

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 425–438, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Reduction of Test Suites Using Mutation

Macario Polo Usaola1, Pedro Reales Mateo1, and Beatriz Pérez Lamancha2

1 Department of Information Systems and Technologies, University of Castilla-La Mancha,
Paseo de la Universidad 4, 13071-Ciudad Real, Spain
{macario.polo,pedro.reales}@uclm.es

2 Software Testing Centre (CES), University of Republic
Lauro Müller 1989, Montevideo, Uruguay

bperez@fing.edu.uy

Abstract. This article proposes an algorithm for reducing the size of test suites,
using the mutation score as the criterion for selecting the test cases while
preserving the quality of the suite. Its utility is also checked with a set of
experiments, using benchmark programs and industrial software.

Keywords: Test suites, mutation, test suite reduction, criteria subsumption.

1 Introduction

Mutation is a testing technique, originally proposed in 1978 by DeMillo et al. [1],
which relies on the discovery of the artificial faults which are seeded in the system
under test (SUT). These faults are injected in the SUT by means of a set of mutation
operators, whose purpose is to imitate the faults that a common programmer may
commit. Thus, each mutant is a copy of the program under test, but with a small
change in its code, which is interpreted as a fault.

Mutants are usually generated by automated tools that apply a set of mutation
operators to the sentences of the original program, thus producing a high number of
mutants because, in general, each mutant contains only one fault. The fault in a
mutant is discovered when the execution of a given test case produces a different
output in the original program and in the mutant. When the fault is discovered, it is
said that the mutant has been “killed”; otherwise, the mutant is “alive”.

In order to obtain a good set of mutants, it is important that the seeded faults be
“good”, which depends on the quality of the mutation operators applied. This area has
been closely studied, with the proposal of operators for different kinds of languages
and environments, as for example in [2]. Faults introduced in the mutants must imitate
common errors by programmers since, by means of the “coupling effect”, a test suite
that detects all simple faults in a program is so sensitive that it also detects more
complex faults [3].

Figure 1 shows the source code of an original program (the SUT) and of some
mutants: three of them proceed from the substitution of an arithmetic operator,
whereas in the fourth a unary operator (++) has been added at the end of the sentence.
The bottom of the figure presents the results obtained from executing some test cases

426 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

on the different program versions. The test case corresponding to the test data (1, 1)
produces different outputs in the original program (whose output is correct) and in
Mutant 1: thus, this test case has found the fault introduced in the mutant, leaving the
mutant killed. On the other hand, since all test cases offer the same output in the
original program and in Mutant 4, it is said that Mutant 4 is alive. Moreover, this
mutant will never be killed by any test case, since variable b is incremented after
returning the result. Mutants like this one are called “functionally-equivalent mutants”
and may be considered as noise when results are analyzed: they have a syntactic
change (actually not a fault) with respect to the original source code that cannot be
found.

Original Mutant 1 Mutant 2 Mutant 3 Mutant 4

int sum(int a,int b)
{
 return a + b;
}

int sum(int a,int b)
{
 return a - b;
}

int sum(int a,int b)
{
 return a * b;
}

int sum(int a,int b)
{
 return a / b;
}

int sum(int a,int b)
{
 return a + b++;
}

 Test data (a,b)
(1, 1) (0, 0) (-1, 0) (-1, -1)

Orig. 2 0 -1 -2
Mut.1 0 0 -1 0
Mut.2 1 0 0 1
Mut.3 1 Error Error 1
Mut.4 2 0 -1 -2

Fig. 1. Code of some mutants and their results with some test data

The test suite quality is measured in terms of the Mutation Score [4] (Figure 2), a
number between 0 and 1 which takes into account the number of mutants killed, the
number of mutants generated and the number of functionally-equivalent mutants. A
test suite is mutation-adequate when it discovers all the faults injected in the mutants.

