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Abstract. Lewy body dementia is the second most common neurodegenerative dementia and is pathologically characterized
by �-synuclein positive cytoplasmic inclusions, with varying amounts of amyloid-� (A�) and hyperphosphorylated tau (tau)
aggregates in addition to synaptic loss. A dysfunctional ubiquitin proteasome system (UPS), the major proteolytic pathway
responsible for the clearance of short lived proteins, may be a mediating factor of disease progression and of the development
of �-synuclein aggregates. In the present study, protein expression of a key component of the UPS, the RPT6 subunit of the
19S regulatory complex was determined. Furthermore, the main proteolytic-like (chymotrypsin- and PGPH-) activities have
also been analyzed. The middle frontal (Brodmann, BA9), inferior parietal (BA40), and anterior cingulate (BA24) gyrus’
cortex were selected as regions of interest from Parkinson’s disease dementia (PDD, n = 31), dementia with Lewy bodies
(DLB, n = 44), Alzheimer’s disease (AD, n = 16), and control (n = 24) brains. Clinical and pathological data available included
the MMSE score. DLB, PDD, and AD were characterized by significant reductions of RPT6 (one-way ANOVA, p < 0.001;
Bonferroni post hoc test) in prefrontal cortex and parietal cortex compared with controls. Strong associations were observed
between RPT6 levels in prefrontal, parietal cortex, and anterior cingulate gyrus and cognitive impairment (p = 0.001, p = 0.001,
and p = 0.008, respectively). These findings highlight the involvement of the UPS in Lewy body dementia and indicate that
targeting the UPS may have the potential to slow down or reduce the progression of cognitive impairment in DLB and PDD.
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INTRODUCTION

Lewy body diseases (LBD) include dementia with
Lewy bodies (DLB), Parkinson’s disease (PD), and
PD dementia (PDD). DLB and PDD account for
10–20% of dementias [1]. Clinically, both con-
ditions are characterized by progressive cognitive
decline, visual hallucinations, fluctuating cognition,
and parkinsonism. The neuropathological hallmark
lesions include �-synuclein aggregates which present
as intracytoplasmic Lewy bodies and Lewy neurites
in axons and dendrites in cortical and limbic areas
(DLB and PDD) as well as in the substantia nigra
(PDD and PD). In addition, ubiquitin-containing
inclusions [2, 3] and amyloid-� (A�) plaques are
frequently seen. The neurochemical features of DLB
and PDD include severe loss of cholinergic neurons
within the nucleus basalis magnocellularis [4] and
extensive cortical and thalamic cholinergic deficits
[5–7]. Similar to Alzheimer’s disease (AD), no
disease modifying treatments have been discov-
ered for LBDs. Cholinesterase inhibitors [8, 9] and
memantine [10] offer symptomatic benefit, but the
development of therapies targeting the mechanisms
of �-synuclein accumulation and aggregation in the
cortex are at a preliminary stage.

The ubiquitin-proteasome system (UPS), the major
proteolytic pathway responsible for the clearance of
short lived proteins and the major non-lysosomal
pathway for �-synuclein degradation [11], has in
particular been a focus of research interest. Struc-
turally, the 26S proteasome consists of a 20S
proteolytic core and a 19S regulatory complex, com-
posed of � and � subunits organized in four rings
of seven subunits, three of the �-subunits in each
ring containing the active sites at which prote-
olysis of substrate proteins occurs [12]. Each of
these three subunits has distinct proteolytic activi-
ties, described as chymotrypsin-like, trypsin-like, and
peptidyl glutamyl-peptide hydrolytic (PGPH) activi-
ties [13]. Together, these activities represent the best
characterized peptidase activities although activities
associated with cleavage of branched-chain, aromatic
and small neutral amino acids have been reported
[14]. The � subunits are involved in tethering of the
19S regulatory complex to the 20S proteasome and
serve to maintain the structural stability of the 20S
proteasome [15].

ATPase sub-units (RPT1-6) are essential for cel-
lular survival; furthermore, the ATPase sub-units are
hypothesized to recognize the polyubiquitin degrada-
tion signal and to unfold the protein substrates for their

degradation by the 20S core, thereby controlling the
access of substrates to the proteolytic core [16, 17].
The 20S catalytic core alone has a closed gate and
requires an activator to regulate its protease activity.

Dysfunction of the 26S proteasome has been
increasingly recognized as playing a fundamental
role in the pathogenesis of many neurodegenera-
tive disorders [18, 19]. Neurodegenerative disorders
share a common feature which is the accumulation
of misfolded proteins in the form of insoluble pro-
tein aggregates or inclusion bodies. Each of these
aggregates has a specific protein component depend-
ing on the disease, such as �-synuclein in Lewy
bodies or hyperphosphorylated tau in neurofibrillary
tangles in AD. However, irrespective of the character-
istic protein aggregate, ubiquitin has been identified
as an additional component of inclusion bodies in
many neurodegenerative diseases [20], suggesting
that polyubiquitination and impairment of the UPS
is generally involved in inclusion body formation. In
particular in LBDs, several lines of evidence support
the involvement of the UPS and postmortem studies
using PD cohorts have shown a reduction in proteaso-
mal activity in the substantia nigra [21]. Preliminary
studieshavealso identifiedproteasomalabnormalities
in cortical regions of DLB subjects [22]. Moreover,
inhibition of proteasome activity in neuronal cell lines
resulted in accumulation of ubiquitinated proteins
[23] and �-synuclein aggregation [24, 25]. Finally,
aggregated�-synucleinbindsstronglytothe19Scom-
ponent and inhibits the UPS [26].

