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Abstract. This article proposes an algorithm for reducing the size of test suites, 
using the mutation score as the criterion for selecting the test cases while 
preserving the quality of the suite. Its utility is also checked with a set of 
experiments, using benchmark programs and industrial software.  
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1 Introduction 

Mutation is a testing technique, originally proposed in 1978 by DeMillo et al. [1], 
which relies on the discovery of the artificial faults which are seeded in the system 
under test (SUT). These faults are injected in the SUT by means of a set of mutation 
operators, whose purpose is to imitate the faults that a common programmer may 
commit. Thus, each mutant is a copy of the program under test, but with a small 
change in its code, which is interpreted as a fault.  

Mutants are usually generated by automated tools that apply a set of mutation 
operators to the sentences of the original program, thus producing a high number of 
mutants because, in general, each mutant contains only one fault. The fault in a 
mutant is discovered when the execution of a given test case produces a different 
output in the original program and in the mutant. When the fault is discovered, it is 
said that the mutant has been “killed”; otherwise, the mutant is “alive”. 

In order to obtain a good set of mutants, it is important that the seeded faults be 
“good”, which depends on the quality of the mutation operators applied. This area has 
been closely studied, with the proposal of operators for different kinds of languages 
and environments, as for example in [2]. Faults introduced in the mutants must imitate 
common errors by programmers since, by means of the “coupling effect”, a test suite 
that detects all simple faults in a program is so sensitive that it also detects more 
complex faults [3]. 

Figure 1 shows the source code of an original program (the SUT) and of some 
mutants: three of them proceed from the substitution of an arithmetic operator, 
whereas in the fourth a unary operator (++) has been added at the end of the sentence. 
The bottom of the figure presents the results obtained from executing some test cases 
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on the different program versions. The test case corresponding to the test data (1, 1) 
produces different outputs in the original program (whose output is correct) and in 
Mutant 1: thus, this test case has found the fault introduced in the mutant, leaving the 
mutant killed. On the other hand, since all test cases offer the same output in the 
original program and in Mutant 4, it is said that Mutant 4 is alive. Moreover, this 
mutant will never be killed by any test case, since variable b is incremented after 
returning the result. Mutants like this one are called “functionally-equivalent mutants” 
and may be considered as noise when results are analyzed: they have a syntactic 
change (actually not a fault) with respect to the original source code that cannot be 
found. 

 
Original Mutant 1 Mutant 2 Mutant 3 Mutant 4 

int sum(int a,int b)  
{ 
 return a + b; 
} 

int sum(int a,int b) 
{ 
 return a - b; 
} 

int sum(int a,int b) 
{ 
 return a * b; 
}

int sum(int a,int b) 
{ 
 return a / b; 
}

int sum(int a,int b) 
{ 
 return a + b++; 
}

 Test data (a,b) 
(1, 1) (0, 0) (-1, 0) (-1, -1) 

Orig. 2 0 -1 -2 
Mut.1 0 0 -1 0 
Mut.2 1 0 0 1 
Mut.3 1 Error Error 1 
Mut.4 2 0 -1 -2 

 

Fig. 1. Code of some mutants and their results with some test data 

The test suite quality is measured in terms of the Mutation Score [4] (Figure 2), a 
number between 0 and 1 which takes into account the number of mutants killed, the 
number of mutants generated and the number of functionally-equivalent mutants. A 
test suite is mutation-adequate when it discovers all the faults injected in the mutants. 
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being: P: program under test; T: test suite; K: # of killed mutants; 
M: # of generated mutants; E: # of equivalent mutants 

Fig. 2. Mutation score 

Since that paper by DeMillo in 1978, many works have researched and developed 
tools to improve the different steps of mutation testing: mutant generation, test case 
execution and result analysis.  

Regarding mutant generation, most works try to decrease the number of mutants 
generated, with different studies existing for selecting the most meaningful operators 
[5, 6], as well as techniques for generating the mutants more quickly [7]. Regarding 
test execution, several authors have proposed the use weak mutation [8, 9], 
prioritization of the functions of the program under test [10] or the use of n-order 
mutants [11]. An n-order mutant has n faults instead of 1. Polo et al. [11] have shown 
that the combination of 1-order mutants to produce a suite of 2-order mutants 
significantly decreases the number of functionally equivalent mutants, whereas the 
risk of leaving faults undiscovered remains low. This has a positive influence on the 
result analysis step, whose main difficulty resides in the discovery of the functionally 
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equivalent mutants, which is required to calculate the Mutation Score (Figure 2). 
Manual detection is very costly, although Offutt and Pan have demonstrated that is 
possible to automatically detect almost 50% of functionally equivalent mutants if the 
program under test is annotated with constraints [12]. 