EM

K
TPMS

−
=),(,

being: P: program under test; T: test suite; K: # of killed mutants;
M: # of generated mutants; E: # of equivalent mutants

Fig. 2. Mutation score

Since that paper by DeMillo in 1978, many works have researched and developed
tools to improve the different steps of mutation testing: mutant generation, test case
execution and result analysis.

Regarding mutant generation, most works try to decrease the number of mutants
generated, with different studies existing for selecting the most meaningful operators
[5, 6], as well as techniques for generating the mutants more quickly [7]. Regarding
test execution, several authors have proposed the use weak mutation [8, 9],
prioritization of the functions of the program under test [10] or the use of n-order
mutants [11]. An n-order mutant has n faults instead of 1. Polo et al. [11] have shown
that the combination of 1-order mutants to produce a suite of 2-order mutants
significantly decreases the number of functionally equivalent mutants, whereas the
risk of leaving faults undiscovered remains low. This has a positive influence on the
result analysis step, whose main difficulty resides in the discovery of the functionally

 Reduction of Test Suites Using Mutation 427

equivalent mutants, which is required to calculate the Mutation Score (Figure 2).
Manual detection is very costly, although Offutt and Pan have demonstrated that is
possible to automatically detect almost 50% of functionally equivalent mutants if the
program under test is annotated with constraints [12].

Since many equivalent mutants are optimizations or de-optimizations of the
original program (for example, Mutant 4 in Figure 1 de-optimizes the original
program), Offutt and Craft have also investigated how compiler optimization
techniques may help in the detection of equivalent mutants [3].

In general, mutation testing has evolved over the years and, today, it is very
frequently used to validate the quality of different testing techniques [13]. Some
recent works related to mutation propose specific operators for specific programming
languages, such as Kim et al. [14], who propose mutation operators for Java and
Barbosa et al. [2], with operators for C.

These works, developed so many years after the proposal of mutation, evidence the
maturity of this testing technique. With the adequate operators, the mutation score can
be considered as a powerful coverage criterion [15].

This article proposes one algorithm (although another one, less efficient, is also
described) for reducing the size of a test suite, based on the mutation score: given a
test suite T, the goal is to obtain a new test suite T’, which obtains the same mutation
score as T, being |T’|≤T. Furthermore, the article discusses how the subsumption of
criteria may be preserved when the reduction algorithm is executed.

The article is organized as follows: the two parts of Section 2 briefly describe
strategies for test case generation (where the problem of redundant test cases is
presented) and some works solving the problem of test suite reduction. Section 3 then
presents the algorithm for test suite reduction based on mutation, completing its
description with an example taken from the literature. The validity of the algorithm is
analyzed in Section 4, both with some benchmark programs, widely used in testing
literature, and with a set of industrial programs. Finally, we draw our conclusions.

2 Related Work

The fact of having big test suites increases the cost of their writing, validation and
maintenance, taking into account the continuous evolution of software and the
corresponding regression testing [16]. Due to this, several researchers have proposed
different techniques to reduce the size of a test suite, while the coverage reached is
preserved. The problem of reducing a test suite to the minimum possible cardinal is
known as the “optimal test-suite reduction problem” and has been stated by Jones and
Harrold [17] as in Figure 3.

Given: Test Suite T, a set of test-case requirements r1, r2, ..., rn, that must be satisfied to
provide the desired test coverage of the program.

Problem: Find T’⊂T such that T’ satisfies all ri and (∀T’’⊂T, T’’ satisfies all r⇒ |T’|≤|T’’|)

Fig. 3. The optimal test suite reduction problem

Applied to the Triangle-type example, and starting from the results obtained by the
All combinations strategy, the problem consists of finding a minimal subset of test

428 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

cases that obtains the same coverage as the original test suite: i.e., to obtain a set of n
test cases that reach the same coverage as the original suite, being n≤216 and n being
the minimal. The optimal test-suite reduction problem is NP-hard [18] and, thus, its
solution has been approached by means of algorithms which provide near-optimal
solutions, usually with greedy strategies. The following subsections review some
relevant works.