Studying the UPS is essential to have a better
understanding of these specific pathways to enable
the development of targeted therapies. We there-
fore investigated the protein expression of a key
component of the UPS, the RPT6 subunit of the
19S regulatory complex and relevant proteasome
activities (chymotrypsin-like and PGPH-like) in indi-
viduals with DLB, PDD, and AD in comparison to
controls. The relationship between these changes and
cognitive impairment was also explored. RPT6 is the
best characterized of the ATPase proteasome subunits
and has been linked by several studies to neurodegen-
eration, hence its use in our study as the representative
proteasome subunit.

METHODS AND MATERIALS

Participants, diagnosis, and assessment

Postmortem brain tissue was obtained from:
University Hospital Stavanger (Norway), the MRC
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Table 1
Patient demographic data

Diagnosis Gender (M/F) % Age at death (mean) PMD (mean hours) pH (mean) MMSE (last assessment)

Control (25) 60/40 79.7 ± 7.6 39.1 ± 22.9 6.47 ± 0.28 n/a
PDD (34) 53/47 79.9 ± 6.0 33.5 ± 15.6 6.44 ± 0.34 13 (0–27)
DLB (55) 58/42 81.7 ± 6.5 41.3 ± 28.0 6.37 ± 0.41 13 (0–30)
AD (16) 31/69 88.0 ± 7.8 34.9 ± 23.9 6.30 ± 0.33 10.5 (0–19)

Data are means ± SD age in years; PMD, postmortem delay; DLB, dementia with Lewy bodies; PDD, Parkinson’s disease dementia; AD,
Alzheimer’s disease. PMD and pH were not significantly different between the groups in the one-way analysis of variance (ANOVA)
(p < 0.05).

London Neurodegenerative Diseases Brain Bank,
the Thomas Willis Oxford Brain Collection, and
the Newcastle Brain Tissue Resource. The UK
brain banks are part of the Brains for Dementia
Research Network. All participants gave informed
consent for their tissue to be used in research and
the study had ethics approval from the National
Research Ethics Service (08/H1010/4). Table 1 shows
the demographic details of the patients and con-
trols. Biochemical and histopathological analysis was
undertaken on prefrontal cortex (BA9), anterior cin-
gulate gyrus (BA24), and parietal cortex (BA40).
BA9 was selected due to its proposed role in exec-
utive function and cognition [27], decline of which is
characteristic of DLB and PDD. BA24 was selected
since �-synuclein pathology in BA24 develops early
in DLB and PDD [28], while BA40 was selected
because it shows severe AD and comparatively low
LBD pathology, respectively [29].

Neuropathological assessment was performed
according to standardized neuropathological scor-
ing/grading systems, including phases of amyloid-�
(A�) deposition (A�-phases), neurofibrillary tangle
Braak stages, Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD) scores, Newcas-
tle/McKeith Criteria for Lewy body disease, and
National Institute on Aging - Alzheimer’s Associa-
tion (NIA-AA) guidelines [1, 30–33]. Controls were
neurologically normal, with only mild age associated
neuropathological changes (e.g., neurofibrillary tan-
gle Braak stage ≤II) and no history of neurological
or psychiatric disease.

Cognitive impairment data consisted of the last
Mini-Mental State Examination (MMSE) scores a
maximum of two years prior to death [34]. Patients
and controls were categorized according to cognitive
impairment in the following manner: ‘unimpaired
cognition’ for individuals classified by the brain
bank(s) as being clinical controls; ‘neurodegenera-
tive disease without dementia’ for individuals with
MMSE scores of 25 to 30 and no antemortem diag-
nosis of dementia; ‘mild dementia’ for individuals
with MMSE scores from 17 to 24; ‘moderate demen-
tia’ for individuals with MMSE scores of 10 to 16;
and ‘severe dementia’ for individuals with MMSE
scores of 9 or less [35]. Table 2 shows how the clini-
cal diagnoses were divided between these categories.
Final diagnoses for patients are clinico-pathological
consensus diagnoses incorporating the one-year rule
to differentiate DLB and PDD [1].

Preparation of tissue samples for western
blotting

Preparation of tissue for western blotting was per-
formed as previously described [35]. Briefly, cortical
grey matter was dissected free of the meninges and
white matter at 0–4◦C. Approximately 200 mg tissue
was homogenized in 4 ml ice-cold buffer contain-
ing 50 mM tris-HCL, 5 mM EGTA, 10 mM EDTA,
‘complete protease inhibitor cocktail tablets’ (Roche,
1 tablet per 50 ml of buffer), and 2 �g/ml pep-
statin A dissolved in ethanol:DMSO 2:1 (Sigma).
An IKA Ultra-Turrax mechanical probe (IKA Werke,

Table 2
Demographic data for cognitive impairment categories

MMSE Category Diagnosis Gender Age at death

Control (1) Control n = 25, PDD n = 1 M = 61.5% 79.2 ± 1.6
MCI (2) DLB n = 5, PDD n = 4 M = 55.6% 80.3 ± 1.7
Mild (3) DLB n = 7, PDD n = 5, AD n = 3 M = 73.3% 79.9 ± 1.8
Moderate (4) DLB n = 14, PDD n = 11, AD n = 4 M = 55.2% 81.8 ± 1.5
Severe (5) DLB n = 10, PDD n = 12, AD n = 8 M = 50% 81.6 ± 1.1

Age at death is mean ± SEM.
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Germany) was used for homogenization. Aliquots
were immediately frozen on dry ice and stored at
–70◦C. Protein concentration was assessed in trip-
licate using the Coomassie (Bradford) Protein Assay
Kit (Thermo Scientific, USA); briefly 10 �l of crude
homogenate was diluted 1:50 and read in triplicate at
595 nm using a FlexStation 3 (Molecular Devices).