Since many equivalent mutants are optimizations or de-optimizations of the 
original program (for example, Mutant 4 in Figure 1 de-optimizes the original 
program), Offutt and Craft have also investigated how compiler optimization 
techniques may help in the detection of equivalent mutants [3]. 

In general, mutation testing has evolved over the years and, today, it is very 
frequently used to validate the quality of different testing techniques [13]. Some 
recent works related to mutation propose specific operators for specific programming 
languages, such as Kim et al. [14], who propose mutation operators for Java and 
Barbosa et al. [2], with operators for C.  

These works, developed so many years after the proposal of mutation, evidence the 
maturity of this testing technique. With the adequate operators, the mutation score can 
be considered as a powerful coverage criterion [15].  

This article proposes one algorithm (although another one, less efficient, is also 
described) for reducing the size of a test suite, based on the mutation score: given a 
test suite T, the goal is to obtain a new test suite T’, which obtains the same mutation 
score as T, being |T’|≤T. Furthermore, the article discusses how the subsumption of 
criteria may be preserved when the reduction algorithm is executed. 

The article is organized as follows: the two parts of Section 2 briefly describe 
strategies for test case generation (where the problem of redundant test cases is 
presented) and some works solving the problem of test suite reduction. Section 3 then 
presents the algorithm for test suite reduction based on mutation, completing its 
description with an example taken from the literature. The validity of the algorithm is 
analyzed in Section 4, both with some benchmark programs, widely used in testing 
literature, and with a set of industrial programs. Finally, we draw our conclusions. 

2 Related Work 

The fact of having big test suites increases the cost of their writing, validation and 
maintenance, taking into account the continuous evolution of software and the 
corresponding regression testing [16]. Due to this, several researchers have proposed 
different techniques to reduce the size of a test suite, while the coverage reached is 
preserved. The problem of reducing a test suite to the minimum possible cardinal is 
known as the “optimal test-suite reduction problem” and has been stated by Jones and 
Harrold [17] as in Figure 3.  

Given:  Test Suite T, a set of test-case requirements r1, r2, ..., rn, that must be satisfied to 
provide the desired test coverage of the program. 

Problem: Find T’⊂T such that T’ satisfies all ri and (∀T’’⊂T, T’’ satisfies all r⇒  |T’|≤|T’’|) 

Fig. 3. The optimal test suite reduction problem 

Applied to the Triangle-type example, and starting from the results obtained by the 
All combinations strategy, the problem consists of finding a minimal subset of test 
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cases that obtains the same coverage as the original test suite: i.e., to obtain a set of n 
test cases that reach the same coverage as the original suite, being n≤216 and n being 
the minimal. The optimal test-suite reduction problem is NP-hard [18] and, thus, its 
solution has been approached by means of algorithms which provide near-optimal 
solutions, usually with greedy strategies. The following subsections review some 
relevant works. 

The HGS Algorithm. Harrold et al. [19] give a greedy algorithm (usually referred to 
as HGS) for reducing the suite of test cases into another, fulfilling the test 
requirements reached by the original suite. The main steps in this algorithm are: 

1) Initially, all the test requirements are unmarked. 

2) Add to T’ those test cases that only exercise a test requirement. Mark the 
requirements covered by the selected test cases. 

3) Order the unmarked requirements according to the cardinality of the set of test 
cases exercising one requirement. If several requirements are tied (since the sets 
of test cases exercising them have the same cardinality), select the test case that 
would mark the highest number of unmarked requirements tied for this 
cardinality. If multiple such test cases are tied, break the tie in favor of the test 
case that would mark the highest number of requirements with testing sets of 
successively higher cardinalities; if the highest cardinality is reached and some 
test cases are still tied, arbitrarily select a test case from among those tied. Mark 
the requirements exercised by the selected test. Remove test cases that become 
redundant as they no longer cover any of the unmarked requirements. 

4) Repeat the above step until all testing requirements are marked. 

