3 in a three dimensional case (e.g a cube).

We call the system and n−D system if T × X ⊆ R
n.

The general form of a PDE-based model can be written analogously to (2.1)
as:

f(y,y(1), . . . ,y(n),u,u(1), . . . ,u(n)) = 0 (2.4)

where for X ⊆ R
q, the superscript (i) refers now to the multi index (i) =

(i0, . . . , iq) and

y(i) =
∂io+···+iqy

∂tio∂xi1
1 . . . ∂x

iq
q

, u(i) =
∂io+···+iqy

∂tio∂xi1
1 . . . ∂x

iq
q

In (2.4), there are q +1 independent variables and (2.4) expresses the relation
between any finite set of partial derivatives of y and u.

Example 2.1.2 Consider a temperature profile T defined over a one dimen-
sional spatial domain X = [0, 1] and time domain T = [0, tf ]. The one dimen-
sional heat equation is given by:

∂T

∂t
= κ

∂2T

∂x2
(2.5)

According to (2.4), there are 2 independent variables, i.e., a time and a spatial
coordinate. In this case, q = 1 and (2.4) involves two differentiation terms.
Let T (1) be the differentiation term with respect to time in (2.5). Let T (2) be
the differentiation term with respect to space. That is, with the multi-index
notation:

T (1) = T (1,0) =
∂T

∂t
, i = (i0, i1) = (1, 0) (2.6)

T (2) = T (0,2) =
∂2T

∂x2
, i = (i0, i1) = (0, 2) (2.7)

Then (2.5) is equivalent to the (2.4) :

f(T (1), T (2)) = T (1) − κT (2) = 0

Since models described by partial differential equations of the form (2.4) do
not allow a state space representation (2.2) with finite dimensional state space,
they are said to be infinite dimensional or distributed parameter system, see
e.g Curtain and Zwart[21].
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For computation tractability, the time domain T and spatial domain X of the
PDE-based models are usually discretised into a discrete time domain Td and
a discrete spatial domain Xd. Here, the discrete time and discrete spatial
domains are subsets of the continuous time and continuous spatial domain: 4.

Td ⊆ Z; Td ⊆ T

Xd ⊆ Z; Xd ⊆ X

Moreover if T and X are bounded sets then such discretisation can be taken
to be of finite cardinality such that:

Td = {t1, . . . , tN}; ti ∈ T

Xd = {x1, . . . , xK}; xi ∈ X

with N = card (Td) and K = card (Xd) are both finite.

The discretised solutions of (2.4) are discrete multivariate signals Td : Xd ×
Td → R

q. Suppose card(Xd) < ∞. Then for each k ∈ Td(k), we can define
the vector Td as the collection of discretised solutions (2.4) over the spatial
domain Xd at the k−th time step as:

Td(k) = col
x∈Xd

Td(x, k)

where col denotes “stacking subsequent entries in a column vector”.

Suppose that in discrete form, the original PDE model can be written as:

Td(k + 1) = fd(Td(k),u(k)). (2.8)

For convenience, since we are dealing mainly with discrete-time models in this
thesis, the subscript d is dropped in the forthcoming discussions.

Many models described by partial differential equations require only few equa-
tions. The coupled mass and momentum balance equations [13] for fluid flows
only consists of equations for velocity components in different different di-
rections (three equations for 3 dimensional coordinate system) and the mass
balance equation. To approximate the continuous solutions, both the spatial
and time domains are discretised into a large number of elements (or ”grid
cells”). This leads to high order discrete models despite the small number
of PDE’s in the original model because the PDE’s hold in every grid cell of

4the continuous spaces are discretised and represented as vectors. Dimension of time and
spatial domains refer to the length of the vectors
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the discretised domain. Fine discretisation 5 of the time domain is usually not
problematic because this simply means that the equations have to be solved at
a smaller sampling time. On the other hand, fine discretisation of the spatial
domain is problematic since at every time step, a high number of equations
has to be solved simultaneously.

The state space models as in (2.1) and (2.8) are referred in control engineering
terminology as high order or large scale when T(k) ∈ R

K with K > 200.

2.2 The model reduction problem

The large scale models require a lot of computational effort. While many
advances have been implemented in the numerical modeling of physical pro-
cesses to enhance the compatibility of the real process with the simulated one,
the models remain computationally intensive. This problem motivates the re-
search of model reduction of computational models, especially those governed
by PDE’s.

The model reduction problem can be formalized as follows:

• Given a model class (ODE, PDE, discrete, continuous) M.

• Given a complexity function c : M → R
+. A model M1 ∈ M is consid-

ered to be ”simpler”than a model M2 ∈ M if:

c(M1) ≤ c(M2)

or the complexity of M1 is less than the complexity of M2. A complexity
function can be defined as the number of equations in M.

• Given a misfit function: d : M×M → R
+ with the property:

d(M,M) = 0

d(M1,M2) = d(M2,M1)

where M, M1,M2 ∈ M. The misfit function should be thought as a mea-
sure of distance between two models M1,M2 in M. The first property
of the misfit function states that the misfit between a model with itself
is zero. The second property states that the misfit between two models
is a symmetric function

5fine discretisation: division of continuous spatial domain into very small grid cells
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With these notions we can formalize two model reduction problems

Problem 2.2.1 Given M ∈ M of complexity cM = c(M), find the reduced
model Mr ∈ M of complexity cMr = c(Mr) < cM such that the misfit
d(M, Mr) is minimized.

Problem 2.2.1 states that a reduced order model is a simpler model (based on
the defined notion of complexity) which minimizes a defined misfit function.
In this problem, we try to minimize the misfit by defining first the maximum
allowable complexity of the reduced model. Alternatively, we can also first
define the misfit threshold and find a simpler model such that the complexity
of the reduced model is minimized. This is formulated in Problem 2.2.2

Problem 2.2.2 Given M ∈ M and do ≥ 0, find Mr which minimizes the
complexity c(Mr) subject to

d(M,Mr) ≤ do

To clarify the problem formulations , consider the following example:

Example 2.2.3 Model reduction problem of a discrete state space model

• M is a set of models that allow a representation of the form:

z(k + 1) = Az(k) + Bu(k)

y(k) = Cz(k) + Du(k) (2.9)

• M = (A,B, C, D) ∈ M has the complexity

c(M) = dim z

in (2.9).

• Define the misfit function d : M×M → R
+ as:

d(M1,M2) =‖ G1 − G2 ‖

where the transfer function Gi = Ci(Is − Ai)
−1Bi + Di, i = 1, 2 and

‖ . ‖ is a norm of a rational transfer function 6. For example, the norm
can be taken as the H∞,H2, L1, L2 or Hankel norm [62].

6refer to basic control theory textbooks for the formulation of a transfer function, for
example Ogata[50]
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The model reduction problem can be cast into the formulation of 2.2.1:
Given an original model M1 ∈ M, find a reduced model of the form
M2 ∈ M (2.9) with complexity c(M2) ≪ c(M1) such that

d(M1,M2) =‖ G1 − G2 ‖

is minimized.

There are many ways to achieve a reduced order model which meets the speci-
fications as in Problem 2.2.1 or Problem 2.2.2. An option is to rely on a-priori
knowledge. In the case of a set of ODEs for example to throw away the vari-
ables which are known to be almost static: ż ≈ 0. The other alternative is
to re-model the complex physical phenomena which require large scale models
into an integrated set of simple models. This approach has been conducted in
[30], where a large scale model of a glass furnace is represented as a series of
continuous stirred tank reactors.

The simplifications transform the original large scale model into a smaller
number of ODE’s. This approach requires a tedious study of the original
model and depends on good physical insight. It is difficult to automatize such
procedure. Once a new model is given, a tedious study has to be conducted
to assess the possibility of changing the model into a simpler one.

The other alternative is to use black-box modeling. Instead of modeling the
whole state z, one identifies the relationship between the inputs and the out-
puts empirically by system identification techniques for a fixed state dimension
or a fixed complexity level. The disadvantage of this alternative is the loss of
all physical interpretations of the original model.

The specifications of the desired reduced order models in our case are:

1. Generic, repeatable for other physical processes or engineering design.
A generic procedure means that detailed physical insight is not required
when deriving a reduced order model.

2. Physically related: the original physical relationship needs to be pre-
served.

3. Computationally attractive.

From the desired specifications of the reduced order model, proper orthogonal
decomposition (POD) is used as the model reduction technique in this the-
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sis. The method uses the data to projrct the high dimensional 7 simulation
or experimental data onto a set of the appropriately chosen basis functions.
Subsequently, the basis functions are combined with the original equations to
obtain a reduced order model.

This chapter is organized as follows. First, as the method of proper orthogonal
decomposition uses orthonormal basis functions to approximate signals, an in-
troduction to the concept of orthonormal basis (section 2.3) is presented. This
part describes the mathematical formalities required to introduce orthonormal
bases for a specified data set. The introduction to proper orthogonal decom-
position (section 2.4) is accompanied by illustrative examples to clarify the
mathematical derivations. The introductory section to Proper Orthogonal
Decomposition is concluded by an application of POD to data collected from
numerical simulation of a wave propagation equation (section 2.5) . The com-
parison of POD to other approximation techniques as Fourier series is shown in
section 2.5. Sections 2.3 and 2.4 are mathematically formal. The algorithm of
POD basis selection is given at the end of section 2.4. The procedure to build
reduced order models using the Galerkin projection is presented in section 2.6.
The chapter is concluded with a summary.

2.3 Introduction to orthonormal basis

In this section, the mathematical background of orthonormal basis functions
is introduced. The notion of basis function will be used frequently in the
forthcoming discussions. Basis functions are closely related to the concept of
linear spaces and therefore it is essential to introduce a number of algebraic
notions from the theory of linear spaces.

Definition 2.3.1 A linear vector space X over the real scalar field R is a
nonempty set X with an addition mapping: (f, g) → f + g from X ×X to X
and a scalar multiplication mapping (α, f) → αf from R ×X to X such that

7high dimensional here refers to the dimension of the data vector, for example more than
200 data elements at every time step
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the following axioms are satisfied:

(f + g)(x) = f(x) + g(x)

(f + g)(x) + w(x) = f(x) + (g(x) + w(z))

(αf)(x) = αf(x)

(α + β)f(x) = α(f(x)) + β(f(x))

(α(f(x) + g(x)) = α(f(x)) + α(g(x))

Definition 2.3.2 A linear combination of vectors ϕ1, . . . ϕn of a linear
vector space X is an expression of the form:

α1ϕ1 + α2ϕ2 + · · · + αnϕn

where αi ∈ R.

Definition 2.3.3 For any nonempty subset Φ of a linear vector space X , the
set of all linear combinations is called the span of Φ and is denoted by

spanΦ

Definition 2.3.4 A set {ϕ}n
i=1 is linearly independent if

n∑

i=1

αiϕi = α1ϕ1 + α2ϕ2 + αnϕn = 0

if and only if αi = 0 for all i = 1, . . . , n.

Definition 2.3.5 If the linear vector space X is the span of a finite set of
linearly independent vectors {ϕi}n

i=1, then the set {ϕi}n
i=1 is called a basis for

X . In that case, X = span(ϕ1, . . . , ϕn) and we write

n = dimX

If there exists no finite set of vectors such that X = spanΦ then X is infinite
dimensional.

Definition 2.3.6 A norm is a nonnegative function on a linear vector space,
‖ . ‖: X → R

+ = [0,∞) such that:

• ‖ f ‖= 0 if and only if f = 0
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• ‖ f + g ‖≤‖ f ‖ + ‖ g ‖ for all f, g ∈ X

• ‖ αf ‖= |α| ‖ f ‖ for all f ∈ X and α ∈ R

Definition 2.3.7 A normed linear space is a linear vector space X equipped
with a norm ‖ · ‖X and denoted by (X , ‖ · ‖X ).

Definition 2.3.8 An element f ∈ X is a closure point of V ⊂ X if ∀ǫ > 0
there exists v ∈ V such that:

‖ v − f ‖< ǫ

The closure, closure(V) is the set of all closure points of V.

Definition 2.3.9 A subset V of a normed linear space is dense in X if its
closure is equal to X . This means, every element f of X may be approximated
as closely as desired by some elements v of V, in the sense that for all f ∈
X , ǫ > 0 there exists v ∈ V such that ‖ f − v ‖< ǫ.

Definition 2.3.10 A normed linear space (X , ‖ · ‖X ) is separable if it con-
tains a dense subset that is countable. An example of a countable set is for
example the set of integers and an example of an uncountable set is the set of
real number.

Definition 2.3.11 An inner product on a linear vector space X defined
over the real field R is a map (·, ·) : X × X → R such that for f, g ∈ X and
α, β ∈ R it holds that

• (f, g) = (g, f)

• (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0.

• (αf + βg, h) = α(f, h) + β(g, h)

Definition 2.3.12 An inner product space is a linear vector space equipped
with an inner product (·, ·) and denoted by (X , (., .)).

Definition 2.3.13 Every inner product space (X , (., .)) defines a normed space
(X , ‖ . ‖) by introducing the norm

‖ f ‖=
√

(f, f).

This norm is referred to as the induced norm of (X , (., .)).
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Definition 2.3.14 Two elements ϕi and ϕj in the inner product vector space
X are said to be orthogonal if

(ϕi, ϕj) = 0.

The orthogonal complement of a subspace Φ ⊆ X consists of all vectors that
are orthogonal to the vectors in Φ and is denoted by Φ⊥. Hence,

Φ⊥ = {x ∈ X | (x, y) = 0 ∀y ∈ Φ}.

In general, (Φ⊥)⊥ ⊇ Φ but if X is finite dimensional, then

(Φ⊥)⊥ = Φ.

Definition 2.3.15 A sequence {fn}∞n=1 in a normed linear space (X , ‖ · ‖X )
is a Cauchy sequence if

‖fn − fm‖X → 0, as n, m → ∞

Example 2.3.16 Let X be the space of continuous functions on [0, 1] with
the norm ‖ f ‖= (

∫ 1
0 |f(t)|2dt)1/2 is finite. For n ∈ Z

+ define

fn(t) :=







0 for 0 ≤ t ≤ 1
2 − 1

n
nt
2 − n

4 + 1
2 for 1

2 − 1
n ≤ t ≤ 1

2 + 1
n

1 for 1
2 + 1

n ≤ t ≤ 1

Then clearly fn ∈ X for all n.

To check whether {fn} is a Cauchy sequence, calculate:

‖ fm − fn ‖2 =

∫ 1

0
|fm(t) − fn(t)|2dt

=

∫ 1
2
− 1

n

1
2
− 1

m

(
mt

2
− m

4
+

1

2
)2dt +

∫ 1
2
+ 1

n

1
2
− 1

n

(
mt

2
− m

4
− nt

2
+

n

4
)2dt +

∫ 1
2
+ 1

m

1
2
+ 1

n

(
mt

2
− m

4
− 1

2
)2dt

=
1

6
(
m

n2
− 2

1

n
+

1

m
) ≤ 1

6m
− 1

6n

Clearly the sequence {fn} is Cauchy because ‖ fn − fm ‖2→ 0 as m,n → ∞.

Definition 2.3.17 A normed linear space X is complete if every Cauchy
sequence has a limit in X .
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In the example of Definition 2.3.15, the pointwise limit flim := limn→∞ fn(t)
with t ∈ [0, 1] satisfies:

flim(t) =

{
0 for 0 ≤ t < 1

2
1 for 1

2 < t ≤ 1

Since flim(t) is discontinuous at t = 1
2 , the limit of the Cauchy sequence is not

in X .

Definition 2.3.18 A Hilbert space is an inner product space which is com-
plete.

An example of a separable Hilbert space X = L2(X, R) is a collection of
square-integrable functions, such as temperature profiles in Example 2.5.

Let X be a spatial domain. If the mapping T : X → R describes the tempera-
ture T (x) at position x ∈ X, then X = {T : X → R | T continuous} denotes
a collection of such mappings which has the structure of a linear space by
setting

(T1 + T2)(x) := T1(x) + T2(x)

(αT1)(x) := αT1(x)

Then, for T ∈ X , define the L2 norm for X :

‖ T ‖2= {
∫

X

|T (x)|2dx}1/2

and suppose that X consists of all continuous mappings T : X → R for which
‖ T ‖2< ∞.

For T1, T2 ∈ X the inner product (T1, T2) is defined as,

(T1, T2) :=

∫

X

T1(x)T2(x)dx

The norm ‖ . ‖2 is the induced norm of the inner product space (X , (., .))
and (X , (., .)) is a separable Hilbert space. This Hilbert space is usually
denoted by L2(X, R).

Definition 2.3.19 Let I ⊆ Z be a finite or infinite index set 8 . A set {ϕi}i∈I

is an orthonormal set if:

(ϕi, ϕj) = δij :=

{
1 if i = j;
0 if i 6= j.

8an example of a finite index set is the set of positive integers: I = Z+ = {1, 2, . . . , n}
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for all i, j ∈ I.

Definition 2.3.20 Let Y be a subset of a normed space X . A point x ∈ X is
a closure point of Y if for all ǫ > 0 there exists y ∈ Y such that ‖ x−y ‖< ǫ.
The closure of Y, denoted by

closure (Y)

is the set of all closure points in Y.

Definition 2.3.21 Let the orthonormal set {ϕi}i∈I is a countable subset of
(X , (·, ·)). The set of {ϕi}i∈I is maximal if the closure of the span of {ϕi} is
X , that is

closure (span{ϕi, i ∈ I}) = X

Definition 2.3.22 An orthonormal set {ϕi}i∈I is an orthonormal basis of
a separable Hilbert space (X , (·, ·)) if it is a maximal orthonormal set.

The following theorem is the key result of this section and represents our prime
interest in orthonormal bases. For the proof, see [21]:

Theorem 2.3.23 If (X , (., .)) is a separable Hilbert space with orthonormal
basis {ϕi}i∈I, any element f ∈ X can be written as:

f =
∑

i∈I

(f, ϕi)ϕi

The real number (f, ϕi) are referred to as the Fourier coefficients of f in
the basis {ϕi}i∈I.

The result stated in Theorem 2.3.23 is a very important basis for model re-
duction by proper orthogonal decomposition. First, it states that any f ∈ X
can be expanded in terms of an orthonormal basis of X if f is an element
of a separable Hilbert space. Second, it provides explicit expressions for the
Fourier coefficients and most important one, it allows optimal projections of
f on the subspace of X in a straightforward way as we will show next section.

In the next section, Theorem 2.3.23 is used as the key tool for optimal data
reduction. As a physical motivation for the definitions and results of this
section, suppose that the data is a collection of physical variables such as
temperatures on a specified spatial domain X (e.g a furnace).
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In physical systems, the temperature profiles represent real and continuous
functions with T (x) denoting the temperature at location x ∈ X. Hence T is
supposed to be an element of a set X of a continuous functions on X.

In order to allow expansions of temperature data in terms of orthonormal basis
{ϕi}i∈I, the space X has to be:

• a linear space with addition and scaling such that expressions of the form
T1 + T2 ∈ X and α1T1 + T2 ∈ X make sense inside X .

• an inner product space. The space X has to be equipped with the inner
product (·, ·) : X × X → R to allow the concept of orthonormality and
more particularly, the concept of distance or error between the temper-
atures.

• Hilbert and separable to have the existence and the uniqueness of ex-
pansion as in Theorem 2.3.23 for any orthonormal basis {ϕi}i∈I.

In conclusion, these are structural properties so that we can proceed to the
data reduction problem.

2.4 Model reduction by proper orthogonal decom-

position

Proper Orthogonal Decomposition (POD), has been renowned as an efficient
data reduction method [4],[71]. POD is also known with other names, such as
Karhunen-Loève decomposition [29],[23], [34] and Principle Component Anal-
ysis (PCA) [74]. POD is a method of finding compact representations of an
ensemble of data in the form of a set of countable, orthonormal basis functions
{ϕi}i∈I where I is a countable index set.

The method of proper orthogonal decomposition is closely related to the theory
of Hilbert space. If the data or functions to be approximated lie in the Hilbert
space, then expansions in terms of orthonormal basis functions are possible as
stated in Theorem 2.3.23.

This section is divided into two subsections: the first subsection introduces the
solution of the model reduction problems (Problem 2.2.1 and Problem 2.2.2)
for the time invariant case and the second subsection introduces the solution
of these problems for the time varying case.
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2.4.1 Time invariant case

Let X be a Hilbert space and let {ϕi}i∈I be an orthonormal basis of X . Parti-
tion this space into two sets: X p = span{ϕi}i∈Ip and X pp = span{ϕi}i∈Ipp where
I
p and I

pp are complementary. Then every element T ∈ X can be written as:

T =
∑

i∈Ip

(T, ϕi)ϕi +
∑

i∈Ipp

(T, ϕi)ϕi = Tp + Tpp (2.10)

with Tp =
∑

i∈Ip(T, ϕi)ϕi and Tpp =
∑

i∈Ipp(T, ϕi)ϕi. Let ai = (T, ϕi) denote
the Fourier coefficients of T with i ∈ I.

The decomposition (2.10) has the following properties:

1. Tp ∈ X p; Tpp ∈ X pp

2. (Tp,Tpp) = 0

3. ‖ T − Tp ‖2=‖ Tpp ‖2=
∑

i∈Ipp

a2
i

4. ‖ T − Tpp ‖2=‖ Tp ‖=
∑

i∈Ip

a2
i

5. Tp = arg min
To∈X p

‖ T − To ‖; Tpp = arg min
To∈X pp

‖ T − To ‖

The last property 9 implies that Tp is the best approximation of T in X p and
Tpp is the best approximation of T in X pp.

We can derive an expression for the squared error between T and Tp as:

‖ T − Tp ‖2 = ‖ Tpp ‖2 (2.11)

=
∑

i∈Ipp

(T, ϕi)
2 (2.12)

= min
To∈X p

‖ T − Tp

o ‖2 (2.13)

The squared error
∑2

i∈Ipp(T, ϕi)
2 is the minimum error since X p ⊂ X is orthog-

onal to X pp ⊂ X . The length of an orthogonal projection is minimal, therefore
the squared error is minimal.

The properties (3-5) are crucial for solving the model reduction problems for
functions or data in the Hilbert space.

9the notation arg min or arg max stands for the minimum argument or the maximum
argument with argument is the input to a function, for example x is the argument of f(x)
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Example 2.4.1 Example of Model Reduction (Problem 2.2.1)
Let X be a separable Hilbert space with orthonormal basis {ϕi}i∈I. Consider
X as a model class. Define the complexity function c: X → Z+ ∪ {∞} as the
number of nonzero Fourier coefficients in the (2.10). That is,

c(T) := card (T, ϕi) ai = (T, ϕi) 6= 0; i ∈ I (2.14)

Define the misfit d : X × X → R
+ by:

d(T,Tp) :=‖ T − Tp ‖ (2.15)

where ‖ · ‖ is the norm induced by the inner product space (X , (., .)).

The model reduction problem as in Problem 2.2.1 then reads:

Given T ∈ X of complexity cT = c(T). Find Tp ∈ X of complexity
c(Tp) ≤ cp such that d(T,Tp) is minimal.

Using the property (3) in the decomposition of functions in Hilbert spaces,
this problem is equivalent to finding the index set I

p ⊆ I of cardinality c′ such
that

∑

i∈I
pp a2

i is minimal. In other words, one needs to select at c′ such that
that the sums of projections of T onto the complementary basis basis {ϕi}i∈Ipp

in X pp is minimal.

Note that the solution of this problem is basis dependent. That is, a different
orthonormal basis will give different values of

∑

i∈I
pp a2

i . This means, different
basis functions will give different quality of the reduced order model for the
same complexity function.

An algorithm for solving the problem of Example 2.4.1 for finite dimensional
Hilbert spaces X is as follows:

Let K = dim (X ), then T =
∑K

i=1 aiϕi and ai = (T, ϕi). The Fourier coeffi-
cients (a1, . . . , aK) can be ordered such that:

a2
i1 ≥ a2

i2 ≥ · · · ≥ a2
i
cp
≥ · · · ≥ a2

iK
≥ 0

Then:

Tp :=
cp

∑

j=1

aijϕij

has complexity c(Tp) = cp and has the minimal misfit d(T,Tp) =
∑K

j=cp+1 a2
ij

in the class of all elements T0 ∈ X of complexities at most cp. In other words,
Tp is the solution of this optimal model reduction problem.
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Example 2.4.2 Example of Model Reduction Problem 2.2.2

Given the same model class as in Example 2.4.1 where T ∈ X and
d0 ≥ 0, find Tp ∈ X such that d(T,Tp) ≤ do and cp = c(Tp) is
minimal among all Tp ∈ X for which d(T,Tp) ≤ do.

The solution for the case where dimX = K is given as follows: Given T ∈ X
and the threshold of the misfit do, then the optimal approximation of T with
minimal complexity cp = c(Tp) is:

Tp =
cp

∑

j=1

aijϕij

where cp is the minimal integer for which
∑K

j=cp a2
ij
≥ do

The solutions of Example 2.4.1 and Example 2.4.2 depend on the choice of
basis. For example, consider the Hilbert space L2(X, R) of square integrable
functions on the spatial domain X = [0, 1]. A possible choice of standard
orthonormal bases for X = L2[0, 1] is for example the Fourier modes.

A function f in L2(X, R) can thus be expanded in Fourier modes as:

• Fourier mode expansion

f(x) =
1

2
a0 +

∞∑

i=1

ai

√
2 cos(πix) +

∞∑

i=1

bi

√
2 sin(πix)]

Plots of the first thee Fourier modes are given in Figure 2.1.

For one nonzero data point (e.g vector of data at one time step) T ∈ X , the
trivial choice for the best basis would be any orthonomal basis {ϕi}i∈I of X
where ϕ1 = T

‖T‖ . In this case, T = ‖T‖ϕ1 and c(T) = 1 which is obviously of
minimal complexity among all possible bases of X .

The problem of finding the best basis for multiple data points, {T(t)}t∈T ∈ X
belonging to an arbitrary time set T is less trivial and will be discussed in the
next section.
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First Fourier mode 

Second Fourier mode 

Third  Fourier mode 

Figure 2.1: The first three Fourier basis functions, a function T can be ap-
proximated by

∑n
i=1 aiϕi where ϕi are the basis functions

2.4.2 Time variant case

Let T ⊆ R be a time set. Consider for any t ∈ T the function T (., t) which
maps x ∈ X to R as an element of a Hilbert space X with orthonormal basis
{ϕi}i∈I. Based on Theorem 2.3.23, the expansion of T (x, t) is given by:

T (x, t) =
∑

i∈I

ai(t)ϕi(x) (2.16)

where for all t ∈ T,
ai(t) = (T (., t), ϕi)

are the time dependent Fourier coefficients of T (., t) in the basis {ϕi}i∈I. If
the Hilbert space is infinite dimensional, the index set I will be, in general, an
infinite set and the expansion in (2.16) is an infinite one.

Let
Tsnap = {T (., t) ∈ X | t ∈ T} (2.17)
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be the collection of time dependent measurement, observation, or simulation
data. The notation T (., t) means the collection of T over all x ∈ X. For
notational convenience,

T(t) = T (., t)

is defined as the vector of the solutions at time t.

Problem 2.4.3 Model reduction for time-varying data in the setting of Prob-
lem 2.4.1

Given Tsnap and the basis {ϕi}i∈I of X a complexity cp < c(Tsnap),
where

c(Tsnap) = max
t∈T

card{(T(t), ϕi) 6= 0; i ∈ I}

Find Tp
snap = {T(t)}t∈T such that the misfit

d(Tsnap,T
p

snap)

is minimal.

The solution for time varying data is as follows:

If the averages of Fourier coefficients {aij (t)}i∈I are ordered such
that:

〈a2
i1(t)〉 ≥ 〈a2

i2(t)〉 ≥ · · · ≥ 〈a2
ipc
(t)〉 ≥ . . .

Then Tsnap = {Tp(t) | t ∈ T} is optimal because

d(Tsnap,T
p

snap) =
K∑

j=cp+1

a2
ij

is minimal.

The most optimal approximation of Tsnap in the first cp basis func-
tions will be:

Tsnap =
cp

∑

j=1

aij (t)ϕi

The averaging operation 〈·〉 is defined for f : T → R as:
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T discrete, finite card T = N

〈f〉 =
1

N

∑

t∈T

f(t)

T discrete, infinite

〈f〉 = lim
N→∞

1

N

N∑

t=1

f(t)

T continuous, bounded

〈f〉 =
1

b − a

∫ b

a
f(t)dt

T continuous, unbounded

〈f〉 = lim
b→∞

1

b

∫ ∞

0
f(t)dt

Similarly, the model reduction problem for time varying data can also be cast
into the form of Problem 2.4.2:

Problem 2.4.4 Given Tsnap, the basis {ϕi}i∈I of X , and the mis-
fit

d(Tsnap,T
p

snap) = 〈d(T(t), d(Tp(t)))〉 ≤ d0,

find Tp
snap = {T(t)}t∈T such that the complexity c(Tsnap is mini-

mal.

The solution of this problem is:

If the averages of Fourier coefficients {ai(t)}i∈I are ordered such that:

〈a2
1(t)〉 ≥ 〈a2

2(t)〉 ≥ · · · ≥ 〈a2
cp(t)〉 ≥ . . . 〈a2

K(t)〉

then

Tp

snap

cp

∑

i=1

ai(t)ϕi

is the optimal solution with cp is the minimal complexity.
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The solutions for the model reduction problems are thus the ordering of the
Fourier coefficient averages. If the basis functions {ϕi} are chosen such that
the corresponding Fourier coefficients are ordered:

〈a1(t)〉 ≥ 〈a2(t)〉 ≥ · · · ≥ 〈aK(t)〉

then any truncation up to the first cp basis functions will solve both Problem
2.4.1 and Problem 2.4.2. It will be shown that POD basis functions have the
characteristics needed to solve both problems.

2.4.3 POD basis problem

The POD basis problem is formulated as:

Problem 2.4.5 Given observations Tsnap of elements of a separable Hilbert
space X (finite or infinite dimensional), find an orthonormal basis {ϕi}i∈I such
that the averages of i-th Fourier coefficient ai(t) = (T (t), φi) are ordered. That
is:

〈(T(t), ϕ1)
2〉 ≥ 〈(T(t), ϕ2)

2〉 ≥ . . .

or in terms of the Fourier coefficients ai(t) = (T(t), ϕi) such that

〈a2
1(t)〉 ≥ 〈a2

2(t)〉 ≥ . . .

The resulting basis {ϕi} is the POD basis or often cited as the POD basis
functions 10.

Note that the POD basis functions with the property of ordered Fourier coeffi-
cient averages solves both Problem 2.4.1 and Problem 2.4.2. It solves Problem

2.4.1 because the minimal misfit will be given by
∑cp

j=1 aj(t). It solves Prob-

lem 2.4.2 because the first cp POD basis functions will give the required misfit
with the minimal complexity.

In other kinds of basis functions, there is no automatic ordering of the basis
functions that re-ordering is required before the solutions of Problem 2.4.1 and
Problem 2.4.2 can be found.

The following discussions give a step by step derivation of a POD basis {ϕi}n
i=1.

10often also cited as POD basis vectors because the basis is represented as a set of vectors
in discrete case



52 Proper Orthogonal Decomposition

2.4.4 POD basis {ϕi} in a general Hilbert space

Let X be the spatial domain and T be the time domain. Let X be a Hilbert
space of mappings from X → R. Note that in the general case, there is no
distinction between the finite and infinite cases. Thus the spatial and the time
domain may not be bounded and/or finite dimensional. Suppose that {ϕi}i∈I

is an orthonormal basis of X . An element T ∈ X can then be reperesented as:

T =
∑

i∈I

aiϕi (2.18)

where {ai}i∈I are the Fourier coefficients of T in this basis.

Suppose there is a countable (either finite or infinite) number of functions
T(t) ∈ X with t ∈ T with T a countable set. We can think of these collections
of functions as signals at different time instants. Note that T(t) is a function
from X 7→ R. Hence to express the dependence on X we will write T (x, t).
That is, T is viewed as a mapping from the Cartesian product X × T to the
reals.

Let Tsnap be equal to the collection {T(t)}t∈T, as defined in (2.17).

The first POD basis function is the function ϕ1 which maximizes the averaged
projection of the elements of Tsnap onto ϕ1 [34]. The problem of maximizing
the projections of the member of the ensemble on average can be formulated
as:

ϕ1 = arg max
ϕ1∈X

〈(T(t), ϕ1)
2〉

‖ ϕ1 ‖2
(2.19)

Example 2.4.6 The formulation stated in (2.19) can be illustrated in a simple
example in the finite dimensional case. Consider a heated slab defined over
a spatial domain X = [0, L] where L is the length of the slab. The slab is
divided into 2 grid cells (see Figure 2.2) and the temperature profiles T (x, t)
are collected for 2 time steps:

              x
1

              x
2

Figure 2.2: A slab divided into 2 grid cells, temperature data is collected for
2 time steps for these grid cells
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The observed data Tsnap in this case (finite dimensional) is a 2×2 matrix with
number of rows equals the number of grid cells and the number of columns
equal to the number of time steps. Suppose the temperature data is

Tsnap =
(
T(1) T(2)

)
=

(
T (x1, t1) T (x1, t2)
T (x2, t1) T (x2, t2)

)

=

(
4 2
2 4

)

The data can be plotted in a two dimensional plot where x1 refers to the first
grid cell and x2 to the second grid cell.

The length of the projectio of a given vector x ∈ R
2 onto a vector v ∈ R

2

is calculated as the inner product between the two vectors. If x,v ∈ R
2, the

inner product can be solved using geometry:

a = (x,v) =‖ x ‖‖ v ‖ |cos θ| (2.20)

with θ the angle formed by x and v.

When ranging over all v ∈ R
2 with ‖ v ‖= 1, a in (2.20) is maximized if v is

aligned with the x. In this case v = x/ ‖ x ‖ is optimal in the sense that a is
maximal. The illustration is given in Figure 2.3

( 4 , 2 )  

( 2 , 4 )  

x 1

x 2 t h e  b e s t  d i r e c t i o n  f o r  d a t a  ( 2 , 4 )  

t h e  b e s t  d i r e c t i o n  f o r  d a t a  ( 4 , 2 )  

( o C )

( o C )

Figure 2.3: The best directions are the ones parallel to the data themselves,
here the data is the temperature data of a slab divided into 2 grid cells, with
x1 as the data of the first grid cell and x2 is the second one

If there are more than one data point such as in the time varying case, then
the best direction for the ensemble of the data is the vector v which maximizes
the projection of the data on on average. Hence, the best POD basis element
would be the one which maximizes the mean of the individual projections of
the data and has length one. This is the interpretation of (2.19).
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( 4 , 2 )  

( 2 , 4 )  

x 1

x 2

( o C )

( o C )

 t h e  b e s t  d i r e c t i o n  o n  a v e r a g e

Figure 2.4: The best POD basis is the one which is equal to the averaged best
directions of the data and normalized with length 1

The problem stated in (2.19) can be solved by means of a calculus of variations.
Introduce the Lagrangian J(ϕ1) with Lagrange multiplier λ1.

J(ϕ1) = 〈|(T(t), ϕ1)|2〉T − λ1(‖ ϕ1 ‖2 −1) (2.21)

To find the extremum of (2.21), we use the variational argument and replace
ϕ1 in (2.21) by:

ϕ1 + δψ, δ ∈ R;ψ ∈ X
where ψ is an arbitrary function in the Hilbert space X .