Western blotting

Western blotting was undertaken as previously
described [35]. Briefly, crude brain homogenate
was diluted 4:5 with 5x sample buffer (Genscript
MB01015, USA), boiled for 5 min then stored at
–20◦C. Samples were loaded at 20 �g/ml total pro-
tein on 10% SDS-polyacrylamide gel for protein
separation, transferred to nitrocellulose membrane
(Hydrobond C, Amersham Biosciences, Amersham,
UK), and probed with Proteasome 19S ATPase sub-
unit RPT6 (p45-110, Enzo Life Sciences, Exeter, UK,
1:2000), Proteasome 20S �3 subunit (MCP257, Enzo
Life Sciences, Exeter, UK, 1:2000) Proteasome 20S
�6 subunit, (MCP20, Enzo Life Sciences, Exeter,
UK, 1:2000). Bands were detected using an Odyssey
infrared fluorescent scanner, the integral of intensity
quantified using Odyssey infrared imaging systems
application software version 3.0.16 and expressed as
ratios to rat cortex run on the same gel in arbitrary
units. All samples were run in duplicate.

Proteasome enzyme activity assay

Proteasome activity was assessed in postmortem
brain tissue using fluorogenic synthetic peptide
substrates (for chymotrypsin-like activity, Suc-
Leu-Leu-Val-Tyr-AMC; for PGPH-like activity,
Z-Leu-Leu-Glu-AMC) as described previously [36].
In brief, frozen grey matter from patient and con-
trol subjects were immediately homogenized by
ultra turrax in ice-cold buffer (50 mM Tris-HCl,
1 mM EDTA, 10% glycerol, 2 mM ATP, 0.5 mM
DTT, pH 7.5). Protein concentration was deter-
mined by the Bradford method. Brain lysates
(100 �l per well) containing 1 mg/ml of protein
were incubated with 1 �l (5 mM substrate III, Suc-
Leu-Leu-Val-Tyr-AMC) or 10 �l (1 mM substrate
II, Z-Leu-Leu-Glu-AMC)1 mM PGPH substrates for
60 min at 37◦C. Measurements were performed in
96-well plates (total volume 100 �l per well) and all
samples were assayed in triplicate for both activities.
In a separate well, lysates were also pre-incubated
with 5 mM carbobenzoxyl-leucinyl-leucinyl-leucinal

(MG-132; a final concentration of 50 �M for
chymotrypsin-like activity) and 150 �M for PGPH-
like activity, or 100% DMSO for 30 min at room
temperature. The background fluorescence values
obtained by incubating the lysates with the pro-
teasome inhibitors were subtracted from activity
values. Proteasomal activity rates are expressed as
fluorescence units (FU)/mg protein/h. The substrate
hydrolysis was determined by measuring the flu-
orescence intensity of the AMC released using a
FlexStation 3 (Molecular Devices LTD, UK) at an
emission wavelength of 355 nm and an excitation
wavelength of 460 nm. The specificity of the pro-
teasomal assay was confirmed by the ability of the
proteasome inhibitor to inhibit chymotrypsin-like and
PGPH-like activities.

Statistical preparation and analysis

Statistical analysis of the biochemical data was
undertaken as described previously [35, 37]. The
normality of the data for each protein was deter-
mined using the Shapiro-Wilk test and normalized
where necessary. In each case, the protein values
were subsequently expressed as residuals (unstan-
dardized) created from the multivariable regression
analysis, to eliminate the confounding effect of the
demographic variables (gender, postmortem delay
(PMD), age at death, length of brain storage) on the
protein values. RPT6 values were significantly pre-
dicted by age at death (in BA9 and 40) and PMD (in
BA24 and 40), PGPH-like activity values were signif-
icantly predicted by PMD in BA40, and so a residual
variable was created for this protein and this activ-
ity to statistically remove this effect. This variable
was then normalized using a log10 transformation.
We tested for differences in protein levels between
groups using one-way ANOVA and Bonferroni post-
hoc test. Intercorrelations of neurochemical variable
and correlations with demographic and clinical fea-
tures were examined using Pearson product moment
(r) and regression analysis. Statistical analyses were
conducted using SPSS version 20.

