
Reduction of superintegrable systems: the

anisotropic harmonic oscillator
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wintern@crm.umontreal.ca





ar
X

iv
:0

80
7.

10
47

v1
  [

m
at

h-
ph

] 
 7

 J
ul

 2
00

8

Reduction of superintegrable systems: the anisotropic harmonic oscillator
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We introduce a new 2N–parametric family of maximally superintegrable systems in N dimensions,
obtained as a reduction of an anisotropic harmonic oscillator in a 2N–dimensional configuration
space. These systems possess closed bounded orbits and integrals of motion which are rational in
the momenta. They generalize known examples of superintegrable models in the Euclidean plane.
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I. INTRODUCTION

The aim of this paper is to introduce a new class of
maximally superintegrable systems that are obtained as
a symplectic reduction of the anisotropic harmonic os-
cillator. These systems depend on a set of N real and
N integer parameters and possess integrals of motion ra-
tional in the momenta. The Hamiltonian defining this
family is

HN =
1

2

N
∑

i=1

p2
i +

N
∑

i=1

ki

x2
i

+
ω2

2

N
∑

i=1

n2
i x

2
i (1)

We recall that in classical mechanics, superintegrable
(also known as noncommutatively integrable [20]) sys-
tems are characterized by the fact that they possess
more than N integrals of motion functionally indepen-
dent, globally defined in a 2N–dimensional phase space.
In particular, when the number of integrals is 2N−1, the
systems are said to be maximally superintegrable. The
dynamics of these systems is particularly interesting: all
bounded orbits are closed and periodic. This issue, for
the spherically symmetric potentials, was first noticed
by Bertrand [3]. The phase space topology is also very
rich: it has the structure of a symplectic bifoliation, con-
sisting of the usual Liouville–Arnold invariant fibration
by Lagrangian tori and of a (coisotropic) polar foliation
[21], [9]. Apart from the harmonic oscillator and the
Kepler potential, many other potentials turn out to be
superintegrable, like the Calogero–Moser potential, the
Smorodinsky–Winternitz systems, the Euler top, etc.

A considerable effort has recently been devoted to the
search for superintegrable systems as well as to the study
of the algebraic and analytic properties of these models.
For a recent review of the topic, see [27].

The notion of superintegrability possesses an interest-
ing analog in quantum mechanics. Sommerfeld and Bohr
were the first to notice that systems allowing separation

of variables in more than one coordinate system may
admit additional integrals of motion. Superintegrable
systems show accidental degeneracy of the energy lev-
els, which can be removed by taking into account the
quantum numbers associated to the additional integrals
of motion. One of the best examples of this phenomenon
is provided by the Coulomb atom [10], [2], [16], which is
superintegrable in N dimensions [5], [25]. A systematic
search for quantum mechanical potentials exhibiting the
property of superintegrability was started in [15], [22]
and [29]. These models in many cases are also exactly
solvable, i.e. they possess a spectrum generating alge-
bra, which allows to compute the whole energy spectrum
essentially by algebraic manipulations [26]. In classical
mechanics, the multiseparability of the Hamilton–Jacobi
equation implies that there should exist at least two dif-
ferent sets of N quadratic integrals of motion in involu-
tion. Reduction techniques both in classical and quan-
tum mechanics are well–known (see, for instance, [4]).
Essentially, the common idea of several of the existing
approaches is to start from a free motion Hamiltonian
defined in a suitable higher–dimensional space and to
project it down into an appropriate subspace. In this way,
one gets a reduced Hamiltonian that is no longer free:
an integrable potential appears in the lower–dimensional
space [23]. A different point of view, that we adopt here,
is to start instead directly from a nontrivial (i.e. not free)
dynamical system in a given phase space and to reduce
it to a proper subspace, in such a way that the superin-
tegrability of the considered system be inherited by the
reduced one.

In this work, we study the reduction of an anisotropic
harmonic oscillator, defined in a 2N–dimensional classi-
cal configuration space. This system is maximally super-
integrable. It is described by the Hamiltonian

H2N =
1

2

2N
∑

i=1

p̂2
i +

ω2

2

2N
∑

i=1

n2
i y

2
i . (2)
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We will prove that it can be suitably reduced to the sys-
tem (1), and that this new system is still maximally su-
perintegrable, as a consequence of the reduction proce-
dure we adopt. This goal is achieved under the assump-
tion n1 = n2, ..., n2N−1 = n2N . From a geometrical point
of view, the approach we adopt reposes on the Marsden–
Weinstein symplectic reduction scheme [1], [17], [19].
Given a symplectic manifold (M, Ω), let K1, ..., Kk be
k functions in involution:

