J. DIFFERENTIAL GEOMETRY 5 (1971) 333-340

REDUCTION OF THE CODIMENSION OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let $\psi: M^n \to \overline{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into an (n + p)-dimensional Riemannian manifold $\overline{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c} . When can we reduce the codimension of the immersion, i.e., when does there exist a proper totally geodesic submanifold N of $\overline{M}^{n+p}(\tilde{c})$ such that $\psi(M^n) \subset N$? We prove the following:

Theorem. If the first normal space $N_1(x)$ is invariant under parallel translation with respect to the connection in the normal bundle and l is the constant dimension of N_1 , then there exists a totally geodesic submanifold N^{n+l} of $\tilde{M}^{n+p}(\tilde{c})$ of dimension n + l such that $\psi(M^n) \subset N^{n+l}$.

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geometry

Let $\psi: M^n \to \tilde{M}^{n+p}(\tilde{c})$ be as in the introduction. For all local formulas we may consider ψ as an imbedding and thus identify $x \in M^n$ with $\psi(x) \in \tilde{M}^{n+p}$. The tangent space $T_x(M^n)$ is identified with a subspace of the tangent space $T_x(\tilde{M}^{n+p})$. The normal space T_x^{\perp} is the subspace of $T_x(\tilde{M}^{n+p})$ consisting of all $X \in T_x(\tilde{M}^{n+p})$ which are orthogonal to $T_x(M^n)$ with respect to the Riemannian metric g. Let ∇ (respectively \tilde{V}) denote the covariant differentiation in M^n (respectively \tilde{M}^{n+p}), and D the covariant differentiation in the normal bundle. We will refer to ∇ as the tangential connection and D as the normal connection.

With each $\xi \in T_x^{\perp}$ is associated a linear transformation of $T_x(M^n)$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of x and define $-A_{\xi}X$ to be the tangential component of $\tilde{V}_x\xi$ for $X \in T_x(M^n)$. $A_{\xi}X$ depends only on ξ at x and X. Given an orthonormal basis ξ_1, \dots, ξ_p of T_x^{\perp} we write $A_{\alpha} = A_{\xi_{\alpha}}$ and call the A_{α} 's the second fundamental forms associated with ξ_1, \dots, ξ_p . If ξ_1, \dots, ξ_p are now orthonormal normal vector fields in a neighborhood U of x, they determine normal connection forms $s_{\alpha\beta}$ in U by

$$D_X \xi_{\alpha} = \sum_{\beta} s_{\alpha\beta}(X) \xi_{\beta}$$

Received May 20, 1970. This paper is a part of the author's doctoral dissertation written under the direction of Professor K. Nomizu at Brown University. The research was partially supported by the National Science Foundation.

for $X \in T_x(M^n)$. We let \mathbb{R}^N denote the curvature tensor of the normal connection, i.e.,

$$R^{N}(X,Y) = D_{X}D_{Y} - D_{Y}D_{X} - D_{[X,Y]}$$

We then have the following relationships (in this paper Greek indices run from 1 to p):

(1)
$$\tilde{V}_X Y = V_X Y + \sum_{\alpha} g(A_{\alpha} X, Y) \xi_{\alpha} ,$$

(2) $g(A_{\alpha}X,Y) = g(X,A_{\alpha}Y),$

(3)
$$\tilde{\mathcal{V}}_X \xi_{\alpha} = -A_{\alpha} X + D_X \xi_{\alpha} = -A_{\alpha} X + \sum_{\beta} S_{\alpha\beta}(X) \xi_{\beta} ,$$

$$(4) s_{\alpha\beta} + s_{\beta\alpha} = 0,$$

(5)
$$(\nabla_X A_{\alpha})Y - \sum_{\beta} s_{\alpha\beta}(X)A_{\beta}Y = (\nabla_Y A_{\alpha})X - \sum_{\beta} s_{\alpha\beta}(Y)A_{\beta}X$$

- Codazzi equation,

$$(\mathcal{V}_{X}s_{\alpha\beta})Y - (\mathcal{V}_{Y}s_{\alpha\beta})X = 2(ds_{\alpha\beta})(X, Y)$$