A necessary condition for ϕ1 being an extremum of (2.21) is that:

d

dδ
J(ϕ1 + δψ) |δ=0= 0 (2.22)

Expanding (2.22) using (2.21) results in:

d

dδ
J(ϕ1 + δΨ) |δ=0 =

d

dδ
〈| (T(t), ϕ1) |2〉T − λ

(
‖ ϕ1 ‖2

X −1
)

=
d

dδ
[〈(T(t), ϕ1 + δψ)X (T(t), ϕ1 + δψ)X 〉T]

− d

dδ
[λ (ϕ + δψ, ϕ + δψ)X ] |δ=0 (2.23)

(2.24)

where (·, ·)X denotes the inner product operation in the Hilbert space X . The
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terms in (2.23) can be further simplied to:

d

dδ
J(ϕ1 + δψ) |δ=0= − d

dδ
[λ ((ϕ,ϕ) + (ϕ, δψ) + (δψ, ϕ) + (δψ, δψ))] |δ=0

+
d

dδ

[〈
((T(t), ϕ1) + (T(t), δψ)

) (
(T(t), ϕ1) + (T(t), δψ)

〉]
|δ=0

=
d

dδ
〈(T(t), ϕ1)(T(t), ϕ1) + (T(t), ϕ1)(T(t), δψ) + (T(t), δψ)(T(t), ϕ1)〉 |δ=0

− d

dδ
λ((ϕ1, ϕ1) + (ϕ1, δψ) + (δψ, ϕ1) + (δψ, δψ)) |δ=0

By eliminating the terms which are not functions of δ such as (T(t), ϕ1) and
(ϕ1, ϕ1) and rearranging, we arrive at:

d

dδ
J(ϕ1 + δψ) |δ=0= 2〈(T(t), ϕ)(T(t), ψ)〉 − 2λ(ϕ1, ψ) (2.25)

Setting this to zero yields

〈
(T(t), ϕ1)(T(t), ψ)

〉
− λ(ϕ1, ψ) = 0 (2.26)

Using commutativity 11 of 〈·〉T and (·, ·), we find:

(〈
(T(t), ϕ1)XT(t)

〉
− λϕ1

)
, ψ) = 0 (2.27)

Because (2.27) has to be equal to zero for any arbitrary function ψ, then

〈(T(t), ϕ1)XT(t)〉 − λ1ϕ1 = 0

is a necessary condition for ϕi to satisfy (2.19).

Now define an operator C : X 7→ X by setting

C(ϕ) =
〈
(T(t), ϕ)T(t)

〉
(2.28)

Then (2.27) reads:
C(ϕ1) = λϕ1 (2.29)

That is, ϕ1 is the eigenfunction of the operator C.

The second POD basis function is found by adding the restriction to the
Lagrangian that the second POD basis function must be orthogonal to the
first one:

J2(µ, λ2, ϕ2) = (ϕ2,Cϕ2) − λ2 [(ϕ2, ϕ2) − 1] − µ (ϕ1, ϕ2) (2.30)

11commutativity of these two operators means 〈(A, B)〉 = (〈A〉, B)
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The next POD basis functions are found by finding an extremum to the La-
grangian with the restriction that they have to be orthogonal to the already
calculated POD basis. In this way, all POD basis functions are independent.
If the operator C(ϕ) in the eigenvalue problem (2.29) is self-adjoint, then the
eigenvectors are all orthogonal and the eigenvalues λi ≥ 0. We will see in the
following lemma that indeed Cϕi is self-adjoint.

Lemma 2.4.7 Let C : X → X be defined as:

C(ϕ) := 〈(T(t), ϕ)T(t)〉T (2.31)

If 〈·〉T and (·, ·) commute, then C : X 7→ X defined by (2.31) is self-adjoint,
i.e., C = C∗.

The adjoint of C is the operator C∗ : X 7→ X with the property that ∀ϕ,ψ ∈
X :

(C(ϕ), ψ) = (ϕ,C∗(ψ))

Proof 2.4.8 Let ϕ,ψ,∈ X . Then:

(C(ϕ), ψ) =
(〈

(T(t), ϕ)T(t)
〉

T
, ψ

)

=
〈
(T(t), ϕ)T(t), ψ)

〉

T

=
〈
(T(t), ϕ)(T(t), ψ)

〉

T

=
〈
(ϕ, (T(t), ψ)T(t))

〉

T

= (ϕ,
〈
(T(t), ψ)T(t)

〉

T

= (ϕ,C(ψ))

Hence C∗ = C.

Since C(·) is a self adjoint (or a symmetric operator), it follows immediately
that all POD basis functions are solutions to the eigenvalue problem as in
(2.29) and (2.30). This leads to the following key theorem:

Theorem 2.4.9 Given observations Tsnap of elements of a separable Hilbert
space X (finite or infinite dimensional). Assume (·, ·) and 〈·〉T commute. Then
a basis {ϕi}i∈I is a solution of the POD basis problem formulated in Problem
2.4.5 if and only if {ϕi} are the eigenfunctions of the operator C defined in
(2.28) with ‖ϕi‖ = 1 and the eigenvalues (spectral values) of C satisfy:

λ1 ≥ λ2 ≥ . . .
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Each of the POD basis function ϕi solves the eigenvalue problem:

〈(T(t), ϕi)XT(t)〉 = λiϕi

C(ϕi) = λiϕi (2.32)

such that the following properties are satisfied:

〈a1(t)〉 ≥ 〈a2(t)〉 ≥ . . .

where
ai(t) = (T(t), ϕi)

The expression in (2.32) is thus the expression which solves the POD basis
problem 2.4.5. It is valid for a general Hilbert space, either finite or infinite
dimensional and it is valid for every inner product provided that the inner
product operation commutes with the averaging operation.

For different cases of the dimensionality of the spatial domain X and the time
domain T we can work out (2.32) as:

• T discrete and finite and X finite.
This is the most practical case, because continuous spatial domains are
discretised in the numerical models and data is collected for a number
finite time samples. Without loss of generality, we assume that X = R

K

with K is the number of the discretisation points (or cells) of the spatial
domain.

In the finite dimensional case, we can represent the collection of the data
Tsnap as a matrix of dimension K × N :

Tsnap =
(
T(1) T(2) . . . T(N)

)
(2.33)

This matrix Tsnap is commonly referred as the snapshot matrix because
we literally collect an ensemble of ”snapshots”or data at various time
instants in Tsnap.

In finite dimensional case, we can define C in (2.28) as:

C(ϕi) =
〈
(T(t), ϕi)T(t)

〉
=

1

N
T⊤

snapϕiTsnap

=
1

N
TsnapT

⊤
snapϕi = λiϕi

= Cϕi = λiϕi
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where T⊤
snap is the transpose of the matrix Tsnap and C = 1

N TsnapT
⊤
snap

is the correlation matrix.

Using Theorem 2.4.9, the eigenvalue problem can be solved simultane-
ously for K eigenvalues, this results in:

CΦ = ΦΛ

where Φ ∈ R
K×N , Φ =

(
ϕ1 ϕ2 . . . ϕN

)
. The diagonal matrix Λ ∈

R
N×N has the eigenvalues λ1, λ2, . . . , λN in the diagonal components.

That is,
Λ = diag

(
λ1, λ2, . . . , λN

)

Note that eigenvalues are not necessarily distinct. The unique property
of real symmetric matrices is that its eigenvalues are real and its eigenvec-
tors are orthogonal, which means that the eigenvectors are independent
even though the eigenvalues may be the same.

The eigenvalues are ordered as λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0. The ordering
occurs as the first one maximizing the mean squared projection of the
data without orthogonality constraint and the next ones maximizing the
mean squared projection with the orthogonality constraint.

The procedure of obtaining the POD basis for the finite dimensional case
of T and X can be presented in an algorithmic setting:

Algorithm 2.4.10 Algorithm for solving the POD basis problem in
finite dimensional Hilbert space X = R

K .

1. Input: the data Tsnap as a matrix:

Tsnap =
(
T(1) T(2) . . . T(N)

)

2. Define correlation matrix C as:

C =
1

N
TsnapT

⊤
snap

3. Compute the eigenvalue decomposition 12:

CΦ = ΦΛ

where Λ = diag
(
λ1, λ2, . . . , λN

)
≥ 0 and Φ is an orthogonal matrix.

N is the number of nonzero eigenvalues, N ≥ K.

12eigenvalues routines are standard routines in computational packages such as MATLAB,
LAPACK
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4. Output: Let ϕi be the i-th column of Φ. Then {ϕi}K
i=1 of X that

solves the POD basis problem.

• T is infinite, X is finite
If T is infinite (infinite samples), then Tsnap = {T(t) ∈ X ; t ∈ T is an
infinite collection. We can rewrite (2.28) as:

C(ϕ) =
〈
(T(t), ϕ)T(t)

〉
= lim

N→∞

1

N
T⊤

snapϕTsnap

= lim
N→∞

TsnapT
⊤
snapϕ

The correlation matrix C ∈ R
K×K is:

C := lim
N→∞

1

N

∑

T(t)T⊤(t) (2.34)

Then Algorithm 2.4.10 yields a solution to the POD basis problem in
this case, provided C in step 2 is replaced by (2.34).

• T is bounded and continuous, X is finite
If T is continuous and bounded (e.g in the interval [0,∞]), then

C(ϕ) =
〈
(T(t), ϕ)T(t)

〉
=

1

τ → ∞

∫ τ

0
T⊤(t)ΦT(t)dt

=
1

τ → ∞

∫ τ

0
T⊤(t)T(t)dtϕ

The correlation matrix is defined as:

C :=
1

τ

∫ τ

0
T⊤(t)T(t)dt (2.35)

Algorithm 2.4.10 yields the solution by replacing C in step (2) by (2.35).

• T unbounded and continuous, X is finite
If T is unbounded and continuous (e.g in the interval [0,∞]), then (2.28)
is rewritten as:

C(ϕ) = 〈(T(t), ϕ)T(t)〉 = lim
τ→∞

1

τ

∫ τ

0
T⊤

snapϕiTsnapdt

= lim
τ→∞

1

τ

∫ τ

0
TsnapT

⊤
snapϕidt

The covariance matrix C in step (2) of Algorithm 2.4.10 becomes:

C = lim
τ→∞

1

τ

∫ τ

0
TsnapT

⊤
snap (2.36)
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For the case where X is infinite dimensional, it is not possible to form a matrix
C ∈ R

K×K as in the case of finite dimensional. The inner product (T(t), ϕi)
in (2.28) cannot thus be expressed as a vector multiplication. This term has
to be let as it is. So for all the case of infinite dimensional X:

(T(t), ϕi)T(t)

cannot be further simplified.

Accordingly, for different cases of T, the eigenvalue problem (2.28) can be
worked out as:

• T finite and discrete, X is infinite dimensional

C(ϕ)〈(T(t), ϕ)T(t)〉 =
1

N
(T(t), ϕ)T(t)

• T infinite and discrete, X is infinite dimensional

C(ϕ) = 〈(T(t), ϕ)T(t)〉 = lim
N→∞

1

N
(T(t), ϕ)T(t)

• T continuous and bounded, X is infinite dimensional

C(ϕ) = 〈(T(t), ϕ)T(t)〉 =
1

b − a

∫ b

a
(T(t), ϕ)T(t)dt

• T continuous and unbounded, X is infinite dimensional

C(ϕ) = 〈(T(t), ϕT(t)〉 = lim
τ→∞

1

τ

∫ τ

0
(T(t), ϕi)T(t)dt

The most encountered problem is finding POD basis for a finite, discrete sam-
ples of data in Tsnap. The other cases are presented here for completeness
purposes of the discussion.

2.4.5 Reduction by POD basis

The reduction idea in POD basis is, the function T : X × T 7→ R ∈ X where
X is a Hilbert space can be represented by n-th order expansion in the POD
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basis. Denote the value of T for x ∈ X and t ∈ T as T (x, t) and the expansion
of T (x, t) by n POD basis functions as Tn(x, t).

Tn(x, t) =
n∑

i=1

ai(t)ϕ(x)

In order to have Tn(x, t) approximates T (x, t) well, n POD basis functions
which correlate better to T (x, t) must be chosen. The correlation between a
POD basis function ϕi and the data is appealed in the corresponding eigen-
value. If the corresponding eigenvalue λi is large, then the POD basis function
ϕi will approximate the data better than the POD basis function with small
eigenvalues. Thus, the larger the eigenvalue, the more correlation exists be-
tween the data and the corresponding eigenvector or POD basis function ϕ1.

Note that if the eigenvalue problem is solved simultaneously as in the finite di-
mensional case of both T and X, the eigenvalues are ordered: λ1 ≥ λ2 . . . λN ≥
0. The first POD basis function is therefore the most important element of the
POD basis because the first eigenvalue is the maximum one and the last POD
basis function is the least important element. This leads to a straightforward
criterion for n-th order approximation by POD basis.

Define the n-th correlation level by: ((2.37)).

Pn =

∑n
i=1 λi

∑N
i=1 λi

; n = 1, . . . , N (2.37)

The positivity of eigenvalues implies that

0 < P1 ≤ P2 ≤ . . . PN = 1

The quantity (2.37) is used to determine the truncation degree of the POD
basis function. The number of POD basis elements can be chosen such that
the fraction of the first eigenvalues in (2.37) are large enough to capture the
information in the data. Ad-hoc criterion commonly applied is n has to be
determined for P = 0.99, Lumley,et.al [29].

If n is small and yet P ≈ 1, then with small number of POD basis function we
can approximate the original data very well. In turn, we can build a reduced
order model consist of n number of equations only. The approximation of the
data by POD basis is presented in section 2.5 while the construction of the
reduced order model is discussed in section 2.6.
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2.5 Application of POD to wave propagation equa-

tion

In the previous section, the derivation of a POD basis for both finite and
infinite dimensional Hilbert spaces is given. In practice, we use numerical
(discrete) models to simulate continuous physical phenomena or collect finite
data samples from measurements. This section illustrates the application of
POD to a numerical model of a wave propagation and compares the approxi-
mation of the solutions by the POD and Fourier basis. The POD and Fourier
bases are considered as candidate bases for describing the solutions of the wave
propagation equation.

Example 2.5.1 The undamped one dimensional wave propagation for a rod
or string of unit length on a spatial domain X = [0, 1] is governed by the
following PDE:

∂2T

∂t2
= κ2 ∂2T

∂x2
(2.38)

where κ > 0.

The solutions T : X × T → R are assumed to belong to the Hilbert space
L2(X, R). Hence the displacement at time t T(t) = T (·, t) ∈ L2 (X, R) or the
displacement are square integrable functions for all t ≥ 0.

The initial conditions are given by:

T (x, 0) = f(x),
∂T

∂t
(x, 0) = g(x).

where f and g are the given real-valued functions on X = [0, 1].

The boundary conditions for the wave equation are:

T (0, t) = 0, T (1, t) = 0 (2.39)

for all t ≥ 0.

As the solutions are mappings T : X × T → R that are assumed to satisfy the
boundary conditions given by (2.39), we define the Hilbert space:

X = {T(t) ∈ L2(X, R) | T (0, t) = 0, T (1, t) = 0}

and assume that all solutions T (x, t) in (2.38) belong to X .
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We will derive and compare two orthonormal bases for X and we will investi-
gate the effect of the projections of the solutions of (2.38) to the subspace of
X spanned by a finite number of basis functions of X .

Candidate orthonormal bases of X are for example the set {ϕi}∞i=1 with

{ϕi(x)} = {
√

2 sin(iπx)}

The boundary conditions imply that ϕi(0) = 0 and ϕi(1) = 0. The basis
fulfills the boundary condition (2.39) and is, in fact, an orthonormal basis for
X . This basis is the Fourier basis.

Consequently, the solution T (x, t) of (2.38) and (2.39) can be represented as:

T (x, t) =
∞∑

i=1

ai(t)ϕi(x).

The approximation of T (x, t) is the partial sum

Tn(x, t) =
n∑

i=1

ai(t)ϕi(x). (2.40)

If g(x) = 0, then one can easily verify that the Fourier coefficients ai(t) in
(2.40) are the solutions of the second order ODE:

äi = −ω2
i ai, ωi = κ2iπ (2.41)

with the initial conditions:

ai(0) = (f, ϕi) =

∫ 1

0
f(x)ϕi(x)dx (2.42)

ȧi(0) = (g, ϕi) =

∫ 1

0
g(x)ϕi(x)dx = 0 (2.43)

Suppose that the initial wave profile f(x) for the 1 meter rod is as given in
Figure 2.5. The initial velocity is set to zero, i.e g(x) = 0. Hence the solutions
of (2.38) and (2.39) are expressed in the Fourier basis are given by:

T (x, t) =
1∑

i=1

2

∫ ∞

0
f(xp) sin(iπxp)dxp sin(κ2iπt) sin(κ2iπx) (2.44)
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Figure 2.5: The initial profile of wave equation

The numerical model for solving (2.38) is obtained by discretizing the spatial
domain X into 599 grid cells, so T(t) = colx∈X{T (x, t)} ∈ R

599 and the time
set T is discretised into 100 equidistant time steps between t = 0 and t = 1
second.

The POD basis for the wave equations with initial condition as depicted in
Figure 2.5 is obtained after collecting data of wave profiles T (x, t) during 100
time steps. Hence Tsnap = {T(., tk) | k = 1, . . . , 100} with 0 ≤ t1 ≤ t2 ≤
. . . t100 = 1. The matrix Tsnap has dimension 599 × 100.

Algorithm 2.4.10 is applied and results in:

1. collect the simulation data during 100 time steps in a snapshot matrix
Tsnap:

Tsnap =







T (1, 1) T (1, 2) . . . T (1, 599)
T (2, 1) T (2, 2) . . . T (2, 599)

. . . . . . . . . . . .
T (100, 1) T (100, 2) . . . T (100, 599)
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where T (x, t) denotes the wave profile at x ∈ X and at time step t ∈ T.

2. Calculate the correlation matrix C = 1
100TsnapT

⊤
snap

3. Conduct the eigenvalue decomposition for C:

CΦ = ΦΛ

where Φ =
(
ϕ1 ϕ2 . . . ϕ599

)
; Λ = diag

(
λ1, λ2, . . . , λ100

)
.

The maximum number of eigenvalues for the data of 599 grid cells collected
at 100 time steps is 100 eigenvalues 13. The logarithmic plot of the eigenval-
ues λ1, . . . λ100 is given in Figure 2.6. This plot is commonly referred in the
literature as the eigenspectrum of C .
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Figure 2.6: The eigenvalue spectrum of the wave propagation data, ordered
from the largest to the minimum one

Figure 2.6 shows that there is a sharp drop in the eigenvalue plot after the 35-
th eigenvalue. The existence of a sharp drop in the eigenvalue plot means that

13the maximum rank of a real matrix which belong to R
NR×NC = min(NR, NC)
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the original data (which is collected for 100 time steps) is highly correlated
with the first 35 eigenvector directions. If n eigenvalues are significantly larger
than the others, then we can approximate the original solutions by n POD
basis functions only which will result in small deviations.

The first two POD basis functions ϕ1 and ϕ2 correspond to the two largest
eigenvalues λ1 and λ2 and are plotted in Figure 2.7. The first POD basis
function is equal to the mean of the wave profile data (it is the best direction
for all data on average) and the second POD basis is orthogonal to the first
one and maximizes the average of the data with the orthogonality restriction.
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Figure 2.7: The POD bases ϕ1 (top) and ϕ2 (bottom) used to approximate the
wave propagation, the wave profile by the partial sum T (x, t) ≈ TPOD

2 (x, t) =
∑2

i=1 ai(t)ϕi(x)

The original solutions (2.44) is compared to the approximation by two Fourier
modes and two POD modes as formulated in (2.40) with n = 2. The com-
parisons of the solutions at the 5th, 60th, and 100th time step are shown
in Figure 2.8 to Figure 2.10, respectively. From the depicted results, it is
obvious that the first two Fourier modes poorly approximate the original solu-
tions. The two Fourier basis function or modes used to approximate the wave
propagation are:

ϕ1(x) =
√

2 sinπx, ϕ2(x) =
√

2 sin 2πx

The plots of the two Fourier modes are shown in Figure 2.11. The two Fourier
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Figure 2.8: The comparison between the analytical solution and the second or-
der approximations using Fourier (TF

2 (left) and the POD basis (TPOD
2 (right)

at the 5th time step
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Figure 2.9: The comparison between the analytical solution and the second or-
der approximations using Fourier (TF

2 (left) and the POD basis (TPOD
2 (right)

at the 60th time step

modes failed to capture the variations in the original data because these Fourier
modes do not resemble the data adequately. See for example Figure 2.10. The
combination of the first two Fourier modes fail to capture the constant value
at x ≤ 0.25 and x ≥ 0.75.

In contrast, the second order POD expansion leads to a better approximation
of the original solutions. There are some discrepancies with the original model
because we can still take more than two POD basis, but the reconstructed
snapshots data by two POD bases follow the original wave propagation better
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Figure 2.10: The comparison between the analytical solution and the sec-
ond order approximations using Fourier (TF
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Figure 2.11: The first two Fourier basis functions used to construct the reduced
order model

than the reduced order model by Fourier basis.

The first POD basis function is the same as the first Fourier modes, only with
reversed direction. The second POD basis function has a different shape than
the first Fourier modes and apparently accounts for better approximation of
the wave propagation. Hence, POD bases are the optimal orthonormal basis
for these solutions of the wave propagation equation.
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If we return to the initial discussion of how POD basis differ from other or-
thonormal basis, it is clear that POD bases are better in approximating a set
of data because they are derived directly from the data, while the other or-
thonormal bases are defined without any relation with the data. This property
brings advantages and disadvantages of POD basis.

Indeed, the POD basis can better approximate data from which they are
generated than other orthonormal bases. The basis functions therefore reflect
the relevant dynamics of the data, provided that these dynamics are captured
in the data. However, the validity of approximations defined by the partial
sums TPOD

n is limited to how well the first n basis functions represent the
dynamics of the system.

2.6 Galerkin projection

In the previous section, the procedure for obtaining a POD basis {ϕi(x)} from
simulation data was discussed. The original variables T (x, t) is approximated
by Tn(x, t), which are linear combinations of the first n POD basis functions:

T (x, t) ≈ Tn(x, t) =
n∑

i=1

ai(t)ϕi(x) x ∈ X, t ∈ T

The objective of this section is to discuss how a reduced order model is con-
structed using POD basis functions ϕi(x), not merely reconstruction by POD
basis as presented in the previous section. The reduced order model is the
model which describes the evolution of POD basis coefficients {ai(t)}n

i=1(t), t ∈
T, where n ≪ K with K the order of the original model.

Consider a PDE for a function T : X × T → R with D(·) an operator that
involves only the spatial derivatives and M(·) is a polynomial operator in
temporal derivatives. That is, T is a solution of the equation:

M(T ) = D(T ) (2.45)

where M(·) is given by:

M = M0 + M1
∂

∂t
+ · · · + MN

∂N

∂tN

and Mi ∈ R, i = 0, . . . , N and D(·) is an operator that does not involve the
temporal derivatives.
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Define a residual function for (2.45):

R(T ) = M(T ) − D(T ) (2.46)

Example 2.6.1 Consider the one dimensional heat equation:

∂T

∂t
= κ

∂T 2

∂x2
(2.47)

This is of the form (2.45) with

D(·) = κ
∂2

∂x2
, M(·) =

∂

∂t

The residual R(T ) is:

R(T ) =
∂T

∂t
− κ

∂T 2

∂t2

Note that T satisfies (4.1) if and only if the residual is zero. Furthermore, it
is important to observe that the residual is a function on X × T.

Suppose that we have derived a POD basis {ϕi(x)}∞i=1 for the solutions T (., t).
If we replace the solutions T (x, t) of (4.1) by a truncated linear combinations
of the first n POD basis functions, i.e,

Tn(x, t) =
n∑

i=1

ai(t)ϕi(x)

then the residual will be

R(Tn) = M(Tn) − D(Tn)

Since in general T 6= Tn, we will have R(Tn) 6= 0.

For reduced order modeling, we would like to satisfy the original equations
as good as possible. This means that for physical systems, we would like
the variables approximated by the POD basis to still follow the governing
equations. It implies that the POD basis coefficients {ai(t)}n

i=1 have to be
determined such that the original governing equations are fulfilled as closely
as possible, so the residual R(Tn) viewed as a function on X × T has to be
minimized.

The Galerkin projection is definied as:
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Definition 2.6.2 Given an orthonormal basis {ϕi}∞i=1 of a Hilbert space X , a
residual operator R of the model M(T ) = D(T ). Galerkin projection amounts
to setting

(ϕi, R (Tn(., t))) = 0; i = 1, . . . , n

The Galerkin projection as in Definition 2.6.2 states that the projection of the
residual to the span of the first n basis functions vanish. This means that the
residual R(Tn) is not correlated to {ϕ}n

i=1 at all. It can be easily seen that
for example if we would like to reconstruct the residual R(Tn) using the first
n basis functions, then this is equivalent to:

R(Tn)(., t) ≈ R̃(Tn)(., t) =

n∑

i=1

(ϕi, R (Tn(., t))) ϕi = 0

Thus the approximation of the residual in the span of the first n basis function
is zero. The orthogonality of the residual R(Tn) to the span of the basis
functions {ϕ}n

i=1 implies that the residual is minimal.

Example 2.6.3 In the previous section we have worked out the derivation
of POD basis {ϕi}n

i=1 from a set of simulation data for the wave equation.
Herewith the derivation of the reduced order model of the associated POD
coefficients for the wave equation is presented. By POD, the solution T (x, t)
is expanded in orthonormal basis functions ϕi(x).

The wave propagation equation is given by:

∂2T

∂t2
= κ2 ∂2T

∂x2

In the form of (4.1), the operator

D(·) = κ2 ∂2

∂x2

and the operator

M(·) =
∂2

∂t2
.

In reduced order modeling, the number of basis functions are truncated to n,
so that the solutions are approximated by:

Tn(x, t) ≈
n∑

i=1

ai(t)ϕi(x) (2.48)
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The residual R(Tn) of the wave equation is given by:

R(Tn) =
∂2Tn

∂t2
− κ2 ∂Tn

∂x2

To find the model of the POD coefficients {ai(t)}n
i=1, Galerkin projection of

the residual onto the basis functions ϕi(x) with i = 1, . . . , n is conducted:

(R(Tn), ϕi(x)) = 0, i = 1, . . . , n

or equivalently

(

ϕj(x),

n∑

i=1

äi(t)ϕi(x)

)

−
(

ϕj(x), κ2
n∑

i=1

ai(t)
∂2ϕi(x)

∂x2

)

= 0 (2.49)

Due to the orthonormality of ϕi(x) and linearity of the differential operator
M(·), the terms on the left hand side of (2.49) vanish if i 6= j.

Hence, the final n-th order reduced model of the one-dimensional undamped
wave propagation is:

äj(t) =

(

ϕj(x), κ2
n∑

i=1

ai(t)
∂2ϕi(x)

∂x2

)

(2.50)

In the previous example, we generate POD basis {ϕi}100
i=1 based on simulation

data with the initial wave profile as depicted in Figure 2.5. We would like
to use the POD basis derived in that procedure to construct a reduced order
model. This reduced order model is then used to simulate the wave propaga-
tion excited by other initial condition. For this purpose, we took 3 POD basis
functions corresponding to three largest eigenvalues with the eigenvalues as
plotted in Figure 2.6.

The set of equations we need to solve to find aj(t), (j = 1, 2, 3) is:

äj =

(

ϕj(x), κ2
3∑

i=1

ai(t)
∂2ϕi(x)

∂x2

)

; j = 1, 2, 3 (2.51)

(2.52)

The wave profile at every time step T(t) is obtained by discretisation of the
spatial domain X into 599 grid cells. For every grid cell, the wave equation
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(2.38) has to hold, so the order of the original model cT = 599. The reduced
order model (2.51) comprise three ODE’s, hence the complexity function cT =
3 for the reduced order model. The misfit function dT = R(T ) = 0 in the
original model and in the reduced order model dT = R(T3) as in (2.46) with
n = 3 which is minimized.

The initial conditions are given as

T (x, 0) = sinπx + sin 5πx = f(x) (2.53)

∂T

∂t
(x, 0) = 0 = g(x) (2.54)

The initial condition T (x, 0) is plotted in Figure 2.12.
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Figure 2.12: The initial wave profile

The corresponding initial conditions for the reduced order model of {ai(0)}i=3
i=1

are obtained by performing the Galerking projection of (2.53) onto the POD
basis {ϕi}i=3

i=1:

ai(0) = (ϕi, f) (2.55)

ȧi(t)(0) = (ϕ1, g) (2.56)

The reduced order modeling (2.51) with the initial conditions (2.55) uniquely
define {ai(t)}3

i=1. Note that the POD basis used in (2.51) was derived from
simulation data with different initial condition.

The comparisons between the original wave profile T (x, t) and the wave profile
constructed from reduced order model Tn(x, t) are shown in Figure 2.13 and
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Figure 2.14 at the 10th, 30th, 60th, and 100th time step. The reduced model
can still follow the original dynamics quite well despite the fact that the POD
basis used in the reduced order model was derived from other simulation data.
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Figure 2.13: The comparisons between reduced and original model at 10th
and 30th time step, initial condition is given in Figure 2.12. The POD basis
{ϕi} used in the reduced order model is derived from other simulation data
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Figure 2.14: The comparisons between reduced and original model at 60th
and 100th time step, initial condition is given in Figure 2.12. The POD basis
{ϕi} used in the reduced order model is derived from other simulation data
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The reduced order model is obtained by combining the original equations
with the POD bases and incorporating the boundary conditions. In black-box
modeling, the original equations are considered unknown and the relationship
between the input and outputs of interest are determined empirically from
the study of the input-output data. This approach for example has been
done in [31], where the model of the POD coefficients ai(t) are derived by an
identification technique instead derived directly from the original equations.

In this thesis, the reduced order model is built by projecting original equa-
tions onto the POD basis. Parameter changes, input changes, and all other
changes are thus taken into account by the reduced order model.

2.7 Summary

This chapter gives the introduction of Proper Orthogonal Decomposition as
a tool for model reduction. The model reduction problem is introduced in
section 2.2. Starting from an original model which belong to a specified model
class (ODE, PDE, state space model, etc), we would like to find an a model
in the same model class which is less complex than the original one and meet
a specified misfit criterion.

The idea to derive a reduced order model originates from the possibility of
representing a variable in a suitable, data based coordinate system consiting
of orthonormal basis functions such as Fourier, Laguerre or Legendre basis
functions. In section 2.3, an introduction to orthonormal basis function is
given to provide a mathematical insight of how this approximation is allowed
since not all functions can be approximated by expansion of orthormal basis
function.

The method of proper orthogonal decomposition is formalized for general case
in section 2.4. Algorithm 2.4.10 gives a step by step procedure of obtaining
POD basis for data collected from simulation or experiments.

We demonstrated the usage of POD and its reduction properties in a model
of a one-dimensional undamped wave propagation equation in section 2.5. In
this section, reconstructions of the wave profiles by POD basis are compared
to the reconstruction by Fourier basis. It is shown that POD basis gives less
deviation with respect to the original model in comparison with the Fourier
basis.
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The reduced order model can be found by projecting the original equations
onto n POD basis functions as discussed in section 2.6. The number of POD
basis function is much smaller than the original dimension of the original
model. This results in a reduced order model of lower dimension. As an
example, a reduced order model of the wave propagation is constructed by
applying the Galerkin projection. To validate the reduced order model, a set
of different initial conditions are given. The initial conditions are different
than the initial conditions used to derive the POD basis. Since the reduced
order model is taking the original equations into account, it is shown that the
reduced order model can predict the original wave profiles quite accurately.
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This chapter is an extended version from the papers [4], [27]

3.1 Introduction

In Chapter 2, the proper orthogonal decomposition (POD) method has been
presented as a model reduction technique. The method is based on the approx-
imation of massive data by a limited number of POD basis functions. These
POD basis functions can be considered as the patterns of the data, derived
from the simulation data (see Algorithm 2.4.10 in Chapter 2 for step-by-step
procedure for calculating the POD basis functions).

In Chapter 2, the POD technique has been applied to a wave propagation
model. The model of the wave propagation equation is a PDE-based model
and the simulation model is obtained by discretization of the spatial domain
into a high number of grid cells. As a result, in the original model, a high
number of equations has to be solved to obtain the solutions. It is shown in
Chapter 2 that the high dimensional simulation data can be approximated
very well by a very small number of POD basis functions.

A time varying coefficient is assigned to each POD basis function. The reduced
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order model is the model for the time varying coefficients. Since the number
of POD basis functions is very small compared to the number of grid cells,
the reduced order model only comprises as many equations as the number of
POD basis functions. Once the POD basis functions have been calculated,
the reduced order model can be obtained by performing a Galerkin projection
(Section 2.6) of the original equations onto the selected POD basis function.
Hence, POD is a model reduction technique which combines physical insight
approach (by projecting the original equations onto the basis functions) and
the black-box model approach (by deriving the POD basis functions from the
simulation data set).

In this chapter, we will focus on PDE based models discretized by the Finite
Volume approach. The Finite Volume approach is a very popular discretiza-
tion technique applied in the Computational Fluid Dynamics (CFD) packages.
Although POD has been a very popular reduction method in the academic
community, its implementation on commercial simulation software is barely
known. This might be because most of the technical presentations in the aca-
demic papers rarely show the step-by-step procedures of building a reduced
order model by POD from the discretized models. This chapter will give an
the implementation of the POD method on models discretized by the Finite
Volume Method [70, 54].

Heat conduction models in one and two dimensional solid plates will be used
as illustrations in this chapter. Although these models do not show the heat
transfer in fluids as in the case of CFD models, the implementation of the
POD method in these models can also be conducted in CFD models as both
are discretized in the same manner. Furthermore, heat conduction models are
easier to understand and will give better insight of the POD method itself.
The objective of this chapter is to provide a thorough guideline of the POD
implementation in models discretized by the Finite Volume Method. In this
chapter, the resulting reduced order model will also be used to control the
temperature distribution of a solid plate optimally.

This chapter is organized as follows. First, an overview of CFD models will
be given in Section 3.2. Subsequently, the Finite Volume Method as the dis-
cretization technique of CFD models will be applied to a one dimensional heat
equation in Section 3.3. Reduced order modeling of a one dimensional heat
conduction is presented in Section 3.4. The two dimensional heat conduc-
tion model is discussed in Section 3.5 and the controller design based on the
reduced order model is given in Section 3.7.
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3.2 Computational Fluid Dynamics models

Computational Fluid Dynamics (CFD) is among the most prominent modeling
techniques for flows and heat transfer processes in fluids. In CFD, mass,
momentum, and energy balance equations defined over a spatial domain are
solved [13]. The balance equations are in the form of PDE’s, and consist of

Figure 3.1: A grid cell in three dimensional Cartesian coordinate sys-
tem. The coordinate system is given by (x, y, z) coordinate. The capitals
E, W, T, B, N, S refer to the eastern, western, top, bottom, north, and south
faces. The grid cell size is given by δx × δy × δz. The sizes are usually very
small so that the discretized model can follow the changes of the temperature
and velocity fields

• The mass balance equation:

∂ρ

∂t
= −∇. (ρv) (3.1)

• The momentum balance equation:

∂

∂t
ρv = − [∇ (ρvv)] −∇p − [∇ (w)] + ρg (3.2)

• The energy balance equation:

∂ρcpT

∂t
= −∇ (ρcpTv) + ∇ (κ gradT ) + q (3.3)



80 Application of POD to Heat Conduction Models

where v ∈ R
3 is the vector of the fluid velocity in the x, y, z direction, w is

the vector of the shear stresses on the fluid, ρ is the fluid density, p is the
pressure, ∇p is the vector of the gradient of the pressure, and q is the exter-
nal energy soruces. In the Cartesian coordinate system, the components of
∇p is ∂p/∂x, ∂p/∂y, and ∂p/∂z. The shear stress vector w has nine compo-
nents: τxx, τxy, τxz, τyy, τyx, τyz, τzz, τzy, τzx [13]. The velocity components in
the x, y, z directions are usually denoted by (vx, vy, vz), respectively.