The HGS Algorithm. Harrold et al. [19] give a greedy algorithm (usually referred to
as HGS) for reducing the suite of test cases into another, fulfilling the test
requirements reached by the original suite. The main steps in this algorithm are:

1) Initially, all the test requirements are unmarked.

2) Add to T’ those test cases that only exercise a test requirement. Mark the
requirements covered by the selected test cases.

3) Order the unmarked requirements according to the cardinality of the set of test
cases exercising one requirement. If several requirements are tied (since the sets
of test cases exercising them have the same cardinality), select the test case that
would mark the highest number of unmarked requirements tied for this
cardinality. If multiple such test cases are tied, break the tie in favor of the test
case that would mark the highest number of requirements with testing sets of
successively higher cardinalities; if the highest cardinality is reached and some
test cases are still tied, arbitrarily select a test case from among those tied. Mark
the requirements exercised by the selected test. Remove test cases that become
redundant as they no longer cover any of the unmarked requirements.

4) Repeat the above step until all testing requirements are marked.

Gupta Improvements. With different collaborators, Gupta has proposed several
improvements to this algorithm:

• With Jeffrey [20], Gupta adds “selective redundancy” to the algorithm.
“Selective redundancy” makes it possible to select test cases that, for any
given test requirement, provide the same coverage as another previously
selected test case, but that adds the coverage of a new, different test
requirement. Thus, maybe T’ reaches the All-branches criterion but not def-
uses; therefore, a new test case t can be added to T’ if it increases the
coverage of the def-uses requirement: now, T’ will not increase the All-
branches criterion, but it will do so with def-uses.

• With Tallam [21], test case selection is based on Concept Analysis techniques.
According to the authors, this version achieves same size or smaller size
reduced test suites than prior heuristics as well as a similar time performance.

Heimdahl and George Algorithm. Heimdahl and George [22] also propose a greedy
algorithm for reducing the test suite. Basically, they take a random test case, execute
it and check the coverage reached. If this one is greater than the highest coverage,
then they add it to the result. The algorithm is repeated five times to obtain five
different reduced sets of test cases. Since chance is an essential component of this
algorithm, the good quality of the results is not guaranteed.

 Reduction of Test Suites Using Mutation 429

McMaster and Memon Algorithm. McMaster and Memon [23] present another
greedy algorithm. The parameter taken into account to include test cases in the
reduced suite is based on the “unique call stacks” that test cases produce in the
program under test. As can be seen, the criterion for selecting test cases (the number
of unique call stacks) is not a “usual test requirement”.

In summary, since the optimal test-suite reduction problem is NP-hard, all the
approaches discussed propose a greedy algorithm to find a good solution with a
polynomial-time algorithm and, as the discussed algorithms show, test requirement
for test case selection can be anything: coverage of sentences, blocks, paths… or, as
it is proposed in this paper, number of mutants killed.

According to [24, 25], the degree of automation of testing tasks in the software
industry is very low. Often, testing is performed in an artisanal way, and the efforts
carried out in the last years to obtain test automation mostly consist of the application
of unit testing frameworks, such as JUnit or NUnit. As a matter of fact, the work by
Ng et al. [26] shows the best results on test automation: 79.5% of surveyed
organizations automate test execution and 75% regression testing. However, only 38
of the 65 organizations (58.5%) use test metrics, with defect count being the most
popular (31 organizations). Although the work does not present any data about the
testing tools used, these results suggest that most organizations are probably
automating their testing processes with X-Unit environments. In order to improve
these testing practices, software organizations require cost and time-effective
techniques to automate and to improve their testing process. Thus, the introduction of
software testing research results in industry is a must.

3 Test Suite Reduction Using Mutation

This section mainly describes a greedy algorithm to reduce the size of a test suite based
on the Mutation Score. This algorithm is inspired in the mutation cost reduction
algorithms briefly described in [27]. The number of mutants killed by each test case is
used as the criterion for the inclusion of a test case in the reduced set of selected test
cases.