(6)
$$= X \cdot s_{\alpha\beta}(Y) - Y \cdot s_{\alpha\beta}(X) - s_{\alpha\beta}([X, Y])$$

$$= g([A_{\alpha}, A_{\beta}]X, Y) + \sum_{\gamma} \{s_{\alpha\gamma}(X)s_{\gamma\beta}(Y) - s_{\alpha\gamma}(Y)s_{\gamma\beta}(X)\}$$

- Ricci equation,

(7)
$$R^{N}(X, Y)\xi_{\alpha} = \sum_{\beta} g([A_{\alpha}, A_{\beta}]X, Y)\xi_{\beta}$$
$$= \sum_{\beta} \{2(ds_{\alpha\beta})(X, Y) + \sum_{\gamma} \{s_{\alpha\gamma}(Y)s_{\gamma\beta}(X) - s_{\alpha\gamma}(X)s_{\gamma\beta}(Y)\}\}\xi_{\beta},$$

where X and Y are tangent to M^n .

The first normal space $N_1(x)$ is defined to be the orthogonal complement of $\{\xi \in T_x^{\perp} | A_{\varepsilon} = 0\}$ in T_x^{\perp} . \mathbb{R}^k will denote the k-dimensional Euclidean space, $S^k(1)$ the k-dimensional unit sphere in \mathbb{R}^{k+1} , and $H^k(-1)$ the k-dimensional simply connected space form of constant sectional curvature -1. All immersions, vector fields, etc., are assumed to be of C^{∞} .

2. Reducing the codimension of an isometric immersion

Let $\phi: M_n \to \tilde{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into an (n + p)-dimensional Riemannian manifold $\tilde{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c} .

Lemma 1. Suppose the first normal space $N_1(x)$ is invariant under parallel translation with respect to the normal connection and l is the constant dimension of N_1 . Let $N_2(x) = N_1^{\perp}(x)$, where the orthogonal complement is taken in

334

 T_x^{\perp} , and for $x \in M^n$ let $\mathscr{S}(x) = T_x(M^n) + N_1(x)$. Then for any $x \in M^n$ there exists differentiable orthonormal normal vector fields ξ_1, \dots, ξ_p defined in a neighborhood U of x such that:

(a) For any $y \in U$, $\xi_1(y), \dots, \xi_l(y)$ span $N_1(y)$, and $\xi_{l+1}(y), \dots, \xi_p(y)$ span $N_2(y)$,

(b) $\tilde{\mathcal{V}}_X \xi_{\alpha} = 0$ in U for $\alpha \ge l + 1$ and X tangent to M^n ,

(c) The family $\mathcal{L}(y), y \in U$, is invariant under parallel translation with respect to the connection in \tilde{M}^{n+p} along any curve in U.

Proof. Since N_1 is invariant under parallel translation with respect to the normal connection, so is N_2 . Let $x \in M^n$ and choose orthonormal normal vectors $\xi_1(x), \dots, \xi_p(x)$ at x such that $\xi_1(x), \dots, \xi_l(x)$ span $N_1(x)$ and $\xi_{l+1}(x), \dots, \xi_p(x)$ span $N_2(x)$. Extend ξ_1, \dots, ξ_p to differentiable orthonormal normal vector fields defined in a normal neighborhood U of x by parallel translation with respect to the normal connection along geodesics in M^n . This proves (a).

Since N_1 and N_2 are invariant under parallel translation with respect to the normal connection, we have $D_X \xi \in N_1$ (respectively N_2) for $\xi \in N_1$ (respectively N_2). Let ξ_1, \dots, ξ_p be chosen as in (a). Then $s_{\alpha\beta} = 0$ in U for $1 \le \alpha \le l$, $l + 1 \le \beta \le p$ and $1 \le \beta \le l$, $l + 1 \le \alpha \le p$. Equations (6) and (7) imply that $R^N(X, Y)\xi = 0$ for $\xi \in N_2$, and since N_2 is also invariant under parallel translation with respect to the normal connection we conclude that for $\xi \in N_2(y), y \in U$, the parallel translation of ξ with respect to the normal connection is independent of path in U. Thus $D\xi_{\alpha} = 0$ in U for $\alpha \ge l + 1$, and $s_{\alpha\beta} = 0$ in U for $l + 1 \le \alpha \le p$, $l + 1 \le \beta \le p$. Because of (3), we have $\tilde{V}_X \xi_{\alpha} = 0$ for $\alpha \ge l + 1$ and X tangent to M^n , proving (b).