If the density ρ and the viscosity µ are constant, the set of the balance and
the momentum equations are referred to as the Navier-Stokes equations. The
divergence operator ∇(·) for the Cartesian coordinate system is:

∇(·) =
∂

∂x
(·) +

∂

∂y
(·) +

∂

∂z
(·)

It should be noted that [∇.ρvv] and [∇.w] are not simple divergences because
of the tensorial nature of ρvv and w. For further details, see [13].

It should be pointed out that the balance equations also hold for other coor-
dinate systems, such as cylindrical and radial coordinates. Details of mass,
momentum, and energy conservation equations for other coordinate systems
can be found in Bird,et.al [13].

In CFD models, these balance equations are discretized by discretizing both
the spatial domain X and the time domain T. A grid cell in a rectangular
spatial domain X, together with the direction of the Cartesian coordinate
system is given in Figure 3.1.

Some popular discretization methods applied in CFD are for example the
Finite Element Method and the Finite Volume Method. In this thesis, we
focus on the discretisations by the Finite Volume Method. In this method,
the balance equations are discretised over a finite volume cell and a specified
time step.

CFD modeling software is used extensively in chemical, mechanical, oil refin-
ery, aviation industries as well as in meteorology and oceanography. Some
well-known CFD commercial packages are FLUENT, CD-ADAPCO, CFX.
Starting in the 1980s, the Netherlands Institute of Applied Physics (TNO-
TPD) has developed the Glass Tank Model (GTM) for CFD simulations of
glass processing.

CFD packages generally consist of three main modules:
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1. Pre-processor modules.
In the pre-processor modules, the following details are defined:

• the specifications of the spatial domain X such as dimensions and
shapes, including its discrete grid divisions. Advanced CFD pack-
ages usually have a default mesh generator.

• the equations to be solved, the standard equations are Navier-
Stokes equations and the energy conservation equations.

• the boundary conditions.

• the specifications of the different phases in the spatial domain (gas,
liquid, solid, mixed phases).

• the physical parameters such as density ρ, viscosity µ and heat
conductivity κ, often strongly temperature dependent.

• specifications of energy sources which influence the energy and flow
distribution such as the local electrical energy sources.

2. Solver modules.
In this module, the following steps are performed:

• discretization of the governing equations.

• online update of the time varying physical parameters if necessary.

• iterative calculation of the discretized equation solutions.

3. Post processor module
In this module, the results of the simulations for instance the tempera-
ture in each grid point at all time steps are presented through graphical
interfaces (1D,2D, or 3D plots) and exported as data files.

Similar to other computational softwares, the efficiency of CFD models de-
pends on many factors such as memory allocations, numerical methods ap-
plied in the solver module, and the data transfer. The scope of this thesis is
focused on minimizing or reducing the computational effort required to solve
the discretized equations. Other issues such as efficient memory allocations,
optimal gridding of the spatial domains, subroutines structures which also af-
fect the performance of a computational software are beyond the scope of this
thesis.

CFD models often provide representative simulation models of the real sys-
tems and play an important roles in the automatization of process industries.
Nowadays, operators and engineers are able to obtain the accurate predictions
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of the changes without conducting experiments on the real system [9, 17, 18, 8].
Often, the real system is operating in very volatile conditions such as high op-
erating temperatures and only a limited number of sensors can be installed
in the system. The availability of reliable CFD models enables operators and
engineers to approximate or estimate the process variables not measured by
sensors. The available estimations of the data help them to analyze the plant
safely and efficiently since there is no need to install sensors in very extreme
operating conditions to access the unmeasured variables.

On the other hand, CFD models often require a lot of computational time.
Depending on the complexities of the models, it is generally quite difficult to
obtain fast simulation models. CFD models are adequate as off-line simulation
tools, but not fast enough to be used as prediction modules or to be used as
a basis for control design. One of the contributing factors in the intractability
of CFD models is the fact that the mesh generators divide the spatial domain
into many grid cells in order to approximate the continuous behavior. The
number of grid cells in CFD models are typically in the range 103 to 108 grid
cells [71], [16]. Hence for every time step, the CFD software has to find 103 to
108 solutions simultaneously.

It is therefore impossible to use CFD models for model based control system
design. Even though the CFD models provide a representative model of the
real system, the models cannot be used to enhance the product quality, to
minimize the consumption of energy inputs, or to improve the economic op-
eration of the plant by means of controllers. Suppose a real valued variable
T (x, t) is defined over a discrete spatial domain X consisting of K grid points
as a discretized solution of a PDE. For fixed t ∈ T, let the vector T(t) comprise
all K discrete spatial solutions over X at time t ∈ T. For example, T (x, t) ∈ R

can be a temperature distribution in a chemical reactor X and solution of the
energy balance (3.3). Consider further Tref(t) as the reference or desired tem-
perature distribution at time t, and let u be the adjustable inputs such as fuel
or electrical inputs.

Suppose the discretised PDE has the following structure 1:

A(k)T(k + 1) = A0(k)T(k) + B(k)u(k) (3.4)

where T (k+1) is the vector of the unknowns at time k + 1, u(k) is the
vector of the external input parameters such as manipulating variables or
measurable disturbances. The matrices A,A0,B vary at every time step if
the original model is non-linear. These matrices do not depend on time if the

1models discretised implicitly are usually represented as Ax = b
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model is linear time invariant and in linear case we denote them as A,A0, B,
respectively.

In optimal model based control, one would like to manipulate the inputs u in
(3.4) so as to minimize the error between the given reference signal Tref and
the actual signals T. The error T − Tref is defined in a suitable norm over a
specified time period.

In the case of temperature control, the control objective is to find the mini-
mal input energy needed to reach the desired temperature distribution over
a certain period of time. If predictions of the temperature are available, for
example for the next one or two hours (N = 1hr), this knowledge can be used
by the controller to track the desired temperature optimally.

Mathematically, the optimization procedure to find the optimal input signals
uopt amounts to solving the following problem:

uopt = arg min
u∈U

Nopt∑

t=0

‖ Tref(t) − T(t) ‖ (3.5)

where U is the collection of feasible inputs, that is the collection of input
signals whose variations, amplitudes, and other characteristics remain within
allowable constraints. The formulation (3.5) states that the optimal input
uopt is the optimal input signal that minimizes the error Tref−T in a suitable
norm over a control horizon of Nopt samples. For example, the norm ‖ . ‖ can
be an L2 norm:

‖ Tref(t) − T(t) ‖2=
∑

x∈X

|Tref(x, t) − T (x, t)|2

in discrete case.

Hence to determine the optimal control input uopt(t), a prediction of the
process variables for N future time steps has to be compared with future
reference signals Tref(t).

If the simulation model requires a lot of computing effort, the length of the
prediction N is limited. The optimization problem is also difficult to be solved
if the reference signals and the process variables are of high dimension, i.e
Tref(t) ∈ R

K , with K > 200. This is usually the case for discrete PDE based
models since the spatial domain X is discretized into more than hundreds of
grid cells. Current optimization algorithms work well with at most 100− 200
variables, which is far below the average discretization level of CFD models.
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Another alternative to find the optimal control input uopt in (3.5) is by choos-
ing a subset of the spatial domain X0 ⊆ X instead of the whole spatial domain
X. In practice, process variables at specific locations are more important than
the others. The domain X0 can be thought of as the collection of sensor lo-
cations or outputs of interest. Let T̃ : X0 × T → R be the measured process
variables in X, i.e T̃ (x, t) denote the value at location x ∈ X0 and t ∈ T. Then
let the collection of sensor measurements or output parameters at time t as
y(t) = T̃(t) = T̃ (., t). Similarly, let yref = T̃ref(t) where T̃ref(t) is the vector
of points Tref(x, t) with x ∈ X0.

In this case, the optimal control problem becomes:

uopt = arg min
u∈U

N∑

t=0

‖ yref(t) − y(t) ‖

where as before

‖ yref(t) − y(t) ‖2=
∑

x∈X0

| T̃ref(x, t) − T̃ (x, t) |2 (3.6)

Obviously the measured variables T̃ (x, t) is related to T (x, t) and it is difficult
to infer T (x, t) from T̃ (x, t) as T (x, t) has also to be calculated. The opti-
mization of (3.6) is still difficult when a large scale model is used, even with
limited number of outputs y to be optimized.

In Chapter 2, we have presented POD as model reduction technique. In POD,
the process variables of interest are approximated as the expansions of the
POD basis functions {ϕi}i∈I.

If the process variables T(t) are expanded in n POD basis functions as:

T(t) = Φa(t)

where Φ =
(
ϕ1 ϕ2 . . . ϕn

)
and a(t) = col (a1(t), a2(t), . . . , an(t)), then the

optimization problem (3.5) can be written as:

uopt = arg min
u∈U

∑

t∈T

‖aref(t) − a(t)‖ (3.7)

where aref(t) = Φ⊤(t)Tref and a(t) = Φ⊤T(t) is calculated from the reduced
order model. Note that instead of optimizing the error between the whole field
T(t), the new optimization problem is set as the minimization of the error
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between the desired POD coefficients and the predicted POD coefficients. If
the number of POD coefficients n is very low, Φa(t) is an approximation of
T(t) and the optimization problem in the reduced order model is more feasible
to solve than the original one (3.5).

The following section discusses the application of POD on the one dimensional
heat conduction model discretized by the Finite Volume Method.

3.3 One dimensional heat conduction model

3.3.1 Introduction

In this section, a reduced order model of a one dimensional heat conduction
process is presented in details. The governing equation of the heat conduction
process is discretized by the Finite Volume Method, which is one of the mostly
applied discretization methods in CFD commercial packages. This section will
give an overview of the discretization scheme and the construction of a reduced
order model by Proper Orthogonal Decomposition.

Consider a slab of length L = 0.1 m. At specific locations (denoted by numbers
{1, 2, 3} in Figure 3.2), heat sources are installed. A sketch of the slab is
depicted in Figure 3.2. The heat transfer by conduction along the slab is

∆x

1 2 3

L

∆x

2

∆x

2

e w

Figure 3.2: One Dimensional Slab or the spatial domain X for (3.8)

given by the partial differential equation [13]

ρcp
∂T

∂t
= κ

∂2T

∂x2
(3.8)

The physical parameters are L = 0.1 m, thermal conductivity is taken to be
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a constant, κ = 100 W.m−1K−1, and the multiplication of density ρ and heat
capacity cp is defined as ρcp = 10 × 106J/m3K.

The temperature T is a function defined over the one-dimensional slab on the
spatial domain X = [0, L] = [0, 0.1] m and over a time interval T = [0, tf ]. For
every location in the slab x ∈ X and time t ∈ T we can associate a temperature
T (x, t). The temperature T is therefore a function T : X × T → R.

Here, the continuous spatial domain X = [0, 0.1] is divided into 400 grid cells
of equal length. The length of the grid cell is denoted as ∆X = 2.5× 10−4 m,
see Figure 3.2.

There are 400 grid points associated with the grid cells. The grid points are
defined at the following locations:

Xd = {x1, . . . , x400} = {∆X

2
,
3∆X

2
, . . . ,

799∆X

2
}

The one-dimensional heat conduction model is simulated for a period of 240
seconds: T = [0, 240]. The time domain T is discretized into 120 time steps:

Td = {t1, . . . , t120} = {2, . . . 240}

For notational convenience, since discrete models are calculated, we drop the
subscript d from the discretised spatial domain Xd and the discretised time
domain Td.

Thus both the discrete spatial and time domain will be denoted as X =
{x1, x2, . . . , x400} and T = {t1, t2, . . . , t120}, respectively.

Let xu1
, xu2

, xup ∈ X define the locations of the locations of p actuators. Sub-
sequently set the actuators uj(t) as the temperatures at the positions xuj

:

uj(t) := T (xuj
, t) j = 1, . . . , p (3.9)

The input signals at every time t, {uj(t)}p
j=1 can be collected into a vector

u(t) ∈ R
p:

u(t) =







u1(t)
u2(t)
. . .

up(t)







= col{ui(t)}p
i=1 (3.10)
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3.3.2 Discretization of one dimensional heat conduction model

The equation (3.8) is discretised by the Finite Volume Method [70],[54] by
integrating (3.8) over a specified grid cell volume ∆V and over a specified
time step.

For the grid volume ∆V and from t to t + ∆t we obtain:

∫ t+∆t

t

∫

∆V
ρcp

∂T

∂t
dV dt =

∫ t+∆t

t

∫

∆V

∂

∂x

(

κ
∂T

∂x

)

dV dt (3.11)

The grid volume ∆V = ∆X × A where ∆X is the length of the grid cell and
A = ∆Y × ∆Z is the cross-sectional area of the grid cell. For the slab as
defined in Figure 3.2, the cross sectional area is 1 cm2.

By integrating the right hand side of (3.11) first with respect to ∆V and
exchanging the integration order of the term in the left hand side, (3.11) can
be rewritten as:

∫ e

w

∫ t+∆t

t
ρcp

∂T

∂t
dtdV =

∫ t+∆t

t

(

κA
∂T

∂x

)

e

−
(

κA
∂T

∂x

)

w

dt (3.12)

where e and w in (3.12) denote the eastern and western neighboring faces,
respectively.

In the Finite Volume Method, the variable at a central grid node is assumed
to prevail over the whole grid cell [70]. Based on this assumption, the left
hand side of (3.12) is written as:

∫ e

w

∫ t+∆t

t
ρcp

∂T

∂t
dtdV = ρcp(T (xP , tj + ∆t) − T (xP , tj)∆V (3.13)

where T (xP , tj) denotes the temperature at location xP and time tj .

A central differencing scheme ([70],[54]) is applied to the right hand side of
(3.12):

ρcp(T (xP , tj + ∆t) − T (xP , tj)∆V =

∫ t+∆t

t

(

κA
T (xP+1, t) − T (xP , t)

xP+1 − xP

)

dt

−
∫ t+∆t

t

(

κA
T (xP−1, t) − T (xP , t

xP−1 − xP

)

dt

(3.14)
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The temperatures T (xP+1, t) and T (xP−1, t) are the temperatures at the east-
ern and western neighboring cells of xP at time t.

Using the mean-value theorem, the integrands on the right hand side of (3.14)
can be calculated as:

IT =

∫ t+∆t

t
T (xP , t)dt = [θT (xP , tj+1) + (1 − θ)T (xP , t)] (3.15)

for some values of θ between 0 and 1.

Depending on the value of θ, we can discretize a PDE implicitly or explicitly
with time, see Table 3.1.

Table 3.1: The value of θ in (3.15) and the discretization scheme

θ Discretization Scheme

0 explicit
0 < θ < 1 semi-implicit
θ = 1 fully-implicit

CFD models may be obtained by various discretization schemes. Throughout
this thesis, we consider a fully implicit discretization scheme. This scheme is
often preferred over the explicit scheme because the scheme is recognized to
be stable and robust regardless of the size of the time step ∆t [70].

By implementing the fully implicit discretization, (3.14) can be written as:

ρcp

(
T (xP , t + ∆t) − T (xP , t)

∆t

)

∆X =

(

κ
T (xP+1, t + ∆t) − T (xP , t + ∆t)

xP+1 − xP

)

−
(

κ
T (xP , t + ∆t) − T (xP−1, t + ∆t)

xP − xP−1

)

(3.16)

Rearrangement of (3.16) results in:
(

ρcp
∆x

∆t
+

κ

xP+1 − xP
+

κ

xP − xP−1

)

︸ ︷︷ ︸

aP

T (xP , t + ∆t) = ρcp
∆x

∆t
︸ ︷︷ ︸

a0
P

T (xP , t)

+
κ

xP+1 − xP
︸ ︷︷ ︸

aE

T (xP+1, t + ∆t) +
κ

xP − xP−1
︸ ︷︷ ︸

aW

T (xP−1, t + ∆t)

(3.17)
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Rewriting (3.17) in terms of coefficients yields:

aP T (xP , t + ∆t) = a0
P T (xP , t) + aET (xP+1, t + ∆t) + aW T (xP−1, t + ∆t)

(3.18)

where E and W denote the eastern and western neighboring cells.

The discrete model (3.18) can be cast into the standard one dimensional CFD-
Finite Volume model for every T (xP , t + ∆t) [70] as:

aP T (xP , t + ∆t) = aW T (xW , t) + aET (xE , t) + a0
P T (xP , t) + Suu(t)

aP = aW + aE + a0
p − Su (3.19)

where aW and aP are the contributions from the western and eastern neigh-
boring grid cells, a0

P is the contribution from T (xP , t). The term Su denotes
the contributions from the neighboring cells if these are the boundary points
or the actuators.

Equation (3.19) is general for every grid point. To solve (3.19) model simul-
taneously for the whole spatial domain X, we define a vector T(t) ∈ R

400

as:

T(t) =





T (x1, t)
. . .

T (x400, t)



 .

For every P -th grid cell, we can write an expression as in (3.19). We can thus
expand (3.19) for the whole spatial domain and obtain the recursion:

AT(t + ∆t) = A0T(t) + Bu(t) (3.20)

where A is a tridiagonal matrix with the coefficients aP in the main diagonal,
and the coefficients aW and aE in the lower and upper diagonal:

A =








aP −aE 0 0
−aW aP aE . . .

0 −aW −aP aE 0

. . .
. . .








(3.21)

The matrix B ∈ R
400×p is a collection of the row vectors Su ∈ R

1×p where p
is the number of actuators:

B =







Su1

Su2

. . .
Su400
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For ease of notation, we replace the time t and t+∆t in (3.20) with time step
k and time step k + 1 respectively. The final discrete CFD model for the one
dimensional heat equation is thus:

AT(k + 1) = A0T(k) + Bu(k) (3.22)

Some numerical methods commonly applied in CFD packages to find the un-
knowns T(k +1) in (3.22) are the LU-decomposition, Stone’s Implicit LU De-
composition, Tri-Diagonal Matrix Algorithm (TDMA). The matrices A and
A0 are sparse (there are many zeros in the matrix coefficients) and most of
the numerical solutions employed to solve (3.22) exploit the sparsity of the
matrices to obtain the solutions efficiently.

If the investigated problem is nonlinear, for example with a temperature-
dependent heat conductivity, then a similar derivation shows that the co-
efficients in (3.19) become time dependent. In that case, the model (3.22)
becomes:

A(k)T(k + 1) = A0(k)T(k) + B(k)u(k)

and the solver module of the CFD packages also updates the coefficients in
the matrices in (3.22). In this chapter, we focus on linear CFD model first,
where all physical constants are not temperature dependent.

3.4 Reduced modeling of one dimensional heat con-

duction model

Previously, we discussed the derivation of a discrete CFD Finite Volume model
from a PDE. The derivation is based on a linear one dimensional heat con-
duction model. The same principles can be applied to more complex systems.
After integration over every grid cell and specified time step, discretized mass,
momentum, and energy conservation equations in CFD models will have the
general form as in (3.22).

In this thesis, we use Proper Orthogonal Decomposition (POD) as the model
reduction method. As described in Chapter 2, if the function T : X×T → R is
an element in the Hilbert space, we can expand T (x, t) with x ∈ X and t ∈ T

as:
T (x, t) =

∑

i∈I

ai(t)ϕi(x) (3.23)
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where {ϕi}i∈I is the POD basis and I is the countable index set, which may run
until infinity. For discrete models, X and T are discrete with finite cardinality,
hence the index set I is also finite. The POD basis functions ϕi(x) are often
also referred to as POD basis vectors if X has finite cardinality.

In the reduced order models, we approximate T (x, t) by the expansion up to
the n-th POD basis function:

T (x, t) ≈ Tn(x, t) =
n∑

i=1

ai(t)ϕi(x) (3.24)

We then replace T (x, t) in the original equations by Tn(x, t) and perform the
Galerkin projection (section 2.6) to obtain a reduced order model which gives
the dynamics of {ai(t)}n

i=1.

There exist several ways of deriving a reduced order model for ai(t):

1. Perform the Galerkin projection of the POD basis functions {ϕi}i∈I di-
rectly onto the discrete model, e.g discrete heat conduction model (3.22)

2. Perform the Galerkin projection on the continuous model, derive ai(t) as
a continuous ordinary differential equation (ODE) model and simulate
the ODE based model by a numerical ODE solver. For example this ap-
proach is conducted in the reduced order model of the wave propagation
equation (Section 2.5).

3. Derive a black-box model based on system identification techniques to
derive the models of {ai(t)}. This approach is presented in [31].

Since the POD basis is an orthonormal basis (refer to section 2.4 for more de-
tails), the POD coefficients {ai(t)} in finite dimensional case can be expressed
as:

ai(t) = ϕ⊤
i T(t)

where T(t) ∈ R
K is the collection of data at K points at the time t.

In the black box modeling as proposed in [31], the collections of the POD
coefficients {ai(t)} can be treated as ”outputs”and the input signals which
excite the dynamics of T(t) are considered as inputs. The model for {ai(t)}
is then derived by system identification techniques based on the input-output
relationships between the POD coefficients and the input signals.
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The third approach can be used as an alternative if there is considerable lack
of knowledge about the original equations. The disadvantage of this approach
is that the dynamics of {ai(t)} is not derived from the original equations which
represent the physical behavior of the system. The second approach is only
feasible when the original model is simple, for example if the analytical solu-
tions of the original equations are available. For nonlinear PDE’s, especially
when flow fields have to be solved, there exist no analytical solutions. Some
more advanced discretization and numerical schemes have to be employed as
well to solve such systems. In this thesis, we have access to the discretized
equations and we reduce the CFD model by conducting a Galerkin projection
of the POD basis functions directly on the discrete CFD models.

3.4.1 Derivation of POD-based reduced model for one di-

mensional heat conduction problem

The discrete heat conduction model has the general recursive equations as:

AT(k + 1) = A0T(k) + Bu(k) (3.25)

where T(k) ∈ R
K with K is the number of grid points, A ∈ R

K×K , A0 ∈
R

K×K , and B ∈ R
K×p where p is the number of actuators.

We can approximate the solution of (3.22) at x ∈ X and at the k-th time step
as in (3.24). We can thus approximate T(k) by Tn(k) as:

T(k) ≈ Tn = Φa(k) (3.26)

where a(k) = col{ai(k)}n
i=1 is the vector of POD coefficients at time step k.

The POD basis is collected in the matrix Φ ∈ R
K×n where K is the number

of the grid points and n the number of POD basis functions. The POD basis
is given as:

Φ =
(
ϕ1 ϕ2 . . . ϕn

)
.

Replacing T(k + 1) by Tn(k + 1) in (3.25) results in the following model:

AΦa(k + 1) = A0Φa(k) + Bu(k) (3.27)

The reduced order CFD model is obtained by performing a Galerkin projection
of the (3.27) on the POD basis Φ:

ΦT AΦ
︸ ︷︷ ︸

Ar

a(k + 1) = ΦT A0Φ
︸ ︷︷ ︸

A0r

a(k) + ΦT B
︸ ︷︷ ︸

Br

u(k)

Ara(k + 1) = A0ra(k + 1) + Bru(k) (3.28)



3.4. Reduced modeling of one dimensional heat conduction model 93

The equation (3.28) is the reduced order CFD model. The original model has
dimension K, thus A,A0 ∈ R

K×K , B ∈ R
K × p with K is the number of grid

cells used to find a solution and p the number of actuators. The reduced order
has dimension n ≪ K, thus Ar, A0r ∈ R

n×n, Br ∈ R
n×p. The original model

has sparse matrix structures in A and A0, while the reduced order model has
dense matrix structures in Ar and A0r .

The POD technique will be applied to the one dimensional heat conduction
model with the spatial domain as depicted in Figure 3.2 for two cases first:

• Heating the slab at the left end
The actuator for heating at the left end of the slab is denoted by u1(t):

u1(t) = T (xu1
, t) = T (0, t)

• Heating the slab in the middle
The actuator for heating at the middle is denoted by u2(t):

u2(t) = T (xu2
, t) = T (0.05, t)

The initial temperature condition at the grid points is uniform at 200◦C:

T (x, 0) = 200, x ∈ X. (3.29)

3.4.2 Heating at the left end

The initial temperature is uniform along the slab X at 200◦C and the slab
is heated at the left end, so u1(t) = T (0, t). The slab is heated at constant
temperature of 400◦C at the left end. The number of actuator in this case is
p = 1.

The boundary conditions for (3.8) then read:

T (x, 0) = 200, x ∈ X, T (xu1
, t) = T (0, t) = 400, t ∈ T (3.30)

The right-end of the slab in this experiment is insulated:

∂T

∂x
(0.1, t) = 0; t ∈ T (3.31)
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The one-dimensional heat conduction model (3.8) with boundary condition
(3.30),(3.31) is discretized. The discrete model has the form as in (3.22). The
model (3.22) is simulated for 120 time steps of 2 seconds each.

Algorithm 2.4.10 is applied to derive the POD basis from the simulation data
of the one dimensional heat conduction case with heating at the left end. The
procedure is as follows:

1. Calculate and collect the simulation data in a matrix Tsnap:

Tsnap =
(
T(1) T(2) . . . T(120)

)

where the vector T(t) ∈ R
400 is the collection of the temperature data

(snapshots) for the whole spatial domain X at time t. The snapshots
collected from heating at the left end are depicted in Figure 3.3. The
slab is subject to temperature increase of 400◦C at the left end. The
temperatures at the left part of the slab increase fast.
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Figure 3.3: The snapshots of temperatures in the grid cells collected from
heating at the left end

2. Construct the symmetric correlation matrix C ∈ R
400×400 (see Chapter
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2)

C =
1

120
TsnapT

⊤
snap

3. Conduct the eigenvalue decomposition for C:

CΦ = ΦΛ

where
Φ =

(
ϕ1 ϕ2 . . . ϕ400

)

is orthogonal and

Λ = diag
(
λ1, λ2, . . . , λ120

)

The eigenvalues are ordered: λ1 ≥ λ2 ≥ · · · ≥ λ120.

The plot of the eigenvalues λ1, λ2, . . . , λ120 is shown in Figure 3.4. The
plot as presented Figure 3.4 is also known as the eigenvalue spectrum.
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Figure 3.4: The plot of the eigenvalue resulted from the eigenvalue decompo-
sition of the correlation matrix C

4. Truncate the POD basis functions which correspond to the first 6 eigen-
values {λi}6

i=1. Hence, set

Φ =
(
ϕ1 ϕ2 . . . ϕ6

)

The choice of truncation degree n = 6 is based on the value of Pn defined
by:

Pn =

∑n
i=1 λi

∑120
i=1 λi
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The closer Pn to 1, the better the approximation of Tsnap will be. The
logarithmic plot of 1 − Pn for n = 1, . . . , 34 is given in Figure 3.5. For
n ≥ 6 is taken, log(1−Pn) is in the order of 10−8, so Pn is close enough to
1. The first POD basis function ϕ1 corresponds to the largest eigenvalue
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Figure 3.5: The logarithmic plot of 1−Pn, with n is the number of eigenvalues
taken

λ1 and reveals the main pattern of the collected snapshots. The first
POD basis function ϕ1 is depicted in Figure 3.6. The collected snapshots
are shown in Figure 3.3. By comparing Figure 3.3 and the resulted first
POD basis function in Figure 3.6, it is obvious that ϕ1 reveals the most
dominant spatial dynamics of Tsnap.

3.4.3 Heating in the middle

As in the previous case, the initial temperature is uniform along the slab X

at 200◦. The slab is now heated by the actuator in the middle only: u2(t) =
T (0.05, t). The number of actuator in this experiment is also one: p = 1.

The boundary condition for (3.8) reads:

T (x, 0) = 200, x ∈ X, T (xu2
, 0) = T (

L

2
, t) = 400, t ∈ T (3.32)
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Figure 3.6: The first POD basis function which corresponds to the largest
eigenvalue derived from the snapshots generated by heating at the left end

In this experiment, the left end and the right end of the slab are insulated:

∂T

∂x
(0, t) =

∂T

∂x
(0.1, t) = 0, t ∈ T (3.33)

With the boundary condition as in (3.32), (3.33), the discretized model by
setting the boundary temperatures T (0, t) and T (0.1, t) as:

T (0, t) = T (x1, t) T (0.1, t) = T (x400, t)

since x1 and x400 are the closest grid point locations to the x = 0 and x = 0.1.

The one-dimensional heat conduction model (3.8) with boundary conditions
(3.31) and (3.32) is discretized and simulated for 120 time steps. The discrete
model is constructed by employing the Finite Volume method.

Algorithm 2.4.10 is again implemented to derive the POD basis {ϕi} for this
experiment. The temperature data for 120 time steps are collected in Tsnap =
(
T(1) T(2) . . .T(120)

)
. Figure 3.7 shows the collected snapshots for this

case. Figure 3.8 shows the eigenvalue spectrum (plot of eigenvalue) resulting
from the eigenvalue decomposition of C. The plot in Figure 3.8 is only for the
nonzero eigenvalues. The logarithmic plot of 1− Pn with Pn as formulated in
(2.37) is shown in Figure 3.4.3. As in the case of heating at the left end, the
truncation degree in the case of heating at the middle is taken to be n = 6.
This corresponds to log(1 − Pn) in the order of 10−10. The first POD basis
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Figure 3.7: The snapshots from the experiment of heating at the middle
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Figure 3.8: The plot of the nonzero eigenvalues resulted from the eigenvalue
decomposition of the snapshot data collected from heating at the middle
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Figure 3.9: The plot of 1 − Pn where n is the number of eigenvalues. The
closer Pn to 1, the better the approximation by POD basis Φ will be

function also reveals the most dominant spatial characteristic of the data in
Tsnap. The first POD basis function derived from heating at the middle is
shown in Figure 3.10.

Comparison of Figure 3.10 with Figure 3.7 clearly shows how the main patterns
of the snapshots in Figure 3.7 is captured in Figure 3.10.

3.4.4 Development and validation of the reduced order model

For each heating experiment, a POD basis of 6 basis functions has been de-
rived. Denote the collection of POD basis functions derived from the first
experiment as the matrix Φ1 and the POD basis functions derived from the
second experiment as the matrix Φ2 ∈ R

400×6. By applying Galerkin projec-
tion on these two bases, we obtain two reduced order models.

In line with (3.28), this leads to two reduced order models for heating at the
left end. One reduced model M1 is constructed from POD basis Φ1 from the
same experiment while the other one M2 is derived by the POD basis Φ2.
Both M1 and M2 belong to the same model class M: discrete implicit state
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Figure 3.10: The first POD basis function derived from the snapshots obtained
by heating the slab at the middle. The first POD basis function clearly shows
the main patterns of the dynamics

space models. Specifically:

• Reduced model M1:

Φ⊤
1 AΦ1a1(k + 1) = Φ⊤

1 A0a1(k) + Φ⊤
1 Bu1(k)

• Reduced model M2:

Φ⊤
2 AΦ2a2(k + 1) = Φ⊤

1 A0a2(k) + Φ⊤
2 Bu1(k)

The same boundary conditions are applied, so T(0) = 200◦ and u1(k) = 400◦C
for all time. From the initial boundary condition, for both reduced model M1

and M2, the initial POD coefficients can be derived:

a1(0) = Φ⊤
1 T(0), a2(0) = Φ⊤

2 T(0) (3.34)

Both reduced order models M1 and M2 are simulated with initial conditions
as defined in (3.34). The POD coefficients a1(k) and a2(k) at every k−th time
step are calculated by the reduced order models M1 and M2.

The temperature fields reconstructed by the reduced order models are given
by:

Tn1
(k) = Φ⊤

1 a1(k) (3.35)

Tn2
(k) = Φ⊤

2 a2(k) (3.36)
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where Tn1
and Tn2

denote the temperatures reconstructed by the reduced
order model M1 and M2, respectively.

Figure 3.11 shows the comparison between the temperatures reconstructed by
the reduced order model M1 and M2 and the original one.
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Figure 3.11: The comparison between the reduced order model and the original
model describing heating at the left end. Reduced order model M1 and the
original one is compared in the top part. The reduced order model M2 is
compared with the original one at the bottom figure. Both reduced order
models are built from 6 POD basis functions

Figure 3.11 shows that the reduced order model M1 is in very good agreement
with the original model because the POD basis Φ1 used in the reduced order
model was derived from the same condition as the validation model.

The bottom figure of Figure 3.11 shows that the reduced order model M2 fails
to approximate the original model well because the POD basis was derived for
a completely different case. The reduced order model at the bottom of Figure
3.11 was derived from the simulation data heating at the middle. The POD
basis Φ2 only reveals the dynamics of the spatial variations when the slab is
heated at the middle.

By comparing the first POD basis function from the first experiment (Figure
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3.6) and the first POD basis function from the second experiment (Figure
3.10), it is obvious that these two experiments are completely different from
each other. The two experiments were conducted by excitations at different
locations. We conclude that Φ1 cannot approximate data from the second
experiment and Φ2 cannot approximate data from the first experiment as
well.

It is therefore important to excite all actuators located in different places and
include these excitations in the snapshot matrix Tsnap. A practical approach
would be to use the knowledge of the typical excitation signals which are
implemented in the real systems and collect snapshots based on these input
signals. This pragmatic approach is taken because the POD basis is derived
from data. A reduced order model constructed from a POD basis would be
reliable when it is used to simulate the conditions in the same operating range
as the one used to generate the snapshot data.

In the following situations, snapshots are collected for this heat conduction
processes for three situations: individual actuator excitations and the combi-
nations. The model is linear that superposition principle apply: the response
due to the excitation of two actuators equal the sum of the response of indi-
vidual actuators. Snapshots are collected for 240 seconds or 120 time steps
(∆t = 2 s) for each experiment.

The same step-by-step procedure for deriving POD basis is conducted:

1. Collection of snapshots from four experiments in Tsnap ∈ R
400×480:

Tsnap =
(
Tsnap1

Tsnap2
Tsnap3

)

where Tsnapj
indicates the snapshot matrix from the j-th experiment:

heating at the left end, middle and right end

2. Perform eigenvalue decomposition of the correlation matrix C = T⊤
snapTsnap:

CΦ = ΦΛ

where Φ is the POD basis with POD basis vectors ϕi in its columns.
The matrix Λ = diag (λ1, . . . , λ400) with λ1 ≤ . . . λ400. The eigenvalue
spectrum of the first 50 eigenvalues is shown in Figure 3.12

3. The truncation up to the first n POD basis function is based on the
value of 1 − Pn where Pn is formulated as:

Pn =

∑n
i=1 λi

∑720
i=1 λi
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Figure 3.12: The eigenvalue spectrum obtained from snapshots data con-
structed from various experiments

The logarithmic plot of 1 − Pn is shown in Figure 3.13. Ten POD basis
functions are chosen to construct the reduced order model. Ten POD
basis functions correspond to (1−P10) ≈ 10−7. The POD basis functions
corresponding to the first four largest eigenvalues are plotted in Figure
3.14. The first POD basis function reveals the main pattern or main
behavior of the four experiments.