Figure 4 shows reduceTestSuite, the main function of the algorithm. As inputs, it
receives the complete set of test cases, the class under test and the complete set of
mutants. In line 2, it executes all test cases against the class under test and against the
mutants, saving the results in testCaseResults.

Then, the algorithm is prepared for selecting, in several iterations, the test cases
that kill more mutants, what is done in the loop of lines 5-14.

The first time the algorithm enters this loop and arrives at line 7, the value of n
(which is used to stop the iterations) is |mutants|: in this special case, the algorithm
looks for a test case that kills all the mutants. If it finds it, the algorithm adds the test
case to requiredTC, updates the value of n to 0 and ends; otherwise, it decreases n in
line 16 and goes back into the loop.

430 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

Let us suppose that n is initially 100 (that is, there are 100 mutants of the class
under test), and let us suppose that the algorithm does not find test cases that kill n
mutants until n=30. With this value, the function getTestCasesThatKillN (called in
line 7) returns as many test cases as test cases kill n different mutants: i.e., if there are
two test cases (tc1 and tc2) that kill the same 30 mutants, getTestCasesThatKillN
returns only one test case (for example, tc1). If the intersection of the mutants killed
by tc1 and tc2 is not empty, then the algorithm returns a set composed of tc1 and tc2.

1. reduceTestSuite(completeTC : SetOfTestCases, cut :
CUT, mutants : SetOfMutants) : SetOfTestCases

2. testCaseResults = execute(completeTC, cut, mutants)
3. requiredTC = ∅
4. n=|mutants|
5. while (n>0)
6. mutantsNowKilled = ∅
7. testCasesThatKillN =

getTestCasesThatKillN(completeTC, n, mutants,
mutantsNowKilled, testCaseResults)

8. if |testCasesThatKillN>0| then
9. requiredTC = requiredTC ∪ testCasesThatKillN
10. n = |mutants|-|mutantsNowKilled|
11. else
12. n = n – 1
13. end if
14. end_while
15. return requiredTC
16.end

Fig. 4. Main function of the algorithm, which returns the reduced suite

When test cases killing the current n mutants are found, they are added to the
requiredTC variable (line 9) and n is updated to the current number of remaining
mutants.

In the actual implementation of the algorithm, the execution of the complete set of
test cases against the CUT and the mutants is made in a separate function (execute,
called in line 2), which returns a collection of TestCaseResult objects, which are
composed of the name of a test case and the list of the mutants they kill.

The function in charge of collecting the set of test cases that kill n mutants is called
in the 7th line in Figure 4 and is detailed in Figure 5. It goes through the elements in
testCaseResults and takes those test cases whose list of has n elements. Each time it
finds a suitable test case, the function removes the mutants it kills from the set of
mutants: in this way, the function guarantees that no two test cases killing the same
set of mutants will be included in the result.

 Reduction of Test Suites Using Mutation 431

1. getTestCasesThatKillN(completeTC:SetOfTestCases,
n:int, mutants:SetOfMutants, mutantsNowKilled :
SetOfMutants, testCaseResults: SetOfTestCaseResults)
: SetOfTestCaseResults

2. testCasesThatKillN = ∅
3. for i=1 to |testCaseResults|
4. testCaseResult = testCaseResults[i]
5. if |testCaseResult.killedMutants| == n and

testCaseResult.killedMutants ⊆ mutants then
6. testCasesThatKillN = testCasesThatKillN ∪

testCaseResult.testCaseName
7. mutantsNowKilled = mutantsNowKilled ∪

testCaseResult.killed.Mutants
8. mutants = mutants – mutantsNowKilled
9. end_if
10. next
11. return testCasesThatKillN
12.end

Fig. 5. Function to obtain the test cases that kill n mutants

3.1 Example

Let us suppose the killing matrix in Table 1, corresponding to a supposed program
with eight mutants (in the rows) and a test suite with seven test cases. Each column
may be understood as an instance of TestCaseResult: in fact, there are seven instances
of this type, each composed of the test case name and the list of mutants it kills: the
first test case result is composed of the tc1 test case and the mutant m2; the second, by
tc2 and m4, m5 and m6; the last one is composed of tc7 and an empty set of mutants,
since it kills none.