Gupta Improvements. With different collaborators, Gupta has proposed several 
improvements to this algorithm:  

• With Jeffrey [20], Gupta adds “selective redundancy” to the algorithm. 
“Selective redundancy” makes it possible to select test cases that, for any 
given test requirement, provide the same coverage as another previously 
selected test case, but that adds the coverage of a new, different test 
requirement. Thus, maybe T’ reaches the All-branches criterion but not def-
uses; therefore, a new test case t can be added to T’ if it increases the 
coverage of the def-uses requirement: now, T’ will not increase the All-
branches criterion, but it will do so with def-uses. 

• With Tallam [21], test case selection is based on Concept Analysis techniques. 
According to the authors, this version achieves same size or smaller size 
reduced test suites than prior heuristics as well as a similar time performance. 

Heimdahl and George Algorithm. Heimdahl and George [22] also propose a greedy 
algorithm for reducing the test suite. Basically, they take a random test case, execute 
it and check the coverage reached. If this one is greater than the highest coverage, 
then they add it to the result. The algorithm is repeated five times to obtain five 
different reduced sets of test cases. Since chance is an essential component of this 
algorithm, the good quality of the results is not guaranteed. 
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McMaster and Memon Algorithm. McMaster and Memon [23] present another 
greedy algorithm. The parameter taken into account to include test cases in the 
reduced suite is based on the “unique call stacks” that test cases produce in the 
program under test. As can be seen, the criterion for selecting test cases (the number 
of unique call stacks) is not a “usual test requirement”. 

In summary, since the optimal test-suite reduction problem is NP-hard, all the 
approaches discussed propose a greedy algorithm to find a good solution with a 
polynomial-time algorithm and, as the discussed algorithms show, test requirement 
for test case selection can be anything: coverage of sentences, blocks, paths… or,  as 
it is proposed in this paper, number of mutants killed. 

According to [24, 25], the degree of automation of testing tasks in the software 
industry is very low. Often, testing is performed in an artisanal way, and the efforts 
carried out in the last years to obtain test automation mostly consist of the application 
of unit testing frameworks, such as JUnit or NUnit. As a matter of fact, the work by 
Ng et al. [26] shows the best results on test automation: 79.5% of surveyed 
organizations automate test execution and 75% regression testing. However, only 38 
of the 65 organizations (58.5%) use test metrics, with defect count being the most 
popular (31 organizations). Although the work does not present any data about the 
testing tools used, these results suggest that most organizations are probably 
automating their testing processes with X-Unit environments. In order to improve 
these testing practices, software organizations require cost and time-effective 
techniques to automate and to improve their testing process. Thus, the introduction of 
software testing research results in industry is a must.  

3 Test Suite Reduction Using Mutation 

This section mainly describes a greedy algorithm to reduce the size of a test suite based 
on the Mutation Score. This algorithm is inspired in the mutation cost reduction 
algorithms briefly described in [27].  The number of mutants killed by each test case is 
used as the criterion for the inclusion of a test case in the reduced set of selected test 
cases.  

Figure 4 shows reduceTestSuite, the main function of the algorithm. As inputs, it 
receives the complete set of test cases, the class under test and the complete set of 
mutants. In line 2, it executes all test cases against the class under test and against the 
mutants, saving the results in testCaseResults. 

Then, the algorithm is prepared for selecting, in several iterations, the test cases 
that kill more mutants, what is done in the loop of lines 5-14.  

The first time the algorithm enters this loop and arrives at line 7, the value of n 
(which is used to stop the iterations) is |mutants|: in this special case, the algorithm 
looks for a test case that kills all the mutants. If it finds it, the algorithm adds the test 
case to requiredTC, updates the value of n to 0 and ends; otherwise, it decreases n in 
line 16 and goes back into the loop.  

 



430 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha 

 

Let us suppose that n is initially 100 (that is, there are 100 mutants of the class 
under test), and let us suppose that the algorithm does not find test cases that kill n 
mutants until n=30. With this value, the function getTestCasesThatKillN (called in 
line 7) returns as many test cases as test cases kill n different mutants: i.e., if there are 
two test cases (tc1 and tc2) that kill the same 30 mutants, getTestCasesThatKillN 
returns only one test case (for example, tc1). If the intersection of the mutants killed 
by tc1 and tc2 is not empty, then the algorithm returns a set composed of tc1 and tc2. 