To prove (c) it suffices to show that $\tilde{\mathcal{V}}_X Z \in \mathscr{S}$ whenever $Z \in \mathscr{S}$ and X is tangent to M^n . This follows from (1) and (3) and (a) and (b) above.

We shall now prove our Theorem under the assumption that \tilde{M}^{n+p} is simply connected and complete. We consider the cases $\tilde{c} = 0$, $\tilde{c} > 0$ and $\tilde{c} < 0$ separately.

Proposition 1. The Theorem is true if $\tilde{M}^{n+p} = R^{n+p}$.

Proof. Let $x \in M^n$ and let ξ_1, \dots, ξ_p , and U be as in Lemma 1. Define functions f_{α} on U by $f_{\alpha} = g(\vec{x}, \xi_{\alpha})$ where \vec{x} is the position vector. Then

$$X \cdot f_{\alpha} = \vec{V}_X f_{\alpha} = g(X, \xi_{\alpha}) + g(\vec{x}, \vec{V}_X \xi_{\alpha}) = 0$$

for $\alpha \ge l + 1$ and X tangent to U. Thus U lies in the intersection of p - l hyperplanes, whose normal vectors are linearly independent, and the desired result is true locally; i.e., if $x \in M^n$ there exist a neighborhood U of x and a Euclidean subspace \mathbb{R}^{n+l} such that $\psi(U) \subset \mathbb{R}^{n+l}$. To get the global result we use the connectedness of M^n . Let $x, y \in M^n$ with neighborhoods U and V respectively such that $U \cap V \neq \phi$ and $\psi(U) \subset \mathbb{R}^{n+l}_1, \psi(V) \subset \mathbb{R}^{n+l}_2$. Then

$$\phi(U \cap V) \subset \mathbf{R}_1^{n+l} \cap \mathbf{R}_2^{n+l}.$$

If $\mathbf{R}_1^{n+l} \neq \mathbf{R}_2^{n+l}$ then $\mathbf{R}_2^{n+l} \cap \mathbf{R}_2^{n+l} = \mathbf{R}^{n+k}$, k < l, and this implies that $\dim N_1(z) < l$ for $z \in U \cap V$. Since $\dim N_1 = \text{constant} = l$, we must have $\mathbf{R}_1^{n+l} = \mathbf{R}_2^{n+l}$. This proves the global result.

Proposition 2. The Theorem is true if $\tilde{M}^{n+p} = S^{n+p}(1)$.

Proof. Consider $S^{n+p}(1)$ as the unit sphere in \mathbb{R}^{n+p+1} with center at the origin of \mathbb{R}^{n+p+1} . Let ξ be the inward pointing unit normal of S^{n+p} , $\overline{N}_1(x)$ be the first normal space for M^n considered as immersed in \mathbb{R}^{n+p+1} , \overline{V} be the Euclidean connection in \mathbb{R}^{n+p+1} , and ξ_1, \dots, ξ_p be chosen as in Lemma 1. Then $\overline{V}_X \xi = -X$ and $\overline{V}_X \xi_a = \widetilde{V}_X \xi_a$ for X tangent to M^n . It readily follows that $\overline{N}_1(x) = N_1(x) + \text{span } \{\xi(x)\}$ and that \overline{N}_1 is invariant under parallel translation with respect to the normal connection for M^n considered as immersed in \mathbb{R}^{n+p+1} . Thus, by Proposition 1, there exists an \mathbb{R}^{n+l+1} such that $\psi(M^n) \subset \mathbb{R}^{n+l+1}$, namely,

