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Reduction of symmetric semidefinite programs

using the regular ∗-representation

Etienne de Klerk1 Dmitrii V. Pasechnik2 Alexander Schrijver3

Abstract. We consider semidefinite programming problems on which a permutation group is acting.
We describe a general technique to reduce the size of such problems, exploiting the symmetry. The
technique is based on a low-order matrix ∗-representation of the commutant (centralizer ring) of the
matrix algebra generated by the permutation matrices.

We apply it to extending a method of de Klerk et al. that gives a semidefinite programming lower
bound to the crossing number of complete bipartite graphs. It implies that cr(K8,n) ≥ 2.9299n2−6n,
cr(K9,n) ≥ 3.8676n2 − 8n, and (for any m ≥ 9)

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8594

m

m − 1
,

where Z(m, n) is the Zarankiewicz number b 1

4
(m − 1)2cb 1

4
(n − 1)2c, which is the conjectured value

of cr(Km,n). Here the best factor previously known was 0.8303 instead of 0.8594.

1. Introduction

This paper is inspired by papers of Kanno, Ohsaki, Murota, and Katoh [5] and Gatermann
and Parrilo [4], that study semidefinite programming problems whose underlying matrices
have symmetries that enable us to reduce the size of the problems, and it extends results of
de Klerk, Maharry, Pasechnik, Richter, and Salazar [7] on the crossing number of complete
bipartite graphs.

The new contribution of the present paper is a general but explicit method to reduce
the order of the matrices in a semidefinite programming problem if the problem is invariant
under a group acting on its variables. The method is based on constructing a ‘regular ∗-
representation’ of a matrix ∗-algebra. A matrix ∗-algebra is a collection of matrices closed
under addition, scalar and matrix multiplication, and transposition. In this paper, all
matrices are real, and all positive semidefinite matrices are symmetric.

The results in this paper relate to representation theory (cf. [3]), C∗-algebra (cf. [10]),
and the theory of association schemes (cf. [2]) — however, this paper is mainly self-contained.

The method applies to problems of the form
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(1) min{tr(CX) | X positive semidefinite, X ≥ 0, tr(AjX) = bj for j = 1, . . . ,m},

where C and A1, . . . , Am are given real symmetric matrices (all of the same order), and
b1, . . . , bm are given real numbers. (This is a generic form of a semidefinite programming
problem.)

The method is in particular effective when the order of the matrices C and Aj is large,
whereas there is a relatively large multiplicative group G of permutation matrices that
commute with each of C,A1, . . . , Am. In that case, we can assume without loss of generality
that also X commutes with all matrices in G. As we will show below, this makes it possible
to reduce the order of the matrices involved to the dimension of the algebra of matrices
commuting with all matrices in G. This often is much smaller than the order of the original
input matrices, which allows to solve the semidefinite programming problem much more
efficiently, or to solve it at all.

As application of the method we extend the bounds on the crossing number of complete
bipartite graphs Km,n found by de Klerk et al. [7], as we will describe in Section 3.

2. The regular ∗-representation

Let G be a finite group acting on a finite set Z. That is, we have a homomorphism
h : G → SZ , where SZ is the group of all permutations of Z. So for each π ∈ G, hπ is a
bijection Z → Z with hππ′ = hπhπ′ and hπ−1 = h−1

π for all π, π′ ∈ G.
For each π ∈ G, let Mπ be the Z × Z matrix with

(2) (Mπ)x,y :=

{

1 if hπ(x) = y,

0 otherwise,

for x, y ∈ Z. So Mπ is the Z ×Z permutation matrix corresponding to the permutation hπ

of Z. Hence π 7→ Mπ defines an orthogonal representation of G, i.e., it satisfies

(3) Mππ′ = MπMπ′ and Mπ−1 = MT
π

for all π, π′ ∈ G.
Let A be the matrix ∗-algebra

(4) A := {
∑

π

λπMπ | λπ ∈ R (π ∈ G)}.

The invariant matrices are the Z × Z matrices X satisfying

(5) XMπ = MπX

for all π ∈ G. In other words, MπXMπ−1 = X.
So the collection of invariant matrices is precisely the commutant A′ of A:

2



(6) A′ := {X ∈ R
Z×Z | XM = MX for all M ∈ A}.

(The commutant is also known as the centralizer ring.) The commutant is again a matrix
∗-algebra.

The matrix ∗-algebra A′ has a basis of {0, 1}-matrices E1, . . . , Ed such that

(7) E1 + · · · + Ed = J,

where J is the all-one Z × Z matrix. They correspond to the orbits of the action of G on
Z × Z. (This is the action (x, y) 7→ (hπ(x), hπ(y)) for x, y ∈ Z and π ∈ G.)