1. reduceTestSuite(completeTC : SetOfTestCases, cut : 
CUT, mutants : SetOfMutants) : SetOfTestCases  

2. testCaseResults = execute(completeTC, cut, mutants) 
3. requiredTC = ∅ 
4. n=|mutants| 
5. while (n>0)  
6.  mutantsNowKilled = ∅ 
7.  testCasesThatKillN = 

getTestCasesThatKillN(completeTC, n, mutants, 
mutantsNowKilled, testCaseResults) 

8.  if |testCasesThatKillN>0| then 
9.   requiredTC = requiredTC ∪ testCasesThatKillN 
10.   n = |mutants|-|mutantsNowKilled| 
11.  else 
12.   n = n – 1 
13.  end if 
14. end_while 
15. return requiredTC 
16.end 

Fig. 4. Main function of the algorithm, which returns the reduced suite 

When test cases killing the current n mutants are found, they are added to the 
requiredTC variable (line 9) and n is updated to the current number of remaining 
mutants.  

In the actual implementation of the algorithm, the execution of the complete set of 
test cases against the CUT and the mutants is made in a separate function (execute, 
called in line 2), which returns a collection of TestCaseResult objects, which are 
composed of the name of a test case and the list of the mutants they kill. 

The function in charge of collecting the set of test cases that kill n mutants is called 
in the 7th line in Figure 4 and is detailed in Figure 5. It goes through the elements in 
testCaseResults and takes those test cases whose list of has n elements. Each time it 
finds a suitable test case, the function removes the mutants it kills from the set of 
mutants: in this way, the function guarantees that no two test cases killing the same 
set of mutants will be included in the result. 
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1. getTestCasesThatKillN(completeTC:SetOfTestCases, 
n:int, mutants:SetOfMutants, mutantsNowKilled : 
SetOfMutants, testCaseResults: SetOfTestCaseResults) 
: SetOfTestCaseResults 

2.  testCasesThatKillN = ∅ 
3.  for i=1 to |testCaseResults| 
4.   testCaseResult = testCaseResults[i] 
5.  if |testCaseResult.killedMutants| == n and 

testCaseResult.killedMutants ⊆ mutants then 
6.   testCasesThatKillN = testCasesThatKillN ∪ 

testCaseResult.testCaseName 
7.    mutantsNowKilled = mutantsNowKilled ∪ 

testCaseResult.killed.Mutants 
8.   mutants = mutants – mutantsNowKilled 
9.  end_if 
10. next 
11. return testCasesThatKillN 
12.end 

Fig. 5. Function to obtain the test cases that kill n mutants 

3.1 Example 

Let us suppose the killing matrix in Table 1, corresponding to a supposed program 
with eight mutants (in the rows) and a test suite with seven test cases. Each column 
may be understood as an instance of TestCaseResult: in fact, there are seven instances 
of this type, each composed of the test case name and the list of mutants it kills: the 
first test case result is composed of the tc1 test case and the mutant m2; the second, by 
tc2 and m4, m5 and m6; the last one is composed of tc7 and an empty set of mutants, 
since it kills none. 

Table 1. First killing matrix for a supposed program 

 tc1 tc2 tc3 tc4 tc5 tc6 tc7 
m1   X  X   
m2 X  X  X   
m3   X     
m4  X    X  
m5  X      
m6  X  X    
m7    X    
m8    X    

Initially, requiredTC is the empty set and n=7. In the first iteration of the 5th line loop 
in Figure 4, the set mutantsNowKilled is ∅ because there are no test cases killing seven 
mutants. n is decreased to 6, 5, 4 and 3. In this iteration, the function 
getTestCasesThatKillN is called. This function (Figure 5) iterates from i=1 to 7. When 
i=1, it rejects tc1 because it does not kill three mutants (the current value of n).  
When i=2: 
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• Adds {tc2} to the testCasesThatKillN set. 
• Adds {m4, m5, m6} to the mutantsNowKilled set. 
• Leaves mutants with {m1, m2, m3, m7,m8}. 

Henceforth, the killed mutants {m4, m5, m6} will not be considered in the following 
iterations. Then, the killing matrix can be now seen such as in Table 2. 