4. Construction of the reduced order model
The POD basis Φ derived from various experiments is validated by pro-
jecting the POD basis Φ onto the model describing simultaneous heating
at the left and the right end. The reduced order model has the form:

Φ⊤AΦa(k + 1) = Φ⊤A0Φa(k) + Φ⊤Bu(k) (3.37)

where A, A0, B are the matrices obtained from discretizing (3.8) by the
Finite Volume Method.

The input vector u(k) ∈ R
2 =

(
u1(k)
u2(k)

)

where:

u1(k) = T (0, k); u3(k) = T (0.1, k)

The temperatures T (0, k) and T (0.1, k) is the temperature at x = 0 m
and x = 0.1 m.
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Figure 3.13: The plot of 1 − Pn, the smaller 1 − Pn is, n is the number of
eigenvalues taken. The closer Pn to 1, the better the approximation by n
POD basis functions will be
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Figure 3.14: The plot of the first four POD basis functions correspond to the
four largest eigenvalues

The comparisons between the reduced order model of order 10 and the original
model of order 400 are shown in Figure 3.15 and Figure 3.16. The comparisons
are shown for the temperature profile at time step k = 20 or at t = 40 seconds
and at time step k = 60 or at t = 2 minutes. It can be seen that the reduced
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order model follows the dynamics of the original model quite well in these two
time instants.
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Figure 3.15: The reduced and the original model at timestep k = 60
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Figure 3.16: The reduced and the original model at timestep k = 60

The plot of the average absolute error ǭ for this validation data is shown in
Figure 3.17. The absolute error average ǫ is calculated as:

ǭ =
1

200

200∑

k=1

| T(k) − T10(k) | (3.38)
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where T10(k) is the approximate temperature obtained from the reduced order
model constructed by first 10 POD basis functions at time step k. From
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Figure 3.17: The plot of mean absolute error as defined in (3.38)

Figure 3.17, it is concluded that the reduced order model simulates the original
dynamics very closely, with only maximum average absolute error of 3× 10−4

◦C.

As discussed in Chapter 2, if the snapshot data is approximated by the POD
basis functions Φ =

(
ϕ1 ϕ2 . . . ϕ10

)
, then POD coefficients are ordered ac-

cording to:
〈a2

1(k)〉 ≥ 〈a2
2(k)〉 ≥ · · · ≥ 〈a2

10(k)〉 (3.39)

where 〈ai(k)〉 is the mean of the i-th POD coefficient defined in this case:

〈ai(k)〉 =
1

360

360∑

k=1

ai(k)

If the POD basis is used to validate another situation which is not the exactly
the same as the condition used to generate Tsnap, the ordering in (3.39) can
be different.

This fact is also shown in this validation example. Figure 3.18 shows the
comparison between the first five averaged values of POD coefficients 〈ai(k)〉5i=1

in the approximation of the snapshot data and the POD coefficients obtained
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from the calculation of the reduced order model when simulating another
condition.
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Figure 3.18: The comparisons of 〈ai(k)〉5i=1. The validation data is different
than the snapshot data, therefore the ordering of the POD coefficients is also
different

The ordering is different in the validation data set as now 〈a4(k)〉 < 〈a5(k)〉.
However, since the new condition is still within the operating range of the data
collected in Tsnap, the POD basis functions used to construct the reduced order
model are still valid.

Even though in the original data set there are no simultaneous excitations of
two actuators, the simultaneous excitations can be described by the individual
excitations of the actuators at the left and the right end which are already
captured in Tsnap. For all experiments, the initial conditions are uniform
temperature distribution at 200◦C subject to the actuator’s excitations at
400◦C.

Until now the validation of the reduced order models for different excitation
locations has been discussed. As we have seen, different configurations will give
different temperature distributions along the slab or different spatial dynamics.
By spatial dynamics we mean the change of the variable distribution along
the spatial domain. The spatial dynamics is distinguished from the temporal
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dynamics. Temporal dynamics is the change of each process state (such as
each grid cells) with respect to time.

The POD basis approximates the spatial dynamics and the POD coefficients
approximate the temporal dynamics. We have seen how crucial it is to take
the excitations at various possible locations into account . If the excitations
at various locations are not incorporated in the snapshot data, then the new
spatial dynamics will not be approximated well by the POD basis.

The next question is, what the effect of the variations of the input signals with
respect to time will be. In other words, do variations of the excitation signal
with respect to time affect the distribution of the process variable (the spatial
dynamics) such as temperature in the spatial domain X.

In the following example, the effect of the different time-varying excitation
signals will be investigated.

Example 3.4.1 The POD basis is derived by step excitation signals (at dif-
ferent locations) collected in Tsnap. We will validate the reduced order model
using sinusoidal excitation signals for the actuators at the left and the right
end. The sinusoidal variation is shown in Figure 3.19.
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Figure 3.19: The sinusoidal excitation signal, applied at the left and the right
end actuator of the slab
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The comparison between the original and the reduced order model in describ-
ing the condition of heating at both the left and right end with sinusoidal
excitation signals are shown in Figure 3.20.
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Figure 3.20: The comparisons between the original and the reduced order
model, sinusoidal excitation signals are applied

From Figure 3.20, it is obvious that the reduced order model can still follow
the original dynamics very well despite the fact that the slab is excited by
different type of excitation signals. As obvious from Figure 3.20, the tempera-
ture distribution is not affected substantially by the different variations of the
excitation signals with respect to time. The excitation signals are varying in
sinusoids as shown in Figure 3.19, but the temperature distribution along the
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slab at each time instant remains basically the same as in the case when the
excitation signals are constant step signals.

From the example, it can be concluded that for the case of a linear heat con-
duction process, variations in the temporal dynamics are not as crucial as
variations in the spatial boundary conditions. The POD basis will be derived
from the distribution of the process variables along the spatial domain. There-
fore it is more important to incorporate the variations of the spatial boundary
conditions (such as excitations at different locations) rather than to vary the
excitation signals with respect to time.

In the case of nonlinear PDE’s, such as a temperature-dependent heat con-
ductivity κ(T ), then the procedure of collecting snapshot data is more ad-hoc.
Spatial variations will interact with the temporal variations as well, that the
time-varying behavior of each actuator will affect the distribution of the pro-
cess variable in the spatial domain. The variations of the excitation signals
with respect to time will affect the variations of physical parameters such as
heat conductivity with time. Different heat conductivity distribution will give
different temperature distributions along the spatial domain. Thus in non-
linear case, there is no guarantee that the change of the temporal dynamics
will not affect the quality of the reduced order model substantially.

As mentioned in [67], it will be very difficult to determine the dependency of
nonlinear PDE solutions to the physical parameters. The snapshot data for
nonlinear model is thus at best chosen to be the data generated from typical
operating condition of the system.

3.5 Two dimensional heat conduction model

This section discusses the reduced order modeling of a two dimensional heat
conduction model. The sketch of a two dimensional plate is given in Fig-
ure 3.21. The dimension of the plate is 0.3m × 0.4m in length (x) and height
(y), respectively. The defines a spatial domain is thus X = [0, 0.3] × [0, 0.4].
The temperature along the north side is kept at 100◦ C and there are four
actuators at the west side which gives incoming heat fluxes of 500 (W/m2).
The eastern and the southern boundaries are insulated.

Thermal conductivity of the plate material is given as κ = 1000 W/mK. The
thickness of the plate is 1m. The computational domain is divided into 44
grid cells along the y direction and 33 grid cells along the x direction. Thus
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in total, there are 1452 grid points. The grid size in the horizontal direction x
and vertical direction y is ∆X = ∆Y = 0.0091m. The time step ∆t is equal
to 1 second.

Figure 3.21: Sketch of the Heated Plate with constant temperature on
the north and four inputs on the west side. The inputs are denoted by
U1, U2, U3, U4, U5

The heat conduction model of this heated plate is given by:

ρcp
∂T

∂t
=

∂

∂x

(

κ
∂T

∂x

)

+
∂

∂y

(

κ
∂T

∂y

)

(3.40)

There are incoming heat fluxes at the west boundary side denoted by U1 to U4,
see Figure 3.21. At the southern, eastern and western boundary sides where
the actuators U1 to U4 are not placed, the plate is insulated:

In the numerical simulation, (3.40) is discretised by employing the Finite
Volume Method [70], where (3.40) is integrated over a unit volume ∆V =
∆x × ∆y × 1cm.

∫ t+∆t

t

∫

∆V
ρcp

∂T

∂t
dV dt =

∫ t+∆t

t

∫

∆V

∂

∂x

(

κ
∂T

∂x

)

dV dt

+

∫ t+∆t

t

∫

∆V

∂

∂y

(

κ
∂T

∂y
dV dt

)

(3.41)
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The same discretization procedure is applied as in section 3.3.2. The inte-
gration of (3.40) for a specific g-th grid point located at (xP , yP ) results in
(3.42).

agT ((xP , yP ), k + 1) = a0
gT ((xP , yP ), k) + aW T ((xP−1, yP )(k + 1))

+ aET ((xP+1, yP ), k + 1) + aNT ((xP , yP+1), k + 1)

+ aST ((xP , yP−1), k + 1) + Sgu(k) (3.42)

The term T ((xP , yP ), k) denotes the temperature at a specific coordinate
(xP , yP ) at time step k and T ((xP−1, yP ), k), T ((xP+1, yP ),k), T ((xP , yP+1, k),
T ((xP , yP−1), k) denote the temperatures of the west, east, north, and south
neighboring grid points, respectively. The temperature at the current time
step and at a specific grid point is denoted by T (xP , yP , k).

The term Sg =
(
Su1

(k) . . . Su5
(k)

)
incorporates the contribution from the

inputs. In this example, the inputs are defined at the north and the western
boundaries. The input vector is u(k) = col

(
u1(k), u2(k), . . . , u5(k)

)
.

Calculating (3.42) for all grid points and collecting all grid points into a vector

T(k) =







T ((x1, y1), k)
T (x2, y2), k)

. . .
T (x33, y44), k)







and setting

B(k) =







S1

S2

. . .
S1452







will give the recursive linear system of equations:

AT(k + 1) = A0T(k) + Bu(k) (3.43)

The matrix A ∈ R
1452×1452 in (3.43) is a penta-diagonal matrix with the

structure:

A =









ag −aE 0 . . . −aS −aN 0 . . .
−aW −ag −aE 0 . . . 0 −aS − aN 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . . −aW −aN 0 ag









(3.44)
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and the matrix A0 ∈ R
1452×1452 is a diagonal matrix with a0

g at every grid
point on its diagonal.

The original model is simulated until steady state subject to the change in
north temperature boundary to 70◦C and step changes to 100kW/m2 in the
west fluxes. The initial condition is T (x, y, 0) = 0 for the whole plate.

Algorithm 2.4.10 is implemented to find the POD basis functions. The simu-
lation results during 1000 time steps are collected into

Tsnap =
(
T(1) T(2) . . .T(1000)

)
.

The eigenvalue spectrum of C = 1
1000T

⊤
snapTsnap is depicted in Figure 3.24. To
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Figure 3.22: Eigenvalue spectrum of the two dimensional heat conduction

construct the reduced order model, only five POD basis functions are taken,
hence Φ =

(
ϕ1 ϕ2 . . . ϕ5

)
. The first five POD basis associated with the first

five largest eigenvalues are shown in Figure 3.23 and Figure 3.24.
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Figure 3.23: The first to fourth POD basis functions
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Figure 3.24: The fifth POD basis function

In the reduced order model, the temperature data at every time step T(k) is
approximated by:

T(k) ≈ Tn(k) := Φa(k)
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where n = 5 and a(k) = col(a1(k), . . . , a5(k)). Replacing T(k) by Tn(k) in
(3.43) and applying the Galerkin projection of (3.43) onto Φ, we obtain a
reduced order model of the form:

Φ⊤AΦ
︸ ︷︷ ︸

a(k + 1) = Φ⊤A0Φ
︸ ︷︷ ︸

a(k) + Φ⊤B
︸ ︷︷ ︸

u(k)

Ara(k + 1) = A0ra(k) + Bru(k) (3.45)

The reduced order model as in (3.45) is then validated by using the same
initial conditions and the excitation signals as in the conditions used to derive
the snapshot data in Tsnap. Hence, (3.45) is simulated by the initial condition
with a(0) as:

a(0) = Φ⊤T(0) = Φ⊤0 = 0

The same conditions are validated because the reduced order model is primar-
ily going to be used to control the process at the same operating point. The
reduced order model is also simulated for 1000 time steps.

The mean of the absolute deviation ǭ between the original model and the
reduced order model using five POD basis functions (n = 5) is shown in
Figure. 3.25. The time-averaged absolute error is defined as:

ǭ =
1

1000

1000∑

k=1

| T(k) − Tn(k) | (3.46)

The plot of ǭ ((3.46)) is given in Figure 3.25. It is shown that the reduced
order model can capture the dynamics of the original model quite accurately,
with highest deviation is less than 0.08oC for temperature variations of about
100◦C. The reduced order model is simulated by solving five equations in
(3.45) while the original model solves 1452 equations. So with less than 0.5%
of the original order, the reduced order model can simulate the original process
very well.

3.6 Controller design

Since the reduced order model is representative enough for the original process,
a controller can be designed based on the reduced order model. The control
objective of this case is to reach the desired temperature distribution along the
plate optimally. The original model has 1452 states, while the reduced order
model has only 5 states. Consequently, the reduced order model is much more
feasible to be used in the control and optimization algorithm.
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Figure 3.25: The spatial distribution of the time-averaged absolute error ǫ as
defined in (3.46)

The reduced order model is given by (3.45). Assuming that Ar in (3.45) is
invertible, (3.45) can be written in explicit form as

a(k + 1) = A−1
r A0r

︸ ︷︷ ︸
a(k) + A−1

r Br
︸ ︷︷ ︸

u(k) = Asa(k) + Bsu(k) (3.47)

where As = A−1
r A0 ∈ R

5×5 and Bs = A−1
r Br ∈ R

5×5.

The measurement points can be considered as outputs of interest. In this
example the measurements are temperatures at several locations. The output
vector ym is defined as:

ym(k) = CT(k) (3.48)

where C ∈ R
ny×1452 is a matrix that selects the measured temperatures. The

number of measurement points is denoted by ny. For the two dimensional heat
conduction model, there are six measurement points chosen. The locations of
the six measurement points are shown in Figure 3.26.

Since we use the reduced order model, ym(k) can be transfromed to a function
of a(k) since T(k) is approximated as Tn(k) = Φa(k) in the reduced order
model. Hence,

ym(k) ≈ CΦa(k) = Csa(k) (3.49)
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Figure 3.26: The locations of the measurement points, denoted by numbers 1
to 6

where Cs = CΦ.

The equations (3.47) and (3.49) form together the state space model:

z(k + 1) = Asz(k) + Bsu(k)

y(k) = Csz(k) (3.50)

where z(k) = col(a1(k), a2(k), . . . , a5(k)) is the state of the systems. The
matrices As ∈ R

5×5, Bs ∈ R
5×5, Cs ∈ R

6×5 are called state space matrices.

Based on the state space model (3.50), a controller can be designed. Control
design is not feasible for the original model because the state vector z(k) will
have dimension of 1452. Control algorithms will calculate the required input
signals needed to reach the control objective based on the state space matrices
As, Bs and Cs of the reduced order model. If the dimensions of these matrices
are large (e.g larger than 200), then the calculation will be tedious.

3.6.1 Control objective

In many applications, it is desired to steer the temperature to a specific desired
setpoint by applying suitable control actions. This means that one wishes to
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minimize the tracking error, obtained as the difference between the desired
and achieved temperature. For notational convenience, the spatial notation is
slightly abused. The spatial coordinate pair (x, y) is shortened as x so that
in the forthcoming discussion T (x, y, k) is written as T (x, k). Let U be the
collection of all sequences u(k) ∈ R

p with k = 0, . . . , Nopt.

Translated mathematically, the control objective or the control problem is
formulated as follows:

Problem 3.6.1 Given the desired temperature Tref(x, k) with x ∈ X and
k = 0, . . . , Nopt, find a control signal u(k) ∈ U such that the squared L2 norm
of the tracking error

Nopt∑

k=0

∑

x∈X

‖ Tref(x, k) − T (x, k) ‖2

is minimized over all feasible input signals u ∈ U . Thus u is determined as:

u(k) = arg min
u∈U

Nopt∑

k=0

∑

x∈X

‖ Tref(x, k) − T (x, k) ‖2 . (3.51)

The prediction Nopt is the length of the prediction horizon over which the
control signals are going to be optimized. For optimization over a long horizon
or large Nopt, a fast model is required because Nopt predictions of T (x, k) have
to be provided.

The control problem 3.6.1 is defined for the full order model. Since the order
of the discretised original model is very high, i.e.1452, it is not feasible fea-
sible to incorporate the temperature at the whole plate into the control and
optimization problem. To be able to incorporate the whole temperature dis-
tribution, the control objective has to be re-formulated based on the reduced
model.

In the reduced model, the temperature distribution is expressed as a spectral
expansion of a set of POD basis functions:

T(k) ≈ Tn(k) = Φa(k) (3.52)

where Φ =
(
ϕ1 ϕ2 . . . ϕn

)
, k = 0, 1, . . . , Nopt.

Similarly, the reference temperature profile Tref can also be approximated as
a spectral expansion of n POD basis functions:

Tref(k) ≈ Trefn(k) = Φaref(k) (3.53)
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Since the POD basis functions are orthonormal vectors, Φ⊤Φ equals identity
matrix, so a(k) and aref can be written as:

a(k)z(k) = Φ⊤Tn(k)

aref(k) = r(k) = Φ⊤Trefn(k)

To control the full order model, the original control problem has to be refor-
mulated in terms of the reduced order model. In the next section, the design
of a Linear Quadratic Regulator (LQR) will be given.

3.6.2 The LQR Controller

There are various optimal controllers which can be applied to solve the op-
timization problem 3.6.1. The type of controller which is going to be imple-
mented in this case is the Linear Quadratic Regulator (LQR) controller [50].

Problem 3.6.1 can be also reformulated for the reduced order model and an
LQR control objective as follows:

Problem 3.6.2 Control problem of the reduced order model:
Given the reduced model in state space form,

z(k + 1) = Asz(k) + Bsu(k) (3.54)

y(k) = Csz(k) (3.55)

the POD basis Φ =
(
ϕ1 . . . ϕn

)
and let r(k) = col(r1(k), . . . rn(k) and

ri := (Tref(k), ϕi). Find u ∈ U such that:

J(z0,u) =

Nopt−1
∑

k=0

[

(r(k) − z(k))⊤Q(r(k) − z(k))
]

︸ ︷︷ ︸

deviation from the desired POD coefficients

+

Nopt−1
∑

k=0

[

u⊤(k)Ru(k)
]

︸ ︷︷ ︸

cost of input energy

+
[

r(Nopt) − z(Nopt)]
⊤E[r(Ne) − z(Nopt)

]

︸ ︷︷ ︸

deviation at the last prediction step

(3.56)

is minimized over u ∈ U . Here, z(k) is the solution of (3.50) with initial
condition z(0) = z0, Q = Q⊤ ≥ 0, R = R⊤ > 0, E = E⊤ ≥ 0 are the
weighting matrices for the states, input, and states at last prediction step,
respectively.
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In problem 3.6.2, we will assume that the control u(k) may depend on the
state z(k) and the reference trajectory rref. Stated otherwise, u(k) will causally
depend on the state z of (3.50) and the remaining reference trajectory r. Thus
U comprises the control signals u(k) of the form:

u(k) = f (z(k), rref(k), rref(k + 1), . . . , rref(Nopt))

In the classic LQR design, the optimal control signal u(k) is only a function
of the state z(k) while r = 0.

To solve (3.56), we consider the solution P(k) ∈ R
n×n of the Algebraic Riccati

Equation:

P(k) = A⊤
s P(k + 1)As + Q

− A⊤
s P(k + 1)Bs(R + B⊤

s P(k + 1)Bs)
−1BT

s P(k + 1)As

(3.57)

which is solved backwards in time for k = Nopt until k = 0 with initial condi-
tion P (Nopt) = E. The equation in (3.57) is known as the Algebraic Riccati
Equation (ARE).

To incorporate the reference signals in the optimization algorithm, define
v(k) ∈ R

nz with n be the number of states be the unique solution of

v(k) =
(

A⊤
s − AT

s P(k + 1)Bs(R + BsP(k + 1)B⊤
s )−1B⊤

)

v(k + 1) − Qr(k)

(3.58)

Similar to the computation of (3.57), v(k) is computed backward from k =
Nopt to k = 0 with v(Nopt) = 0.

Theorem 3.6.3 Let P(k) and v(k) be as formulated in (3.57) and (3.58).
Then the optimal control input that solves Problem 3.6.2 is given by:

u∗(k) = − Fu(k)z(k)
︸ ︷︷ ︸

function of states

− Gu(k)v(k + 1)
︸ ︷︷ ︸

function of reference signals

where:

Fu(k) = −(R + B⊤
s P(k + 1)Bs)

−1B⊤
s P(k + 1)As (3.59)

Gu(k) = (R + B⊤P(k + 1)Bs)
−1B⊤

s v(k + 1) (3.60)

The proof of Theorem 3.6.3 can be found in Appendix B. Note that the
optimal control input u∗ is now a function of both the state z(k) and the
reference signals since v(k + 1) is a function of the reference signals.
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3.7 Application of the LQR controller

The LQR controller as discussed in the previous section is applied to the full
model of the heated plate. The control design is based on the reduced model
which only has 5 states instead of 1452 as in the original model. That is, we
take n = 5 in Problem 3.6.2.

The reference trajectory Tref is chosen to be the steady state temperature dis-
tribution in the open loop case when the plate is heated from zero temperature
distribution by constant heat fluxes on the west side of 1000 kW/m2 and a
constant north temperature of 70◦ C.

The desired trajectory Tref in terms of the POD basis coefficients is calculated
as:

r = Φ⊤Tref (3.61)

In this example, the desired temperature distribution Tref is the same for all
time steps, so r is also constant.

The weighting matrices Q and R for the states and the inputs are chosen to
be:

Q =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









R =









10−8 0 0 0 0
0 10−8 0 0 0
0 0 10−8 0 0
0 0 0 10−8 0
0 0 0 0 10









The prediction horizon Nopt is equal to 1000. The symmetric matrix E = P(k)
is the solution of steady state Riccati Equation:

E = A⊤
s EAs + Q − A⊤

s EBs

(

R + B⊤
s EBs

)−1
B⊤

s EAs

This choice of E is the solution P(k) of (3.57) by setting P(k) = P(k + 1)
when k = Nopt.

In this example, it is considered important to track all desired POD coefficients
r as close as possible, therefore the weighting Q equals identity. The heated
plate warms up quite slowly at the top part. Therefore the north temperature
(u5) is weighted more than the other control signals. The western heat fluxes
are weighted the same.
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Despite the dramatic reduction of model order, on which the controller is
based, the controller performs very well. In Figure. 3.27, it can be seen that
the deviation from the desired temperature distribution is very small.
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Figure 3.27: The desired temperature profile (left), the steady state tempera-
ture profile obtained by implementation of the controller (middle), the steady
state error (right)

The maximum deviation is 4◦C for temperature variations of about 75◦C dur-
ing the simulation. The deviation plotted in (3.27) is a function of the am-
plitude difference, while the LQR controller as formulated in problem 3.6.2
minimized the quadratic deviation. The maximum deviations occur at the
temperature near the north boundary, have slow dynamics compared to the
other regions of the plates. Therefore, the dynamics captured by the basis
vectors used to construct the reduced order model is less accurate in this area
than elsewhere. Due to the insulations, heat is preserved more in the southern
area because there is no heat exchanged with the surroundings. The dynamics
of this area then dominates the dynamics of the whole system because there
are more temperature changes.

The optimality of the closed loop system can be seen from the plots of the
actuator signals in Figure 3.28 to Figure 3.30.

All actuators try to reach the desired reference signal from zero temperature
as quickly as possible. Therefore there is a significant raise of heat fluxes in
the beginning of controller’s operation. It is interesting to observe from Figure
3.29 that for two actuators: u3 and u4 (the two heat fluxes from the west side)
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Figure 3.28: The closed loop and open loop responses of u1 and u2(t).Initially,
the heat fluxes increase to reach the desired temperature as fast as possible.
The settling heat fluxes are about the same as the open loop inputs

the settling heat fluxes are lower than in the open loop excitations for the
same time period. These actuators compensate the increase of energy demand
in the transient time in order to reach the desired setpoint as by minimizing
the energy supply in the remaining period.

This case study shows that by using the reduced order model for optimal
control design (LQR control in this case), we can control a high order complex
system described by PDE’s. It also shows that by using an optimal controller,
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Figure 3.29: The closed loop and open loop responses of u3 and u4. Initially,
the heat fluxes increase to rech the desired temperature as fast as possible.
The settling heat fluxes are lower in these two inputs

the amount of energy consumption needed to reach a desired temperature
distribution can be managed efficiently.

Energy management is indeed a very important issue for industries: how to
meet process specifications by managing energy consumption as efficiently as
possible. Model based control is often infeasible due to the high complexity
of the model. This study shows that the availability of reduced order model
enables the synthesis of optimal controllers.
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Figure 3.30: The closed loop and open loop responses of u5 or the north tem-
perature. Initially, the temperature increases to reach the desired temperature
as fast as possible. The settling north temperature about the same as the open
loop input

The responses of the six measurement points as depicted in Figure 3.26 are
shown in Figure 3.31 to Figure 3.33. The comparisons between the open loop
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Figure 3.31: The open loop (solid) and closed loop responses (dotted) of mea-
sured point 1 and measured point 2

and closed loop responses of the measured points show that the closed loop
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Figure 3.32: The open loop (solid) and closed loop responses (dotted) of mea-
sured point 3 and measured point 4
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Figure 3.33: The open loop (solid) and closed loop responses (dotted) of mea-
sured point 5 and measured point 6

responses reach steady state faster than the open loop responses because the
actuators anticipate the desired reference signals.

In this case, there are no constraints on the input signals. In principle, many
controller types can be implemented by using the reduced order model as the
base model. One can implement the Model Predictive Controller (MPC) to
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handle constraints in input signals, variations of the states, and many others.
Examples of MPC implementations on reduced order models can be found in
[31] and [4].

3.8 Summary

In this chapter, the method of proper orthogonal decomposition has been used
as a tool for reduced order modeling of heat conduction models. The heat
conduction models are discretized by the finite volume method, which is used
in many Computational Fluid Dynamics (CFD) packages. An introduction to
CFD models is given in section 3.2. The discretization scheme is presented
in detail for the case of a one dimensional heat conduction model in section
3.3.2. In section 3.3, it is shown that the spatial variations are very crucial in
the snapshot data since the POD basis will capture the spatial dynamics. It is
also shown that in the case of linear heat conduction processes, the variations
of the excitation signals with respect to time do not substantially change the
spatial dynamics. As a result, the reduced order model can still follow the
original dynamics very well under different types of temporal excitations.

In both models, the POD method is shown to be a very effective reduction
method. The resulting reduced order model for the two dimensional heat
conduction process is used in section 3.7 as the base model for control system
design. Since the reduced order model has a significantly lower dimension than
the original model (less than 1% of the original model order), it is feasible
to integrate it with the controller. The controller can successfully track the
reference temperature distribution defined for the whole spatial domain. It is
shown in section 3.7 that with an optimal control design, the input energy can
be managed such that the reference trajectory can be reached optimally.

In conclusion, this chapter gives a detailed overview of how to derive a reduced
order model from PDE’s discretized by the Finite Volume Method and how
to build a controller based on the reduced order model. The procedures of
obtaining the reduced order model are summarized as follows:

1. Calculate the variables of interest (e.g temperature) for a specified time
period using the original model, which is assumed to be a representa-
tive approximation of the original system. Use the typical variations of
excitation signals. If there are different spatial boundary conditions for
different cases which are going to be considered, then incorporate the
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variations of the spatial boundary conditions in the snapshot matrix.

2. Derive the POD basis functions using Algorithm 2.4.10

3. Construct the reduced order model by performing Galerkin projection
of the original discretized model onto the POD basis functions

4. Validate the reduced order model for different conditions by comparing
the results of the original model and the reduced order model

5. If the validation results are satisfactory, design an optimal controller by
translating the control objective as functions of the original process vari-
ables into functions of the POD coefficients. Besides the LQR controller
implemented in this chapter, many other controller types, such as Model
Predictive Controller, can be applied if the reduced order model is given
in state space form. Software packages such as MATLAB provide a wide
range of options for controller design including MPC.
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This chapter is an extended version from the paper [3]

4.1 Introduction

Proper Orthogonal Decomposition (POD) or also known as Karhunen-Loève
Expansion is one of the most prominent model reduction techniques for large
scale models, [6], [34],[25]. The method is based on the use of data, either from
experiments or from a rigorous simulation model which represent the typical
operating conditions of the systems.

The data of process variables are collected and the main spatial dynamics
are extracted from the data through a decomposition in basis functions. The
main dynamics are then represented by a set of optimal, orthonormal basis
functions. Typically, the number of basis functions that are used in the re-
duced order model is very few compared to the original order of the model.
Nevertheless, it can capture the original dynamics within reasonable accuracy.

This method is therefore very useful for data obtained from numerical simula-
tions of PDE-based models, which generally result in high order systems due
to the fine spatial discretisation.
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A continuous PDE-based model for a process variable T : X × T → R where
T is the time domain and X is the spatial domain may be written as:

L(T ) = D(T ) (4.1)

where L(·) is a polynomial differentiation operator:

L = L0 + L1
∂

∂t
+ · · · + Lm

∂m

∂tm

and Li ∈ R, i = 0, . . . ,m and D(·) is an operator that does not involve
the temporal derivatives. The function D(T ) in general constitutes non linear
functions of T , which may involve spatial derivatives of T and other external
nonlinear or linear functions.

The residual R (x, t) is defined as:

R (x, t) = L(T (x, t)) − D (T (x, t)) (4.2)

In Chapter 2 we derived conditions under which T can be expressed as a
Fourier expansion[29], i.e. the function T must belong to a separable Hilbert
space X so that it admits an expansion:

T (x, t) =

∞∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T (4.3)

where the functions {ϕi(x)} define an orthonormal basis for the Hilbert space
X .

The truncated expansion of T (x, t) to the n-th order is given by:

Tn (x, t) =
n∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T (4.4)

The POD method requires that the Galerkin projection of the residual R(Tn)
on the space spanned by {ϕi}n

i=1 vanishes. That is,

(R (T (x, t)) , ϕi (x)) = 0, i = 1, . . . , n (4.5)

where (·, ·) denotes the inner product.

Since the POD basis is orthonormal, using the linearity of the inner product,
we obtain:

(L(Tn), ϕi) =



L(
n∑

j=1

aj(t)ϕj), ϕi



 = L(ai(t))
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From (4.5), the reduced order model is derived as an n-th order ODE which
solves the unknown POD basis coefficients ai(t):

L(ai (t)) =



D





n∑

j=1

aj(t)ϕj(x)



 , ϕi (x)



 (4.6)

In practice, the computational domain X × T is discretised as X̂ × T̂, with
X̂ ⊆ X and T̂ ⊆ T, both of finite cardinality. The resulting dimension of X̂, K,
is typically high. Numerically, (4.1) is solved as a discrete K-th order model
with the solution vector T(k) ∈ R

K at every time step k.

Various reduced order modeling techniques such as balanced truncation, proper
orthogonal decomposition attempt to find a suitable basis {ϕi}n

i=1 so that the
reduced order model can still follow the dynamics of the original model with
very limited number of basis functions.

The main objective of model reduction is to obtain a “simpler” model which
described the original model by less number of equations. In Chapter 2, a
“simpler” model is considered as a model which is less complex than the origi-
nal one. In Chapter 2, the complexity function has been defined as the number
of nonzero Fourier coefficients [21] {ai(t)} in the expansion (4.3). The defi-
nition of a complexity function as the number of Fourier coefficients is used
when deriving a POD reduced model.

In general, in the original model, the complexity function cT may be equal to
infinity as in (4.3). In the reduced order model, the complexity function cTn is
limited to n. Since cTn ≪ cT , the reduced order model is considered simpler
than the original model.

On the other hand, this notion of complexity does not relate to the computa-
tional time. Even though the reduced order model has less number of variables
to be solved, the computational time may not decrease dramatically. In par-
ticular, if the original model is nonlinear, it is very difficult to decrease the
computational time. Linear models, on the other hand, achieve satisfactory
computational gain such that the CPU time needed to solve the reduced order
model is very small compared to the original CPU time [31].

This can be explained as follows: For linear time invariant (LTI) systems, the
Galerkin projection is conducted on linear time invariant functions as well.
The functions L(T ) and D(T ) are not updated and the resulting reduced
order model is fixed. In the case of nonlinear systems, these functions are
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updated if they contain dependencies on T .

This is the typical case of Computational Fluid Dynamics (CFD) models as
the density, heat conductivity, heat capacity are also temperature dependent.
The discretization of the nonlinear PDE’s results in linear time varying (LTV)
systems. The reduced order model cannot only be calculated just once as in
the case of LTI models, but has to be constantly updated because the model
parameters are also changing. This is very time consuming so that the CPU
time of the calculation by the reduced order model does not differ significantly
from the CPU time needed by the original model.

Some work has been done to improve numerical efficiency for linear-time-
varying systems of modest scale (of dimension ≈ 102) by employing several
numerical techniques needed to simulate the reduced model [19]. Finding the
solution of the POD coefficient {ai(t)}n

i=1 when a reduced model has been
constructed is not tedious, but updating parameters of the reduced models is
quite cumbersome.

In this chapter, we propose a practical solution to overcome this problem
by conducting Galerkin projection on equations describing the dynamics of
several points in the spatial domain instead of the equations of all grid points.
It is necessary to identify which points in the spatial domain significantly
contribute to the dynamics of the system. If there is only a limited number
of points in the spatial domain which characterize the global dynamics, then
only parameters of these points have to be updated. If only a partial set of
model parameters has to be updated, the computational speed of the reduced
order model will increase.

We show that by conducting such a procedure, the expected computational
saving can be achieved. The procedure is applied to a linear time varying
(LTV) system. The LTV system itself is obtained from a discretisation of a
2D nonlinear heat conduction problem. The reduced order model, which is
considerably faster than the original one is also combined with a controller to
control a nonlinear heat conduction process.

This chapter is organized as follows. First, the technique used to estimate
the states of the system based on limited information is discussed, then the
discretised 2D nonlinear heat conduction model is presented. Subsequently,
the application of the acceleration technique to the 2D nonlinear heat con-
duction model is shown and finally, the control design based on the reduced
order model is presented. The last section covers the main conclusion of this
chapter.
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4.2 Introduction to missing point estimation

Normally, POD basis coefficients {ai(t)}n
i=1 are found by projecting the POD

basis Φ = {ϕi}n
i=1 onto the set of all equations of the original model or onto

the complete set of the original data. Alternatively, POD basis coefficients can
also be found on the basis of incomplete data, or incomplete equations. The
objective of this section is to formalize a theoretical basis for such approach.
The approach is named here as the Missing Point Estimation (MPE) since here
the original data is assumed to be incomplete and the incomplete or missing
data is estimated by the approximated POD basis coefficients.