Computationally, we do not need to work with these matrices, but we should be able to
identify them and to calculate their multiplication parameters, as will be specified below.

Observe that for each i there is an i∗ with

(8) Ei∗ = (Ei)
T

(possibly i∗ = i).
We normalize the Ei to

(9) Bi := tr(ET
i Ei)

−1/2Ei

for i = 1, . . . , d. Then

(10) tr(BT
i Bj) = δi,j ,

where δi,j is the Kronecker delta.
The multiplication parameters λk

i,j are defined by

(11) BiBj =
∑

k

λk
i,jBk

for i, j = 1, . . . , d.
Define the d × d matrices L1, . . . , Ld by

(12) (Lk)i,j := λi
k,j

for k, i, j = 1, . . . , d. Let L be the linear space

(13) L := {
d

∑

k=1

xkLk | x1, . . . , xk ∈ R}.

Let φ be the linear function A′ → L determined by φ(Bk) = Lk for k = 1, . . . , d. We will
show that φ is a ∗-isomorphism; that is, it is a bijection and satisfies φ(Y Z) = φ(Y )φ(Z)
and φ(Y T ) = φ(Y )T for all X,Y ∈ A′.
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Theorem 1. φ is a ∗-isomorphism.

Proof. Consider any k = 1, . . . , d. Let the linear function Φk : A′ → A′ be defined by:
Φk(X) := BkX for each X ∈ A′. Then Lk is the matrix corresponding to Φk, using the
basis B1, . . . , Bd of A′. Indeed,

(14) Φk(Bj) = BkBj =
∑

i

λi
k,jBi =

∑

i

(Lk)i,jBi.

So φ(Bk) is the matrix corresponding to the linear operator X 7→ BkX on A′ (since
Lk = φ(Bk)). Hence, as the Bk span A′, it follows that, for each Y ∈ A′, φ(Y ) is the matrix
corresponding to the linear operator X 7→ Y X on A′. This implies that φ(Y Z) = φ(Y )φ(Z)
for all Y,Z ∈ A′ (since (Y Z)X = Y (ZX)). Moreover, φ is one-to-one, since if φ(Y ) = 0,
then Y X = 0 for all X ∈ A′, hence Y Y T = 0, and so Y = 0.

Finally, φ(Y T ) = φ(Y )T . Indeed, we have for each i,

(15) Y Bj =
∑

t

φ(Y )t,jBt.

Hence

(16) tr(BT
i Y Bj) =

∑

t

φ(Y )t,jtr(B
T
i Bt) =

∑

t

φ(Y )t,jδi,t = φ(Y )i,j .

Since similarly φ(Y T )j,i = tr(BT
j Y T Bi) and since tr(BT

j Y T Bi) = tr(BT
i Y Bj), we have

φ(Y T )j,i = φ(Y )i,j . So φ(Y T ) = φ(Y )T .

Those familiar with representation theory will see that φ is the regular ∗-representation
of A′ associated with the orthonormal basis B1, . . . , Bd of A′.

An important consequence of Theorem 1 is that, for any x1, . . . , xd ∈ R,

(17)

d
∑

i=1

xiBi is positive semidefinite ⇐⇒

d
∑

i=1

xiLi is positive semidefinite.

(Recall that each positive semidefinite matrix is symmetric, and that
∑

i xiBi and
∑

i xiLi

are symmetric if and only if xi∗ = xi for each i.) (17) is a well-known and easy fact from C∗-
algebra. It can be seen as follows. Trivially, as φ is a ∗-isomorphism, φ maintains symmetry
of matrices. Now let M ∈ A′ be symmetric and let p(x) be the minimal polynomial of
M . Then p is also the minimal polynomial of φ(M), as φ is an algebra ∗-isomorphism
(since X = 0 ⇐⇒ φ(X) = 0). Then M is positive semidefinite ⇐⇒ all roots of p are
nonnegative ⇐⇒ φ(M) is positive semidefinite.

Since the order d of the matrices Li is equal to the number of matrices Bi (that is, to
the number of orbits of the action of G on Z × Z), this may give a considerable reduction
of the size of the matrices to which we want to apply semidefinite programming.