Table 2. Second killing matrix for a supposed program 

 tc1 tc2 tc3 tc4 tc5 tc6 tc7 
m1   X  X   
m2   X  X   
m3   X X    
m7    X    
m8    X    

 
Still inside getTestCasesThatKillN, the i variable is increased to 3 and the 

TestCaseResult corresponding to tc3 is processed. Now: 

• testCasesThatKillN = {tc2, tc3} 
• mutantsNowKilled = {m1, m2, m3, m4, m5, m6} 
• mutants = {m7, m8} 

Mutants {m1, m2, m3} will not be considered in next iterations, thus leaving the 
killing matrix as in Table 3. 

Table 3. Third killing matrix for a supposed program 

 tc1 tc2 tc3 tc4 tc5 tc6 tc7 
m7    X    
m8    X    

 
getTestCasesThatKillN continues increasing i to 7, the function exits and the 

algorithm returns to line 8 of reduceTestSuite. Here, {tc2, tc3} are added to 
requiredTC and n is decreased to 2, which is the initial number of mutants (8) minus 
the number of mutants now killed (6). Now, the function executes its last iteration 
calling getTestCasesThatKillN with n=2, and selects the tc4 test case and adds it to 
requiredTC. The final value of this set is: {tc2, tc3, tc4}. 

3.2 “A Motivational Example” 

In their paper [20], Jeffrey and Gupta show, using the same title that leads this section, a 
small program to exemplify their algorithm with selective redundancy, which has been 
translated into the Java program shown in Figure 7. For this class, MuJava generates 48 
traditional (15 of them are functionally-equivalent) and 6 class mutants for this program.  

Using the values {-1.0, 0.0, +1.0} for the four parameters of function f, and 
generating test cases with the All combinations algorithm, the testooj tool [16] 
generates a test file with 3×3×3×3=81 test cases, that manage to kill 100% of the non-
equivalent mutants. Figure 6 shows a piece of the killing matrix for this example, 
ordered according to the number of mutants killed by each test case (last column). 
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Of the three test cases killing 28 mutants, the algorithm picks testTS_0_78 and 
adds it to the reduced suite, removing testTS_0_76 and testTS_0_77 since they kill the 
same mutants. Moreover, these are removed from the set of mutants. Then, it 
continues picking testTS_054 and proceeds in the same way. The reduced suite is 
finally composed of 7 test cases, which is 8.6% of the original size: {testTS_0_78, 
testTS_0_54, testTS_0_39, testTS_0_35, testTS_0_34, testTS_0_33, testTS_0_27} 

As expected, if the reduced suite is executed against the class and its mutants, it is 
seen that it also reaches the highest mutation score. 

 

Fig. 6. A piece of the killing matrix for the original test suite, in the Jeffrey and Gupta example 

4 Experiments 

In order to check the results of the technique, two experiments were carried out: 
The first experiment uses a set of programs which have been used in many research 

papers on software testing (for example, references [8, 11, 28-30]) and, therefore, can 
be considered as benchmarks. These programs are Bisect, Bub, Find, Fourballs, Mid 
and TriTyp. They are implemented as isolated Java classes. For this experiment, all 
the traditional mutation operators of the MuJava tool [31] were used to generate 
mutants (thus, those operators which are specific for the object-oriented 
characteristics of the Java language were excluded). Then, the All combinations 
strategy was used to generate test cases to kill these mutants. All combinations 
generates test cases by combining all test values of all the parameters [32]. 

For the second experiment, several classes were selected from a set of industrial 
systems. A required characteristic of the systems for this experiment is the availability 
of both its source code and test cases. In this case, the goal of the research is to 
evaluate the goodness of the technique in “actual” software. The test cases used for 
this experiment were those available with the corresponding project, and did not add 
new test cases to the test suites. All these projects are composed of several classes 
with different types of relationships among them. As with the first experiment, only 
the traditional operators were applied. 
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public class JGExample { 
   float returnValue; 
   public float f(float a, float b, float c, float d) { 
        float x=0, y=0; 
        if (a>0) x=2; 
        else  x=5;  
        if (b>0) y=1+x;  
        if (c>0) 
            if (d>0) returnValue=x; 
            else returnValue=10; 
        else returnValue=(1/(y-6)); 
        return returnValue; 
   } 
  
   public String toString() { 
        return "" + returnValue; 
   } 
} 

Fig. 7. The "motivational example" from Jeffrey and Gupta 

4.1 Experiment 1: Benchmark Programs 

Table 4 gives some quantitative information about the benchmark programs: number 
of lines of code (LOC), number of non-equivalent mutants generated by the MuJava 
tool (i.e., the equivalent mutants were manually removed), size of the original test 
suite (automatically generated using the All combinations strategy with the testooj 
tool) and size of the reduced suite. Of course, both the original and the reduced suite 
kill 100% of non-equivalent mutants and, thus, all of them are mutation-adequate. 