Table 1. First killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m1 X X
m2 X X X
m3 X
m4 X X
m5 X
m6 X X
m7 X
m8 X

Initially, requiredTC is the empty set and n=7. In the first iteration of the 5th line loop
in Figure 4, the set mutantsNowKilled is ∅ because there are no test cases killing seven
mutants. n is decreased to 6, 5, 4 and 3. In this iteration, the function
getTestCasesThatKillN is called. This function (Figure 5) iterates from i=1 to 7. When
i=1, it rejects tc1 because it does not kill three mutants (the current value of n).
When i=2:

432 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

• Adds {tc2} to the testCasesThatKillN set.
• Adds {m4, m5, m6} to the mutantsNowKilled set.
• Leaves mutants with {m1, m2, m3, m7,m8}.

Henceforth, the killed mutants {m4, m5, m6} will not be considered in the following
iterations. Then, the killing matrix can be now seen such as in Table 2.

Table 2. Second killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m1 X X
m2 X X
m3 X X
m7 X
m8 X

Still inside getTestCasesThatKillN, the i variable is increased to 3 and the

TestCaseResult corresponding to tc3 is processed. Now:

• testCasesThatKillN = {tc2, tc3}
• mutantsNowKilled = {m1, m2, m3, m4, m5, m6}
• mutants = {m7, m8}

Mutants {m1, m2, m3} will not be considered in next iterations, thus leaving the
killing matrix as in Table 3.

Table 3. Third killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m7 X
m8 X

getTestCasesThatKillN continues increasing i to 7, the function exits and the

algorithm returns to line 8 of reduceTestSuite. Here, {tc2, tc3} are added to
requiredTC and n is decreased to 2, which is the initial number of mutants (8) minus
the number of mutants now killed (6). Now, the function executes its last iteration
calling getTestCasesThatKillN with n=2, and selects the tc4 test case and adds it to
requiredTC. The final value of this set is: {tc2, tc3, tc4}.

3.2 “A Motivational Example”

In their paper [20], Jeffrey and Gupta show, using the same title that leads this section, a
small program to exemplify their algorithm with selective redundancy, which has been
translated into the Java program shown in Figure 7. For this class, MuJava generates 48
traditional (15 of them are functionally-equivalent) and 6 class mutants for this program.

Using the values {-1.0, 0.0, +1.0} for the four parameters of function f, and
generating test cases with the All combinations algorithm, the testooj tool [16]
generates a test file with 3×3×3×3=81 test cases, that manage to kill 100% of the non-
equivalent mutants. Figure 6 shows a piece of the killing matrix for this example,
ordered according to the number of mutants killed by each test case (last column).

 Reduction of Test Suites Using Mutation 433

Of the three test cases killing 28 mutants, the algorithm picks testTS_0_78 and
adds it to the reduced suite, removing testTS_0_76 and testTS_0_77 since they kill the
same mutants. Moreover, these are removed from the set of mutants. Then, it
continues picking testTS_054 and proceeds in the same way. The reduced suite is
finally composed of 7 test cases, which is 8.6% of the original size: {testTS_0_78,
testTS_0_54, testTS_0_39, testTS_0_35, testTS_0_34, testTS_0_33, testTS_0_27}

As expected, if the reduced suite is executed against the class and its mutants, it is
seen that it also reaches the highest mutation score.