To be more precise, let the matrices C and Aj in (1) be Z×Z matrices commuting with
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Mπ for each π in some finite group acting on Z. Then there is an optimum solution X that
commutes with each of the Mπ, since we can replace any optimum solution X by

(18) X ′ := |G|−1
∑

π∈G

MπXMT
π ,

as X ′ is feasible again and tr(CX ′) = tr(CX). Hence we can require X =
∑

i xiBi for some
xi. Then by (17)

(19) min{tr(CX) | X positive semidefinite, X ≥ 0, tr(AjX) = bj for j = 1, . . . ,m} =

min{
d

∑

i=1

tr(CBi)xi |
d

∑

i=1

xiBi positive semidefinite, xi ≥ 0 for i = 1, . . . , d,

d
∑

i=1

tr(AjBi)xi = bj for j = 1, . . . ,m} =

min{
d

∑

i=1

tr(CBi)xi |
d

∑

i=1

xiLi positive semidefinite, xi ≥ 0 for i = 1, . . . , d,

d
∑

i=1

tr(AjBi)xi = bj for j = 1, . . . ,m}.

Assuming that we can compute the values of tr(CBi) and tr(AjBi), this gives a smaller
semidefinite programming problem.

Since the matrix
∑

i xiLi is symmetric if and only if xi = xi∗ for each i, the number of
variables in (19) can be reduced to the reduced dimension dreduced, which is the number of
distinct pairs {i, i∗}. In other words, it is the dimension of the subspace of A′ of symmetric
matrices.

Finally, we mention the following equality, that may be useful in determining the ma-
trices Lk:

(20) λk
i,j = tr(Dk∗DiDj)

(which can be derived from (16)). It implies λk
i,j = λj∗

k∗,i = λi∗

j,k∗ = λk∗

j∗,i∗ = λj
i∗,k = λi

k,j∗ .

3. Crossing numbers

As application we give an extension of a method of de Klerk, Maharry, Pasechnik, Richter,
and Salazar [7] to lower bound the crossing number cr(Km,n) of a complete bipartite graph
Km,n. (The crossing number of a graph G is the minimum number of intersections of edges
when G is drawn in the plane such that all vertices are distinct.) This is based on finding,
for some fixed m, a lower bound for cr(Km,n) using semidefinite programming.

The bound relates to the problem raised by the paper of Zarankiewicz [12], asking if

(21) cr(Km,n)
?
= Z(m,n) := b1

4(m − 1)2cb1
4(n − 1)2c.
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(In fact, Zarankiewicz claimed to have a proof, which however was shown to be incorrect.)
Here ≤ follows from a direct construction. This equality was proved by Kleitman [6] if
min{m,n} ≤ 6 and by Woodall [11] if m ∈ {7, 8} and n ∈ {7, 8, 9, 10}.

Consider any m,n. Let Km,n have colour classes {1, . . . ,m} and {u1, . . . , un}. (This
notation will be convenient for our purposes.) Let Zm be the set of cyclic permutations of
{1, . . . ,m} (that is, the permutations with precisely one orbit). For any drawing of Km,n

in the plane and for any ui, let γ(ui) be the cyclic permutation (1, i2, . . . , im) such that the
edges leaving ui in clockwise order, go to 1, i2, . . . , im respectively.

For σ, τ ∈ Zm, let Cσ,τ be equal to the minimum number of crossings when we draw
Km,2 in the plane such that γ(u1) = σ and γ(u2) = τ . De Klerk et al. applied a direct
algorithm to compute Cσ,τ , due to Kleitman [6] and described in detail by Woodall [11].
One may show that for any σ ∈ Zm:

(22) Cσ,σ−1 = 0 and Cσ,σ = b1
4(m − 1)2c.

The Cσ,τ define a matrix C = (Cσ,τ ) in R
Zm×Zm (see [7] for more details about this

matrix). Then define the number αm by:

(23) αm := min{tr(CX) | X ∈ R
Zm×Zm
+ ,X positive semidefinite, tr(JX) = 1},

where J is the all-one matrix in R
Zm×Zm .

De Klerk et al. [7] showed:

Theorem 2. cr(Km,n) ≥ 1
2n2αm − 1

2nb1
4(m − 1)2c for all m,n.

Proof. Consider a drawing of Km,n in the plane with cr(Km,n) crossings. For each cyclic
permutation σ, let dσ be the number of vertices ui with γ(ui) = σ. Consider d as column
vector in R

Zm , and define

(24) X := n−2ddT .

Then X satisfies the constraints in (23), hence αm ≤ tr(CX). For i, j = 1, . . . , n, let βi,j

denote the number of crossings of the edges leaving ui with the edges leaving uj . So if i 6= j,
then βi,j ≥ Cγ(ui),γ(uj). Hence

(25) n2tr(CX) = tr(CddT ) = dT Cd =
n

∑

i,j=1

Cγ(ui),γ(uj) ≤
n

∑

i,j=1

i6=j

βi,j +
n

∑

i=1

Cγ(ui),γ(ui) =

2cr(Km,n) + nb1
4(m − 1)2c.