Consider a subset X0 of the spatial domain X, thus X0 ⊂ X. This subset is
also referred to as ”a mask”, a terminology usually used in image processing
theory [34].

Suppose that the data set T (x, t) is obtained (or measured) with x ∈ X, t ∈ T

for both X and T finite sets of cardinality K and N . Let T(t) = colx∈X T (x, t)
and define a snapshot matrix Tsnap:

Tsnap =
(
T(1) . . .T(N)

)

Assume that T (·, t) belongs to a separable Hilbert space X , which is equipped
with an ℓ2 inner product (refer to Chapter 2 for more details).

Since T (·, t) is in the Hilbert space, the original, complete data set can be
described by its POD expansion as:

T(t) =
∞∑

i=1

ai(t)ϕi (4.7)

The truncated expansion of (4.7) is:

Tn(t) =

n∑

i=1

ai(t)ϕi (4.8)

The original function T is defined for the spatial domain X and the time
domain T. If the spatial domain is restricted to X0, then we can define T
defined only at X0 as T̃ . That is, let T̃ = T |X0×T be the mapping T̃ :
X0 × T → R. The function T̃ is referred to as the restriction of T since it is
defined for a restricted spatial domain X0.

Similarly, let ϕ̃i be the restriction of ϕi to X0. If the original POD basis
function ϕi is defined for the whole spatial domain X, then ϕ̃i is only defined
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for X0. The elements of ϕ̃i are the elements of the original POD basis function
ϕi at the location x ∈ X0. We also denote Φ̃ =

(
ϕ̃1 . . . ϕ̃n

)
as the basis for

T̃ in X0. However, Φ̃ is not an orthonormal nor an optimal basis.

Since the original function T can be approximated by the POD basis functions
{ϕi}n

i=1, T̃ can also be approximated by ϕ̃i as:

T̃n(t) =
n∑

i=1

ai(t)ϕ̃i (4.9)

To explain these notations, the following example is given.

Example 4.2.1 Suppose the spatial domain X is divided into 5 grid cells
whose locations are denoted as x1, . . . , x5. Thus, card(X) = 5. The tempera-
ture data at every time step is denoted as

T(t) =









T1(x1, t)
T2(x2, t)
T3(x3, t)
T4(x4, t)
T5(x5, t)









Hence T(t) ∈ R
5.

Suppose T2(t) and T4(t) represent the measured temperature data. These two
temperatures can be collected in a vector

T̃(t) =

(
T2(x2, t)
T4(x4, t)

)

In this case, T̃ ∈ R
2, so G = 2 = card(X0).

T(t) is a collection of functions in a Hilbert space R
5, (refer to section 2.3) so

that T(t) can be expanded by the POD basis functions.

T(t) =
5∑

i=1

ai(t)ϕi (4.10)

The POD basis functions are vectors in R
5, thus every POD basis function

ϕi ∈ R
5. Denote ϕi(r) as the r-th entry of ϕi.
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Then ϕ̃i = col(ϕi(2), ϕi(4)). Hence, the measurement data T̃ can be written
as:

T̃(t) =

(
T2(t)
T4(t)

)

=
5∑

i=1

ai(t)

(
ϕi(2)
ϕi(4)

)

=
5∑

i=1

ai(t)ϕ̃i (4.11)

If the original data is approximated by 2 POD basis functions as:

Tn(t) = T2(t) =

2∑

i=1

ai(t)ϕi

then the corresponding two measured temperature data can be approximated
as:

T̃n(t) = T̃2(t) =
2∑

i=1

ai(t)ϕ̃i

As the POD basis is orthonormal, then the POD coefficients {ai(t)}n
i=1 can

be calculated from the knowledge of the complete temperature data T(t) as
(ϕi,T(t)). The arising question is, is it possible to estimate the POD coef-
ficients {ai(t)} from the restricted observations T̃ defined over X0 ? In this
case, the estimations of the POD coefficients by T̃ are denoted by {ãi(t)}.

Given the orthonormal basis {ϕi}i∈I for the process variable T defined over
the spatial domain X and a measurement T̃ (x, t) defined over the mask X0,
our objective is to estimate the {ãi(t)}n

i=1 in (4.12)

T̃n(x, t) =
n∑

i=1

ãi(t)ϕ̃i(x), x ∈ X0 (4.12)

such that the least square error

E(t) = ‖T̃ (x, t) − T̃n(x, t)‖2
X0

(4.13)

is minimized.

The interpretations of (4.13) and (4.12) is that the coefficients {ãi}i ∈ I are
estimated such that the difference between the available data T̃(t) and its
truncated expansion T̃n(t) is minimized.

The optimal coefficients ã∗i (t) in the criterion (4.13) satisfy the linear system
of equations

n∑

i=1

ã∗i (t) (ϕ̃i(x), ϕ̃j(x))X0
=

(

T̃ (x, t), ϕ̃j(x)
)

X0

, j = 1, . . . , n (4.14)
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which can be written as
M ã(t) = f(t) (4.15)

where
Mij = (ϕ̃i(x), ϕ̃j(x))X0

and the j-th row of f ∈ R
n as

fj(t) =
(

T̃ (x, t), ϕ̃j(x)
)

X0

(4.16)

Thus, with the knowledge of limited information, we can estimate the basis
coefficients {ã}i∈I.

Given the estimates of the coefficients {ã∗i (t)}i∈I from solving (4.14) and the
complete set POD basis functions {ϕi}i∈I, we can estimate T (t) as:

T(t) ≈ T̂(t) =
n∑

i=1

ã∗i (t)ϕi (4.17)

Thus, ãi(t) are calculated from the data defined on X0. Using the complete
POD basis, we can reconstruct the complete data T(t) and also estimate the
data at the points outside X0.

The quality of the POD basis coefficients indeed depends on how the subset
X0 is selected. In the next section, we will discuss selection criteria for X0.
This is analogous to the problem of finding a set of sensor locations such that
the measurement points will represent the dynamics of the original system
accurately.

4.3 Selection of the important grid points

4.3.1 Point selection criterion 1

The problem of point selection is equivalent to selecting X0 so that the es-
timated POD coefficients {ãi(t)}n

i=1 based on the measurement T̃ = T |X0×T

provides a good estimate of T through (4.17).

Finding X0 is of evident interest for the characterization of suitable sensor
locations by which the system dynamics can be recovered. The purpose of
this section is to propose a selection criterion for such mask.
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Let a POD basis be defined on X and let the i-th basis function ϕi(x) be
represented as ϕi(x) = (ϕi, x) with ϕi ∈ R

K , K = dim(X) and (·, ·) the
standard (no weighting) inner product on R

K . Let

Φ =
(
ϕ1 . . . ϕn

)
(4.18)

represent the first n POD basis functions, n ≤ K. In section 4.2, we also
have introduced ϕ̃i as the restrictions of ϕi to a subset of the spatial domain
X0 ⊂ X.

Similarly, define Φ̃ as:
Φ̃ =

(
ϕ̃1 . . . ϕ̃n

)
(4.19)

If there are G measurement points, i.e. G = card X0, then Φ̃ ∈ R
G×n.

Suppose that aorg(t) ∈ R
n denotes the vector of the n POD coefficients ob-

tained by calculating {ai(t)}n
i=1 from a complete data. Then

Tn(t) := Φaorg(t)

and the observation T̃(t) is then approximated as

T̃n(t) = Φ̃aorg(t) (4.20)

The formulation in (4.15) states that the estimates of the POD coefficients ã
obtained from T̃(t) satisfy

M ã(t) = f(t)

where
M = Φ̃⊤Φ̃ (4.21)

and Φ̃ is as defined in (4.19).

The vector f ∈ R
n is defined as :

f = Φ̃⊤T̃(t)

Since T̃ can be approximated by T̃n(t), then if only the truncated POD ex-
pansions of measured data are available:

fj(t) =
(

ϕ̃j , Φ̃aorg

)

The estimates of the POD coefficients ã based on the observation or incomplete
data T̃ can be written as:

Φ̃T Φ̃ã = Φ̃T Φ̃aorg (4.22)
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From (4.22), we know that the requirement ã ≈ aorg is equivalent to requiring

Φ̃T Φ̃ ≈ I (4.23)

The relation expressed in (4.23) implies that the closer Φ̃⊤Φ̃ to the identity
matrix, then the better the estimation of the original POD coefficients will be.
So we must choose X0 such that Φ̃⊤Φ̃ defined over X0 is close to the identity
matrix.

Thus with M ∈ R
n×n defined as in (4.15) we are interested in minimizing the

criterion
eX0

=‖ M − I ‖2 (4.24)

in some matrix norm ‖ · ‖. In particular we consider the following norm for a
square matrix X

‖ X ‖2:=

n∑

i=1

n∑

i=1

|Xij |2

where i and j represent the row and column indices of X, Xij means the
element of X at the i-th row and j-th column.

Note that eX0
= 0 if X0 = X. Further, X

′

0 is considered a better mask than
X

′′

0 if
e

X
′

0

≤ e
X
′′

0

(4.25)

and
dim X

′

0 = dim X
′′

0 (4.26)

The quantity thus eX0
determines whether a particular choice of the subset

X
′

0 will be better than X
′′

0 . Suppose X consists of K grid points where the
locations of the grid points can be denoted as {xk}K

k=1. The case when X0

consists of only one point located at xk, X0 = xk is of specific interest.

Given the basis {ϕi}n
i=1 and dim X0 = 1, the criterion (4.24) then enables an

ordering of all points in X. For every grid point xk ∈ X, we calculate eX0
= exk

.

After this calculation is performed for every point in X, let us re-index the
points in X as xk1

, . . . , xkK
such that

exk1
≤ exk2

≤ · · · ≤ exkK

where k1, k2, . . . , kK is the re-ordered index.
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The point with minimum exk
, that is the one located at xk1

will be considered
as the most important point while the point with largest exk

or the one located
at xkK

is considered as the least important point. The measurement data T̃
can thus be composed of the points with G smallest exk

.

Note that this is not the most optimal ordering, this is the ordering we assume
to be effective to distinguish the dominant states of the original model.

Choosing only the first few points of the ordered exk
may result in a bad

condition number of the matrix M = Φ̃T Φ̃. The condition number Θ of a
nonsingular matrix M is defined as:

Θ(M) =
λmax(M)

λmin(M)
(4.27)

where λmax(M) and λmin(M) are the maximum and the minimum eigenvalues
of M , respectively.

The condition number is important when we use M as an operator to solve a
set of unknowns z, such as:

Mz = b (4.28)

In (4.28), the solution z is unique if Θ(M) is close to 1 (100 is usually the
threshold [34]). If Θ(M) is close to 1, then we consider M well-conditioned.
If the maximum eigenvalue of M is very large and the minimum eigenvalue
of M is very small (≈ 0), then M is composed of almost linear vectors. A
numerical calcuation to solve (4.28) will then result in multiple solutions of z.
This is an unwanted case as we would like to obtain a unique solution of z. If
Θ(M) is large, we consider M ill-conditioned or singular. The best condition
number Θ(M) = 1, which means that all eigenvalues of M are the same and
z can be determined uniquely.

Hence the number of points in mask X0 has to be chosen such that the con-
dition number M in (4.15) is close enough to 1. Note that M = Φ̃T Φ̃ only
depends on the chosen POD basis and the mask X0.

4.3.2 Point selection criterion 2

The first selection criterion is based on the deviation of Φ̃⊤Φ̃ from the identity
matrix. Since the POD basis Φ consists of orthonormal basis functions, Φ⊤Φ =
I. Hence, the first criterion is in principle based on Φ̃⊤Φ̃ from Φ⊤Φ. The
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selection criterion 1 is based on the assumption that all POD basis are of
equal importance. There is no weighting in the POD basis functions applied.

In this section, we proposed a criterion based on the snapshot data T⊤
snapTsnap

where Tsnap ∈ R
K×N .

Define the matrix J ∈ R
N×N as:

J = T⊤
snapTsnap (4.29)

The (i, j)th entry of J is given by:

Jij :=

K∑

k=1

T (xk, ti)T (xk, tj) (4.30)

Since T(t) = Φa(t) with Φ the POD basis matrix of dimension K×K, we can
decompose J as:

J = J̃ + Ĵ

where the (i, j)-th entry of J̃ and Ĵ are given by:

J̃ij = a⊤
n (ti)Φ

⊤
n Φnan(tj); Ĵij = a⊤

t (ti)Φ
⊤
t Φtat(tj)

where Φ and a(t) are decomposed as Φ = [Φn Φt] and a(t) = col(an(t),at(t))
with Φn ∈ R

K×n having n columns and an(t) having n entries.

Let Φ̃k ∈ R
1×n be the k-th row of Φn. Then J̃ij can be expanded as

J̃ij = a⊤
n (ti)Φ̃

⊤
1 Φ̃1an(tj) + · · · + a⊤

n (ti)Φ̃
⊤
KΦ̃Kan(tj)

=
K∑

k=1

a⊤
n (ti)Φ̃

⊤
k Φ̃kan(tj) (4.31)

where each term in the right hand side of (4.31) denotes the contribution of
one point xk ∈ X to J̃ .

Define, for each point xk ∈ X, the L×L matrix E(xk) whose (i, j)-th entry is

Eij(xk) := J̃ij − a⊤
n (ti)Φ̃

⊤
k Φ̃kan(tj). (4.32)

Then, for k = 1, . . . , K, define exk
by setting:

exk
:=‖ E(xk) ‖ (4.33)
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where the norm ‖E(xk)‖ is defined as

‖E(xk)‖ =
N∑

i=1

N∑

j=1

Eij(xk)
2

with Eij(xk) is the element of the matrix E(xk) at the i-th row and j-th
column.

The point with the lowest exk
is the most representative point because it can

approximates J̃ better than the other points. Let us re-index the points in X

as xk1
, . . . , xkK

such that

exk1
≤ exk2

≤ · · · ≤ exkK

After exk
has been ordered in ascending order, the number of points has to

be chosen until the condition number of M = Φ̃⊤Φ̃ is close to 1. Condition
number of 100 is usually the threshold [35]. Otherwise, the solution of (4.15)
is not unique.

4.4 Nonlinear heat conduction model

In this chapter, only the implementation of selection criterion 1 is going to be
shown for a nonlinear, two dimensional heat conduction model. The spatial
domain X for the nonlinear heat conduction model of a thin plate is depicted
in Figure 4.1. The thickness of the plate is 1 cm.

The nonlinear heat conduction model is given by:

ρcp
∂T

∂t
=

∂

∂x

(

κ
∂T

∂x

)

+
∂

∂y

(

κ
∂T

∂y

)

(4.34)

where T (x, t) is the temperature distribution of the plate, κ is the heat con-
ductivity, and the actuators are defined as the incoming heat fluxes from the
west boundary and the north temperature boundary.

In (4.34), the heat conductivity κ is temperature dependent and formulated
as:

κ = 1.059e(−9.8852T ) + 9.867 × 10−3T 3 (4.35)

The model is thus originally a nonlinear PDE-based model since the heat
conductivity is temperature dependent. To simulate (4.34), the computational
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Figure 4.1: Computational Domain X of the Heat Conduction Model. The
plate is divided into 33 grid cells in the horizontal x direction and 44 grid cells.
There are five manipulating variables, u1 to u5 are the incoming heat fluxes
from the west side and u5 is the north temperature

domain X is discretised into 44 orthogonal grid cells in the y (vertical) direction
and 33 orthogonal grid cells in the x (horizontal) direction. The grid dimension
is ∆X = 0.091 m and ∆Y = 0.091 m.

The method used to discretise (4.34) is Computational Fluid Dynamics Finite
Volume Method [70], [54].

In Finite Volume Method, (4.34) is integrated for every grid cell over a specified
time horizon and a finite grid cell volume ∆V = ∆x×∆y×1cm. The algorithm
is implemented in MATLAB, but generally CFD commercial packages which
use Finite Volume also implement the same code. For algorithm details please
refer to [70],[54].

∫ t+△t

t

∫

∆V
ρcp

∂T

∂t
dV dt =

∫ t+∆t

t

∫

∆V

∂

∂x

(

κ
∂T

∂x

)

dV dt (4.36)

+

∫ t+∆t

t

∫

∆V

∂

∂y

(

κ
∂T

∂y

)

dV dt

Let P = (xl, ym) be a position of a grid point. Let TP (k) denote the temper-



4.4. Nonlinear heat conduction model 143

ature at time step k at the position P .

Let also the neighboring positions

N = (xl, ym+1), E = (xl+1, ym), , S = (xl, ym−1), W = (xl−1, ym)

denote the grid points on the north, east, south, west neighboring points of P .

If the temperature at specific grid point and at the future time step is denoted
by TP (k+1), then based on (4.36), the discretised equation can be written as:

ρcp
∆x∆y

∆t
TP (k + 1) = ρcp

∆x∆y

∆t
TP (k + 1)

+
kE(k + 1)ATE(k + 1) − kP (k + 1)ATP (k + 1)

δPE

+
kP (k + 1)ATP (k + 1) − kW (k + 1)TW (k + 1)

δPW

+
kN (k + 1)ATN (k + 1) − kP (k + 1)ATP (k + 1)

δPN

+
kP (k + 1)ATP (k + 1) − kS(k + 1)ATS(k + 1)

δPS

+ Su(k)∆V u(k) (4.37)

where E,W,N, S denote the eastern, western, northern, and southern neigh-
boring grid cells and δPE , δPW , δPN , δPS are the distances from a particular
grid cell to its eastern, western, northern, and southern grid cells, respectively.
For every grid point, Su is a vector of dimension nu with nu as the number of
actuators. The actuators are here the western boundary heat fluxes and the
north temperature boundary.

Recursive formulation of the discretised equation is shown in (4.38), where
all the unknown temperatures of the whole grid cells at time step k + 1 are
collected within T(k + 1) ∈ R

1452 and the coefficients are also functions of the
temperature itself due to the dependency of the conductivity constant. If the
time step is chosen sufficiently small, the conductivity constant at specified
grid point kP (k + 1) doesn’t differ too much from kP (k), and we can use
conductivity constant at the current time step to evaluate the temperature
distribution at the future time step. In this example, the time step ∆t is
chosen to be 25 seconds. It is assumed that this time step is small enough to
assume that the heat conductivity is constant at the current time step and
can be used to evaluate the temperature in the future time step.

With this assumption, (4.37) can be solved simultaneously by representing the
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temperatures as a vector

T(k) =







T1(k)
T2(k)
. . .

T1452(k)







The solutions T(k + 1) is found by solving (4.38):

A(k)T(k + 1) = A0(k)T(k) + B(k)u(k) (4.38)

where A(k) ∈ R
K×K is a penta diagonal matrix with the central, northern,

southern, western, and eastern coefficients in the associated diagonal part.

A(k) =










aP (k) −aE(k) 0 . . . −aN (k) −aS(k) 0 . . .

−aW (k) aP (k) −aE(k) 0 . . . −aN (k) −aS(k)
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . . . .
. . .

. . .
. . .

. . .
. . . aP (k)










The matrix A0(k) ∈ R
1452×1452 is a diagonal matrix with a0

P in its diagonal
part. The matrix B(k) ∈ R

1452×nu is a matrix for input signals with nu is the
number of inputs.

The matrix B(k) comprises the S-term of every grid point as in (4.37):

B(k) =







Su1

Su2

. . .
Su1452







where Sj denotes the S-term from j-th grid point.

The input signals of all actuators are collected in a vector u ∈ R
5:

u =







u1(t)
u2(t)
. . .

u5(t)







Equation (4.38) is the numerical model for the nonlinear 2D heat conduction
model and represents a discrete Linear Time Varying (LTV) system. The
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matrices are written in bold symbols as the coefficients become functions of the
temperature. At every time step, the matrices are updated to accommodate
the temperature dependencies of the heat conductivity. The calculation as in
(4.38) is the calculation solved by CFD modeling packages which employ the
Finite Volume Method for nonlinear cases. Note that aside from finding the
solutions, the model also has to be updated and the update also contributes
to the overall CPU time needed for finding the solutions.

4.5 POD-MPE model

The recursive equation (4.38) is the basis for the numerical model. From the
simulations of (4.38) a reduced order model will be derived. The simulation
is conducted for 300 time steps with the excitations of north temperature at
70◦C and step changes of the western heat fluxes to 100kW/m2. Initially at
t = 0, the temperature of the plate is uniform at 0◦ C. Snapshots are collected
in a matrix Tsnap ∈ R

1452×400.

Algorithm 2.4.10 is conducted to derive the POD basis functions {ϕi}n
i=1. The

simulation data for 300 time steps is collected into Tsnap =
(
T(1) . . . T(300)

)
.

The POD basis functions are the eigenvectors of C = 1
300T

⊤
snapTsnap.

The eigenvalue spectrum of C is shown in Figure 4.2.
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Figure 4.2: Eigenvalue spectrum obtained from the set of snapshots collected
from the nonlinear heat conduction simulation
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Six POD basis functions corresponding to 6 largest eigenvalues are chosen,
thus Φ =

(
ϕ1 . . . ϕ6

)
. Beyond 156th eigenvalue, the eigenvalues are zero.

This corresponds to

1 − P6 = 1 −
∑6

i=1 λi
∑156

i=1 λi

= 7.8 ∗ 10−9

Since P6 is quite close to 1, six POD basis functions are considered adequate
to construct the reduced order model. Hence the POD basis Φ now comprises
six basis functions:

The POD-based reduced order model is derived as the projection of (4.38)
onto a set of orthonormal basis functions Φ. The original variable T(k) is
approximated by:

T6(k) =

6∑

i=1

ai(k)ϕi

The original model are given by :

A(k)T(k + 1) = A0(k)T(k) + Bu(k) (4.39)

Substituting T(k + 1) by T6 and projecting Φ onto (4.39) yields:

ΦTA(k)Φ
︸ ︷︷ ︸

a(k + 1) = ΦTA0(k)Φ
︸ ︷︷ ︸

a(k) + ΦTB
︸ ︷︷ ︸

u(k) (4.40)

Ar(k)a(k + 1) = A0r(k)a(k) + Br(k) (4.41)

where the matrices A,A0,B are also functions of the temperature T.

From (4.40), the reduced order model needs to be updated at every time step
and in fact still a function of the whole temperature field, as Ar(k) and B(k)
are temperature-dependent. The reduced matrices can also only be formed
once the original matrices are available. This process is generally quite expen-
sive, updating process for the original matrices may consume 50% or more of
the CPU time necessary to obtain the solutions. The reduction of dimension
saves the computing time needed to compute the inverse of the CFD matrices,
however if the updating process is still a bottleneck, drastic decrement in the
dimension will not influence the overal computing performance.

To accelerate the computation, the Missing Point Estimation is implemented.
Suppose a subset of points from T(k) ∈ R

K has been chosen as T̃ ∈ R
G, where
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G < K. In turn, this subset can also be approximated by the expansion in
POD basis functions:

T̃(k) ≈
n∑

i=1

ãi(k)ϕ̃i(k)

Note that the POD basis functions used to approximate T̃(k) are also subsets
of the original, complete POD basis functions ϕi.

Derivation of the reduced order model based on T̃(k) follows analogously as
in the case of complete data. First write the original model in terms of T̃(k):

ÃP (k)T̃(k + 1) = Ã0(k)T̃(k) + ÃW (k + 1)T̃W(k + 1) + ÃE(k + 1)T̃E(k + 1)

+Ã(k)N T̃(k + 1)N + ÃS(k)T̃S(k + 1) + B̃u(k)

where T̃W, T̃E, T̃N, T̃S are the corresponding western, eastern, northern, and
southern grid points of T̃. The matrices ÃP , ÃW, ÃE, ÃN, ÃS are all diagonal
matrices of dimension G × G with the collections of aP , aW , aE , aN , aS in its
diagonal part, respectively.

The neighboring points can also be approximated by the POD expansions:

T̃W (k + 1) = Φ̃W ã(k + 1) (4.42)

T̃E(k + 1) = Φ̃E ã(k + 1) (4.43)

T̃N (k + 1) = Φ̃N ã(k + 1) (4.44)

T̃S(k + 1) = Φ̃S ã(k + 1) (4.45)

where Φ̃W , Φ̃E , Φ̃N , Φ̃S are the subsets of POD basis Φ corresponding to the
elements of T̃W , T̃E , T̃N , T̃S , respectively.

The POD coefficients based on the incomplete data can be found by solving
(4.15):

M ã(k + 1) = Φ̃⊤f

where M = Φ̃⊤Φ̃.

The equation 4.15 can also be implemented in (4.42) by pre-multiplying both
sides of (4.42) by Φ̃⊤. The variable f in (4.15) is the right-hand side of (4.42).
The pre-multiplication yields:

Φ̃⊤ÃP (k)T̃(k + 1) = Φ̃⊤Ã0(k)Φ̃⊤T̃(k) + Φ̃⊤ÃW (k + 1)T̃W(k + 1)

+ Φ̃⊤ÃE(k + 1)T̃E(k + 1) + Φ̃⊤Ã(k)N T̃(k + 1)N + Φ̃⊤ÃS(k)T̃S(k + 1)

+ Φ̃⊤B̃u(k)
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Replacing the term T̃(k + 1) and its neighboring counterparts with the POD
expansions yields

Φ̃⊤ÃP (k)Φ̃a(k + 1) = Φ̃⊤Ã0(k)Φ̃a(k) + Φ̃⊤ÃW (k + 1)Φ̃Wa(k + 1)

+ Φ̃⊤ÃE(k + 1)Φ̃E ã(k + 1) + Φ̃⊤Ã(k)N Φ̃N ã(k + 1) + Φ̃⊤ÃS(k)Φ̃S ã(k + 1)

+ Φ̃⊤B̃u(k)

Collect the terms with ã(k+1) on the left hand side and the following reduced
order model is obtained:

Φ̃⊤
(

Ã(k)
)

ã(k + 1) = Φ̃⊤Ã0(k)Φ̃a(k) + Φ̃⊤B̃u(k) (4.46)

where Ã(k) ∈ R
G×n is formulated as:

Ã(k) = ÃP (k)Φ̃ − ÃW (k + 1)Φ̃W − ÃE(k + 1)Φ̃E − Ã(k)N Φ̃NÃS(k)Φ̃S

The final reduced order model based on POD-MPE is written in compact form
as:

Φ̃⊤
(

Ã(k)
)

︸ ︷︷ ︸

ã(k + 1) = Φ̃⊤Ã0(k)Φ̃
︸ ︷︷ ︸

a(k) + Φ̃⊤B̃
︸ ︷︷ ︸

u(k)

Ãr(k)ã(k + 1) = Ã0r(k)a(k) + B̃r(k)u(k) (4.47)

where Ãr(k) ∈ R
n×n, Ã0r ∈ R

n×n, B̃ ∈ R
n×nu . Note that these matrices are

constructed from the CFD equations of G points, not K points, with G is the
number of points selected to be the mask T̃(k). In the end n POD coefficients
have to be estimated, equivalent to the case of the original POD model, but
the reduced order model is built based on less number of points. Hence, only
model parameters such as the coefficients of aP , aW , aE , aN , aS , a0

P at the G
points have to be updated.

Once ã(k +1) has been found, the other points which are not in the mask can
be calculated using the complete POD basis functions as:

T̂(k + 1) = Φ̂ã(k + 1) (4.48)

where T̂(k+1) ∈ R
K−G refers to the points which are not selected in the mask

T̃.

In this section, an POD-MPE reduced order model has been derived. The
reduced model is constructed based on a partial set of the original data. The
objective is to accelerate the computational process of reduced order models in
the case of constantly updated model parameters. Varying model parameter
is the characteristic of numerical CFD models when the physical parameters
are functions of the process variables themselves.
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4.6 Point selection in two dimensional heat con-

duction model

In section 4.3.1 and section 4.3.2, two selection criteria of the representative
points in T̃ have been proposed. For this chapter, only criterion 1 will be
used. In Chapter 5, both criteria will be used.

Aside from finding the representative points, it is important to note that the
POD-MPE reduced order model (4.47) is a dynamic model. It is important
to accommodate the appropriate boundary conditions similar as in the case
of the conventional POD based reduced order model. Hence, before any of
the criteria of point selections are imposed, there are some obligatory points
which have to be taken so that the changing boundary conditions such as the
changing heat fluxes and the north temperature will be incorporated.

It is imperative to include points adjacent to control inputs to accommodate
changes in manipulated variables. In this case, the control inputs are western
and northern boundaries. Further, there is boundary condition applied to
the isolted eastern and southern boundaries, and the information of the zero
temperature gradient across these boundaries will be lost if the points adjacent
to them are excluded. Hence, in the first step, we take points which have direct
connection to the boundary conditions and control inputs. Figure 4.3 depicts
grid points that belong to this category marked by the bold frame. There
are 150 points which are adjacent to the boundary condition. The rest of the
points are selected based on criterion 1 (section 4.3.1).

For every remaining point, eX0
(4.24) is calculated by setting X0 = xk, hence

X0 consists of only one point. Thus eX0
= exk

. After exk
has been calculated

for every remaining point, then the quantity is ordered from small to large.
Small eX0

indicates that the point is important while large eX0
indicates that

the point is not important. Figure 4.4 shows the plot of ordered eX0
from

small to large.

The number of points have to be chosen such that the condition number of

M = Φ̃⊤Φ̃⊤

is small (below 100). The condition number Θ is calculated as:

Θ =
maxλ(M)

minλ(M)
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Figure 4.3: Selected boundary points, marked by the bold frame

e
x
k

Figure 4.4: Ordered eX0
= exk

(4.24) for the remaining points outside the 150
obligatory points
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A low condition number indicates that the points chosen are relatively inde-
pendent of each other.

Figure 4.5 shows the resulted condition number of M comprises 150 obligatory
points and plus the extra points selected from the ordering of eX0

. From Figure
4.5, the condition number goes asymptotically to 1 after 800 extra points have
been taken. This is quite a lot since we will only halve the updating process.
The highest condition number is in the order of 20, and this is actually quite
good since it is well below 100.
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Figure 4.5: The condition number of M constructed from the 150 obligatory
points and the extra points taken based on the criterion of eX0

. The x-axis
shows the number of extra points taken

To decide how many number of extra points aside from the obligatory points
are taken, some experiments are done by taking the first 50, 100, 150, 200,
250, and 300 extra points, thus sampling between 0 to 300 extra points.

Figure 4.6 shows the plot of the maximum absolute error between the simu-
lation of POD-MPE model constructed from partial data set and the original
model. The POD-MPE model is simulated by employing the same initial
conditions and boundary conditions when snapshots data is generated.

The maximum error is calculated as:

ǫmax = max ‖ T(k) − Φã(k) ‖, k = 1, . . . , 300

The error plot as in Figure 4.6 drops at the 200-th extra points. The maximum
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Figure 4.6: The maximum absolute error from the original model. The x-axis
shows the number of extra points used aside from the 150 obligatory points
to construct the POD-MPE model

error is quite small as the temperature range of the plate lies between 0 to
100◦C. It is observed that between 50 extra points and 200 points the error
only differs for about 0.5◦C. Plot of the CPU time in Figure 4.7 shows the
CPU time needed to solve the POD-MPE model by taking the obligatory and
the extra points. The CPU time is computed for the whole 300 time steps.
Comparing Figure 4.7 and Figure 4.6, 50 extra points are taken to construct
the POD-MPE model. Hence, in total, the reduced order model is constructed
by 200 points.

Tabel 4.1 enlists the comparisons of the simulation time in second and the max-
imum absolute error between the POD-MPE model, the conventional POD
model and the original model.

Table 4.1: Comparison between POD and POD-MPE models

Model Type Maximum Absolute Error CPU time (s)

Original 0◦ C 7200
POD 0.35◦ C 600
POD-MPE-200 2.25◦ C 42

The original model is slightly faster than the real time, since for 300 time steps
with ∆t = 25 s, it simulates in 7200 seconds. The conventional POD model
built by constantly updating the reduced order model is 12.5 times faster than
real time but more acceleration factor is required to be able to apply optimal
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Figure 4.7: The CPU time (in seconds) of the time needed to solve the POD-
MPE model. The x-axis shows the number of extra points used aside from
the 150 obligatory points to construct the POD-MPE model

control design with long prediction horizon. The POD-MPE model is more
than 175 times faster than the real time, it still incorporates the nonlinearities
but only at selected points and give reasonable deviation from the original
model.

The plots of the most dominant basis vector (the one correspond to the largest
singular value) of the complete data and the incomplete data are shown in
Figure 4.8. At the locations where the points are not selected, the basis
vector component is zero. The time varying deviation from original model with
conventional POD model and the POD-MPE is shown in Figure 4.9 and 4.3.
The maximum temperature deviation when we only use limited data is quite
reasonable, accounts to about 2◦C, which is about 1% of the plate temperature
range which lies in the 0◦C to 100◦C. Indeed the approximation by classic POD
is more superior, but this is compensated by a lot more computing effort.

4.7 Controller design

With the available fast model, a model based controller can be designed. The
control objective is to achieve a desired temperature distribution Tref opti-
mally. The optimal control problem is cast as:
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Figure 4.9: Maximum deviation of every time step of reduced order model by
classic POD

Given the temperature Tref(x, t), with x ∈ X and t ∈ T, find a
control input u(t) ∈ U where U is the class of allowable input
signal such that the squared L2-norm of the tracking error

Nopt∑

k=0

∑

X

‖ Tref(x, k) − T (x, k) ‖2

is minimized where is Nopt the length of optimization horizon and
X is the spatial domain.



4.7. Controller design 155

D
ev

ia
tio

n
(C

)
o

time (s)

Maximum deviation with POD-MPE model

Figure 4.10: Maximum deviation of every time step of reduced order model
by POD-MPE

The optimal input signal is thus u(t) which solves the following optimization
problem:

u(t) = arg min
u∈U

Nopt∑

k=0

∑

X

‖ Tref(x, k) − T (x, k) ‖2

The optimization problem is difficult to solve if Tref is high dimensional, that
is dim (T) > 200. This difficulty is solved by introducing the reduced order
model. In reduced order model, Tref can also be expanded by the n-th order
POD expansion. In this example, we have chosen six POD basis functions, so
n = 6.

Tref(k) ≈
6∑

i=1

ai(t)ϕi = Φaref(k) (4.49)

As the POD basis functions are orthonormal, Φ⊤Φ equals identity matrix, so
Tref can be translated as the desired POD coefficients

aref(k) = Φ⊤Tref(k) (4.50)

With aref defined as in (4.50), the control objective for the reduced order model
becomes:

Given the desired POD coefficients aref(k), find a control input
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u(t) ∈ U such that the squared L2-norm of the tracking error

Nopt∑

k=0

e(k) =‖ aref(t) − a(t) ‖2

is minimized.