Fig. 6. A piece of the killing matrix for the original test suite, in the Jeffrey and Gupta example

4 Experiments

In order to check the results of the technique, two experiments were carried out:
The first experiment uses a set of programs which have been used in many research

papers on software testing (for example, references [8, 11, 28-30]) and, therefore, can
be considered as benchmarks. These programs are Bisect, Bub, Find, Fourballs, Mid
and TriTyp. They are implemented as isolated Java classes. For this experiment, all
the traditional mutation operators of the MuJava tool [31] were used to generate
mutants (thus, those operators which are specific for the object-oriented
characteristics of the Java language were excluded). Then, the All combinations
strategy was used to generate test cases to kill these mutants. All combinations
generates test cases by combining all test values of all the parameters [32].

For the second experiment, several classes were selected from a set of industrial
systems. A required characteristic of the systems for this experiment is the availability
of both its source code and test cases. In this case, the goal of the research is to
evaluate the goodness of the technique in “actual” software. The test cases used for
this experiment were those available with the corresponding project, and did not add
new test cases to the test suites. All these projects are composed of several classes
with different types of relationships among them. As with the first experiment, only
the traditional operators were applied.

434 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

public class JGExample {
 float returnValue;
 public float f(float a, float b, float c, float d) {
 float x=0, y=0;
 if (a>0) x=2;
 else x=5;
 if (b>0) y=1+x;
 if (c>0)
 if (d>0) returnValue=x;
 else returnValue=10;
 else returnValue=(1/(y-6));
 return returnValue;
 }

 public String toString() {
 return "" + returnValue;
 }
}

Fig. 7. The "motivational example" from Jeffrey and Gupta

4.1 Experiment 1: Benchmark Programs

Table 4 gives some quantitative information about the benchmark programs: number
of lines of code (LOC), number of non-equivalent mutants generated by the MuJava
tool (i.e., the equivalent mutants were manually removed), size of the original test
suite (automatically generated using the All combinations strategy with the testooj
tool) and size of the reduced suite. Of course, both the original and the reduced suite
kill 100% of non-equivalent mutants and, thus, all of them are mutation-adequate.

Table 4. Results for the benchmark programs

Program LOC # of mutants |Test suite| |Reduced test suite|
Bisect 31 44 25 2 (8%)
Bub 54 70 256 1 (0,04%)
Find 79 179 135 1 (0.07%)
Fourballs 47 168 96 5 (5,2%)
Mid 59 138 125 5 (4%)
TriTyp 61 239 216 17 (7,8%)

4.2 Experiment 2: Industrial Programs

For this experiment, a set of publicly available programs was downloaded (Table 5
shows some quantitative data, measured with the Eclipse Metrics plugin). One
important requirement for selecting these programs was the availability of test cases,
since now the goal was to check whether among these test cases, written by the
developers of the programs, there also exists any redundancy and that they can,
therefore, be reduced.

 Reduction of Test Suites Using Mutation 435

In this way, the three following systems were selected and downloaded:

1) jtopas, a system for analyzing and parsing HTML pages with CSS code
embedded. This system is included in the Software-artifact Infrastructure
Repository (SIR), a website with a set of publicly available software, left by
Do and others to facilitate benchmarking in testing experimentation [33].

2) jester, a testing tool for Java. This was developed by Ivan Moore and can be
downloaded from http://jester.sourceforge.net.

3) jfreechart, a free chart library for the Java platform. It was designed for use
in applications, applets, servlets and JSP.

Table 5. Quantitative data from the selected projects

Project # of packages # of classes WMC (total) LOC
jtopas 4 20 747 3,067
jester 7 67 588 3,225
jfreechart 69 877 20,584 124,664

Table 6 shows some quantitative data from the selected classes, all of them having
a corresponding testing class. Table 7 shows:

1) The number of mutants generated for the class by the MuJava tool. Note
that, in these projects, equivalent mutants have not been removed.

2) The number of available test cases for that class in the corresponding
project.