{Ki, Kj} = 0 i, j = 1, ..., k. (3)

Assume also that dKi be independent at each point.
Since the flows of the associated Hamiltonian vector fields
XK1

, ..., XKk
do commute, they can be used to define a

symplectic action of G = R
k on the manifold. Let J be

the momentum map of this action, and µ be a regular
value for J . Then we can conclude that Pµ := J−1(µ)/G
is still a symplectic manifold, of dimension 4N−2k, called
the reduced phase space. In our case, Ki, i = 1, ..., k are
components of the angular momentum, J = K1× ...×Kk

is the momentum map, G = SO(2)×SO(2)× ...×SO(2)
(N times), and the reduced space is Pµ = J−1 (µ)/T k,
where T k is the k–dimensional torus and dimPµ = N .
This procedure is a generalization of what in celestial
mechanics, since the work of Jacobi, is called ”elimina-
tion of the nodes” (see [1], chapter IX for details). The
reduced Hamiltonian is reminiscent of the structure of
the original Hamiltonian, defined in the 4N–dimensional
phase space, but also possesses a Rosochatius–type term,
involving parameters ki corresponding to the variables
that become ignorable, in addition to the harmonic part.
Therefore, using the reduction procedure, we obtain the
parametric family of Hamiltonian systems (1), defined on
a reduced phase Pµ.

The transformations we consider, although very sim-
ple, are non–trivial, since the reduced Hamiltonian is not
shape–invariant. Nevertheless, since the reduced system
turns out to be maximally superintegrable, bounded or-
bits still remain closed in the reduced space.

When N = 2, the maximal superintegrability of the
system obtained with n1 = n2 = 1 was already estab-
lished, as well as its exact solvability [26].

A new phenomenon emerging from our analysis is that
N − 1 of the integrals of our model (1) are rational func-
tions rather than polynomials in the momenta, whenever
N ≥ 2. This is quite striking, since for planar systems
describing the motion of one particle the existence of
superintegrability with rational integrals was never ob-
served before. Instead, systems possessing higher–order
polynomial integrals of motion where already known [6],
[12], [13], [14], [24].

This paper is directly related to the recent interesting
work by Verrier and Evans [28], that performed a similar
reducing transformation for the Kepler potential. They
found a superintegrable system in three dimensions pos-
sessing a quartic integral. They also conjectured that

the system (1) in three space dimensions should be max-
imally superintegrable, although the explicit expression
of the integrals remained to be determined. In the fol-
lowing, we will prove this conjecture, and also we will es-
tablish that the system (1) is maximally superintegrable
in full generality, i.e. for N arbitrary, providing explicitly
the corresponding set of integrals of the motion.

The paper is organized as follows. In Section II, the
main properties of the anisotropic oscillator are briefly re-
viewed. Then its reduction to the planar case is studied
in detail. We will show how superintegrability is pre-
served under a multipolar change of variables and sub-
sequent reduction. In Section III, the same problem is
treated and solved in full generality. Some open prob-
lems are discussed in the final Section.

II. REDUCTION OF THE ANISOTROPIC

OSCILLATOR

The anisotropic oscillator in the two–dimensional case
both in classical and quantum mechanics was discussed
by Jauch and Hill [16]. The system (2) is also known to
be superintegrable in 2N dimensions, if the ratios of the
frequencies of motions are rational. Hence let us assume

ω1

n1
=

ω2

n2
= ... =

ω2N

n2N

= ω, ni ∈ N (4)

Following [16], we define the set of invariants in an aux-
iliary phase space, with coordinates zi, z̄i, i = 1, ..., 2N .
Precisely,

zj = p̂j − injωjyj , zj = p̂j + injωjyj . (5)

It is easily checked that the expressions

cij = znk

j z
nj

k (6)

provide integrals of motion. They can be also arranged in
a real–valued form, as the combinations (1/2) (cij + cij)
and (1/2i) (cij − cij). In particular, among these inte-
grals we have the angular momenta

Lik = yip̂k − ykp̂i (7)

(when ni = nk) and

Tik =
1

2
p̂ip̂k + ninkω2yiyk (8)

We will now study reductions of the anisotropic oscilla-
tor (2) and establish the superintegrability of the corre-
sponding dynamical systems.

Hamiltonian and first integrals: the planar case

We recall the definition of a momentum map. For fur-
ther details, see for instance [1]. Let (M, Ω) be a 2n di-
mensional symplectic manifold. Suppose that a Lie group
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G acts on M and leaves Ω invariant. Let g be the Lie
algebra of G, g∗ its dual, and <, > the natural pairing
between the two spaces.