The optimal control problem is modified then for u(t) as:

u(k) = argmin
u∈U

Nopt∑

k=0

‖aref(t) − a(k)‖2

For model based control design, a fast model is necessary so that the predic-
tions of the future process variables can be incorporated in the optimization
module. The fast model is provided by the POD-MPE based model which
provides the estimates of the POD coefficients based on the incomplete data.
The optimal control problem is defined as:

u(t) = argmin

u∈U

Nopt∑

k=0

‖aref(k) − ã(k)‖2

Consider again the POD-MPE model equation (4.47), the explicit state-space
model can be derived from (4.47):

Ãr(k)ã(k + 1) = Ã0r(k)ã(k) + B̃r(k)u(k) (4.51)

ã(k + 1) = Ã−1
r (k)Ã0r(k)

︸ ︷︷ ︸
ã(k) + Ã−1

r (k)B̃r(k)
︸ ︷︷ ︸

u(k) (4.52)

ã(k + 1) = As(k)ã(k) + Bs(k)u(k) (4.53)

There are six measurement points in the heated plate, all measurement points
are collected in y ∈ R

6. The equation for y is:

y(k) = CT(k) = CΦ
︸︷︷︸

ã(k)

= Csã(k)

where C ∈ R
1452 is a row vector with 1 at the locations of the measurement

points and zeros otherwise.

The locations six measurement points for the two dimensional plate is shown
in Figure 4.11.
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Figure 4.11: The locations of the measurement points, denoted by numbers 1
to 6

Consider the POD coefficients ã(k) as the states of the system, hence z(k) =
ã(k).

The state space model for (4.47) has the form:

z(k + 1) = As(k)z(k) + Bs(k)u(k) (4.54)

y(k + 1) = Csz(k) (4.55)

The implemented controller for this system is an Linear Quadratic Regulator
with nonzero reference signals. The modified classic LQR objective function
to be minimized then reads:

J(z0,u) =

Nopt−1
∑

k=0

[
(aref(k) − z(k))T Q(aref(k) − z(k))

]

+ u⊤(k)Ru(k)

+ z(Ne)
⊤E [aref(Nopt) − z(Nopt)] (4.56)

where Nopt is the length of the prediction horizon. In this example, Nopt = 150.

The optimal control input u∗ has to be found such that J (z0,u
∗) ≤ J (z0,u)

∀u ∈ U . The objective function Jo in (4.56) is a function of both the actual
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POD coefficients z(k) and the desired POD coefficients aref. Thus the optimal
control input u∗ must also be a function of the actual POD coefficients (or
the state) and the desired POD coefficients.

Such input, for an LTI system is found to be (the proof can be found in
Appendix B)[28]

u∗ = − Fz(k)z(k)
︸ ︷︷ ︸

state feedback

− Fv(k)v(k + 1)
︸ ︷︷ ︸

function of reference signals

(4.57)

where

Fz(k) =
(

R + Bs(k)⊤P(k + 1)Bs(k)
)−1

BT
s (k)P(k + 1)As(k)

Fv(k) =
(

R + B⊤
s (k)P(k + 1)Bs(k)

)−1
B⊤

s (k)

The details about the P and v can be found in Appendix B. Since the state
space matrices in this case are time varying due to the temperature dependent
heat conductivity and the variations depend on the input signal u,the designed
controller is a suboptimal LQR controller. The control input u(k), is defined
exactly as in (4.57), but P(k+1) and v(k+1) are recalculated using the state
space matrices As(k) and Bs(k) at every time step.

The weighting matrices for the states Q ∈ R
6×6 and for the inputs R ∈ R

6×6

are defined as:

Q =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









R =









10−8 0 0 0 0
0 10−8 0 0 0
0 0 10−8 0 0
0 0 0 10−8 0
0 0 0 0 10









The steady state response with the LQR controller can be seen in Figure 4.12.
The steady state deviation from the desired temperature is still reasonable
which accounts for maximum 6◦C for temperature variations of about 137◦C
in the plate and considering the fact that the model used as the reference for
the controller is based on 200 data points only. This shows the capability of
POD-MPE reduced model, which is computed very fast, to control a full order
model with reasonable deviation.
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Figure 4.12: The desired temperature distribution (left), the temperature dis-
tribution of the plate controlled by the LQR controller (middle) and the steady
state error (right)

4.8 Summary

Reduced order modeling by POD yields a model which comprises much less
number of equations than the original model. However, it does not mean that
the reduced order model will be significantly faster than the original model.
The POD based reduced model is in principle built by combining the original
model with the POD basis functions. In the case of nonlinear CFD models,
the parameters of the original model are constantly updated and therefore the
construction of the reduced order model is also still time-consuming.

An approach referred as the Missing Point Estimation is introduced in section
4.2. In MPE, the POD coefficients can also be estimated from an incomplete
data of process variables. The original MPE approach which was introduced by
Everson and Sirovich [22, 34] to approximate a static image is then expanded
in this thesis for dynamic simulation in section 4.5 to accelerate the model
reduction computation. Two point selection criteria have also been proposed
as tools to find the representative grid points which predominate the dynamics
of other grid points.
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The MPE method is applied to a nonlinear heat conduction model, where the
heat conductivity is temperature dependent. The resulted numerical model is
of the type Linear Time Varying (LTV) system. It is shown in section 4.6 that
the POD-MPE reduced order model can follow the dynamics of the original
model reliably. The original model has 1452 states, the reduced model is built
based on the information of 200 states only. A time varying LQR controller
has also been designed with the POD-MPE reduced order model as the base
model since it is faster than real time.

The POD-MPE reduced model is shown to be fast and reliable enough to be
used as a base model for the controller design. This approach is a very promis-
ing approach to be elaborated further in the research of model reduction since
most of the time, reduced order modeling of nonlinear or varying parameter
models is still numerically unattractive.
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Reduced Order Modeling of a Glass Melt

Feeder

5.1 Introduction to glass
furnace operation

5.2 The feeder model
5.3 Snapshot collection and

POD reduction
5.4 Validation of the reduced

order model

5.5 Application of MPE to
the glass melt feeder

5.6 Simulation of the glass
colour change in the feeder

5.7 Summary and conclusions

This chapter is an extended version from the papers [5],[6], [7]

5.1 Introduction to glass furnace operation

Since the second half of the nineteenth century, most glasses have been molten
in continuously operating glass furnaces. In general, there are three main parts
of the furnace, i.e the melting tank, the working end, and the feeder section or
the foreheath section. A schematic figure of a glass furnace is given in Figure
5.1.

1. Melting tank
In this part, the mixture of raw material components, which form glass
is molten. Here, the mixture is referred to as ”glass forming batch”. The
batch is charged from the doghouse to the melting tank.

The glass forming batch is mainly heated by radiative heat, transferred
from the flames and from the superstructure in the combustion chamber
above the batch blanket [68].

During heating of the glass forming batch, up to the temperatures of
±1750 − 1900 K [68], a complex process of chemical reactions takes
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Figure 5.1: A sketch of glass furnace. Abbreviations in the figure refer to
different parts of the furnace: combustion chamber (com), burners (bur), re-
finer (refi), feeder (feed), throat (thr). The sensors installed are thermocouples
(TT) and pressure sensors of gases (pO for oxygen, pCO for carbon monoxide).
The glass melt flows through a dosing mechanism at the end of the furnace,
the droplet of molten glass is called gob (g)

place, which transforms the solid raw materials into a liquid melt phase
with gaseous inclusions and dissolved gases. After a liquid melt phase
is formed in the batch blanket, these melt phases enter the bulk flow
of the glass melt in the tank. The melt follows several flow patterns
through the melting tank towards the throat. The typical flow patterns
result from the forced and free convection. The convection occurs due
to the imposed pull rate, i.e the amount of glass melt per period of
time withdrawn from the furnace for producing glass products. The free
convective flow is caused by the density gradients in the glass melt as a
consequence of the existing temperature gradient or bubbling within the
glass melt.

Apart from melting of the batch, the glass melting tank is also used
to homogenize, fine, and refine the glass melt. Freshly formed glass
melt still contains dissolved gases and gas bubbles. During the fining
process, bubbles (mainly containing CO2, N2, O2, SO2, H2O, etc) and a
part of the dissolved gases are removed. At relatively high temperature,
fining agents such as sodium sulfate and antimony oxide decompose and
produce fining gases SO2 and/or O2. The fining gases diffuse into the
existing gas bubbles, the bubbles expand, rise (bubble ascension velocity
is proportional to the radius of the bubbles), and escape towards the
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surface of the glass melt. The fining gases will also strip other gases
from the glass melt. In the refining process, remaining small bubbles,
containing gases, which dissolve chemically during glass melt cooling,
are reabsorbed in the glass melt. After these refining processes, the
glass melt enters the working end via the throat of the melting tank.
Part of the refining process may still take place in the working end.

2. Working end
The working end is a section between the glass melting tank and the
feeder canals. The molten glass is brought into this section to be ther-
mally conditioned and occasionally to be further homogenized or refined
before brought to the feeder canals.

3. Feeder
The glass melt feeder is located between the refiner and the glass exit
point or the spout. The basic geometry of a glass feeder is an almost
rectangular shallow canal. Often the outlet passage is skewed, that it is
narrower than the inlet part. In the glass melt feeder, the temperature of
the glass melt is controlled before it is brought to the spout. In the feeder,
the glass melt is slowly cooled down to maintain uniform temperature
distribution at the exit. A well controlled temperature distribution is
required for the forming process of the glass products.

Full automatization of glass making process in glass factories is still in a devel-
oping stage and full understanding of all relevant processes in glass furnaces
has still not been achieved. In 1980s, The Netherlands Institute of Applied
Physics of TNO developed a glass process simulator (mathematical model of
the glass melt process), which is known under the name ”TNO-Glass Tank
Model”(GTM) software.

The glass simulating software packages are used to simulate various processes
taking place in the furnace [52], [47]. The simulation results enable glass indus-
tries to evaluate their furnace designs, to study the influence of the physical
parameters on the product quality, and to understand the physics and the
chemistry of the glass melting and combustion processes ([9],[10],[17],[18]).

Since the operating temperatures of glass furnaces are quite high, not many
sensors can be installed in the furnaces. Information from the existing physi-
cal sensors such as redox sensors, thermocouples, and pressure measurements
is limited. Therefore it is difficult to estimate the ongoing process and to
tune the process either online or off-line. The glass process simulator helps
the operators and engineers to monitor the variables of the ongoing process
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(flows, temperatures, chemical conversion rate, residence time) to estimate the
relevant variables (temperature, pressure, chemical composition) inaccessible
by physical sensors and use the estimation for trouble shooting or for analysis
of the furnace performance.

The glass melt process simulator (GTM) is a Computational Fluid Dynam-
ics model, discretised by CFD Finite Volume Method [70],[54]. The models
for glass furnaces are described by a set of nonlinear partial differential equa-
tions (PDE) with boundary conditions, based on the mass, momentum and
energy balances. Additionally, a number of non-linear functions of indepen-
dent scalars are also incorporated into the model to describe the dependent
properties like viscosity, heat conductivity, radiative property and density of
the glass melt.

As demonstrated in the previous chapters, discretization of PDE-based models
lead to high-order models. The glass furnace is usually discretised into 103

to 108 grid cells. The computational model of a glass furnace is complex
as most of the physical parameters such as viscosities and conductivities are
temperature dependent. The model takes considerable computational effort
before it can provide reasonably accurate and consistent estimates of the the
process states.

The simulation models provides fairly well estimations of the temperature,
velocities, and chemical conversions. Some experiments have been conducted
to validate the results of simulation models [2],[47]. This estimations of the
process variables are needed by a controller to enhance the performance of the
furnace such as optimizing the use of energy consumption because the data
from the physical sensors is very limited. For good anticipation, the model
must provide predictions of the process states faster than real time. Depending
on the characteristics of the process, the model may have to be 50-100 times
faster than real time. It is infeasible to achieve a good anticipatory action
when the controller obtains information from a simulation model which is not
fast enough.

In previous chapters, we have demonstrated the use of the POD method as a
model reduction technique for process simulation models governed by PDE’s.
Every solution of PDE-based models is a function of a spatial position x ∈ X

and time t ∈ T, where X and T are the spatial domain (e.g a furnace) and time
domain. So, in general (under some mathematical restrictions as discussed
in section 2.4), we can represent the relevant variable such as temperature,
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denoted by T (x, t) as:

T (x, t) =
n∑

i=1

ai(t)ϕi(x) (5.1)

Assume that the spatial domain X has K grid points and by stacking T (x, t)
over all spatial domain at a particular time step, define

T(t) := col
x∈X

T (x, t)

as the solution vector of the variables at time t. The functions ϕi(x) are the
so-called POD basis functions and they are derived from the simulation data
of T (x, t) for a specified time period 1. The POD basis functions are kept fixed
during the simulations. The basis functions are determined from the results
of the furnace modeling obtained by imposing a set of typical input signal
excitations and boundary conditions used in the operation of real furnaces.
The time varying coefficients {ai(t)}n

i=1 are the POD basis coefficients which
describe the time-varying dynamics of the system.

The reduced order model, as explained in Section 2.6 is obtained by projecting
(5.1) onto the space spanned by the first n dominant basis functions. In this
way, we obtain a model for the POD basis coefficients {ai(t)}n

i=1. Since the
number of the POD basis functions n is very low compared to the original
discretization level of the model K, in the reduced order model we only need
to find n time-varying POD basis coefficients.

In this chapter, the results of reduced order modeling of a glass melt feeder is
presented. In contrast to the glass melting tank, the feeder modeling is less
complex and can be easily validated since the operating temperature range
of the feeder is accessible by the thermocouples. The operating temperature
range of the glass melt feeder is very narrow (1450 − 1500 K) in comparison
to the glass melting tank, which may have operating temperature range from
room temperature to 1900 K. Modeling of the flows and temperature distribu-
tion of the melting tank is more complex because of the existence of different
phases: solid (batch blanket), liquid (glass melt), and gas (bubbles). There-
fore modeling of the glass melt feeder is considered in this study. The model
of the glass melt feeder is focused on the processes taking places in the melted
glass and not including the combustion chamber above the feeder channels.

This chapter is organized as follows. First the governing equations of the feeder
simulation model are given. Then the simulations of the temperature in the

1POD basis functions are also called POD basis vectors in discrete case as the basis
functions are discretized into K elements
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feeder and the application of POD technique are presented. Further, the ac-
celeration techniques of reduced order modeling as applied and demonstrated
in Chapter 4 for nonlinear models are also applied to the feeder simulation
model. The acceleration technique is based on the estimation of the POD
coefficients {ai(t)}n

i=1 based on the data (e.g temperature) obtained only at a
selected number of locations in the feeder. The chapter is concluded with a
summary.

5.2 The feeder model

A glass melt feeder is the section of a container, fiber, or TV glass furnace,
which is located between the refiner and the glass melt exit point (spout).
The feeder is fed by incoming glass melt from the working end, measured in
tons/day and given as the pull rate. In the entrance part of the feeder, the
glass is cooled very slowly and under very strict conditions to maintain small
temperature gradients across the height and the width of the feeder. In the
end-part of the feeder, the glass is not cooled anymore, but the temperature
differences of the glass are kept to a minimum. For the control of the glass
product quality, it is extremely important to precisely regulate the temper-
ature within the feeder because non-uniform distribution will produce defect
glass products such as irregular shapes or cracks [11].

A schematic view of a glass melt feeder channel is given in Figure 5.2:

Figure 5.2 shows the control mechanisms of a glass feeder as well. Above the
glass melt, the temperature along the furnace roof or also called crown, is set to
control the heat transfer by radiation. The surface temperature is controlled
by some PID controllers [50] as shown in Figure 5.2. The PID controllers
receive feedback from some thermocouple measurements at the glass surfaces
(denoted by TC1 to TC4) in Figure 5.2. There are also some measurements
in the glass melt themselves, denoted by GT1 to GT4. The measurements are
fed back to the PID controllers to obtain the desired temperatures GT1d to
GT4d at the measurement points. In industrial applications, the parameters
of the controllers are fixed by the manufacturers of the control systems. The
parameters of the PID controllers are defined from the desired specifications of
the controlled responses. For example, how fast should the temperature rise,
what is the allowable temperature overshoot, and how big the steady state
error should be. These parameters can be determined based on the transient
responses of the measurement points and no detailed mathematical modeling
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Figure 5.2: Schematic view of a glass feeder, the glass melt is entering the
feeder from the left side and at the right end is discharged as glass gob to the
forming machine

is required.

To improve the temperature and composition uniformity of the melt, a strrer
is sometimes used in the glass melt. Heat transfer by conduction is also tak-
ing place in the glass melt and between the glass melt and the feeder walls.
Disturbances in the feeder may occur from the variation of pull rates or the
temperature variations of the incoming glass melt.

Figure 3.21 shows a schematic view of a discretized spatial domain X of a
feeder. For demonstration purposes, here the geometry is a simplified one
compared to the geometry of industrial feeders. It has dimensions of 8.5m ×
0.55m× 2m in length, height, and width, respectively. This defines a Cartesian
spatial volume X = [0, 8.5]× [0, 0.55]× [0, 2] whose coordinates are denoted by
x (length), y (height) and z (width). The glass melt is in the layer 0.34m ≤
y ≤ 0.55m. The nominal pull rate for this feeder is 80 tons per day.

In general, the glass melt flow in the feeder can be considered as an incom-
pressible and laminar flow. The governing equations for the feeder are Navier-
Stokes equations that describe the velocity field (vx, vy, vz) in the x, y and z
direction respectively as well as the pressure field p and the energy equations
for the temperature field T [13]. The Navier-Stokes equations are solved for
the glass media only, while the energy equations are solved for heat transfer
in the glass melt media, through the feeder walls, and heat tranfer from the
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X

Y

Z

Figure 5.3: Geometry and grid cells of the feeder channel. The Cartesian
coordinate orientation is denoted by the x for length, y for height, and z
for width. The entrance of the feeder (which is connected to the working
end) starts from the left part and the outlet of the feeder/the spout is on the
rightmost part

crown to the melt surface.

The governing balance equations for the feeder are [70]:
Conservation equation of the glass melt:

∂ρ

∂t
+

∂(ρvx)

∂x
+

∂(ρvy)

∂y
+

∂(ρvz)

∂z
= 0 (5.2)

For the momentum equations, define a substantive derivative Dψ
Dt as the func-

tions of the derivative of ψ with respect to time and the velocity field v:

Dψ

Dt
=

∂ψ

∂t
+ vx

∂ψ

∂x
+ vy

∂ψ

∂y
+ vz

∂ψ

∂z
=

∂ψ

∂t
+ v. gradψ (5.3)

Momentum in x-direction of glass[70]

Dρvx

Dt
=

∂(−p + τxx)

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ SMx (5.4)

where τxx, τyz, τzx are the viscous stresses. The suffices i and j in τij indicate
that the stress component acts in the j-direction on the surface normal to the



5.2. The feeder model 169

i-direction. The term SMx indicate the body forces in the x-direction such as
the centrifugal force, and the electromagnetic force.

Momentum in y-direction of glass[70]

Dρvy

Dt
=

∂τxy

∂x
+

∂(−p + τyy)

∂y
+

∂τzy

∂z
+ SMy (5.5)

The body force due to the gravity will be incorporated in the term SMy in
y-direction as −ρg.

Momentum in z-direction[70]

Dρvz

Dt
=

∂(τxz)

∂x
+

∂τyz

∂y
+

∂(−p + τzz)

∂z
+ SMzz (5.6)

Energy Equation, solved for the refractory walls and glass melt[70]

DρE

Dt
= −∇(pv) +

∂vxτxx

∂x
+

∂vxτyx

∂y
+

∂vxτzx

∂z
(5.7)

+
∂vyτxy

∂x
+

∂vyτyy

∂y
+

∂vyτzy

∂z
(5.8)

+
∂vzτxz

∂x
+

∂vzτyz

∂y
+

∂vzτzz

∂z
+ ∇(κ gradT ) + SE (5.9)

where E is the sum of the internal/thermal energy, kinetic energy, and gravi-
tational potential energy. The notation SE in the energy equation refers to the
contribution from external sources, such as heaters, electrical boostings, or the
incoming heat fluxes from the combustion chamber. If the internal (thermal
energy) per unit mass equals cpT where cp is the heat capacity and the kinetic
energy is 1

2(v2
x + v2

y + v2
z), then the energy equation can be written as:

DρcpT

Dt
= −∇(pv) +

∂vxτxx

∂x
+

∂vxτyx

∂y
+

∂vxτzx

∂z
+

∂vyτxy

∂x

+
∂vyτyx

∂y
+

∂vyτzy

∂z
+

∂vzτxz

∂x

+
∂vzτxz

∂y
+

∂vzτyz

∂y
+

∂vzτzz

∂z
+ ∇(κ gradT ) + SE −

Dρ1
2(v2

x + v2
y + v2

z)

Dt
(5.10)

Most physical parameters of the glass melt are functions of temperature. In
this case we list the temperature-dependent parameters of the green container
glass (the temperature is in Kelvin):
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• Density ρ (kg/m3), linear fitting of density taken from [66]

ρ(T ) = 2540 − 0.14T

• Viscosity µ (Ns/m2) [11]

µ(T ) = 10−2.592 +
4242.904

T − 541.8413

The viscosity relation is known as the VFT relation

• Specific heat cp (J/kgK) [11]

cp(T ) = 1221 + 0.0956T

• Thermal conductivity κ (W/m.K) [66]

κ(T ) = 0.527 + 0.001T + 2.67 × 109T 3

The heat conductivity is calculated using the Rosseland Mean Absorp-
tion approach. This approximation is valid if the distance over which the
absorption takes place is sufficiently small compared to the glass depth.
It is assumed that this requirement is satisfied in the glass feeder [51].

The radiative heat transfer mainly takes place between the combustion cham-
ber and the glass melt [59]. The convective heat transfer from the flame to
the glass melt can often be neglected in the simulation model. The heat flux
into the glass melt q depends on various fluxes:

• Flux from the glass melt to the combustion chamber

Fout = εgσT 4
s + (1 − εg)Fin

• Flux from the combustion chamber into the glass bath

Fin = εfσT 4
f + (1 − εf )Mout

• Flux from the crown to the combustion chamber

Mout = εcσT 4
c + (1 − εc)Min

• Flux from the combustion chamber to the crown

Min = εfσT 4
f + (1 − εf )Fout
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where εg, εf , εc are the emission coefficients of the glass melt, flame, and the
crown, respectively. Here the emission coefficients are assumed to be inde-
pendent of the wave length. The Stefan Boltzmann constant is 5.67 × 10−8

W/m2K4. The temperatures Ts, Tf , Tc are the temperatures of the glass melt
surface, the flame, and the crown in Kelvin.

The heat flux q(x) into the glass melt at the position x in the furnace, measured
in W/m2 is given by [9]:

q(x) =
αAσ

(

T 4
f (x) − T 4

s (x)
)

+ αBσ
(
T 4

c (x) − T 4
s (x)

)

αC
(5.11)

where

αA = εgεf (2 − εf − εc + εcεf )

αB = εgεc (1 − εf )

αC = 1 − (1 − εf )2 (1 − εc) (1 − εg)

In the glass melt feeder, the variables to be solved are the velocity compo-
nents at the three dimensional directions vx, vy, vz, the pressure field p and
the temperature field T . These variables are not solved simultaneously by the
simulation model. Starting from the initial values and estimated fields, the
variables are solved consecutively in the order vx-vy-vz-p-T until convergence
of all conservation equations is achieved. Refer to [54] and [70] for details of
the algorithm.

For every variable (vx, vy, vz, p, T ) and for every time step k, the following
Linear Time Varying (LTV) model (refer to [54] [70] for details):

A(k)T(k + 1) = A0(k)T(k) + B(k)u(k) (5.12)

where T(k) ∈ R
K is the K-th dimensional vector comprising the variable we

would like to solve defined over the whole spatial domain X and time domain
T. The input vector u(k) comprises the terms of the external sources such
as the crown temperature, electrical boostings, heaters and the terms where
boundary changes (such as inlet and outlet temperatures) are imposed.

Note that the CFD matrices A,A0,B are now time-varying because the coef-
ficients in the CFD matrices have to be updated when the elements of vector
T(k) are changing. The equation (5.12) is solved for every variable. Since the
variables are dependent on each other, such as the dependencies of tempera-
ture on the velocities and the dependencies of physical parameters on some of
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the variables, the equations are solved several times within one time step until
the conservation equations converge and the imposed boundary conditions are
fulfilled.

To solve the equations numerically over the spatial domain X and a finite time
domain T, the feeder is divided into 7128 grid points. Some grid points act
as boundary points, where the Dirichlet or Neumann boundary conditions are
imposed. These boundary points belong to the input terms u(k) in (5.12),
and they do not belong to the variables to be solved T(k). The number of
non-boundary points are 3800, therefore T(k) ∈ R

3800.

In the next section, we will discuss the derivation of POD basis {ϕi} based on
the simulation results from several excitations imposed on a glass melt feeder.

5.3 Snapshot collection and POD reduction

The glass melt feeder is excited by varying the pull rate between 65 tons/day
and 110 tons/day. The nominal distribution of the crown temperature is
depicted in Figure 5.5. The simulation is run for a process time of 480 minutes,
with a sampling interval ∆t = 1 minute. The crown is divided into four zones,
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Figure 5.4: Pull Variations

from the inlet to the outlet of the feeder. In the simulation, the nominal
temperature distribution of each zone is varied from the nominal temperature
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Figure 5.5: The nominal crown temperature profile, divided into four zones

as shown in Figure 5.6.
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Figure 5.6: The variation of the temperature distribution of each crown zone
during the simulation. The variations are from the nominal temperature dis-
tribution as shown in Figure 5.5
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5.3.1 Determination of POD basis {ϕi}

We assume that the data of the simulations belong to a separable Hilbert
space (Chapter 2) so that every variabale such as the temperature T (x, y, z, t)
can be approximated by its truncated expansion Tn(x, y, z, t) in n orthonormal
basis functions as:

Tn(x, y, z, t) =

n∑

i=1

ai(t)ϕi(x, y, z) (5.13)

where {ϕi}n
i=1 is the orthonormal basis. If the spatial domain X is divided

into K grid cells, then the collection of the field at time t for the whole spatial
domain can be collected in a vector T(t) ∈ R

K . In this case, the basis functions
are also vectors with length K.

For notational convenience, we would slightly abuse the notation for spatial
coordinate. The spatial coordinate (x, y, z) is replaced by x in the forthcoming
discussion. So T (x, y, z, t) will be denoted further as T (x, t).

Since the spatial domain X and the time domain T are discrete and finite,
T (x, t) is an element of a finite dimensional Hilbert space (refer to Section
2.4). As in the previous chapters, we denote further T(t) as the collection of
the simulation data T (x, t) at a specified time t for the whole spatial domain
X. The simulation data for the whole simulation is then collected in Tsnap ∈
R

3800×480 where
Tsnap =

(
T(1) T(2) . . .T(480)

)

Algorithm 2.4.10 is then implemented to find the POD basis {ϕi}. The POD
basis functions are the eigenvectors of the correlation matrix C = 1

480T
⊤
snapTsnap.

The eigenvalue spectrum 2 of C is shown in Figure 5.7. The number of the
POD basis functions in the reduced order model is determined from the cri-
terion in (2.37):

Pn =

∑n
i=1 λi

∑N
i=1 λi

where N is the maximum number of the nonzero eigenvalues. If Pn is close
to 1, then the better the approximation of the snapshot data by n POD basis
functions will be. Figure 5.8 shows the logarithmic plot 1−Pn for n = 1, . . . 50.
We truncate the POD basis functions up to n = 18. In the original model, we
have to solve 3800 unknowns while in the reduced order model, we only have
to find 18 POD basis coefficients {ai(t)}18

i=1.

2plot of the eigenvalues
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cation degree of the POD basis functions

5.3.2 Construction of the reduced feeder model

For the temperature field of the feeder, initially we solve the following equa-
tions:

A(k)T(k + 1) = A0(k)T(k) + B(k)u(k) (5.14)
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where u(k) is the vector comprising the inputs at time step k, such as the
temperature of each zone of the crown.

We have derived 18 POD basis functions or vectors from the collection of sim-
ulation data matrix Tsnap ∈ R

3800×480. The POD basis vectors are collected
in a matrix Φ ∈ R

3800×18:

Φ =
(
ϕ1 . . . ϕ18

)

The reduced order model for the temperature field is constructed by replacing
T(k) by the expansion in the n POD basis functions:

T(k) =
18∑

i=1

ai(k)ϕi = Φa(k)

where a(k) = col (a1(k), a2(k), . . . , a18(k)) and projecting Φ onto (5.14):

Φ⊤A(k)Φa(k + 1) = Φ⊤A0(k)Φa(k) + Φ⊤B(k)u(k) (5.15)

Note that the reduced model for the temperature field now has 18 unknowns,
while the original CFD model for temperature field has 3800 unknowns.

The governing equations of CFD models are often a set of nonlinear PDE’s.
For such systems, knowledge of typical excitation signals encountered during
the operation will be beneficial because choosing the most effective excitation
signal for nonlinear systems is still an open problem. Once we shift to another
operating point, there is no guarantee that the reduced order model gives a
reliable approximation of new dynamics. The best way is to collect simulation
data based on several typical operating points. Industrial processes usually
have limited operating range and most process controllers are also working
to improve the performance of a plant/system only in a specified operating
range.

5.4 Validation of the reduced order model

To validate the reduced order model, a random excitation signal is imposed
on the feeder. The random excitation signals applied to the four zones of
the crown temperature are shown in Figure 5.9. The pull rate is kept at its
nominal value, 80 tons/day. These excitation signals are different than those
applied to derive the POD basis. The objective is to observe the ability of the
reduced order model to estimate the temperature when the excitation signals
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Figure 5.9: Random excitation signals at the four zones of the feeder

are varying differently. The variations are kept within the normal operating
range of the feeder.

Figure 5.11 and Figure 5.13 show the results of the reduced temperature field
in comparison with the original temperature field. The results are plotted
for several measurement locations. The measurement locations at the glass
surface and the glass outlet are shown in Figure 5.10 and Figure 5.12.

 
O

U
T

L
E

T
  

IN
L

E
T

 

T3 T1 T2 

Figure 5.10: The measurement locations at the glass surface, denoted from
the left to the right as T1, T2, T3. The inlet of the feeder is at the leftmost part
and the outlet at the rightmost part

The original temperature field is solved by K = 3800 equations and the re-
duced temperature field is obtained by applying the POD technique and tak-
ing n = 18 dominant modes which correspond to 18 largest eigenvalues of the
temperature snapshots.

From Figure 5.11 and Figure 5.13, it can be observed that the reduced order
model approximates the temperature field of the original model closely. The
plot of the absolute average error for the grid cells of glass melt is given in
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Figure 5.11: Comparison between the temperature field calculated by the
reduced order model and the original model at the surface measurement points
(see Figure 5.10). The top figure refers to T1, middle to T2 and bottom to T3
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Figure 5.12: The measurement locations at the glass outlet, shown by the
white grid cells. The sensor positions from the top to the bottom are denoted
as T4, T5, T6

Figure 5.14

The maximum averaged absolute error is very small, it accounts about 0.04◦K
maximum. The averaged absolute error between the original temperature
T (x, k) and the temperature calculated by the reduced order model Tn(x, k)
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Figure 5.13: Comparison between the temperature field calculated by the
reduced order model and the original model at the outlet measurement points
(see Figure 5.12)
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is:

ǭ(x) =
1

Ns

Ns∑

k=1

| Tn(x, k) − T (x, k) | (5.16)

where Ns is the number of time samples, Tn(x), k) is the temperature field at
the location x̄ obtained from the reduced order model, T (x, k) is the temper-
ature field obtained from the original model.



180 Reduced Order Modeling of a Glass Melt Feeder

Even though the number equations to be solved in the reduced model is only
0.005% of the original number of equations, the average absolute deviation
is less than 0.05% of the difference between the minimal and the maximal
temperature in the glass melt, which lies in the range of 30 K.

5.5 Application of MPE to the glass melt feeder

The drastic reduction in the model order is expected to drastically reduce the
computational load of the reduced order model. The order of the original
model is more than 200 times smaller than the reduced order model, but the
computational time needed to solve the temperature field is only enhanced by
factor 2.

The model reduction computational time for time-varying and non-linear mod-
els such as CFD models is not dramatically decreased though the number of
POD basis functions is very small. This is due to the fact that the reduced
order model is obtained by projecting the full model onto the low number of
POD basis functions.

It implies that to obtain a reduced order model, the parameters of the full order
model have to be obtained first. The original CFD model has the following
form:

A(k)T(k + 1) = A0(k)T(k) + Bu(k)

Note that the CFD matrices A(k),A0(k),B(k) are time-varying. The coef-
ficients of these matrices are constantly updated to accomodate the varying
physical parameters such as the density, viscosity, and the heat conductivity.

The reduced CFD model is obtained as follows:

Φ⊤A(k)Φa(k + 1) = Φ⊤A0(k)Φa(k) + Φ⊤B(k)u(k) (5.17)

Hence to obtain the reduced order model, A(k),A0(k),B(k) have to be com-
puted first. This is a very expensive process. For large scale systems this
is currently the main bottleneck for performing fast simulations and on-line
control system design.

In Chapter 4, the reduced order modeling by the MPE method is proposed
to accelerate the reduced model computation. In MPE method, the models
of the POD coefficients are derived from a part of the original equations. The
part of the original equations correspond to a part of the selected locations in
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spatial domain X. The collection of the selected locations in X is denoted in
Chapter 4 as X0.

If the original temperature field T is defined for the whole spatial domain X,
then the temperature field at X0 is denoted as T̃ . Suppose X is discretized
into K grid points and X0 comprises of G grid points, G < K. Denote the
discrete temperature data at k-th time step for X as T(k) and the discrete
temperature data for X0 as T̃(k) ∈ R

G. If T(k) can be approximated by the
POD basis fuctions Φ =

(
ϕ1 ϕ2 . . . ϕn

)
, then T̃ can also be approximated

as:
T̃(k) ≈ Φ̃a(k) (5.18)

where the elements of Φ̃ =
(
ϕ̃1 ϕ̃2 . . . ϕ̃n

)
are the elements of the original

POD basis Φ corresponding to the locations x ∈ X0. The basis Φ̃ is also basis
for X0, but unlike the original POD basis, it is not orthonormal nor an optimal
basis.

The POD coefficients a(k) are originally calculated by projecting the POD
basis functions Φ ∈ R

K×n onto K equations describing the dynamics of T(k).
In MPE method, the POD coefficients a(k) are estimated by projecting Φ̃ ∈
R

G×n onto G equations describing the dynamics of T̃(k). As a result, only
parameters of G equations need to be calculated in contrast to the original
reduced model where the parameters of K equations have to be calculated.
The resulting POD coefficients obtained by the MPE method are denoted as
ã. Once ã obtained, the temperature field can be reconstructed using the full
POD basis as:

T̂ = Φã

The locations in X0 have to be chosen in such a way the estimated POD coef-
ficients ã is close to the POD coefficients calculated from projections onto the
full model. In section 4.3.1 and section 4.3.2, there are two criteria proposed
to select the subset X0.

The first selection criterion (Criterion 1) is based on the approximation of
Φ⊤Φ by Φ̃⊤Φ̃. The original, complete POD basis functions are orthonormal
that Φ⊤Φ equals an identity matrix. The closer Φ̃⊤Φ̃ to identity matrix with
Φ̃ with Φ̃ are the elements of the original POD basis Φ corresponding to the
locations x ∈ X0, then the more representative X0 is.

In the second selection criterion, the POD basis functions constructed from
the subset X0 are weighted by the POD coefficients. The POD coefficients
are obtained by the projection of Φ onto the snappshot matrix Tsnap. In
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the approximation by POD basis functions, the process variables such as the
temperature data at every time step are described as the linear combination
of the POD basis functions weighted by the time varying coefficients at every
time step ((5.1)). In criterion 1, the POD basis functions Φ̃ are not weighted
by the POD coefficients, thus there is no direct relation to the approximation
of the process variables.