RESULTS

Patient demographic data

Demographic variables for the study cohort are
summarized in Table 1. There were no significant
differences in PMD, tissue pH, or gender between
diagnostic groups. AD patients were significantly
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Fig. 1. 19S ATPase RPT6, proteasome sub-unit values, from semi-quantitative western blotting in PDD, DLB, AD, and control in BA9,
BA24, and BA40. The image is a representative western blot showing an example of the diagnosis-specific reductions of the 19S ATPase RPT6
in BA9 (A), BA24 (B), and BA40 (C). Statistical analysis was performed using one-way analysis of variance (ANOVA) and Bonferroni
post hoc test. BA9 (D): Mean RPT6 values from controls (n = 24) were significantly higher than Parkinson’s disease dementia (PDD)
(p = 0.001, n = 33), dementia with Lewy bodies (DLB) (p = 0.001, n = 50), and AD (p = 0.001, n = 16) groups, one-way ANOVA (F = 24.303,
d.f. = 3, 119, p = 0.001 followed by Bonferroni post hoc test). BA24 (E): Mean RPT6 values for the control (n = 24) and PDD (n = 33) groups
were significantly higher than DLB (p < 0.05, n = 52) and AD (p < 0.05, n = 16) groups. There was no difference between the control and PDD
groups, one-way ANOVA (F = 13.56, d.f. = 3 and 113, p = 0.001; Bonferroni post hoc test). BA40 (F): There was no significant difference in
RPT6 levels between controls and PDD, but RPT6 levels for the control group (n = 24) and PDD (n = 33) groups were significantly higher
than DLB (p < 0.05, n = 52) and AD (p = 0.001, n = 16) groups, one-way ANOVA (F = 16.333, d.f. = 3 and 121, p = 0.001; Bonferroni post
hoc test). The horizontal bars within the data points in the graphs represent the mean values. (**p < 0.01).

older at death (one-way ANOVA F(3;126) = 6.044,
p = 0.001) than controls (p = 0.001), patients with
DLB (p = 0.008), or PDD (p = 0.001). Therefore,
residuals were calculated.

Differences in the levels of 19S ATPase RPT6
proteasome sub-unit between diagnostic groups

Significant reductions in RPT6 proteasome sub-
unit were detected in the prefrontal cortex (BA9)
in DLB (–17%, p = 0.001), PDD (–21%, p = 0.001),
and AD (–22%, p = 0.001) compared with con-
trols (one-way ANOVA, F = 24.303, d.f. = 3, 119;
p = 0.001; Bonferroni post hoc test) (Fig. 1). In BA
40, there was a significant reduction in RPT6 pro-
teasome sub-unit in DLB (–14%, p = 0.001) and
AD (–23%, p = 0.001) compared with controls (one-
way ANOVA, F = 16.33, d.f. = 3 and 121, p = 0.001;
Bonferroni post hoc test). There was no significant
alteration in the level of RPT6 protein in patients
with PDD compared with the control groups (Fig. 1).
Furthermore, significant reductions in RPT6 sub-unit
levels were seen in DLB (–13%, p = 0.001) and AD

(–13%, p = 0.001) compared with the PDD. In BA24
mean RPT6 levels were significantly elevated in
patients with PDD by 15%, p = 0.001 compared with
AD and DLB groups (one-way ANOVA F = 13.5,
d.f. = 3 and 113, p = 0.001; Bonferroni post hoc test).
The post hoc test revealed that there was no signifi-
cant difference between the control and PDD groups
(p > 0.05) (Fig. 1).

Assessment of PGPH-like proteasome activity

In BA9, a significant reduction in PGPH-like
activity was seen in AD patients compared with con-
trols (–23%, p = 0.012) (one-way ANOVA, F = 3.816,
d.f. = 3 and 34, p = 0.019; Bonferroni post hoc test).
There was no significant difference between DLB
(–13%, p > 0.05) and PDD (–14%, p > 0.05) groups
compared to controls (Fig. 2).

In BA40, there was a significant reduction in
PGPH-like activity in the AD (–45%, p = 0.001),
DLB (–39%, p = 0.001), and PDD (–29%, p = 0.02)
groups compared with controls (Fig. 2). The differ-
ences between the patient groups and the control were
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Fig. 2. Analysis of PGPH-like activities in brain homogenates from BA9, BA40, and BA24 of DLB, PDD, AD, and controls. Scatter plots
are shown of PGPH-like activity measurement in BA9, BA40, and BA24 homogenates from DLB, PDD, AD, and normal control samples
using the fluorogenic substrate assay. Activities are expressed as fluorescence units (FU)/mg protein/hour. BA9: PGPH-like activity was
significantly decreased only in AD patients (p = 0.012, n = 6) compared with the control (n = 9); DLB and PDD groups were lower compared
with the control subjects, but there was no statistically significant difference between them. The values for the ANOVA for PGPH-like activity
measurement in BA9 were: F = 7.897, d.f. = 3, 34, p = 0.001). BA40; the differences between the patients’ groups (PDD, DLB, and AD)
and the control were statistically different (one-way ANOVA, F = 10.263, d.f. = 3 and 42, p = 0.001;). The reduction in PGPH-like activity
was higher in the AD group with a mean ± SEM value of 3741.8 ± 587.5, n = 11, compared with 1.28 ± 0.028, n = 24 for the controls. The
reduction in both DLB and PDD were also significant with a mean ± SEM value of 4133.7 ± 640, n = 10 and 4809 ± 240, n = 9 compared
with control (Bonferroni post hoc test). In BA24, there was a significant difference between DLB (p = 0.013, n = 12), PDD (P = 0.001, n = 9)
and AD (P = 0.001, n = 9) compared with the control (n = 13) (one-way ANOVA, F = 23.087, d.f. = 3 and 39, p = 0.001; Bonferroni post hoc
test). PGPH-like activity measurements were significant lower in both AD (p = 0.004, n = 9) and PDD (p = 0.002, n = 9) compared with DLB
subjects. The horizontal bars within the data points in the graphs represent the mean values. (**p < 0.01).

statistically different (one-way ANOVA, F = 10.263,
d.f. = 3 and 42, p = 0.001; Bonferroni post hoc test).