Therefore,

(26) cr(Km,n) ≥ 1
2n2tr(CX) − 1

2nb1
4(m − 1)2c ≥ 1

2αmn2 − 1
2nb1

4(m − 1)2c.

This implies:
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Corollary 2a. cr(Km,n) ≥
m(m − 1)

k(k − 1)
(1
2n2αk − 1

2nb1
4(k − 1)2c) for all n and k ≤ m.

Proof. Consider a drawing of Km,n in the plane with cr(Km,n) crossings. Let G be the
collection of all subgraphs of Km,n isomorphic to Kk,n, obtained by selecting k vertices
from 1, . . . ,m. Then |G| =

(m
k

)

. Moreover, any two disjoint edges in Km,n occur in
(m−2

k−2

)

of the graphs in G. So each crossing of Km,n occurs in
(

m−2
k−2

)

of the graphs in G. Therefore,

(27) cr(Km,n) ≥

(

m
k

)

(

m−2
k−2

)cr(Kk,n) =
m(m − 1)

k(k − 1)
cr(Kk,n).

This in turn implies:

Corollary 2b. lim
n→∞

cr(Km,n)

Z(m,n)
≥

8αk

k(k − 1)

m

m − 1
for all k ≤ m.

Proof. Using Corollary 2a:

(28) lim
n→∞

cr(Km,n)

Z(m,n)
≥ lim

n→∞

m(m − 1)(1
2n2αk − 1

2nb1
4(k − 1)2c)

k(k − 1)Z(m,n)
=

lim
n→∞

m(m − 1)(1
2n2αk − 1

2nb1
4(k − 1)2c)

k(k − 1)b1
4(m − 1)2cb1

4(n − 1)2c
=

2αk

k(k − 1)

m(m − 1)

b1
4(m − 1)2c

≥

8αk

k(k − 1)

m

m − 1
.

The parameter αm is defined by the conceptually very simple semidefinite programming
problem (23), but the order (m − 1)! of the matrices increases fast with m. For m ≥ 7, it
is too large for present-day semidefinite programming software.

However, using the symmetry of C, de Klerk et al. [7] computed α7 = 4.3593154965 . . .,
which implies

(29) cr(K7,n) ≥ 2.1796n2 − 4.5n,

and also, for each m ≥ 7 and n:

(30) cr(Km,n) ≥ 0.0518m(m − 1)n2 − 3
28m(m − 1)n

and for each m ≥ 7:

(31) lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.8303

m

m − 1
.

We describe the approach to exploiting the symmetry further, and apply the method
described in Section 2. Fix m ∈ N. Let G := Sm × {−1,+1}, and define h : G → SZm

by

(32) hπ,i(σ) := πσiπ−1
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for π ∈ Sm, i ∈ {−1,+1}, σ ∈ Zm. So G acts on Zm. Moreover, the cost matrix C satisfies
MπCMT

π = C for each π ∈ G (cf. [7]), and also MπJMT
π = J for each π ∈ G. Hence

the method of Section 2 applies, and we can reduce (23) as in (19). Let the algebra A (as
defined in (4)) in this case be denoted by Cm. So its commutant is C ′

m.
Applying this method requires that we are able to identify the matrices Ei and the

multiplication parameters λk
i,j . This indeed is possible for this application, where we have

to identify the equivalence classes of pairs (σ, τ) ∈ Zm ×Zm under the equivalence relation

(33) (σ, τ) ∼= (σ′, τ ′) ⇐⇒ ∃(π, i) ∈ G : hπ,i(σ) = σ′, hπ,i(τ) = τ ′.

Since each equivalence class contains a pair (ι, τ), where ι is the permutation ι := (1, . . . ,m),
this can be done for instance by enumerating all (m − 1)! pairs (ι, τ) and check their
equivalences. (We note here that (9 − 1)! = 40320 is still computationally feasible in
this respect, whereas 40320 × 40320 matrices are too large for present-day semidefinite
programming software.) Also the multiplication parameters λk

i,j can be computed (for
m = 9) within reasonable time.

With this method we were able to compute α8 and α9. It turns out that α8 =
5.8599856444 . . ., implying

(34) cr(K8,n) ≥ 2.9299n2 − 6n,

and also, for each m ≥ 8 and n:

(35) cr(Km,n) ≥ 0.0523m(m − 1)n2 − 3
28m(m − 1)n

and for each m ≥ 8:

(36) lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.8371

m

m − 1
.