3) The percentage of mutants killed by the original test suite.
4) The number of test cases in the reduced suite, once the original suite has

been executed and the reduction algorithm has been applied.

Thus, for example, MuJava generates 94 mutants for PluginTokenizer from the jtopas
project, where there are 14 test cases available on its website. These test cases kill
31% of the mutants. The last column shows the results of applying the test suite
reduction algorithm, with the result that a single test case is sufficient for reaching the
same coverage as the original 14 test cases.

Table 6. Quantitative data from the selected classes

Project Program LOC WMC Methods
jtopas PluginTokenizer 157 27 16
jester IgnoreList 26 8 3

jfreechart

CompositeTitle 63 14 8
SimpleHistogramBin 117 32 11
RendererUtilities 137 29 3
XYPlot 2,470 591 194

436 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

Table 7. Test execution results

Program Mutants |Test suite| Mutants
killed

|Reduced test
suite|

PluginTokenizer 94 14 31% 1 (7%)
IgnoreList 27 6 85% 2 (33%)
CompositeTitle 9 4 77% 1 (25%)
SimpleHistogramBin 293 5 66% 4 (80%)
RendererUtilities 801 6 81% 6 (100%)
XYPlot 3,012 21 36% 14 (66%)

5 Conclusions and Future Work

This article has presented a greedy algorithm to reduce the size of a test suite with no
loss of quality, meaning that the new suite preserves the same coverage that the
original suite reaches in the system under test. The testing criterion used to select the
test cases is based on the percentage of mutants that each test case kills. The
algorithm has been formally verified.

Moreover, it has been applied to both benchmark programs commonly used in
testing research papers, as in industrial software, evidencing the utility of the
algorithm in almost all cases.

In conclusion, the authors consider that mutation testing has reached sufficient
maturity to be applied in the actual testing of real software. The research has now
arrived at such a point that the knowledge produced over all these years is ready to be
transferred to industrial testing tools.

As a future work, we plan to compare the presented reduction algorithm with the
other presented in the literature, in order to determine differences of effectiveness and
efficiency between them.

References

1. DeMillo, R., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the
practicing programmer. IEEE Computer 11(4), 34–41 (1978)

2. Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.: Toward the determination of sufficient
mutant operators for C. Software Testing, Verification and Reliability 11(2), 113–136
(2001)

3. Offutt, A.J., Craft, W.: Using compiler optimization techniques to detect equivalent
mutants. Software Testing, Verification and Reliability 7, 165–192 (1996)

4. Hamlet, R.: Testing programs with the help of a compiler. IEEE Transactions on Software
Engineering 3(4), 279–290 (1977)

5. Mresa, E.S., Bottaci, L.: Efficiency of Mutation Operators and Selective Mutation
Strategies: An Empirical Study. Software Testing, Verification and Reliability 9, 205–232
(1999)

6. Wong, W.E., Mathur, A.P.: Reducing the Cost of Mutation Testing: An Empirical Study.
Journal of Systems and Software 31(3), 185–196 (1995)

 Reduction of Test Suites Using Mutation 437

7. Untch, R., Offutt, A., Harrold, M.: Mutation analysis using program schemata. In:
International Symposium on Software Testing, and Analysis, Cambridge, Massachusetts,
June 28-30, pp. 139–148 (1993)

8. Offutt, A.J., Lee, S.D.: An Empirical Evaluation of Weak Mutation. IEEE Transactions on
Software Engineering 20(5), 337–344 (1994)

9. Reales, P., Polo, M., Offutt, J.: Mutation at System and Functional Levels. In: Third
International Conference on Software Testing, Verification, and Validation Workshops,
Paris, France, pp. 110–119 (April 2010)

10. Hirayama, M., Yamamoto, T., Okayasu, J., Mizuno, O., Kikuno, T.: Elimination of Crucial
Faults by a New Selective Testing Method. In: International Symposium on Empirical
Software Engineering (ISESE 2002), Nara, Japan, October 3-4, pp. 183–191 (2002)