In BA24, there was a significant reduction in
PGPH-like activity in DLB (–28%, p = 0.013), PDD
(–64%, p = 0.001), and AD (–62%, p = 0.001) groups
compared with control subjects (one-way ANOVA,
F = 23.087, d.f. = 3 and 39, p = 0.001; Bonferroni post
hoc test). The reduction in PGPH-like activity in PDD
(–51%, p = 0.002) and AD (–47%, p = 0.004) was also
significant different compared with DLB (Fig. 2).

Assessment of chymotrypsin-like proteasome
activity

In BA9, chymotrypsin-like activity was signif-
icantly reduced in PDD (–27%, p = 0.004), DLB
(–24% p = 0.013), and AD (–38%, p = 0.001),
compared with control values (one-way ANOVA,
F = 7.897, d.f = 3 and 34, p = 0.001; Bonferroni post
hoc test) (Fig. 3). Chymotrypsin-like activity was
lowest in the AD group compared with DLB and
PDD; however, there were no significant differences
among the three groups, PDD, DLB, or AD. In BA40,
analysis of data indicated a significant reduction
in chymotrypsin-like activity in the AD, DLB, and
PDD (1415.85 ± 9.9, n = 12, 1453.09 ± 11.77, n = 9
and 1436.88 ± 20.61, n = 10) groups compared with
the control groups (1568.53 ± 10.2, n = 13) (one-way

ANOVA, F = 30.033, d.f. = 3 and 40, p = 0.001; Bon-
ferroni post hoc test).

In BA24, chymotrypsin-like activity was found to
be significantly lower in PDD (878 ± 62, n = 9) and
AD (906 ± 72, n = 9) samples compared with both
control (1100 ± 39, n = 13) and DLB (1027 ± 23,
n = 12) subjects (one-way ANOVA, F = 4.663, d.f. = 3
and 39, p = 0.007; Bonferroni post hoc test).

Correlations between proteasome activity and
expression level of RPT6 subunit

To test whether or not proteasome activity was
associated with the protein levels of the proteasome
subunits,Spearman’srankcorrelationwasdetermined
between PGPH- and chymotrypsin-like activities, and
the semi-quantitative protein values of RPT6. In BA9,
significant positive correlations were found between
RPT6 and both chymotrypsin-like activity (Rs 0.418,
p = 0.009, n = 38) and PGPH-like activity (Rs 0.363,
p = 0.025, n = 38), while in BA40, there was a signifi-
cant positive correlation with only chymotrypsin-like
activity (Rs 0.409, p = 0.006, n = 44).

Reduction in RPT6 were associated with
cognitive impairment

The reduced levels of RPT6 detected in BA9 were
found to be associated with cognitive impairment
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Fig. 3. Analysis of chymotrypsin-like activities in brain homogenates from BA9, BA40, and BA24 of DLB, PDD, AD, and controls. Scatter
plots are shown of chymotrypsin-like activity measurement in BA9, BA40, and BA24 homogenates from DLB, PDD, AD, and normal control
samples using the fluorogenic substrate assay. Activities are expressed as fluorescence units (FU)/mg protein/hour. BA9; the activities’ values
for the control group were significantly higher than the PDD (p = 0.004, n = 12), DLB (p = 0.013, n = 11) and AD (p = 0.001, n = 6) groups.
The ANOVA values for chymotrypsin-like activity measurement in BA9 are: F = 7.897, d.f. = 3 and 34, p = 0.001) BA40; the activities’
values for the control group (n = 13) were significantly higher than the PDD (p = 0.001, n = 10), DLB (p = 0.001, n = 9), and AD (p = 0.001,
n = 12) groups. The ANOVA for chymotrypsin-like activity measurement in BA40 (one-way ANOVA, F = 30.033, d.f. = 3 and 40, p = 0.001;
Bonferroni post hoc test) BA24; there was a significant difference between the PDD (p = 0.015, n = 9) and AD (p = 0.044, n = 9) groups
compared with the control (n = 13) (one-way ANOVA, F = 4.664, d.f. = 3 and 39, p = 0.007; Bonferroni post hoc test). (**p < 0.01).

(Fig. 4A, R2 = 0.297, beta = –0.545, degree of free-
dom [df] = 1, 102, t = –6.571, p = 0.001), and this
analysis included all control, DLB, PDD, and
AD subjects. In addition, in pairwise comparisons,
patients with mild dementia had mean RPT6 levels
that were significantly lower than individuals with
unimpaired cognition (41%, p = 0.001), and RPT6
levels were significantly lower in people with mod-
erate dementia (both 20%, p = 0.001) and with severe
dementia (both 23%, p = 0.001) in BA9 compared
with controls. Reduced levels of RPT6 in BA40 were
also associated with cognitive impairment (Fig. 4C,
R2 = 0.180, beta = –0.425, df = 1, 105, t = –4.807,
p = 0.001) according to regression analysis of all con-
trols and dementia patients. In BA40, RPT6 levels
were significantly lower in people with moderate cog-
nitive impairment (both 10%, p = 0.033) and with
severe cognitive impairment (both 19%, p = 0.001)
compared with controls. The association between
reduced levels of RPT6 and cognitive impairment in
BA24 was weaker (Fig. 4B, R2 = 0.04, beta = –0.206,
df = 1, 99, t = –2.09, p = 0.039) and not significantly
different between people with different severities of
cognitive impairment (one-way ANOVA p > 0.05).