Both Criterion 1 and Criterion 2 are going to be applied to the glass melt
feeder models. The theoretical details of both criteria can be found in section
4.3.1 and section 4.3.2.

5.5.1 Application of MPE based on selection criterion 1

For the feeder, we have selected n = 18 basis functions, and the number of
grid points, K, involved in the CFD calculation (5.12) is 3800. The symmetry
along the width of the feeder channel is taken into account in both the original
and the reduced order, so Φ ∈ R

1900×18 in (5.15).

The POD model is 2.26 times faster than the original model. To improve
the computational gain of the reduced order model, we apply the method of
Missing Point Estimation (MPE) as discussed in Chapter 4.

Using MPE, we have the following reduced-order model to derive a(k) and to
solve (refer to section 4.5 for details of derivation):

Φ̃T Ã(k)Φ̃nb
︸ ︷︷ ︸

ã(k + 1) = Φ̃T Ã0(k)Φ̃
︸ ︷︷ ︸

ã(k) + Φ̃T B̃
︸ ︷︷ ︸

(k)u(k) (5.19)

Arã(k + 1) = Ã0r
(k)ã(k) + ˜Br(k)u(k) (5.20)

Note that Φ̃nb is the POD basis corresponding to the locations x ∈ X0 as well
as its neighboring points whose locations do not belong to X0. For details,
refer to section 4.5. The resulting reduced order model is called the POD-
MPE model.

In the POD-MPE reduced order models, boundary conditions still have to be
satisfied. The crown temperature defines a set of Dirichlet boundary condi-
tions, and these have to be incorporated in the POD-MPE models as well. In
this way, the POD-MPE model can update the information of the boundary
condition continuously. To incorporate the boundary conditions, all points
which are adjacent to the boundary cells are included in X0. There are 265
points in the feeder model which are adjacent to the boundary cells where
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crown temperature, inlet temperature, inlet velocity are defined. These points
are considered as ”obligatory points”.

The remaining points are selected from the calculation of the deviation Φ̃Φ̃
from Φ⊤Φ (see section 4.3.1). Since Φ̃ comprises the elements of the POD
basis Φ on X0, Φ̃ depends on the choice of X0. Thus, Φ̃ can be written as
function of X0:

Φ̃ = Φ̃(X0) =
(

ϕ1|X0
. . . ϕn|X0

)

=
(
ϕ̃1 . . . ϕ̃n

)

To select the points, X0 is chosen to be a location of one grid point only. Hence
Φ̃ = Φ̃(X0), Φ̃ ∈ R

1×n.

The deviation of Φ̃⊤Φ̃ formed from only one grid point at location X0 = xk is
calculated as:

exk
=‖ EX0

‖=‖ Φ̃(xk)
⊤Φ̃(xk) − Φ⊤Φ ‖ (5.21)

where

‖ X ‖=
n∑

i=1

n∑

j=1

X2
ij (5.22)

with Xij is the element of a square matrix X ∈ R
n×n at i-th row and j-th

column. As X0 = xk, then Φ̃(X0) = Φ̃(xk).

Thus, we calculate (5.21) for all remaining candidate points. In this example,
since 265 boundary points have been taken, there are remaining 1635 points to
be chosen. The locations of the remaining points are denoted as x1, . . . , x1635.
After (5.21) is calculated for every point, exk

values are then ordered such
that:

exk1
≤ exk2

≤ · · · ≤ exk1635
(5.23)

with k1, k2, . . . k1635 are the ordered index.

The point at location xk1
is considered the most important point while points

at location xk1635
is the least important point. Figure 5.15 shows the plot of

the ordered exk
.

From Figure 5.15, there are points which are more representative then the
others, although in this example the difference is small. However, in order
to select X0, a starting point is needed and the point with minimum exk

is
considered in this example as the best candidate point. It is desired to have
sufficient points in X0 such that the condition number of Φ̃⊤(X0)Φ̃(X0) will be
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Figure 5.15: Plot of the ordered exk
, with exk

calculated as in (5.21)

close to the condition number of Φ⊤Φ̃. Since the POD basis is an orthonormal
basis, Φ⊤Φ equals identity and the condition number of Φ⊤Φ equals 1.

The condition number is important for the estimation of the POD coefficients.
If the condition number of Φ̃(X0)

⊤Φ̃(X0) is higher than 100 ([35],[34]), then
there exist linear dependencies of the points in X0. It means the equations in
(5.19) are dependent on each other and there exists many possible solutions
of a(k).

To check the condition number, the following procedure is conducted:

Procedure 5.5.1 Given X0 as the locations of the 265 points adjacent to the
boundary points where the changing boundary conditions are defined.

1. From all candidate points xk ∈ X\X0 := {x ∈ X | x /∈ X0}, determine
xk1

as the location of the point with minimum exk
. Add xk to X0.

2. Construct Φ̃(X0)

3. Calculate the condition number of Φ̃(X0)
⊤Φ̃(X0).
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4. Repeat step 1 to 3 for each addition of xk2
, xk3

, . . . , xk1635
where exk2

≤
exk3

≤ . . . , exk1635
.

For each choice of X0, a condition number is calculated. The plot of the condi-
tion number is depicted in Figure 5.16. The condition number plot has already
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Figure 5.16: Plot of the condition number of Φ̃T Φ̃

flattened after 1000th extra point has been added to the 265 obligatory points,
thus with X0 consists of 1265 points, the condition number of Φ̃(X0)

⊤Φ̃(X0)
is close to the condition number of Φ⊤Φ.

Since we sekecred 1000 points and there are 265 points for the boundary
conditions, Φ̃ ∈ R

1265×18. The CFD matrices which have to be convolved by
the POD basis vectors also only have 1265 rows. By comparing (5.19) and
(5.12) which is solved by taking 1900 points in the symmetric case, it is clear
that (5.19) is more attractive by computational point of view because we could
obtain the estimates of the POD basis coefficients with a cheaper procedure.

Figure 5.17 depicts the selected points at the glass domain at the glass melt
10 cm below the glass surface. There are 960 points taken in the glass do-
main. The fact that there are more points selected in the glass melt can be
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understood, because the main dynamics is excited in the glass domain.

X
Y

Z

Figure 5.17: Parts of the selected 1265 points at the cross section of the glass
melt (shown by the grey grid cells) 10 cm below the glass surface

5.5.2 The Shannon Entropy

As an alternative to the condition number, the so-called Shannon Entropy
can also be used to determine the number of points. The Shannon Entropy
equation is used in the information theory to determine the minimum com-
pression rate of a signal which guarantees that the essential information of the
uncompressed signal still exists in the compressed signal.

Analogously, in the case of POD-MPE reduced order models, we would like
to select X0 in such a way so that Φ̃(X0)

⊤Φ̃(X0) approximates Φ⊤Φ well.

The Shannon Entropy equation is given as:

H = −
N∑

i=1

PilnPi (5.24)

where
∑N

i=1 Pi = 1. The quantity Pi in (5.24) defines a probability function.
For example given a 3 letters {a, b, c} and a sequence composed from these
letters as {a, b, b, b, c}. For each letter, the probability of Pi, i = 1, 2, 3 can be
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calculated as how often a particular letter is found in the sequence divided by
the number of elements in the sequence.

The same concept can also be applied to the POD-MPE models. Consider
the eigenvectors of Φ̃⊤Φ̃ as the patterns of Φ̃⊤Φ̃, hence the eigenvectors are
considered as the letters in the previous example.

The probability Pi of each eigenvector of Φ̃(X0)
⊤Φ̃(X0) is formulated as:

Pi(X0) =
λi(X0)

∑18
i=1 λi(X0)

(5.25)

where λi is the i-th eigenvalue of Φ̃⊤Φ̃. The probability Pi is denoted as
function of the restricted domain X0 ⊂ X since different choice of X0 will lead
to different Φ̃⊤Φ̃. Similarly, let H also become a function of X0.

In case of no missing data or X0 = X, Φ⊤Φ equals an identity matrix. The
eigenvalues of an identity matrix are all equal to 1, hence Pi in that case is
given by:

Pi(X0) = Pi(X) =
1

18

and
H(X0) = H(X) = ln 18

The goal is to choose X0 so that H(X0) ≈ H(X). Similar to the calculation
of the condition number (Procedure 5.5.1), H(X0) is calculated with Pi(X0)
as defined in (5.25) and X0 is formed from the 265 boundary points and xk1

as the location of the point with minimum exk
((5.21)). Then xk2

is added
to X0, calculate H(X0) for this configuration. Add a point one by one based
on the ordering of exk

, calculate H(X0) for each configuration. Continue the
procedure until xk1635

is added to X0.

Figure 5.18 shows the plot of the Shannon’s Entropy, where H(X0) is plotted
by adding one point to the 265 boundary points until the last candidate point
(based on the ordering of exk

) is added. After 1000 points have been added
to the 265 obligatory points, H(X0) ≈ H(X) or H(X0) ≈ ln 18. This can be
interpreted as the truncation degree because adding points beyond 1000 points
add very little change to H(X0.

The POD-MPE model is then validated by varying the crown temperature of
each zone as shown in Figure 5.19. The deviation of the POD-MPE model
from the original model is negligible. The maximum average error is 0.04◦C.
The acceleration factor of the POD-MPE model with 1265 points is 3.35 times
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Figure 5.18: Plot of Shannon’s Entropy for Φ̃T Φ̃
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Figure 5.19: The crown temperature variations of each zone

faster than the original model. The ordering strategy of the points does not
yield quite a low number of selected points. We still have to take a lot of
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points before a good condition number is reached. The procedure of selecting
X0 will be optimized by the so-called greedy algorithm [72] in the next section.

5.5.3 Optimization of point selection

The procedure of point selection presented in the previous section may lead
to a high number of points before a low condition number (or alternatively
H(X0) ≈ H(X from the Shannon entropy) could be reached. To reduce the
number of points required to have a low condition number, we implement the
greedy algorithm [72]:

Algorithm 5.5.2 The greedy algorithm

1. Determine G as the number of points to be selected in X0.

2. Determine X0 as the locations of the 265 boundary points and xk1
as

the point for which exk1
is minimum.

3. Construct Φ̃(X0) as the basis for X0 corresponding to the POD basis
elements Φ at the locations of X0 and calculate the condition number of
Φ̃⊤Φ̃.

4. Add the point to X0 which gives the minimal condition number of
Φ̃(X0)

⊤Φ̃X0.

5. Repeat step 4 until X0 consists of the locations of G points.

The greedy algorithm is implemented for the glass melt feeder, and 300 extra
points are chosen. With the 265 boundary points, we obtained in total 565
points.

The total selected points in the glass domain are 386 points, which is 40% of
the total selected points. The selected points in the glass domain 10cm below
the glass melt surface is given in Figure 5.20.

Figure 5.21 shows the comparisons between the original (symmetrical) model,
the POD-MPE model with 1265 points and the POD-MPE based model with
565 points. The comparisons are conducted for the measurement points T1 to
T3 at the surface and T4 to T6 at the outlet.
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Figure 5.20: Parts of the selected 565 points at the cross section of the glass
melt located 10 cm below the glass melt surface

Table 5.1 tabulates the comparisons between POD, POD-MPE with 1265
points and POD-MPE with 565 points. The table enlists the maximum av-
erage absolute error (the averagae absolute error is calculated by (5.16)) and
the computational gain. The computational gain is in computed as the CPU
time required to update the model parameters and to solve the temperature
field. The computational gain of POD-MPE with 565 points corresponds to
7.5 times faster than real time. In this section, all POD bases are considered

Table 5.1: Comparison between POD and POD-MPE models

Model Maximum Absolute Computational
Type Average Error Gain

(maximum of (5.16) for all x ∈ X)

POD 0.007◦ C 226%
POD-MPE-1265 0.007◦ C 335%
POD-MPE-565 0.012◦ C 620%

of equal importance. It would be interesting to take into account the relation
of POD bases with data in the point selection. The POD basis functions are
weighted by the POD coefficients when approximating the snapshot data. The
point selection criterion 2 is based on the weighting of the POD basis func-
tions with the POD coefficients and the application of this criterion 2 will be
presented in the next section.
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Figure 5.21: The temperatures modeled by the original and POD-MPE models
at the measurement points T1 to T3 (see its configuration in Figure 5.10) and
the temperatures at the measurement points T4 to T6 (see its configuration in
Figure 5.12)
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5.5.4 Application of MPE based on selection criterion 2

The point selection by criterion 2 is similar to point selection in criterion 1, but
in criterion 2, there is weighting by the POD coefficients (see section 4.3.1).
Suppose the POD basis Φ comprises of n POD basis functions is derived from
the snapshot data Tsnap ∈ R

K×L =
(
T(1) T(2) . . . T(L)

)
.

We derive a matrix J̃ whose (i, j)-th entry is given by:

J̃ij = a⊤(ti)Φ
⊤Φa(tj) (5.26)

where
a(tj) = Φ⊤T(tj)

There is a(ti) in (5.26) to indicate the different time step. The matrix J̃ is an

approximation to T⊤
snapTsnap where T(tj) in every column of Tsnap is replaced

by (5.1).

In criterion 2, we define for each point located at xk ∈ X, an L × L matrix
EJ(xk) whose (i, j)-th entry is given by:

EJij
(xk) = J̃ij − a⊤(ti)Φ̃(xk)

⊤Φ̃(xk)a(tj)

where the elements of Φ̃(xk) ∈ R
1×n are the elements of Φ correspond to every

location xk ∈ X.

For every grid point located in X, we calculate

exk
:=‖ EJ(xk) ‖ (5.27)

where the norm ‖ · ‖ is as defined in (5.22).

The point with large exk
is considered not important and the point with small

exk
is considered important. The points are then re-index as xk1

, xk2
, . . . , xkK

by ordering exk
such that exk1

≤ exk2
≤ · · · ≤ exkK

.

The plot of the ordered exk
is depicted in Figure 5.22.

Note that the difference between the smallest exk
and the largest exk

in Figure
5.22 is relatively small, but to determine X0, a starting point is needed. The
points should be taken so that the condition number of Φ̃(X0)

⊤Φ̃(X0) is close
to the condition number of Φ⊤Φ. The condition number is calculated by
implementing Procedure 5.5.1. The plot of the condition number is shown in
Figure 5.23.
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Figure 5.23: Plot of the condition number of Φ̃(X0)
⊤Φ̃(X0). The restricted

domain X0 is constructed from the locations of the 265 obligatory points and
the locations of points added to X0 according to Procedure 5.5.1
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In Figure 5.23, it is shown that the condition number of Φ̃⊤Φ̃ beyond adding
1000 points to the 265 points points does not change significantly. In total,
there are 1265 points in X0 chosen to construct the MPE-based reduced model.
The condition number of Φ̃⊤Φ̃ formed by 1265 points is equal to 2.8327. A
part of the selected 1265 points are shown in Figure 5.24 at the cross section
10 cm below the glass surface. The acceleration factor with 1265 points is

X

Y

Z

Figure 5.24: Part of the selected 1265 points (shown by the grey grid cells)
depicted for the glass melt 10 cm below the glass surface

still not too satisfactory either, the POD-MPE model is only faster 3.35 times
than the original model. To optimize the point selection so that not all points
which are located closely together are chosen, the greedy algorithm (Algorithm
5.5.2) is applied. We first compose X0 from the locations of the 265 obligatory
points and the location xk1

with the smallest value of exk
in (5.27). The

second point is chosen to be the one which gives the best condition number of
Φ̃(X0)

⊤Φ̃ when added to the already chosen point. This is continued until in
total (including the 265 boundary condition), 565 points are taken. The final
condition number of Φ̃(X0)

⊤Φ̃(X0) with 565 points is 3.18.

Since we selected 565 points, Φ̃ ∈ R
565×18 and the CFD matrices are also

adjusted accordingly so that only parameters of 565 equations are calculated.
The chosen points in the glass domain and in the walls are shown in Fig-
ure 5.25. The plots are for a half of the plane because we consider symmetry
along the feeder width. By comparing Figure 5.25 and Figure 5.24, it is clear
that the implementation of greedy algorithm results in a selection of points
which are not colocated together. The candidate points are added to X0 which
gives the best condition number of Φ̃⊤Φ̃ when combined with the already cho-
sen points. This implies that the added point is independent of the already
chosen points. Since in CFD models every grid point is a function of its neigh-
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Figure 5.25: Chosen points (shown by the grey grid cells) at the glass melt 10
cm below the glass surface

boring points, the requirement implies that the independent points are not
located in the close neighbourhood.

Similar to the case of POD-MPE model by criterion 1, the validation of POD-
MPE models based on the selection criterion 2 is also conducted by varying the
crown temperature as shown in Figure 5.19. Figure 5.26 show the comparisons
between the original (symmetrical) model, the POD-MPE model of Criterion 2
with 1265 points and the POD-MPE model optimized by the greedy algorithm
with 565 points. The comparisons are conducted for the measurement points
T1 to T3 at the surface and T4 to T6 at the outlet.

Since the number of points taken in POD-MPE model derived from points
selected by Criterion 2 is also the same as in the case of the number of points
selected by Criterion 1, the acceleration factor is also the same. The maximum
absolute error average (the maximum of (5.16) over all x ∈ X) is also in the
same range. The computational gain of the POD-MPE model with 565 points
corresponds to 7.5 times faster than real time. In the computation, about 120
iterations have to be performed for each time step because the temperature
field also has to converge such that the mass, momentum, and energy balances
are satisfied. If the number of iterations is reduced, then the deviation from
the original temperature field will be larger. If the maximum absolute error is
allowed to be larger for example to 0.1◦ C, then the number of iterations can
be reduced to about 50 times iterations for each time step. The convergence
criterion applied in the simulating software needs to be investigated further as
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Figure 5.26: The temperatures changes (∆T is the temperature change from
the initial condition) modeled by the original and POD-MPE models Criterion
2 at the measurement points T1 to T3 (see its configuration in Figure 5.10)
and at the measurement points T4 to T6 (see its configuration in Figure 5.12)
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Table 5.2: Comparison between POD and MPE models

Model Maximum Absolute Computational
Type Average Error Gain

(Maximum of (5.16) over all x ∈ X)

POD 0.007◦ C 226%
POD-MPE-1265 0.007◦ C 335%
POD-MPE-565 0.012◦ C 620%

well so that the optimal number of iterations can be reduced.

5.5.5 Comparison between selection criterion-1 and selection

criterion-2

The MPE selection criterion 1 is based on the deviation of Φ̃⊤Φ̃ from Φ⊤Φ. In
Criterion 2, the point selection is based on the weighting of the POD basis by
the POD coefficients. In short, MPE-criterion 1 (without the implementation
of the greedy algorithm) groups points which have similar variations in the
POD basis functions.

In MPE-criterion 2, the basis functions are weighted by the POD coefficients.
Since the temperature data at every time steo is approximated by the POD
basis functions weighted by the POD coefficients at every time step ((5.1)), this
criterion is related to the temperature data. As a result, the MPE-criterion 2
tends to group the points which have the same variations of the temperature
data and in the glass feeder, points which are located closed to each other tend
to have the same temperature range as well.

Due to the proximities of the selected points by MPE-criterion 2, the condition
number of Φ̃⊤Φ̃ from the points selected by the MPE-criterion 2 also decreases
slower than the points selected by MPE-criterion 1. Figure 5.27 shows the
plots of the condition number (obtained by conducting the procedure 5.5.1 for
points selected by MPE-criterion 1 and MPE-criterion 2.

By comparing Figure 5.24 and Figure 5.17, it is also obvious that the selection
criterion-2 groups the points which are closely located to each other and the
distribution of the selected points is more spread out in the points selected by
criterion 1 than the points selected by criterion 2. As a result, the condition
number of Φ̃(X0)

⊤Φ̃(X0) decreases faster by criterion 1 than by criterion 2
since the selected points are more independent of each other due to the more
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Figure 5.27: Plot of condition number of Φ̃T Φ̃ by criterion 1 (left) and criterion
2 (right)

distant locations.

5.6 Simulation of the glass colour change in the

feeder

A glass melt feeder is not restricted to produce only one specific type of glass.
The same glass feeder is used to produce glass of different colours and different
weights. The change of product type is normally called a job change. In this
section, reduced order modeling of the temperature changes during colour
change in a glass melt feeder is discussed. Initially, the feeder contains green
container glass. A new glass product with different colour will be produced
by replacing the green container glass by the flint (uncoloured) container glass
melt.

The physical properties [59] of the green and flint glasses are enlisted as fol-
lows: Properties of the flint container glass melt which differ significantly
from the green container glass are the heat conductivities and the absorp-
tion coefficients. Since the green container glass has a darker colour than the
flint container glass, it absorbs more light than the flint container glass. For
the same temperature range, the green container glass also has a lower effec-
tive conductivity than the flint container glass. Darker colour preserves more
thermal energy in the material.

If a new glass product is replacing the existing glass, then initially the con-
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Table 5.3: Physical parameters for the green and flint container glass nekr (T
is the temperature in Kelvin)

Parameters Green Container

Density [66] ρ (kg/m3) 2540 − 0.14T
Viscosity [11] µ (Ns/m2) 10−2.592 + 4242.904

T−541.8413

Specific heat cp (J/kg.K) 1222 + 0.0957T
Heat conductivity [11] κ (W/mK) 0.527 + 0.001T + 1.8 × 10−9T 3

Absorption coefficient [11] 367.859
Surface emissivity [26] 0.89

Table 5.4: Physical parameters of the flint container glass (T is the tempera-
ture in Kelvin)

Parameters Flint Container

Density [66] ρ (kg/m3) 2536 − 0.14T
Viscosity [11] µ (Ns/m2) 10−2.490 + 4094.950

T−553.2733

Specific heat cp (J/kg.K) 1220 + 0.0957T
Heat conductivity [11] κ (W/mK) 0.527 + 0.001T + 2.54 × 10−8T 3

Absorption coefficient [11] 26.029
Surface emissivity [26] 0.89

centration of the new glass is zero for the whole feeder except at the feeder
entrance. As the new glass melt disperses into the existing glass, the concen-
tration of the new glass will increase. The physical properties such as heat
conductivity will change as well as function of the concentration of both the
new and the old glass.

5.6.1 Collection of colour change simulation data

The colour change will significantly change some physical properties of the
glass melt. In the case of the green container glass melt replaced by the flint
container glass melt, the heat conductivity will change by a factor ±8. The
reduced order model also has to take into account these significant changes.
If the reduced order model is derived from simulation data where the colour
change from green to flint is not simulated, then the reduced order model
cannot be expected to be able to simulate the colour change phenomena. Note
that in general colour changes from green to other colour than flint will result
in completely different temperature distribution. Reverse colour change such
as from flint to green will also change the temperature distribution. Thus,
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every possible colour change process in the feeder should be also incorporated
in the simulation data.

In this example, reduced order modeling of the temperature field during the
colour change simulation is presented. The feeder has the same geometry and
the grid cell configuration as in previous examples. The green container glass
melt in the feeder is assumed to be initially under the steady state condition
with constant pull rate of 80 tons/day and the nominal crown temperature
distribution as depicted in Figure 5.5. The crown temperature of each zone is
varied as shown in Figure 5.28.
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Figure 5.28: The crown temperature variations of each zone

The green container glass melt is then replaced by the flint container glass
melt at t = 0 and the simulation runs for 112 minutes with sampling time of
1 minute. To derive the reduced order model of the temperature field, 112
temperature data collected in the snapshot matrix Tsnap ∈ R

3800×112 where
Tsnap =

(
T(1) T(2) . . . T(112)

)
.

The POD basis functions Φ are the eigenvectors of C = 1
112T

⊤
snapTsnap. The

eigenvalue spectrum of C is shown in Figure 5.29

For the colour change simulation, 18 POD basis functions, correspond to 18
largest eigenvalues are taken. This corresponds to 1 − Pn = 1 − P18 ≈ 10−10.
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Figure 5.29: The eigenvalue spectrum from the eigenvalue decomposition of
the colour change simulation

The reduced order model is obtained by employing Galerkin projection of
the 18 POD basis functions Φ =

(
ϕ1 ϕ2 . . . ϕ18

)
onto the original model

describing the temperature distribution.

Figure 5.30 shows the comparison between the results of the reduced order
model and the original model for the measured tempearature profiles at the
glass melt surface (configuration of the measurements is shown in Figure 5.10)
and at the outlet (configuration of the measurements is shown in Figure 5.12).
The conditions simulated are the same as in the snapshot generation. From
Figure 5.30, it is clear that the reduced order model can capture the dynamics
of the original model quite well.

The plot of the average absolute error of every grid point ǭ(x) at location
x ∈ X is given in Figure 5.31. The average absolute error ǭ(x) is defined in
(5.16).

The highest ǭ(x) is about 0.08 K, observed in the glass melt. The temperature
variations in the glass melt during the simulation is about 20 K. Hence, the
deviation of the reduced model from the original model accounts for less than
0.5% of the temperature changes. The changes of the calculated heat conduc-
tivities due to the mixing of green container glass with flint container glass
are shown in Figure 5.32. The operating temperature of the glass melt feeder
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Figure 5.30: Reduced and original temperature profiles during colour change
process at the measurement points T1 to T6. The points T1 to T3 are the
measurement points at the surface (Figure 5.10) and the points T4 to T5 are
the measurement points at the outlet (Figure 5.12)
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Figure 5.31: The plot of the average absolute error for both grid cells of the
walls and the glass media

is around 1480 K and the effective heat conductivity of the green container
glass is varying around 7 W/m.K. For this operating temperature, the flint
container glass melt has an effective heat conductivity of around 84 W/m.K.
Figure 5.32 shows how the heat conductivity changes from around 7 W/m.K
to heat conductivity of the flint glass melt. The heat conductivity of every
measurement location as plotted in Figure 5.32 is calculated from the temper-
ature calculated by the original and the reduced order model. It is clear from
Figure 5.32 that the reduced order model can follow the drastic change of the
heat conductivity distribution.

In the simulation, the crown temperature is also varied. At the measurement
points in the glass surface (T1 to T3), the effect of crown temperature is more
evident. Although the heat conductivity also changes in the surface, the heat
transfer from the crown temperature is more dominant that the temperature
does not drop drammatically. At the measurement point outlet bottom (T6),
the effect of crown temperature is small and the increase of the heat conduc-
tivity makes the temperature drop quite significantly at this point.
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Figure 5.32: Heat conductivity calculated by the temperature distribution
from the original and the reduced models at the measurement points T1 to T6.
T1 to T3 are the measurement points at the surface (shown in Figure 5.10) and
T4 to T5 are the measurement points at the outlet (shown in Figure 5.12)
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5.6.2 Acceleration of the model simulating colour change in

feeder

The reduced order model of the temperature changes during the colour change
process is 2.26 times faster than the original model. The reduced order model
saves the computational effort needed to find the solution of the discretized
equations. However, since the original model is a set of nonlinear PDE’s, the
parameters of the discretized equations also have to be updated. To construct
a faster reduced order model, MPE (Missing Point Estimation) is applied again
in this case.

Before the selection of points are made, similar to the previous cases, the
grid (obligatory) points which are adjacent to the boundary cells defining
the crown temperature, inlet temperature and pull rate are taken first. The
remaining points are taken based on the MPE criteria as proposed in section
4.3.1 and section 4.3.2. The feeder model is symmetrical along the width (z-
direction), therefore from 3800 points, only 1900 points are considered. There
are 265 obligatory points, so the remaining points have to be chosen from the
remaining 1635 points.

Application of the MPE selection criterion 1
In this approach (refer to section 5.5 for previous examples and section 4.5
for theoretical background), the deviation Φ̃⊤Φ̃ from the complete POD basis
inner product Φ⊤Φ is considered.

The ordered exk
as calculated in (5.21) is shown in Figure 5.33.

Based on Figure 5.33, the mask X0 is constructed from the locations of the 265
boundary points and the extra points with smallest exk

. The number of extra
points points is chosen such that the condition number of Φ̃⊤Φ̃ constructed
by the points located in X0 is close to the condition number of Φ⊤Φ. Figure
5.34 shows the condition number calculated according to the Procedure 5.5.1.
The condition number plot shows that there is no real asymptotic decrease of
the condition number until the extra 400th point where the condition number
is about 7. The plot of the condition number flattens between 400 and 1000
points. There are extra 400 points taken based on this criterion. In total,
together with the 265 boundary points, there are 665 points in X0.

The chosen points based on this criterion is shown in Figure 5.35 for a cross
section of the glass melt.

The number of points, 665 points can be further reduced by implementing the
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Figure 5.34: The plot of the condition number of Φ̃Φ̃ with Φ̃ is the restriction
of POD basis Φ at X0. The restricted domain X0 is constructed from the
procedure 5.5.1

greedy algorithm (Algorithm 5.5.2).

After implementation of thegreedy algorithm, 200 extra points are selected
and combined with the 265 boundary points. In total, there are 465 points
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Figure 5.35: The selected points (shown by the grey grid cells) based on MPE-
Criterion 1 in the glass melt 10 cm below the glass surface.

taken for the POD-MPE reduced order models. The corresponding condition
number of Φ̃⊤Φ̃ is 4.637.

The comparisons between the original model, POD model with 18 basis func-
tions, POD-MPE with 665 points and 18 basis functions, and POD-MPE with
465 points and 18 basis functions are depicted in Figure 5.36. For all models,
symmetry is considered.

Table 5.5 shows the maximum error average (calculated by (5.31)) and the
resulting computational gain with respect to the computing time of the original
model. From the results tabulated in table 5.5, it is clear the POD-MPE

Table 5.5: Comparison between POD and POD-MPE models

Model Maximum Average Computational
Type Absolute Error Gain

(Maximum of (5.16) over all x ∈ X)

POD 0.081◦ C 226%
POD-MPE-665 0.082◦ C 527%
POD-MPE-465 0.13◦ C 754%

model can still follow the dynamics of the original model very well. The
resulting reduced order model with MPE based on 465 points is 7.54 times
faster than the original model and this corresponds to 8.5 times faster than
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the real time because only temperature is reduced. This acceleration factor is
not adequate for the application of model based predictive controllers (MPC)
which require a model which is more than 50 times faster than real time. If
other process variables such as velocities are also reduced, then computational
gain of about 30 times faster than real time is feasible.

To enhance the computational gain with respect to real time without reducing
other process variables, the model can be simulated in parallel processors that
the calculation of the model parameters and the construction of the reduced
matrices can be divided into several processors. For control design, it is de-
sirable to have a low order model because it is going to be more tractable for
the optimization modules. Even though the original model is computed fast,
but if the state dimension is large, then solving the optimization problem will
still be computationally demanding.

Application of MPE Criterion 2

As in the case of selection criterion 2, from the 1635 remaining points, the
quantity exk

is calculated from (5.27) for each point and ordered. The plot of
exk

is shown in Figure 5.37. There is a steep change starting from the 1400th
point, implying that beyond 1400th points, the remaining points are no longer
important according to selection criterion 2.

The condition number of Φ̃⊤Φ̃ constructed from the 265 boundary points and
the extra points based on the order of exk

is shown in Figure 5.38

Compared to the condition number resulted from the ordering of criterion
1 (Figure 5.34), the condition number of the Φ̃⊤Φ̃ based on criterion 2 is
decreasing slower. Based on Figure 5.38, 1200 extra points are taken. In total,
there are 1465 points seelcted and this corresponds to a condition number of
Φ̃⊤Φ̃ equals 24.2553.

To compare the application of criterion 1 and criterion 2 in the colour change
simulation, compare Figure 5.39 and Figure 5.35. Figure 5.39 shows the points
selected by taking the first 400 points with the smallest exk

calculated by
(5.27) and the obligatory points while Figure 5.35 shows the points selected
by taking the first 400 points with the smallest exk

calculated by (5.21) and
the obligatory points. It is clear the points chosen based on the selection
criterion 2 are located very closely together. Since they are located very close
to each other, they are dependent on each other and this leads to strong linear
dependency when they are combined together to form X0.
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Figure 5.36: Reduced and original temperature profiles at the measured points
T1 to T6 during the colour change simulation. The reduced order models are
the POD, the POD-MPE with 665 points and the POD-MPE with 465 points.
The POD-MPE models are built from points selected by Criterion 1
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Figure 5.37: The plot of the ordered exk
based on the criterion 2 of point

selection. The quantity exk
is calculated for each of the remaining 1635 points

(5.27)

To reduce the number of points required to construct the POD-MPE reduced
order model, the greedy algorithm is applied again. The first mask X0 is
constructed from the location of the 265 boundary points and the first point
with minimum exk

calculated by (5.27). The next point is added to X0 which
gives the best condition number of Φ̃⊤Φ̃ when combined with the already
chosen X0.

From the implementation of the greedy algorithm (Algorithm 5.5.2), 200 extra
points are taken. This corresponds to condition number of Φ̃⊤Φ̃ of 4.5306.

Table 5.6 enlists the maximum of average absolute error and the computational
gain obtained by employing the various reduced models The maximum of
the average absolute error of POD-MPE models construced from 1465 points
are worse than the POD-MPE models constructed from the 665 points with
selection criterion 1 since the condition number Φ̃⊤Φ̃ for 1465 points based on
selection criterion 2 is higher than the condition number of selection criterion
1. As a result, the estimation of the temperature field by selection criterion 2
is worse than the estimation based on less points by selection criterion 1 but
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Figure 5.38: The plot of the condition number constructed from 265 boundary
points and the extra points based on the ordering of EJ

Figure 5.39: Some of the 665 chosen points (shown by the grey grid cells)
based on Criterion 2 at the cross section of the glass melt 10 cm below the
glass surface
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Table 5.6: Comparison between POD and POD-MPE models

Model Maximum Average Computational
Type of Absolute Error Gain

(Maximum of (5.16) over all x ∈ X)

POD 0.081◦ C 226%
POD-MPE-1465 0.1750◦ C 289%
POD-MPE-465 0.1866◦ C 754%

with better condition number.

Figure 5.40 shows the comparisons of the temperature fields obtained by the
original, POD, POD-MPE selection criterion 2 with 1465 points and POD-
MPE selection criterion 2 with 465 points. In conclusion, selection criterion-2
is more prone to linear dependency compared to the selection criterion-1. This
is due to the fact that the selection in criterion 2 is related to the approximation
of the temperature data. As a result, only the points varying in the same range
will be chosen and normally these points are closely located together.

5.6.3 Performance of MPE-based reduced models

In contrast to other numerical acceleration techniques [16], where the accelera-
tion is focused only on how to solve a high-dimensional discretized equations,
MPE enables characterization of the important points. In turn, it enables
building an approximating models based on the governing equations of the
several points only.

The acceleration factor of the POD-MPE reduced models with respect to real
time depends on the structure of the original model. For example, the solver
module which comprises the subroutines calculating the model parameters and
the subroutines solving the discretized equations consumes 75% of the total
computing time. If the total computational time is 2 times faster than real
time, then manipulation of the solver modules by MPE method can only lead
to a reduced order model which is maximum 8 times faster than real time.