$$\mathbf{R}^{n+l+1} = T_x(M^n) + N_1(x) + \text{span} \{\xi(x)\},\$$

for any $x \in M^n$. Hence \mathbb{R}^{n+l+1} contains ξ and therefore passes through the origin of \mathbb{R}^{n+p+1} . Thus

$$\psi(M^n) \subset \mathbf{R}^{n+l+1} \cap S^{n+p}(1) = S^{n+l}(1) .$$

Proposition 3. Our theorem is true if $\tilde{M}^{n+p} = H^{n+p}(-1)$.

Proof. It is convenient to consider H^{n+p} as being in a Minskowski space E^{n+p+1} . Let E^{n+p+1} be a Minskowski space with global coordinates x^0, \dots, x^{n+p} and pseudo-Riemannian metric g determined by the quadratic form

$$g(x, y) = -x_0y_0 + x_1y_1 + \cdots + x_{n+p}y_{n+p}$$
.

Consider the submanifold H^{n+p} defined by

$$-x_0^2 + x_1^2 + \cdots + x_{n+n}^2 = -1, x_0 > 0.$$

The pseudo-Riemannian metric g(,) on E^{n+p+1} induces a Riemannian metric on H^{n+p} such that H^{n+p} becomes a simply connected Riemannian manifold of constant sectional curvature -1 (cf. [4, p. 66]). Let $\xi = \vec{x}$, the position vector. Then for $x \in H^{n+p}$, $\xi(x)$ is normal to H^{n+p} and $g(\xi(x), \xi(x)) = -1$. Let \overline{V} be the Euclidean connection on E^{n+p+1} , i.e., the connection arising from g; and define A by $\overline{V}_X \xi = -AX$ for X tangent to H^{n+p} . Then A = -Iand

$$\bar{V}_{X}Y = \tilde{V}_{X}Y - g(AX, Y)\xi$$

for X, Y tangent to H^{n+p} . The minus sign, rather than a plus sign as in (1), occurs in the last equation because g is indefinite. Let ξ_1, \dots, ξ_p be as in Lemma 1 and consider M^n as isometrically immersed in E^{n+p+1} . Then $\tilde{V}_X \xi_\alpha$

 $\overline{V}_X \xi_{\alpha}$ for X tangent to M^n . In a way similar to the argument in Proposition 2 we can show that

$$W(x) = \mathscr{S}(x) + \text{span} \{\xi(x)\} = T_x(M^n) + N_1(x) + \text{span} \{\xi(x)\}$$

is invariant under parallel translation with respect to the Euclidean connection in E^{n+p+1} . Thus, in a way similar to the argument in Proposition 1, there exists an (n + l + 1)-dimensional plane $E^{n+l+1} (=W(x)$ for any $x \in M^n$) such that $\phi(M^n) \subset E^{n+l+1}$. We may assume that the point $x_0 = 1$, $x_k = 0$ for $k \ge 1$ is in $\phi(M^n)$. Then, since E^{n+l+1} contains ξ and passes through the point $x_0 = 1$, $x_k = 0$ for $k \ge 1$, we conclude that E^{n+l+1} is perpendicular to the $x_0 = 0$ plane and passes through the origin of E^{n+p+1} . Thus $H^{n+p} \cap E^{n+l+1}$ is totally geodesic in H^{n+p} , and

$$\phi(M^n) \subset H^{n+l}(-1) = H^{n+p}(-1) \cap E^{n+l+1}.$$

Clearly completeness is not essential in Propositions 1, 2, and 3 in the sense that if \overline{M}^{n+p} is a connected open set of \mathbb{R}^{n+p} , S^{n+p} , or H^{n+p} then Propositions 1, 2, and 3 remain true. Thus when $\overline{M}^{n+p}(\tilde{c})$ is neither simply connected nor complete we obtain the local result: if $x \in M^n$, then there exists a neighborhood U of x such that $\psi(U)$ is contained in a totally geodesic submanifold N_U^{n+i} of \overline{M}^{n+p} . We obtain the global result (the Theorem) by a connectedness argument similar to the connectedness argument in Proposition 1.