Reduced proteasome activity is associated with
cognitive impairment

Chymotrypsin-like and PGPH proteasome activi-
ties had a significant inverse association with cog-
nitive impairment in BA9 (according to regression

analysis of all dementia patients and controls)
(Fig. 5A and D, R2 = 0.337, beta = –0.581, [df] = 1,
29, t = –3.84, p = 0.001, R2 = 0.275, beta = –0.524,
[df] = 1, 29, t = –3.315, p = 0.002), in BA24 (Fig. 5B
and E, R2 = 0.151, beta = –0.388, [df] = 1, 38,
t = –2.599, p = 0.013, R2 = 0.371, beta = –0.609,
[df] = 1, 38, t = –4.733, p = 0.001), and in BA40
(Fig. 5C and F, R2 = 0.531, beta = –0.728, [df] = 1,
40, t = –6.72, p = 0.001, R2 = 0.217, beta = –0.466,
[df] = 1, 38, t = –3.244, p = 0.002). Pairwise com-
parisons in BA9 indicated high chymotrypsin-like
activity in the control compared with moderate
(p = 0.014) and severe scores (p = 0.01) (one-way
ANOVA F = 5.009, d.f. = 4 and 26, p = 0.004; Bon-
ferroni post hoc test). The difference in PGPH-like
activity between cognitive impairment groups was
significant between individuals with unimpaired and
moderately impaired cognition (one-way ANOVA
F = 3.616, d.f. = 4 and 26, p = 0.004; Bonferroni post
hoc test). In BA24, there was no significant difference
in chymotrypsin-like activity in unimpaired cognition
group compared with all other groups. The difference
in PGPH-like activity between cognitive impairment
groups was significantly different between unim-
paired cognition groups and MCI (p = 0.03), mild
(p = 0.024), moderate (p = 0.001), and severe scores
(p = 0.001) (one-way ANOVA F = 9.839, d.f. = 4 and
35, p = 0.001; Bonferroni post hoc test). In BA40,
the level of chymotrypsin-like activity was signif-
icantly higher in the unimpaired cognition group
compared with MCI (p = 0.001), mild (p = 0.001),
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Fig. 4. Relationship between RPT6 expression levels and cognitive impairment based upon MMSE classification. 19S ATPase RPT6,
proteasome sub-unit values protein levels in BA9, BA24, and BA40 predicted cognitive impairment. Regression analysis showed RPT6 levels
in BA9, BA24, and BA40 of control, DLB, PDD, and AD to be significant predictors of the cognitive impairment category ([BA9] R2 = 0.297,
beta = –0.545, degree of freedom [df] = 1, 102, t = –6.571, p = 0.001, [BA24] R2 = 0.04, beta = –0.206, df = 1, 99, t = –2.09, p = 0.039, [BA40]
R2 = 0.180, beta = –0.425, df = 1, 105, t = –4.807, p = 0.001]. The analysis of variance (ANOVA) for the model was significant (p = 0.0001).
The difference in mean RPT6 levels between cognitive impairment groups was analyzed by one-way ANOVA and the Bonferroni post hoc
test, which revealed RPT6 levels in BA9 to be significantly higher in controls compared with the other groups (one-way ANOVA F = 17.82,
d.f. = 4 and 99, p = 0.001; Bonferroni post hoc test). In BA40, RPT6 levels were significantly lower in people with moderate dementia
(10%, p = 0.033) and with severe dementia (19%, p = 0.001) compared with controls. The difference in mean RPT6 levels between cognitive
impairment groups in BA24 was not found to be significant (one-way ANOVA p > 0.05). (**p < 0.01).

moderate (p = 0.001), and severe scores (p = 0.001)
(one-way ANOVA F = 21.845, d.f. = 4 and 37,
p = 0.001; Bonferroni post hoc test). PGPH-like activ-
ity was significantly higher between unimpaired
cognition group compared with MCI (p = 0.02), mild
(p = 0.001), moderate (p = 0.001), and severe scores
(p = 0.034) (one-way ANOVA F = 8.851, d.f. = 4 and
35, p = 0.001; Bonferroni post hoc test).

We assessed the levels of alpha3 and alpha6, essen-
tial subunits of the 20S catalytic unit (Supplementary
Figures 1 and 2, respectively). We also expressed the
measurement of both chymotrypsin-like and PGPH-
like activity as a ratio to both subunits to determine
if the changes we saw represented a change in rate of
activity per catalytic unit or of the number of catalytic
units (Supplementary Figures 3–6). It can be seen
that there was no overall pattern with high variation
according to brain region.

DISCUSSION

The main finding of the present study was the
reductions of the RPT6 ATPase 19S regulatory sub-
unit in DLB and AD in the frontal lobe neocortical
area BA9, anterior cingulate gyrus BA24, and pari-
etal cortex BA40. Furthermore, the reduction in RPT6
levels was associated with changes in two proteasome
proteolytic activities. Finally, both measurements
were associated with cognitive scores prior to death.
In this study, for the first time, an association between

cognitive decline and both the reduction of RPT6 and
the proteolytic activity of the proteasome has been
demonstrated.