11. Polo, M., Piattini, M., García-Rodríguez, I.: Decreasing the cost of mutation testing with 2-
order mutants. Software Testing, Verification and Reliability 19(2), 111–131 (2008)

12. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible paths.
Software Testing, Verification and Reliability 7(3), 165–192 (1997)

13. Baudry, B., Fleurey, F., Jézéquel, J.-M., Traon, Y.L.: Automatic test case optimization: a
bacteriologic algorithm. IEEE Software 22(2), 76–82 (2005)

14. Kim, S.W., Clark, J.A., McDermid, J.A.: Investigating the effectiveness of object-oriented
testing strategies using the mutation method. Software Testing, Verification and
Reliability 11, 207–225 (2001)

15. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University Press
(2008)

16. Polo, M., Piattini, M., Tendero, S.: Integrating techniques and tools for testing automation.
Software Testing, Verification and Reliability 17(1), 3–39 (2007)

17. Jones, J.A., Harrold, M.J.: Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage. IEEE Transactions on Software Engineering 29(3), 195–209
(2003)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York
(1979)

19. Harrold, M., Gupta, R., Soffa, M.: A methodology for controlling the size of a test suite.
ACM Transactions on Software Engineering and Methodology 2(3), 270–285 (1993)

20. Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: International
Conference on Software Maintenance, Budapest, Hungary, pp. 549–558 (2005)

21. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. In: 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pp. 35–42 (2005)

22. Heimdahl, M., George, D.: Test-Suite Reduction for Model Based Tests: Effects on Test
Quality and Implications for Testing. In: 19th IEEE International Conference on
Automated Software Engineering, pp. 176–185 (2004)

23. McMaster, S., Memon, A.: Call Stack Coverage for Test Suite Reduction. In: 21st IEEE
International Conference on Software Maintenance, Budapest, Hungary, pp. 539–548
(2005)

24. Runeson, P., Andersson, C., Höst, M.: Test processes in software product evolution -a
qualitative survey on the state of practice. Journal of Software Maintenance and Evolution:
Research and Practice 15(1), 41–59 (2003)

25. Geras, A.M., Smith, M.R., Miller, J.: A survey of software testing practices in Alberta.
Canadian Journal of Electrical and Computer Engineering 29(3), 183–191 (2004)

26. Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A Preliminary Survey on Software
Testing Practices in Australia, Melbourne, Australia, pp. 116–125 (2004)

438 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

27. Polo, M., Reales, P.: Mutation Testing Cost Redution Techniques: A Survey. IEEE
Software 27(3), 80–86 (2010)

28. Offutt, A.J., Rothermel, G., Untch, R.H., Zapf, C.: An experimental determination of
sufficient mutant operators. ACM Transactions on Software Engineering and
Methodology 5(2), 99–118 (1996)

29. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-Data Generation Using Genetic Algorithms.
Software Testing, Verification and Reliability 9(4), 263–282 (1999)

30. Offut, A.J., Pan, J., Zhang, T., Terwary, K.: Experiments with data flow and mutation
testing. Report ISSE-TR-94-105 (1994)

31. Ma, Y.-S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system. Software
Testing, Verification and Reliability 15(2), 97–133 (2005)

32. Grindal, M., Offutt, A.J., Andler, S.F.: Combination testing strategies: a survey. Software
Testing, Verification and Reliability 15, 167–199 (2005)

33. H., D., Elbaum, S.G., Rothermel, G.: Supporting Controlled Experimentation with Testing
Techniques: An Infrastructure and its Potential Impact. Empirical Software Engineering:
An International Journal 10(4), 405–435 (2005)

	Reduction of Test Suites Using Mutation
	Introduction
	Related Work
	Test Suite Reduction Using Mutation
	Example
	“A Motivational Example”

	Experiments
	Experiment 1: Benchmark Programs
	Experiment 2: Industrial Programs

	Conclusions and Future Work
	References