A momentum map for the G–action on (M, Ω) is a map
J : M → g∗ such that, for all X ∈ g,

d(〈J, X〉) = iXΩ

In particular, if the manifold is exact, i.e. Ω = dθ, we
have

JX = iXθ

We will also assume that the map is equivariant with
respect to the coadjoint action Ad∗ of G on g∗, i.e.:

〈Ad∗
g ξ, X〉 = 〈ξ, Adg−1X〉,

for all g ∈ G, ξ ∈ g∗ and X ∈ g.
Let us first consider a simple case, when the anisotropic

oscillator is defined in a symplectic manifold with n = 4.
So, Ω =

∑4
i=1 dyi ∧ dp̂i. In order to make the reduction

possible, we will select frequencies to be equal in pairs,
so that we have only two independent frequencies. Hence
the system (2) takes the special form

H4 =
1

2
(p̂2

1+p̂2
2+p̂2

3+p̂2
4)+

n2
1ω

2

2
(y2

1+y2
2)+

n2
2ω

2

2
(y2

3+y2
4).

(9)
In the auxiliary coordinates z1,z̄1,...,z4,z̄4, we have ex-
plicitly

z1 = p̂1 − i n1ωy1, z2 = p̂2 − i n1ωy2,

z3 = p̂3 − i n2ωy3, z4 = p̂4 − i n2ωy4.

Consequently, the Hamiltonian reads

H4 =
1

2

4
∑

i=1

|zi|2. (10)

Put in a matrix form, the set of invariants (6) can be
written as

Z =









z1z̄1 z1z̄2 zn2

1 z̄n1

3 zn2

1 z̄n1

4

z2z̄1 z2z̄2 zn2

2 z̄n1

3 zn2

2 z̄n1

4

zn1

3 z̄n2

1 zn1

3 z̄n2

2 z3z̄3 z3z̄4

zn1

4 z̄n2

1 zn1

4 z̄n2

2 z4z̄3 z4z̄4









. (11)

Let us consider now the following change of coordi-
nates:

{

y1 = x1 cosx3, y2 = x1 sin x3

y3 = x2 cosx4, y4 = x2 sin x4.
(12)

The corresponding momenta read

p̂1 = −p3
sinx3

x1
+ p1 cosx3, p̂2 = p3

cosx3

x1
+ p1 sinx3

p̂3 = −p4
sinx4

x2
+ p2 cosx4, p̂4 = p4

cosx4

x2
+ p2 sinx4.

Let us now consider the group T2, which is the group
SO(2) × SO(2) in the old coordinates, acting on R

4

x′
1 =x1

x′
2 =x2

x′
3 =x3 + a1

x′
4 =x4 + a2.

This group leaves Ω invariant. The fundamental vector
fields on T ∗

R
4 corresponding to this action are:

X1 = ∂x3
, X2 = ∂x4

(13)

and, if X = λ1X1+λ2X2, the momentum map J satisfies:

J(a1,a2) = θ(λ1∂x3
+ λ2∂x4

) = λ1p3 + λ2p4 (14)

Let us choose a regular point in t∗
2

(the dual of the Lie
algebra of T2), for instance p3 =

√
2k1, p4 =

√
2k2. The

inverse image under J is

J−1(
√

2k1,
√

2k2) = (p1, p2,
√

2k1,
√

2k2, x1, x2, x3, x4)
(15)

The stabilizer of this point in t∗2 under the coadjoint
action of T2 is the whole group, because its action is
trivial on the p coordinates.

The reduced phase space is therefore

J−1(
√

2k1,
√

2k2)/T2 ≈ {(p1, p2, x1, x2) ∈ R
4} (16)

and the reduced Hamiltonian is

H2 =
p2
1

2
+

p2
2

2
+

k1

x2
1

+
k2

x2
2

+
n2

1

2
x2

1 +
n2

2

2
x2

2 (17)

Let F be a first integral of the Hamiltonian H4(p̂, y),
i.e. {H4, F} = 0.

We show now how the original ring of integrals can
be reduced in the low–dimensional phase space. First,
we consider the restriction F̂ of the function F to the
manifold J−1(

√
2k1,

√
2k2).

Observe that F̂ can be defined on the quotient man-
ifold J−1(

√
2k1,

√
2k2)/T2, when it is constant on the

equivalence classes, that is, F̂ is independent on x3, x4.
In this case F̂ can be factored out in the following way:

J−1(
√

2k1,
√

2k2)
F̂

//

π

��

R

J−1(
√

2k1,
√

2k2)/T2

Fr

77
p

p
p

p
p

p
p

p
p

p
p

p
p

where π is the canonical projection and

Fr ◦ π = F̂

Then,

{H2, Fr} = 0
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Let us first study the particular case when the frequencies
are n1 = n2 = 1, n3 = n4 = 2, ω = 1 and construct
explicitly the integrals in a direct way.