RPT6 is one of the six ATPase subunits (RPT 1–6)
of the 19S regulatory complex; it is a 45kDa subunit.
Degradation of ubiquitinated substrate proteins by the
26S proteasome is dependent upon ATP [13], which
binds to the six ATPase subunits of the 19S regula-
tory complex. All six of the ATPase subunits contain
the same substantial main functional domains: an N-
terminus coiled-coil domain important for formation
of the 19S base, and a C-terminus ATPase domain
that is involved in ATP-dependent substrate unfold-
ing and 20S CP opening [38]. These ATPases provide
the energy necessary for the degradation of multi-
ubiquitin conjugated proteins by the 26S proteasome,
and it is also believed that ATPase subunits partici-
pate in the substrate-unfolding step of the degradation
pathway [39].

It has been shown previously that the 19S RPT6
expression level decreased when �-synuclein was
increased in mouse PD models [40] and a study of
9 PD, 7 PDD, and 9 controls revealed a decrease in
the 19S RPT3/S6 subunit in the inferior frontal gyri
of PDD although the expression was similar in con-
trol and PD [41]. Inactivation of the 19S regulatory
particle (RPT2) subunit prevented the formation of
the 26S proteasome, leaving the 20S proteasome sub-
unit, which is ubiquitin-independent, unaffected [42].
Therefore, the reduction in RPT6 subunit expression
identified in DLB, PDD, and AD patients in three
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Fig. 5. The relationship between Chymotrypsin- and PGPH-like proteasome activity measurement levels and cognitive impairment based
upon MMSE classification. Chymotrypsin- and PGPH-like proteasome activity measurement levels, using fluorogenic substrate assay,
predicted cognitive impairment in BA9, BA24, and BA40. Regression analysis showed Chymotrypsin-like and PGPH proteasome activity to
be a significant predictor of cognitive impairment in BA9 (A and D, R2 = 0.337, beta = –0.581, [df] = 1, 29, t = –3.84, p = 0.001, R2 = 0.275,
beta = –0.524, [df] = 1, 29, t = –3.315, p = 0.002), in BA24 (B and E, R2 = 0.151, beta = –0.388, [df] = 1, 38, t = –2.599, p = 0.013, R2 = 0.371,
beta = –0.609, [df] = 1, 38, t = –4.733, p = 0.001), and in BA40 (C and F, R2 = 0.531, beta = –0.728, [df] = 1, 40, t = –6.72, p = 0.001, R2 = 0.217,
beta = –0.466, [df] = 1, 38, t = –3.244, p = 0.002). The difference in mean Chymotrypsin-like and PGPH proteasome activity measurement
levels between different cognitive impairment groups was analyzed by one-way ANOVA and the Bonferroni post hoc test, which revealed high
chymotrypsin-like activity in the controls compared with moderate (p = 0.014) and severe scores (p = 0.01) (one-way ANOVA F = 5.009, d.f.
= 4 and 26, p = 0.004; Bonferroni post hoc test). There was a high PGPH-like activity in unimpaired cognition compared with the moderate
groups (one-way ANOVA F = 3.616, d.f. = 4 and 26, p = 0.004; Bonferroni post hoc test). In BA24, there was higher PGPH-like activity in
unimpaired cognition group compared with MCI (p = 0.03), mild (p = 0.024), moderate (p = 0.001) and severe scores (p = 0.001) (one-way
ANOVA F = 9.839, d.f. = 4 and 35, p = 0.001; Bonferroni post hoc test). In BA40 the level of chymotrypsin-like activity was significantly
higher in the controls compared with MCI (p = 0.001), mild (p = 0.001), moderate (p = 0.001) and severe scores (p = 0.001) (one-way ANOVA
F = 21.845, d.f. = 4 and 37, p = 0.001; Bonferroni post hoc test). There was a higher level of PGPH-like activity in unimpaired cognition
group compared with MCI (p = 0.02), mild (p = 0.001), moderate (p = 0.001) and severe scores (p = 0.034) (one-way ANOVA F = 8.851, d.f.
= 4 and 35, p = 0.001; Bonferroni post hoc test). (**p < 0.01).
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brain regions and the associated reduction in protea-
some activity confirms and extends previous studies
by demonstrating this phenomenon in the human
brain and suggests that reduced subunit expression
may directly lead to proteasome impairment. The
reason for the reduction in RPT6 ATPase subunit
expression remains unexplained. It is possible that
the reduction could be related to oxidative stress;
indeed, proteasome subunits were demonstrated to
be sensitive to oxidative stress [43, 44]. Further-
more, Sun et al. reported that proteasome subunits
(RPT5, Rpn10, and Rpn2) can be cleaved by caspase-
3 following caspase activation during apoptosis; they
found decreased proteasome activity to be associated
with the cleavage of these subunits [45].