Table 4. Results for the benchmark programs 

Program LOC # of mutants |Test suite| |Reduced test suite| 
Bisect 31 44 25 2 (8%) 
Bub 54 70 256 1 (0,04%) 
Find 79 179 135 1 (0.07%) 
Fourballs 47 168 96 5 (5,2%) 
Mid 59 138 125 5 (4%) 
TriTyp 61 239 216 17 (7,8%) 

4.2 Experiment 2: Industrial Programs 

For this experiment, a set of publicly available programs was downloaded (Table 5 
shows some quantitative data, measured with the Eclipse Metrics plugin). One 
important requirement for selecting these programs was the availability of test cases, 
since now the goal was to check whether among these test cases, written by the 
developers of the programs, there also exists any redundancy and that they can, 
therefore, be reduced. 
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In this way, the three following systems were selected and downloaded: 

1) jtopas, a system for analyzing and parsing HTML pages with CSS code 
embedded. This system is included in the Software-artifact Infrastructure 
Repository (SIR), a website with a set of publicly available software, left by 
Do and others to facilitate benchmarking in testing experimentation [33].  

2) jester, a testing tool for Java. This was developed by Ivan Moore and can be 
downloaded from http://jester.sourceforge.net. 

3) jfreechart, a free chart library for the Java platform. It was designed for use 
in applications, applets, servlets and JSP. 

Table 5. Quantitative data from the selected projects 

Project # of packages # of classes WMC (total) LOC 
jtopas 4 20 747 3,067 
jester 7 67 588 3,225 
jfreechart 69 877 20,584 124,664 

Table 6 shows some quantitative data from the selected classes, all of them having 
a corresponding testing class. Table 7 shows: 

1) The number of mutants generated for the class by the MuJava tool. Note 
that, in these projects, equivalent mutants have not been removed. 

2) The number of available test cases for that class in the corresponding 
project. 

3) The percentage of mutants killed by the original test suite.  
4) The number of test cases in the reduced suite, once the original suite has 

been executed and the reduction algorithm has been applied. 

Thus, for example, MuJava generates 94 mutants for PluginTokenizer from the jtopas 
project, where there are 14 test cases available on its website. These test cases kill 
31% of the mutants. The last column shows the results of applying the test suite 
reduction algorithm, with the result that a single test case is sufficient for reaching the 
same coverage as the original 14 test cases. 

Table 6. Quantitative data from the selected classes 

Project Program LOC WMC Methods 
jtopas PluginTokenizer 157 27 16 
jester IgnoreList 26 8 3 

jfreechart 

CompositeTitle 63 14 8 
SimpleHistogramBin 117 32 11 
RendererUtilities 137 29 3 
XYPlot 2,470 591 194 
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Table 7. Test execution results 

Program Mutants |Test suite| Mutants 
killed 

|Reduced test 
suite| 

PluginTokenizer 94 14 31% 1 (7%) 
IgnoreList 27 6 85% 2 (33%) 
CompositeTitle 9 4 77% 1 (25%) 
SimpleHistogramBin 293 5 66% 4 (80%) 
RendererUtilities 801 6 81% 6 (100%) 
XYPlot 3,012 21 36% 14 (66%) 

5 Conclusions and Future Work 

This article has presented a greedy algorithm to reduce the size of a test suite with no 
loss of quality, meaning that the new suite preserves the same coverage that the 
original suite reaches in the system under test. The testing criterion used to select the 
test cases is based on the percentage of mutants that each test case kills. The 
algorithm has been formally verified.  

Moreover, it has been applied to both benchmark programs commonly used in 
testing research papers, as in industrial software, evidencing the utility of the 
algorithm in almost all cases. 

In conclusion, the authors consider that mutation testing has reached sufficient 
maturity to be applied in the actual testing of real software. The research has now 
arrived at such a point that the knowledge produced over all these years is ready to be 
transferred to industrial testing tools. 

As a future work, we plan to compare the presented reduction algorithm with the 
other presented in the literature, in order to determine differences of effectiveness and 
efficiency between them. 
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