This choice of the frequencies is relevant, since the re-
duced Hamiltonian is now

H2 =
1

2

(

p2
1 + p2

2

)

+
k1

x2
1

+
1

2
x2

1 +
k2

x2
2

+ 2x2
2. (18)

and represents a generalization of the system

H2 =
1

2

(

p2
1 + p2

2

)

+
α

x2
1

+
1

2
x2

1 + 2x2
2. (19)

discovered in [15]. This system is superintegrable both in
classical and quantum mechanics, and possesses integrals
which are second order in the momenta.

We will prove that the Hamiltonian (18) instead pos-
sesses also an integral rational in the momenta.

Let us write some of the invariants of the Hamiltonian
(10) which will be useful in the sequel:

Ti = |zi|2, i = 1, ..., 4

L12 =
i

2
(c12 − c21) =

i

2
(z1z̄2 − z2z̄1) = y1p̂2 − y2p̂1

L34 =
i

4
(c

1

2

34 − c
1

2

43) =
i

4
(z3z̄4 − z4z̄3) = y3p̂4 − y4p̂3

and

T12 =p̂1p̂2 + y1y2

T34 =p̂3p̂4 + 4y3y4

Notice that they satisfy the Poisson commutation rela-
tions

{H4, Lij} = 0, {H4, Ti} = 0, {H4, Tij} = 0

{L12, T1 + T2} = 0, {L34, T1 + T2} = 0,

{L12, T3 + T4} = 0, {L34, T3 + T4} = 0

The Poisson bracket can be written in terms of the zi

variables:

{f(zi, z̄i), g(zi, z̄i)}

=

2
∑

i=1

(

∂f

∂zi

∂g

∂z̄i

− ∂f

∂z̄i

∂g

∂zi

)

+ 2

4
∑

i=3

(

∂f

∂zi

∂g

∂z̄i

− ∂f

∂z̄i

∂g

∂zi

)

Let us look for some more invariant quantities com-
muting with L12 and L34. Impose that a function of
z1, z̄1, z2, z̄2 commutes with L12:

z2∂z1
f − z1∂z2

f + z̄2∂z̄1
f − z̄1∂z̄2

f = 0

The invariants of this differential equation, that is the
quantities commuting with L12, are:

z2
1 + z2

2 , z1z̄2 − z̄1z2, z1z̄1 + z2z̄2

Doing the same calculus with L34, we finally find the
following set of invariants under L12 and L34:

z2
1 + z2

2 , z2
3 + z2

4 , |z1|2 + |z2|2, |z3|2 + |z4|2 (20)

where we have not included L12 and L34. These quanti-
ties are not necessarily invariant under H4. It is easy to
check that:

{H4, |z1|2 + |z2|2} = 0, {H4, |z3|2 + |z4|2} = 0

(a trivial result if one writes these expressions in terms
of yi and p̂i), but H4 does not commute with the first
two expressions in (20). We look for a function of these
two expressions satisfying:

{H4, f(z2
1 + z2

2 , z2
3 + z2

4)} = 0

This equation defines one invariant which can be written
as

R =
(z2

1 + z2
2)2

z2
3 + z2

4

(21)

It is evident that all the invariants can be chosen real and
so,

R̄ =
(z̄2

1 + z̄2
2)2

z̄2
3 + z̄2

4

(22)

is also an invariant. Then, R and R̄ are invariants under
H4, L12 and L34. Notice that R and R̄ are not polyno-
mials, but they can be written in terms of the invariants
cij . For instance, R reads

R =
(z2

1 + z2
2)

2

z2
3 + z2

4

=
(c13 + c23)

2 + (c14 + c24)
2

c2
33 + c2

44 + c2
34 + c2

43

(23)

Reduction of the first integrals

As we said, the integrals as well are restricted by the
transformation (12) in the reduced phase space Pµ:

L̃ = L|reduced, T̃ = T |reduced

L̃12 =
√

2k1, L̃34 =
√

2k2

Ẽ =H2

Ẽ1 =
1

2
(T1 + T2) =

1

2
p2
1 +

k2
1

x2
1

+
1

2
x2

1

Ẽ2 =
1

2
(T3 + T4) =

1

2
p2
2 +

k2
2

x2
2

+ 2x2
2

{H2, Ẽi} = 0, i = 1, 2, {Ẽ1, Ẽ2} = 0,
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The quantities Ẽi are the reductions of the invariants

|z1|2 + |z2|2, |z3|2 + |z4|2

The other invariant, R (or its real part) is also reduced to
an invariant of the reduced Hamiltonian. For instance,
its real part I reads