RPT6 phosphorylation enhances proteolysis by
promoting the assembly of the 26S proteasome, and
RPT6 dephosphorylation promoted the dissociation
of 26S into 19S and 20S components [46]. It is pro-
posed that the reduction of proteasome activity is
due to the decrease in the RPT6 level as there was
a correlation between lower RPT6 protein levels and
proteasome activity in BA9 and BA40. It could also
be due to the important role of RPT6 in promoting the
activity of proteasomes. The reduction of the prote-
olytic activity could also arise from the blockading of
the entry pore to the 20S proteasome by protein aggre-
gates, such as �-synuclein, which may in turn impede
degradation of this and other proteins [47–49]. Inhi-
bition of the 26 S proteasome with soluble oligomeric
species of mutant and wild-type �-synuclein in PC12
cells has been emonstrated [47]. It is clear that these
oligomers are degraded by the proteasomes, as they
accumulate when proteasome function is inhibited.
Proteasome inhibitors have been reported to induce
�-synuclein aggregation and Lewy body-like inclu-
sions, leading to neuronal loss among in vitro and in
vivo models [42]. However, it is not clear whether
the aggregation results from the impairment of the
proteasomes or vice versa [50]. Results from exper-
imental studies have indicated that inhibition of the
proteasomes causes the formation of aggregates [42,
51] and protein aggregation inhibits the proteasome
activity [47].

In this study, we found a reduction in RPT6 and the
proteasome activity in relation to cognitive decline.
It is not clear how proteasome impairment, specif-
ically reduction in RPT6, could result in cognitive
impairment. A possible mechanistic explanation for
this is that the proteasome activity is regulated by
protein such as Calcium/calmodulin-dependent pro-
tein kinase II (CaMKII), which plays an essential

role in long-term synaptic plasticity and cognitive
function [52, 53]. Consistent with this, Jarome et al.
showed that phosphorylation of RPT6 by CaMKII
increased proteasome activity in vivo and protea-
some activity was necessary for long-term memory
function [54, 55]. Reductions in CaMKII affect sig-
naling pathways, including phosphorylation of RPT6,
and thus the proteasome activity [54, 55], which
could in turn impair synaptic plasticity and contribute
to cognitive dysfunction. CaMKII has been shown
to mediate proteasome activity and act as a scaffold
to recruit proteasomes to dendritic spines and regulate
its activity by phosphorylation of the RPT6 subunits
[56]. Activation of NMDA receptors has been shown
to induce this movement of the proteasome to the
dendritic spine compartment [57].

In view of the above, our data strongly suggest
that proteasome activation may be a target for dis-
ease modification of both DLB and PDD. In support
of this view, compounds which enhance proteasome
activity have been suggested to be neuroprotective.
For example, pre-treatment with trans-retinoic acid
protected against cell death induced by epoxomicin
(a proteasome inhibitor) in SH-SY5Y cells [58].
Furthermore, altered insulin and insulin-like growth
factor (IGF-1) signaling have been reported to influ-
ence the proteasome activity [59, 60], and both insulin
and IGF-1 receptor expression was reduced in DLB
[61]. Supporting this, treatment with IGF-1 prevented
the apoptotic effects of epoxomicin on SH-SY5Y
cells [62]. Therefore, compounds that are able to ame-
liorate insulin signaling may have disease-modifying
activity in PDD and DLB. Of these, the glucagon-like
pepide-1 (GLP-1) analogues are the most clinically
advanced. These synthetic GLP-1 analogues such as
exendin-4, liraglutide, albiglutide, and lixisenatide
are resistant to degradation by dipeptidyl peptidase,
pass the blood-brain barrier similar to GLP-1, (except
for albiglutide), and bind to the GLP-1 receptor,
bringing about an increase in insulin biosynthesis and
release [63]. Both exenatide (exendin-4) and liraglu-
tide are currently in phase II clinical trials for the
treatment of AD (NCT01255163 and NCT01843075,
respectively [64]. Furthermore, exenatide is cur-
rently in a phase II trial for the treatment of PD
(NCT01971242). These studies suggest that com-
pounds acting on GLP-1 receptors may translate well
for the treatment of people with DLB or PDD. It is
noteworthy that both retinoic acid and GLP-1 ana-
logues have previously been suggested from drug
repositioning studies for AD [65]. Many of these
compounds have additional mechanisms of action,
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including lowering plasma glucose concentrations for
GLP-1 analogues. However, key candidate therapies
are likely to involve more than one mechanism of
action.

The strengths of this study are the large num-
ber of LBD cases, our access to all the clinical
data and the number of projects undertaken on the
same cohort, which provide chemical information
on synaptic functions in addition to pathological
and clinical data [35, 37, 66–69]. Furthermore, this
study examined three brain regions and compared the
results from each of the regions separately to deter-
mine whether the biochemical changes are specific to
a particular brain area or if all of the regions have the
same alteration. However, despite these advantages,
there are also a number of limitations regarding the
use of postmortem tissues which need to be taken
into consideration. These include antemortem factors
such as medication history, meaning we could not
identify whether or not the medication had any effect
on our observations. Postmortem factors, including
PMD, and the handling and storage of tissue are fur-
ther problems that also should be addressed when
performing studies with postmortem tissue reviewed
in [70]. Furthermore, alteration of brain tissue pH, as
a consequence of agonal state can affect sample qual-
ity for genetic and biochemical measurements. These
factors were taken into consideration when planning
the studies in this study. Post/antemortem factors
for controls, DLB, PDD, and AD were matched as
closely as possible for PMD and pH, and any rela-
tionships found between protein measurements and
demographics/post-mortem factors were controlled
for via the creation of unstandardized residuals.

In conclusion, the present study has demonstrated
that, in PDD, DLB, and AD, the activity of the RPT6
ATPase 19S regulatory subunit of the proteasome is
decreased and associated with cognitive decline. The
present study provides support for enhancement of
the proteasome activity as a therapeutic target and
current leading candidate are GLP-1 analogues.
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