Remarks. It is an easy consequence of Codazzi's equation that if the type number of ψ (see [3, vol. II, p. 349]) is greater than or equal to two and N_1 has constant dimension, then N_1 is invariant under parallel translation with respect to the normal connection. To prove this last remark, let l be the dimension of N_1 and choose orthonormal normal vectors ξ_1, \dots, ξ_p in a neighborhood U of x such that ξ_1, \dots, ξ_l span $N_1(y)$ for $y \in U$ (cf. § 3). Since the type number of the immersion is greater than or equal to two, there exist X and Y tangent to M^n such that A_jX and A_jY , $1 \le j \le l$, are linearly independent. Codazzi's equation then implies that

$$\sum_{\beta=1}^{l} s_{\alpha\beta}(X) A_{\beta}Y = \sum_{\beta=1}^{l} s_{\alpha\beta}(Y) A_{\beta}X ,$$

for $\alpha \ge l+1$, since $A_{\beta} = 0$ for $\beta > l$. Since $A_{\beta}Y$ and $A_{\beta}X$, $1 \le \beta \le l$, are linearly independent we conclude that $s_{\alpha\beta}(X) = s_{\alpha\beta}(Y) = 0$ for $\alpha > l \ge \beta$. But, for any Z tangent to M^n , we have

$$\sum_{\beta=1}^{l} s_{\alpha\beta}(X) A_{\beta}Z = \sum_{\beta=1}^{l} s_{\alpha\beta}(Z) A_{\beta}X .$$

Thus $s_{\alpha\beta}(Z) = 0$ for $\alpha > l \ge \beta$. We conclude that $D_Z \xi \in N_1$ if Z is tangent to M^n and $\xi \in N_1$. Thus N_1 is invariant under parallel translation with respect to the normal connection.

3. The higher normal spaces

Let $\psi: M^n \to \tilde{M}^{n+p}(\tilde{c})$ be as in § 1, and *h* the second fundamental form of the immersion, i.e., for *X*, *Y* tangent to $M^n, h(X, Y)$ is the normal component of $\tilde{V}_X Y$. Equation (1) of § 1 may be written as

$$\tilde{\mathcal{V}}_{\mathcal{X}}Y = \mathcal{V}_{\mathcal{X}}Y + h(X,Y) \; .$$

Following Allendoerfer [1] we define the normal spaces as follows. The first normal space $N_1(x)$ is defined to be the

$$\operatorname{span} \left\{ h(X, Y) \,|\, X, Y \in T_x(M^n) \right\} \,.$$

Choosing orthonormal normal vectors ξ_1, \dots, ξ_p at x such that ξ_1, \dots, ξ_l span $N_1(x)$, where l is the dimension of $N_1(x)$, and using (1) one easily sees that this agrees with our previous definition for $N_1(x)$ given in § 1. Suppose N_1, \dots, N_k have been defined such that $N_i \perp N_j$ for $i \neq j$. If

$$N_1(x) + \cdots + N_k(x) \neq T_x^{\perp}$$

define $N_{k+1}(x)$ as follows: Let

$$L(x) = \operatorname{span} \{ (D_{Z_1}(D_{Z_2}(\cdots (D_{Z_k}(h(Z_{k+1}, Z_{k+2}))) \cdots)))_x \},\$$

where Z_1, \dots, Z_{k+2} are vector fields tangent to M^n . If

$$L(x) \cap (N_1(x) + \cdots + N_k(x))^{\perp}$$

is not equal to $\{0\}$, where the orthogonal complement is in T_x^{\perp} , define $N_{k+1}(x)$ to be

$$L(x) \cap (N_1(x) + \cdots + N_k(x))^{\perp}$$
.

Otherwise define $N_{k+1}(x)$ to be

$$(N_1(x) + \cdots + N_k(x))^{\perp}$$
.

It is clear that we may speak of the last normal space.

Note the following lemma.