To enhance the computational gain of the reduced order model, the computa-
tional gain of the original model has to be enhanced as well. Currently many
computational packages also have features for parallel programming, where
calculation of model parameters can be conducted in parallel.
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Figure 5.40: Reduced and original temperature profiles at measured points T1

to T6. Reduced order models are the POD, the POD-MPE with 665 points
and POD-MPE with 465 points. The points are selected by MPE Criterion 2



214 Reduced Order Modeling of a Glass Melt Feeder

If many sequential computing procedures can be replaced by parallel com-
puting, then there will be sigmificant increase in the computational gain. The
performance of a computing software will also be affected by other factors such
as efficient data transfer between subroutines, efficient allocations of computer
memory, and efficient data storage. A more detailed investigation on the di-
visions of the computational processes in the simulation model is required in
order to assess the feasibility of using POD-MPE reduced order models for
model based control.

From the case studies discussed in this chapter, the final POD-MPE model
is 7-8 times faster than real time because only the temperature is reduced.
In general, this acceleration factor is adequate for process monitoring but
not sufficient enough for the application of Model Based Predictive Controller
which normally require a model which is at least 50. Provided the reduction
techniques are also applied to velocity fields, then acceleration factor of about
25-30 times faster than real time is attainable. Since the capacity of computer
processors are doubled every year, application of Model Based Predictive Con-
troller with nonlinear models as the base for glass furnaces is feasibe in the
near future.

The POD-MPE models are still taking the changes of the physical properties
into account and faster than original model. The controller designs are usually
based on the linear models because linear models are very fast since there are
no updates of model parameters. On the other hand, the prediction provided
by the linear model is usually not reliable when severe nonlinearity exists,
for example during glass colour change. In the controller design, a correction
factor is usually added to the linear model to take into account the discrep-
ancies between the original model and the estimation from the linear model.
The POD-MPE models are faster than the original model and still take the
nonlinearities into account. These models can provide a correction factor in
the prediction of the linear model.

The correction term Fcor(t) is introduced as function of the discrepancy be-
tween the variable Torg calculated by the original model and Tlin calculated
by the linear model:

Fcor(t) = f(Torg(t) − Tlin(t)) (5.28)

The simplest function is for instance by introducing a proportional constant
Fcor = K(Torg(t) − Tlin(t)). Alternatively, the correction factors can also
be added to handle the discrepancies between the predictions of the POD-
MPE models and the linear models. In this way, although the POD-MPE
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reduced model may not be fast enough for controller’s design, it can improve
the prediction quality of the linear model.

5.7 Summary and conclusions

This chapter discusses the reduced order modeling of a glass melt feeder for
estimations of the temperature distribution in the glass melt and in the re-
fractory walls. The introduction to glass melt processes in section 5.1. The
original model of glass melt feeder canal is given in section 5.2. Proper Or-
thogonal Decomposition is also applied to original the feeder model and the
results are presented in Section 5.4.

Since the nonlinear reduced order model is still computationally expensive,
we propose a Missing Point Estimation approach, in which we estimate the
dynamics of the reduced states based on the partial equations of the original
model. Two selection criteria have been proposed in Chapter 4 (Section 4.3.1)
and (Section 4.3.2). The comparisons of the results of both criteria show that
criterion 1 yields a set of points which are more independent than criterion 2.
It is shown that by estimating POD coefficients based on partial knowledge
of the original data, we can still follow the original dynamics reliably. In this
chapter, the number of points selected by both criteria is further reduced by
implementing the greedy algorithm.

In conclusion, the step-by-step procedure of deriving reduced order models for
CFD models are as follows:

1. Derive the the governing PDE’s of the CFD models and the boundary
conditions, defined over a spatial domain X and over a specific time
period;

2. Discretize the PDE’s (CFD software produces the discretized equations
automatically);

3. Run simulations by implementation of the typical input variations, usu-
ally available from the measurement data of the real plant operations;

4. Collect the snapshots of the variables from the original model we would
like to approximate by the reduced order model, for example temperature
data;
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5. Derive the POD basis functions from the snapshot data by implementing
Algorithm 2.4.10. If the number of grid cells is larger than the number of
time samples, it is recommended to implement the method of snapshots
(Appendix A);

6. Derive the model of the POD basis coefficients by implementing the
Galerkin projection on the discretized equations (see section 5.3.2);

7. To accelerate the model reduction computations in the case of time vary-
ing parameters or nonlinear PDE’s, select the points which dominantly
characterize the dynamics of the process. Selection can be made based
on MPE-criterion 1 (section 5.5.1) or MPE-criterion 2(section 5.5.4).
The number of points should be chosen such that the condition number
of Φ̃⊤Φ̃ constructed from the limited number of points is well below 100.

8. To accommodate the changes of input parameters u(k), it is essential to
include the grid points which are located adjacent to the location of the
actuators.

9. If the number of points which have to be taken is still too large or there
are too many selected grid points located closed to each other, employ
the greedy algorithm to optimize the point selection

10. Derive the model of the POD coefficients by conducting the Galerkin
projection only on the equations of the selected points.

11. The reduced order model describing the dynamics of the POD coefficients
is ready
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6.1 POD as a model reduction method

In this thesis, the method of proper orthogonal decomposition (POD) has been
proposed as a model reduction technique for high order models obtained from
the discretization of PDE’s. Such models are developed in systems for which
mass, momentum, and heat transfer processes are simulated. In this thesis,
the solutions of PDE’s are functions of both spatial and temporal coordinates.
Usually, the main bottleneck for fast simulation by PDE-based models is the
fine discretization of the spatial domains.

The POD method is characterized by the property to describe the spatial dis-
tribution of the relevant physical variables in terms of a set of orthonormal
basis functions. These basis functions are selected from observed data and
are optimal in a well-defined sense (section 2.4). In the numerical models,
the spatial domain is discretized into a high number of grid cells, while in
POD models, the spatial distributions are described by the first few and most
relevant POD basis functions. The time-dependent characteristics of the vari-
ables are given by the time varying coefficients of the POD basis functions.
The model of the time varying coefficients is referred to as the reduced order
model, and is obtained by projecting the POD basis functions onto the orig-
inal governing equations. Throughout the results presented in this thesis, it
is shown that with very few POD basis functions (less than 1% of the num-
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ber of grid cells), the temporal and spatial dynamics of the variables can be
approximated very well.

The POD basis functions are optimal for the process variable data from which
the POD basis functions are derived. This is demonstrated in Chapter 2 when
the approximation of a wave propagation model by POD basis functions is
compared to the approximation by classical Fourier modes. The POD ba-
sis functions are shown to approximate the simulation data better than the
Fourier modes.

Since the POD basis functions are derived from the simulation or measurement
data of the process variables, the validity of the reduced order model will also
depend on the quality of the data set. If the data set sufficiently represents
the typical variations of the system, then the reduced order model will be
valid for simulations within this operating range. In Chapter 3, it is shown
for the one-dimensional heat conduction model that it is very essential to
excite all relevant spatial dynamics 1 because the information about the spatial
dynamics is incorporated in the POD basis functions. On the other hand, in
Chapter 3 we have shown that for diffusive processes, the choice of the time-
varying dynamics of the excitation signals does not really affect the quality of
the reduced order model.

The reduced order model can be used as a base model for controller design. In
Chapter 3, a Linear Quadratic Regulator (LQR) controller has been designed
for a two-dimensional heat conduction model on the basis of the reduced order
model. Even though the original model is a linear one, it is very difficult to
solve the optimization problem with as the model is high order. The control
and optimization problem becomes very tractable if the model can be reduced
based on a few number of POD basis functions inferred from the open loop
data. It is shown in Chapter 3 that the desired temperature distribution can be
controlled using the reduced order model as the base-model for the controller.

6.2 Acceleration of POD model reduction method

Although a very small number of POD basis functions can approximate the
original variable distribution in the spatial domain, the computational load
of the resulting reduced order model is still quite high. In complex nonlinear

1variations of the variable distribution in the spatial domain, e.g variations of the tem-
perature field in the spatial domain
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cases, the reduced order model is often only 2-3 times faster than the original
model. This is due to the fact that the reduced order model is built by using
the original model and the original model is a nonlinear one. As a result, the
parameters of the original models have to be calculated before the reduced
order model can be constructed. This is the main bottleneck.

The resulting reduced model usually has significantly lower dimension than
the original model that preservation of the sparsity structure is not really an
issue here. The matrices in the original CFD models have sparse structures
but the dimensions are high that the solutions must be found through longer
iterative procedures. Although the matrices of the reduced models have dense
structures, the dimensions are much lower that the computational issue is
more in the construction of the reduced model rather than in solving a small
scale dense system.

To improve the computational efficiency of the reduced order model, the
method of missing point estimation (MPE) is proposed. The method enhances
the computational effort needed to update the parameters of the reduced order
models. The MPE method is based on the estimation of POD coefficients from
partial observation or from information of a selected number of positions in
the spatial domain [34, 15, 72]. In this thesis, this method has been extended
to dynamical systems, where the model of the POD coefficients is derived from
a limited number of equations describing the dynamics of a limited number of
grid points.

The selection of the grid points has been made in such a way so that the
estimations of the POD coefficients are still close to the calculated POD co-
efficients derived the ”conventional”POD method. Two criteria have been
proposed to select the points. From the comparisons between the selection
criterion 1 and the selection criterion 2 in Chapter 5, the points selected by
the selection criterion 2 is more closely located together. This is not efficient
since the dynamics of the variables located at the selected grid points are de-
pendent on each other. Therefore from the results of the comparisons, it is
better to use the selection criterion 1. The selection of points based on both
criteria can be further optimized by applying the greedy algorithm [72] as
described in Chapter 5.

Both model reduction methods based on the conventional POD and the com-
bination with MPE are applied to a nonlinear heat conduction model and the
resulting reduced order model attains satisfactory computational gain as de-
scribed in Chapter 4. The reduced order model by POD-MPE is 150 times
faster than the original model, while the classic POD model is only about 10



220 Conclusions and Recommendations

times faster than the original one. The POD-MPE reduced order model is
very accurate, the deviation from the original model is also very low. Fur-
ther, in Chapter 4, the POD-MPE reduced order model is also used as a base
model for LQR controller design. Despite the fact that the POD-MPE model
is only an approximation of the POD model, the temperature distribution of
the plate can be controlled. Hence, POD-MPE is a promising model reduction
technique which can lead to a much faster prediction than the conventional
model reduction method. The resulting model can also be used as a basis for
control and optimization modules.

6.3 Acceleration of CFD models for glass process-

ing simulations

The method of POD-MPE is also implemented on a glass simulation software.
The CFD model with the reduction of the temperature field of the glass feeder
is about 7-8 times faster than real time. This is adequate for process moni-
toring and online tuning. On the other hand, this acceleration factor is not
sufficient for control system design where a computational speed of at least
50 times faster than real time is desired. In the glass simulating software,
the model is more complex because more equations (calculation of the con-
vection terms, calculation of material properties, and interfaces with other
subroutines for data transfer) contribute to the computational effort. If the
reduction techniques implemented in this PhD thesis are extended to include
process variables other than temperature (such as the velocity and pressure
fields), then a further acceleration can be achieved with a factor that will be
more or less proportional to the number of variables. If the velocity fields
and pressure are included in the reduction procedure, then an acceleration
factor of about 25-30 times faster than real time is feasible. Note that the
acceleration factor also depends on the quality of the computing mainframe.
Following Moore’s Law [46], the capacity of computing processors is doubled
every year. Hence, in a near future, design of model predictive control based
on nonlinear reduced order models is certainly feasible.
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6.4 Applicability of the developed reduced order

modeling techniques

In this PhD thesis, the reduced order modeling techniques are applied mainly
for heat transfer processes. However, this does not imply that the techniques
developed in this thesis are restricted to the domain of heat transfer processes
only. The POD and MPE techniques can be applied to reduce models in other
application domains such as large-scale electronic systems, aerodynamics and
large-scale ODE based systems typically found in mechanical applications.
The effectiveness of reduced order modeling developed by the proper orthogo-
nal decomposition approach depends on the smoothness of the data collected
from the measurements or simulations. The case studies applied in this PhD
thesis all show smooth dynamics, where discontinuities do not occur. If the
investigated system exhibits discontinuous dynamics, then the reduced order
modeling based on this approach does not work well since it is difficult to
obtain a POD basis numerically from the data with discontinuous dynamics.

6.5 Recommendations for future research

The following are recommendations for future research:

1. Application of the POD-MPE model in the controller designs
For feedforward controllers which require fast and long predictions, lin-
ear models are still preferable as the linear models are fast and reliable
for a certain operating point. If there exists a severe nonlinearity in
the ongoing process such as a colour change of glass in glass furnaces,
then linear models are not adequate. The POD-MPE model takes the
nonlinearities into account and is faster than the original model. In this
PhD thesis, the POD-MPE model is applied to reduce the temperature
model. If the POD-MPE models are also applied for the velocity fields
as well, then acceleration factor of 25-30 times faster than real time is at-
tainable. In that case, development of model-based predictive controller
for POD-MPE models will be feasible in the near future.

Alternatively, the POD-MPE model can be used as a representation of
the original model even though it is not as fast as the linear model. The
information from the POD-MPE model can be used by the controller
to improve the prediction of the linear models ince predictions provided
by the linear model may not be adequate if severe nonlinearities exist.
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For example, by introducing a correction term Fcor ((5.28)) in the state
space equation of the linear model as a function of the discrepancies
between the prediction of the POD-MPE models and the linear models.

2. Application of parallel computing
The performance of POD-MPE model is related to the original model.
To further assess the benefits of POD-MPE method, there should be
clear indications on the the computational burden of the pre-processor,
solver, and the post-processor modules. For example, if the solver mod-
ule consumes 90% of the total computational time, the maximum com-
putational gain which can be attained by applying reduced order model
is 10. The computational gain of the reduced models with respect to
real time will depend on the computational gain of the original model
with respect to real time. If the original model is 10 times faster than
real time and the POD-MPE model is 5 times faster than the original
model, then this is already adequate for the application of the Model
based Predictive Controller.

Application of parallel computing will significantly improve the compu-
tational tractability of both the original and the reduced models as the
update of the matrix parameters can be divided into several processors.
Many computational software packages, including the new generation
of the glass simulating software GTMX developed by TNO-TPD in the
Netherlands have parallel computing features. The application of paral-
lel computing will both accelerate the computational time of the original
and the reduced order model with respect to real time.

3. Reduced order modeling of multivariable signals
In this thesis, the reduced order modeling is conducted for the tempera-
ture field. In the future, it will be desirable to also reduce multivariable
signals such as the velocity vector in a 3 dimensional Cartesian coor-
dinate system. In [6], the 3-dimensional velocity field is reduced by
individually treating every component of the velocity vector as a vari-
able such as temperature. The POD basis functions are then computed
for each velocity component separately and a separate reduced order
model is constructed for each component. This is conducted because in
the numerical models, the components of the velocity vector are solved
sequentially and there are different models built for each component.

The componentwise treatment of multivariable signals may not be opti-
mal. To handle multivariable signal, mathematical grounds of orthonor-
mal basis functions such as the concept of Hilbert space for multivariable
signals and the definition of inner product have to be investigated. Since
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the components of multivariable signals co-exist and interact with each
other, it is desirable to have a set of multivariable POD basis functions
as well.

Reduced modeling of multivariable signals will also enhance the compu-
tational gain of the reduced order model significantly as the reduced
order model immediately solves the whole components of the multi-
variable signal instead solving them sequentially. On the other hand,
the algorithm employed currently in the computational software which
solves the velocity components separately has to be modified so that
the discretized equations governing the multivariable signals such as the
velocity components can be solved simultaneously.

4. Robustness analysis of the reduced order models
Throughout this thesis, it is assumed that the reduced order model is
valid (the maximum deviation from the original dynamics is below 10%)
within the operating range of the collected snapshot data. In the future,
it will be beneficial to have a more precise detail about the validity range
of the reduced order model in terms of the physical parameters. For
example, it will be important to know whether the reduced order model
will still be a valid model if the parameters such as heat conductivity or
viscosity are varying between specified minimum and maximum values.
In nonlinear PDE’s, changes of the physical parameters results in the
change of the spatial distribution that the POD basis functions may not
be able to approximate the new spatial distribution anymore. If the
limitation of the reduced order model can be determined in terms of the
physical parameter variations, then it will help engineers and operators
in the deciding whether a new reduced order model has to be made or
whether the existing models are already adequate.

As a first step, uncertainties can be introduced as time varying distur-
bances which affect the estimations of the time-varying POD coefficients.
In control engineering, several structures of time-varying uncertainties
of a state space model can already be analyzed that the concepts can
also be applied to reduced order model.

5. Stability analysis of the MPE-POD reduced order models
There is no guarantee [57] that if the original model is internally stable,
the reduced order model will also be stable. Internal stability here means
that given an initial non-equilibrium condition, the system will settle
down to the equilibrium condition in the absence of the external inputs.
In [57], an analysis of the stabilitity guarantee for POD based reduced
order models is given for a class of nonlinear ODE models. In this thesis,
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we propose an MPE-POD reduced order model, where the reduced order
model is derived from a part of the original states. Since the MPE-POD
based models are also used for predictions and controller design, it will
be desirable to have a guarantee that the MPE-POD model will also
preserve the stability of the full-order model.

6. Use of adaptive POD basis functions
The POD basis functions are guaranteed to be valid only for the snapshot
data (from which the basis functions are derived). On the other hand,
the reduced order model built from the POD basis functions is also ex-
pected to be able to simulate other conditions than the ones collected in
the snapshot data. Adaptive POD basis functions are proposed in [34],
where the POD basis functions are updated by a neural network algo-
rithm. Alternatively, new POD basis functions can also be constructed
from knowledge of several points in the spatial domain[34, 15]. If the
POD basis functions can be updated from the knowledge of several mea-
surement data or from the original simulations, the validity range of the
reduced order model will also be broadened.

7. Combination of MPE with the Empirical Balancing approach
In POD, all states of the system are considered equally important. In
the balanced model reduction technique [62, 39], there is weighting be-
tween the states of the system and the desired outputs (usually sensor
or locations which considered more important than the others). The
computation of the basis functions of the balanced model reduction tech-
nique was demanding, but Lall et.al [39] proposed an empirical balanc-
ing approach which computed the basis functions in a similar way as
the computation of the POD basis functions. The MPE approach can
also be implemented for other kinds of basis functions. The application
of MPE with basis functions from the empirical balancing approach can
improve estimation on the locations which are more important than the
others. This is applicable for example in the case of glass melt feeder,
where the temperature at the outlet points are more important than the
temperature at other locations.

8. Analysis of the spatial structures of the POD basis functions
The POD basis functions are calculated by stacking all the snapshot
data of every time sample in one dimensional vector. This results in
high dimensional data although the spatial domain is only divided into
less than 100 parts in every direction. A possible Cartesian structure of
the spatial coordinates is lost in this way. In some cases, the variations
of a variable may also only vary in one direction. This may indicate that
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the spatial variations may also be decomposed as functions of each coor-
dinate direction. As a result, it is possible that the POD basis functions
can also be decomposed as individual basis functions in each coordinate
direction. For example in the three dimensional Cartesian coordinate,
each POD basis function ϕi may be able to be described as function of
POD basis function in each direction, thus ϕi = f(ϕi(x), ϕi(y), ϕi(z)).
Since each direction is discretized into a much lower number of divisions
than the overall number of grid cells, the decomposition of POD ba-
sis functions into individual basis functions in each coordinate direction
may lead to a more manageable data dimension.
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A

The Method of Snapshot

A POD basis is obtained by an eigenvalue decomposition of the correlation
matrix C ∈ R

K×K where K is the number of grid points. The correlation
matrix is built from the snapshot data Tsnap ∈ R

K×N where N is the number
of snapshots by setting C = 1

N T⊤
snapTsnap.

Solving an eigenvalue problem is numerically intensive. Usually, the number
of snapshots is less than the number of grid points. If N < K, Sirovich
[29] proposed the method of snapshot to find the POD basis based on the
eigenvalue decomposition of an N×N correlation matrix instead of K×K. The
method is named the method of snapshot to refer to the number of snapshots
(not number of grid points) solved in the eigenvalue problem.

Suppose N < K. The step-by-step POD basis derivation by the method of
snapshot is as follows:

1. Construct the temporal correlation matrix based on the snapshot data:

CN =
1

N
T⊤

snapTsnap

2. Conduct an eigenvalue decomposition of CN :

CNΨi = λiΨi, i = 1, . . . , n

where λ1, . . . , λn are the n largest eigenvalues of CN . Note that if Tsnap

has dimension of K×N with N is the smallest dimension, then the rank
of Tsnap is maximal N . The number of nonzero eigenvalues is less or
equal to the maximum rank.

3. The eigenvalues of the temporal correlation matrix CN are equal to the
eigenvalues of the C := 1

N T⊤
snapTsnap, so truncation can also be based

on Λ obtained by eigenvalue decomposition of CN . Decide about the
truncation level from

Pn =

∑n
i=1 λi

∑N
i=1 λi
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4. Let Ψ1, . . . ,Ψn denote the eigenvectors of CN corresponding to the n
largest eigenvalues, and compute, for i = 1, . . . , n:

ϕi :=
1

‖ TsnapΨi ‖
TsnapΨi

Then {ϕi}n
i=1 is a POD basis.

Proof A.0.1 Obviously ‖ ϕi ‖= 1. Furthermore, we have

1

N
T⊤

snapTsnapΨi = λiΨi

Premultiplying with Tsnap yields

1

N
TsnapT

⊤
snapTsnapΨi = CTsnapΨi

=‖ TsnapΨi ‖ Cϕi

= λiTsnapΨi = λiϕi ‖ TsnapΨi ‖

Hence, Cϕi = λiϕi so that ϕi is an eigenvector of C with eigenvalue λi.

Remark
If the smallest dimension of Tsnap is higher than 103, then computation of
eigenvalue decomposition is numerically quite tedious. Software package such
as MATLAB offers the possibility of finding the first n largest eigenvalues
iteratively instead calculating all eigenvalues.



B

LQR design based on nonzero reference

signals

The linear quadratic regulator (LQR) is an optimal control strategy for a given
linear and usually time-invariant dynamical system. The control strategy is
designed so as to minimize a given quadratic function in the state and the input
of the system. Translated properly, this strategy achieves an optimal tracking
of a given reference trajectory with minimal control (or steering) energy.

The LQR controller is designed for a system that is represented in state space
form by the equations:

z(k + 1) = Asz(k) + Bsu(k), z(0) = z0 (B.1)

y(k + 1) = Csz(k) (B.2)

where z ∈ R
n is the state of the system (such as the POD coefficients), As ∈

R
n×n, Bs ∈ R

n×nu , Cs ∈ R
n×ny are the state space matrices and u ∈ R

nu is
the vector of the inputs or manipulating variables. The outputs y ∈ R

ny can
be the outputs of interest or the measurement points.

Assume that a desired reference trajectory r(k) is given for k = 0, . . . , Nopt,
where r has the same dimension as z.

Consider the cost function which has to be minimized:

J(z0,u) =

Nopt−1
∑

k=0

[

(r(k) − z(k))⊤Q(r(k) − z(k))
]

︸ ︷︷ ︸

deviation from references

+

Nopt−1
∑

k=0

[

u⊤(k)Ru(k)
]

︸ ︷︷ ︸

cost of input energy

+ z⊤(Nopt)Ez(Nopt)
︸ ︷︷ ︸

deviation at the last prediction step

(B.3)

where Q ∈ R
n×n is the weighting matrix for the states, R ∈ R

nu×nu is the
weighting matrix for the input signals and E ∈ R

n×n is the weighting matrix
at the end of the prediction horizon Nopt. We assume that Q = Q⊤ ≥ 0,
R = R⊤ > 0 and E = E⊤ ≥ 0.
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Control problem:
The controls u are of state feedback type. That is, a control u(k) with k =
0, . . . , Nopt is feasible if there exist functions fk such that

u(k) = fk(z(k), r(k), r(k + 1), . . . , r(Nopt))

Let U denote the set of all such controls.

Given the state space model as in (B.1), the cost function as in (B.3), the
reference trajectory r, and the class of feasible control, U , find u∗ ∈ U such
that

J(z0,u
∗) ≤ J(z0,u) ∀u ∈ U (B.4)

The optimal control input u∗ will be a function of the reference r and the state
z. To solve the minimization problem, we introduce two mappings P and v.
P is a mapping from the time set T := {0, 1, . . . , Nopt} to the set of real valued
symmetric matrices of dimension n × n. Hence P : T → R

n×n. Similarly, v is
a mapping from the time set T to R

n. These mappings are defined recursively
by the solutions of (B.5) and (B.6).

P(k) = A⊤
s P(k+1)As+Q−A⊤

s P(k+1)Bs(R+B⊤
s P(k+1)Bs)

−1B⊤
s P(k+1)As

(B.5)
To calculate P(k), define P at the end of the optimization horizon Nopt as
P(Nopt) = E where E ∈ R

n×n and calculate (B.5) backward from Nopt to k.

Let also v : T → R
n be the unique solution of

v(k) =
(

A⊤
s − A⊤

s P(k + 1)Bs(R + BsP(k + 1)B⊤
s )−1B⊤

s

)

v(k + 1) − Qr(k)

(B.6)
In this case, v (Nopt) = 0.

To find the optimal control input u∗ which minimizes (B.4) , define V (k) as a
function of P(k) and v(k) :

V (k) := z⊤(k)P(k)z(k) + 2v⊤(k)z(k)

Then find V (k + 1) − V (k):

V (k + 1) − V (k) = z(k)⊤(k + 1)P(k + 1)z(k + 1) + 2v⊤(k + 1)z(k + 1)

− z⊤(k)P(k)z(k) − 2v⊤(k)z(k) (B.7)
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Substituting the state equation (B.1) into (B.7) results in:

V (k + 1) − V (k) = (Asz(k) + Bsu(k))⊤P(k + 1)(Asz(k) + Bu(k))

+ 2v⊤(k + 1)(Asz(k) + Bsu(k)) − z⊤(k)P(k)z(k)

− 2v⊤z(k) (B.8)

Opening the terms in brackets in (B.8) yields:

V (k + 1) − V (k) = z(k)⊤A⊤
s P(k + 1)Asz(k) + u(k)⊤B⊤

s P(k + 1)Bsu(k)

+ u⊤(k)BsP(k + 1)Asz(k) + z⊤(k)A⊤
s P(k + 1)Bsu(k)

+ 2v⊤(k + 1)Asz(k) + 2v⊤(k + 1)Bsu(k)

− z⊤(k)P(k)z(k) − 2v⊤(k)z(k) (B.9)

Note that:

2v⊤(k + 1)Asz(k) = v⊤(k + 1)Asz(k) + z⊤(k)A⊤
s v(k + 1) (B.10)

2v⊤(k + 1)Bsu(k) = v⊤(k + 1)Bsu(k) + u⊤(k)B⊤
s v(k + 1) (B.11)

Substituting (B.5) in (B.9) and considering (B.10) and (B.11) results in:

V (k + 1) − V (k) = −z⊤(k)Qz(k)

+ z⊤(k)A⊤
s P(k + 1)Bs(R + B⊤

s P(k + 1)Bs)
−1 . . .

B⊤
s P(k + 1)Asz(k) + u⊤(k)B⊤

s P(k + 1)Bsu(k)

+ u⊤(k)B⊤
s P (k + 1)Asz(k) + z⊤(k)A⊤

s P(k + 1)Bsu(k)

+ v⊤(k + 1)Asz(k) + z⊤(k)A⊤
s v(k + 1)

+ v⊤(k + 1)Bsu(k) + u⊤(k)B⊤
s v(k + 1)

− 2v⊤(k)z(k) (B.12)

Introduce a notation for weighted quadratic terms:

‖ d ‖2
M= d⊤Md

The expression in (B.12) can be rewritten using the notation of quadratic
terms as:

V (k + 1) − V (k) = ‖ u(k) + (R + B⊤
s P(k + 1)Bs)

−1B⊤
s P(k + 1)Az(k)

+ (R + B⊤
s P(k + 1)Bs)

−1B⊤
s v(k + 1) ‖2

R+B⊤
s P(k+1)Bs

− (r(k) − z(k))⊤Q(r(k) − z(k)) − u⊤(k)Ru(k)

− v⊤(k + 1)Bs(R + B⊤
s P(k + 1)Bs)

−1B⊤
s v(k + 1)

+ X(k)z(k) + z⊤(k)Y (k) + r⊤(k)Qr(k)
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where

X(k) = v⊤(k + 1)
(

As − Bs(R + B⊤
s P (k + 1)Bs)

−1B⊤
s P (k + 1)As

)

− v⊤(k) − r⊤(k)Q = 0

Y (k) =
(

A⊤
s − A⊤

s P(k + 1)Bs(R + BsP(k + 1)B⊤
s )−1B⊤

s

)

v(k + 1)

− v(k) − Qr(k) = 0 (B.13)

By application of (B.6), it is obvious that both X(k) and Y (k) in (B.13) are
zero.

Introduce

Fz(k) := (R + B⊤
s PBs)

−1B⊤
s P(k + 1)As

Fv(k) := (R + B⊤
s PBs)

−1B⊤
s

The term V (k + 1) − V (k) can then be written as:

V (k + 1) − V (k) = ‖ u(k) + Fz(k)z(k) + Fv(k)v(k + 1) ‖2
R+B⊤

s P(k+1)Bs

− (r(k) − z(k))⊤Q(r(k) − z(k)) − u⊤(k)Ru(k)

− v⊤(k + 1)Bs(R + B⊤
s P(k + 1)Bs)

−1B⊤
s v(k + 1)

+ r⊤(k)Qr(k) (B.14)

Using (B.14), the cost function can now be rewritten as

J(z0,u) =

Nopt−1
∑

k=0

[V (k) − V (k + 1)]

+

Nopt−1
∑

k=0

‖u(k) + Fz(k)z(k) + Fv(k)v(k + 1)‖2
R+B⊤

s P(k+1)Bs

−
Nopt−1
∑

k=0

‖Bsv(k + 1)‖2
(R+B⊤

s P(k+1)Bs)−1

+

Nopt−1
∑

k=0

‖r(k)‖2
Q + z⊤(Nopt)Ez(Nopt)

Use the initial conditions of the recursions of P and v in (B.5) and (B.6),

together with the definition of V (k) to infer that
∑Nopt−1

i=0 [V (k) − V (k + 1)] =
V (0)−V (Nopt) = V (0)− z⊤(Nopt)Ez(Nopt) where we used that v(Nopt) = 0.
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Hence, we obtain the cost for any control u:

J(z0,u) = z⊤0 P(0)z0 + v⊤(0)z0

+

Nopt−1
∑

k=0

‖u(k) + Fz(k)z(k) + Fv(k)v(k + 1)‖2
R+B⊤

s P (k+1)Bs

−
Nopt−1
∑

k=0

‖Bsv(k + 1)‖2
(R+B⊤

s P(k+1)Bs)−1 +

Nopt−1
∑

k=0

‖r(k)‖2
Q

where the first two right hand terms and the last right hand side term are
independent from u.

The fact that the first two right hand side terms are independent from u
implies that the minimum of J(z0, u) is obtained when

Nopt−1
∑

k=0

‖ u(k) + Fz(k)z(k) + Fv(k)v(k + 1) ‖2
R+B⊤

s P (k+1)Bs
= 0

is minimal.

So the control input u(k) which minimizes (B.4) is u∗(k) defined as:

u∗(k) = − Fz(k)z(k)
︸ ︷︷ ︸

state feedback

− Fv(k)v(k + 1)
︸ ︷︷ ︸

function of reference

(B.15)

The design of LQR control design can be summarized in the following theorem:

Theorem B.0.2 Given the system (B.1), the control objective (B.4), (B.5)
and (B.6) together with the matrix sequences

Fz(k) := (R + B⊤
s P(k + 1)Bs)

−1B⊤
s P(k + 1)As

Fv(k) := (R + B⊤
s P(k + 1)Bs)

−1B⊤
s

Then the optimal control u ∈ U that minimizes (B.4) is given by

u(k)∗ := −Fz(k)z(k) − Fv(k)v(k + 1)

Remark
The LQR controller designed here is originally defined for Linear Time Invari-
ant systems. The discretization of nonlinear PDE’s usually leads to Linear
Time Varying systems. In that case, the state space matrices are time varying
with varying inputs u. For such systems, a suboptimal LQR control can be
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designed. The suboptimal control is designed for LTV systems based on the
assumption that at every time step, an LTI system is given. Within one time
step, the recursive equation (B.5) is calculated by calculating E with the state
space matrix As(k) and Bs(k). Hence, the initial value for solving (B.5) back-
wards will be different for each time step. Similarly, the recursive equation
(B.6) is also calculated for every time step using the actual state space matrix
As(k) and Bs(k). The control input u(k), is defined exactly as in Theorem
B.0.2, but P(k + 1) and v(k + 1) are recalculated at every time step.



Nomenclature

Acronyms

ARE Algebraic Riccati Equation

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

LTV Linear Time Varying

MPC Model Predictive Control

MPE Missing Point Estimation

PDE Partial Differential Equation

POD Proper Orthogonal Decomposition

Greek symbols

Λ a diagonal matrix with eigenvalues in its diagonal part

λ eigenvalue

Φ a matrix with POD basis elements {ϕ}i in its columns

Φ̃ The POD basis comprises POD basis functions correspond to the
selected points

ϕ̃ The POD basis functions whose elements correspond to the selected
points only

ϕ an orthonormal basis function, e.g POD basis function or Fourier
basis function

Latin Symbols

ã the POD coefficients obtained from MPE

a the vector of POD coefficients

T̃ the collection of the selected data in POD-MPE

C the correlation matrix
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P the solution of the Riccati Equation

T vector of states/variables in the computation of original model

Tn the variables of the original models approximated by the POD ex-
pansion

Tref the desired distribution of a process variable, e.g temperature

Tsnap snapshot collection, in finite dimensional case snapshot matrix

u vector of inputs /manipulating variables

y the vector of the outputs of interest, e.g measurement points

z the vector of the states

As square state space matrix for the states, dimension is the same as
the number of states

Bs state space matrix for input signals, dimension is the same as the
number of states times the number of inputs

Cs state space matrix for the outputs, dimension is the same as the
number of outputs times the number of states

k the k-th time step

n the number of POD basis elements in the reduced order model

x the spatial location

Sets and set operations

∀ for all

∈ an element of

/∈ not an element of

I index set, e.g the positive integers

R the set (collection) of real number

R
+ set of positive real number

T time domain

X the spatial domain
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X0 the subset of X which comprises the locations of the selected points
for MPE approach

Z the set (collection) of integers

M Set of model class

U the set of all admissible control signals, e.g control signals that does
not violate the physical constraints defined

⊂ subset of

⊆ subset to equal

⊃ supset of

⊇ supset to equal

Functions and operators

(·, ·) inner product operation

arg the argument of a function, as x is the argument of f(x)

card the maximum number of nonzero Fourier coefficients or the number
of elements in a set

col stacking a set of elements into a column vector

dim dimension, e.g length of a vector

〈·〉 averaging operation

max the maximum of

min the minimum of

∇ the divergence operator

span the set of all linear combinations

Physical parameters

κ heat conductivity [W/m.K]

µ viscosity [Ns/m2]

ρ density [kg/m3]



238 Nomenclature

σ the Stefan Boltzmann constant [W/m2K4]

cp specific heat capacity [J/kg.K]

Subscripts

B the bottom neighboring grid point

E the eastern neighboring grid point

i, j integer valued indeces

N the northern neighboring grid point

P the central grid point

r reduced

S the southern neighboring grid point

T the top neighboring grid point

W the western neighboring grid point

opt optimal

ref reference

snap snapshot
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