Moreover, α9 = 7.7352126 . . ., implying

(37) cr(K9,n) ≥ 3.8676063n2 − 8n,

and also, for each m ≥ 9 and n:

(38) cr(Km,n) ≥ 0.0537m(m − 1)n2 − 1
9m(m − 1)n,

and for each m ≥ 9:

(39) lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.8594

m

m − 1
.

The dimension d of C ′

m and the reduced dimension dreduced (cf. the end of Section 2) are
given in the following table:
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m d dreduced

1 1 1

2 1 1

3 2 2

4 3 3

5 8 7

6 20 17

7 78 56

8 380 239

9 2438 1366

10 18744 9848

Table 1: Table of dimension d and reduced dimension dreduced

Computations for this paper were done on an SGI Altrix cluster running 64-bit Linux on
32 Itanium II processors, and with 128 GB of shared memory. We used the interior point
implementation CSDP by Borchers [1] that relies upon BLAS/LAPACK matrix library
routines (for the latter we used the parallel implementation by SGI).

For m = 9, the SDP problem to compute α9 had more than 44 million nonzero data
entries. This is larger than any SDP benchmark problem known to the authors. Its solution
on the SGI Altrix cluster required more than seven days of wall clock time and used 1.47GB
of memory.

It is therefore safe to say that the computation of α10 is out of reach of present-day
computing power, at least when general-purpose interior point SDP solvers are used, even
if we would be able to find the most economical representation of the problem (i.e., a
block-diagonalization), simply because the number of variables remains too large. Any
interior point method has to form and solve dense linear systems of order dreduced = 9848
at each iteration when computing α10 (cf. Table 1). This is regardless of whether a block-
diagonalization is known for the regular representation of C ′

m.
Moreover, an interior point algorithm will have to compute Choleski and/or singular

value decompositions of matrices of order d × d at each iteration (or of order the largest
block if a block-diagonalization is used).

Figure 1 shows the lower bounds obtained on the ratio limm,n→∞ cr(Km,n)/Z(m,n) by
computing αk for k = 2, . . . , 9 (cf. Corollary 2b). So far, odd values of k gave relatively
large improvements compared to the even values. This is reminiscent of the fact that, if the
Zarankiewicz conjecture holds for K2m−1,n, it also holds for K2m,n.

We finally note that, for m ≥ 6, the number of orbits of Zm × Zm under the actions of
G = Sm × {−1,+1} is strictly smaller than if we restrict the actions to Sm × {1}. In fact,
G is precisely the full automorphism group of the matrix C.
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2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8α
k/(

k(
k−

1)
)

k

Figure 1: Each computed value αk gives the lower bound limn,m→∞

cr(Kn,m)
Z(n,m) ≥ 8αk

k(k−1) .

4. Concluding remarks

We discuss what is new in this paper compared with [4] and [5]. Gatermann and Parrilo [4]
only consider the situation where the canonical representation of the commutant is known.
In the example we consider, this is not the case. In the paper of Kanno, Ohsaki, Murota, and
Katoh [5], it is shown that the central path in semidefinite programming converges to a group
symmetrical optimal solution (i.e. a solution in the commutant). Our approach restricts
the optimization process to the commutant (in fact to a more economical representation of
it). Thus the desirable feature of a symmetric optimal solution is retained, but with the
additional advantage of a reduction in the size of the optimization problem.

Our method may also be applied to compute upper bounds on the size of error-correcting
codes. For instance, it may reduce the Terwilliger algebra of the Hamming scheme Hn (cf.
[9]), whose matrices have order 2n × 2n, to an algebra of matrices of order

(n+3
3

)

×
(n+3

3

)

.
This makes the corresponding bounds computable in time bounded by a polynomial in n
(rather than in 2n). However, for this application the block-diagonalization has been found
([9]), which allows a more efficient computation of the bounds. Laurent [8] showed that
with the method of the present paper a hierarchy of further, polynomial-time computable
sharpenings can be obtained for the coding problem.

Related to the coding application is computing the Lovász’s ϑ bound of graphs G (and
its variant ϑ′) when the commutant of the automorphism group of G has low dimension
(or when the algebra generated by the adjacency matrix and the all-one matrix has low
dimension). Another potential application would be the truss topology design problem
described in Kanno, Ohsaki, Murota, and Katoh [5] for trusses with suitable symmetry.

Acknowledgements. We are thankful to the referees for helpful suggestions as to the pre-
sentation of this paper.
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