I =
1

I2
2 + k2

x2

2

M2

(

K2
1 − I2

1 + 2
k2

x2
2

M1

)

(24)

where

I2 = Ẽ2 |k2
= 0 =

1

2
p2
2 + 2x2

2,

M2 = p2
2 +

k2

x2
2

− 4x2
2,

I1 = 2

(

1

2
p2
1 +

k1

x2
1

− 1

2
x2

1

)

x2 − p1p2x1,

M1 =

(

1

2
p2
1 +

k1

x2
1

− 3

2
x2

1

)2

− 2

(

x2
1 −

k1

x2
1

)

x2
1,

K1 =

(

1

2
p2
1 +

k1

x2
1

− 1

2
x2

1

)

p2 + 2p1x1x2. (25)

Observe that R is a smooth function, whose denomi-
nator never vanishes. The quantity I commutes with H2

and is functionally independent of H2 and Ẽ1 (or Ẽ2).
When k2 = 0, the integral I collapses into one of the
integrals of the system (19), namely the one responsible
for the separation of variables in parabolic coordinates.

III. THE GENERAL CASE

Within the same approach, it is easy to extend the
previous picture to the general situation of a reduction
from a 2N to a N–dimensional configuration space:

H2N =
1

2

2N
∑

i=1

p̂2
i +

ω2

2

N
∑

j=1

n2
j(y

2
2j−1 + y2

2j). (26)

Indeed, let us introduce the affine variables

zk = p̂k − i nkωyk, k = 1, . . . , 2N

so that the Hamiltonian reads

H2N =
1

2

2N
∑

k=1

|zk|2.

The Poisson bracket is defined by

{f(zi, z̄i), g(zi, z̄i)} =

N
∑

j=1

2j
∑

k=2j−1

nj

(

∂f

∂zk

∂g

∂z̄k

− ∂f

∂z̄k

∂g

∂zk

)

The invariants under the group action generated by
L12, · · · , L2N−1,2N are

z2
1 + z2

2 , . . . , z2
2N−1 + z2

2N , (27)

apart from the quantities L12, · · · , L2N−1,2N and the “2-
plane energies” which commute with the Hamiltonian H4

|z1|2 + |z2|2, . . . , |z2N−1|2 + |z2N |2 (28)

Imposing

{H2N , f(z2
1 + z2

2 , . . . , z2
2N−1 + z2

2N )} = 0

we get the differential equation

n1(z
2
1 + z2

2)∂1f + · · · + nN (z2
2N−1 + z2

2N )∂Nf = 0.

Its general solution depends on N − 1 invariants:

(z2
1 + z2

2)nN

(z2
2N−1 + z2

2N )n1

, . . . ,
(z2

2N−3 + z2
2N−2)

nN

(z2
2N−1 + z2

2N)nN−1

(29)

Then, using the transformation (12) we now reduce the
original Hamiltonian to the following one:

HN =
1

2

N
∑

i=1

p2
i +

N
∑

i=1

ki

x2
i

+
ω2

2

N
∑

i=1

n2
i x

2
i (30)

The corresponding reduced invariants are:

|z1|2 + |z2|2, . . . , |z2N−1|2 + |z2N |2, (31)

(z2
1 + z2

2)
nN

(z2
2N−1 + z2

2N)n1

, . . . ,
(z2

2N−3 + z2
2N−2)

nN

(z2
2N−1 + z2

2N )nN−1

(32)

There are 2N − 1 functionally independent integrals and
consequently the system is maximally superintegrable,
proving the conjecture of [28].

We have thus added a new maximally superintegrable
system in N dimensions to previously known ones (see,
e.g., [7], [8], [11], [27].

IV. OPEN PROBLEMS

From the previous considerations, it emerges that it
would be desirable to construct systematically transfor-
mations mapping a superintegrable system into another
system, that is also superintegrable, and defined in a re-
duced phase space. It seems natural to associate such
transformations to the rich symmetry structure possessed
by superintegrable systems. For instance, changes of vari-
ables of the type (12) are clearly related to invariance
properties under rotation. From this point of view, the
role of higher order groups of transformations generated
by the flow associated to integrals that are polynomi-
als in the momenta remains to be fully investigated. A
quantum mechanical version of this reduction procedure
is also to be understood.
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G. Pogosyan, M. A. Rodŕıguez (eds), Superintegrability
in Classical and Quantum Systems, Montréal, CRM Pro-
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