Lemma. If each $N_k(x)$ has constant dimension n_k , then there exist orthonormal normal vector fields ξ_1, \dots, ξ_p in a neighborhood U of x such that $\xi_{n_1+\dots+n_{k-1}+1}, \dots, \xi_{n_k}$ span $N_k(y)$ for $y \in U$.

Proof. Choose vector fields X_i and Y_i , $1 \le i \le n_1$, in a neighborhood of x such that $(h(X_k, Y_i))_x$ are linearly independent and span $N_1(x)$. Since $h(X_i, Y_i)$, $1 \le i \le n_1$, are differentiable normal vector fields in a neighborhood of x and linearly independent at x, they are linearly independent in a neighborhood of x. But N_1 has constant dimension and $h(X_i, Y_i) \in N_1$; using the Gram-

338

Schmidt orthogonalization process we obtain orthonormal normal vector fields ξ_1, \dots, ξ_{n_1} in a neighborhood U of x such that ξ_1, \dots, ξ_{n_1} span $N_1(y)$ for $y \in U$. Now suppose $\xi_1, \dots, \xi_{n_1+\dots+n_k}$ have been found with the desired property. If N_{k+1} is the last normal space, then

$$N_{k+1} = (N_1 + \cdots + N_k)^{\perp}$$
.

By using an orthonormal basis of the normal space in a neighborhood of x and $\xi_1, \dots, \xi_{n_1+\dots+n_k}$ above, it is clear that we may find an orthonomal basis of N_{k+1} in a neighborhood of x. If N_{k+1} is not the last normal space, then we may obtain $\overline{\xi}_i$, $n_1 + \dots + n_k + 1 \le i \le n_1 + \dots + n_{k+1}$, in a neighborhood V of x, by various choices of the vector fields Z_1, \dots, Z_{k+2} so that

(a) each $\bar{\xi}_i$ is of the form

$$D_{Z_1}(D_{Z_2}(\cdots (D_{Z_k}(h(Z_{k+1}, Z_{k+2})))))))$$

- (b) $\bar{\xi}_i(y) \in N_{k+1}(y)$ for $y \in V$,
- (c) $\bar{\xi}_i(x)$ are linearly independent and span $N_{k+1}(x)$.

By the differentiability of $\overline{\xi}_i$, they are linearly independent in a neighborhood of x. By (b) and the constant dimension of N_{k+1} , they span N_{k+1} in a neighborhood of x. Use the Gram-Schmidt orthogonalization process to obtain the desired result.

Thus, when each N_k has constant dimension, each N_k is a differentiable vector bundle. We also note that when each N_k has constant dimension we may replace L(x) in the definition of $N_{k+1}(x)$ by

span { $(D_X \xi)_x | X \in T_x(M^n), \xi$ a local cross section for N_k near x}.

If N_1 is invariant under parallel translation with respect to the normal connection, then there are only two normal spaces N_1 and $N_2 = N_1^{\perp}$.

Let N(x) be a subspace of T_x^{\perp} such that $N(x) \supset N_1(x)$. If N is invariant under parallel translation with respect to the normal connection, then by replacing $\mathscr{S}(x) = T_x(M^n) + N_1(x)$ by $T_x(M^n) + N(x)$ in Lemma 1 we may prove the following:

Thorem. Let $\psi: M^n \to \tilde{M}^{n+p}(\tilde{c})$ be as in § 1. If $N \supset N_1$ and N is invariant under parallel translation with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\tilde{M}^{n+p}(\tilde{c})$ such that $\psi(M^n) \subset N^{n+l}$.

For example, though N_1 may not be invariant under parallel translation with respect to the normal connection, we may have $N_1 + N_2$ invariant under parallel translation with respect to the normal connection.

Bibliography

- [1] C. D. Allendoerfer, Imbeddings of Riemann spaces in the large, Duke Math. J. 3 (1937) 317-333.
- [2] ____, Rigidity for spaces of class greater than one, Amer. J. Math. 61 (1939) 633-644.
- [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. I & II, Interscience, New York, 1963, 1969.
- [4] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

BROWN UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA