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Abstract

The efficient implementation of algorithms on multiprocessor machines requires that

the effects of communication delays be minimized. The effects of these delays on the

performance of a model problem on a hypercube multiprocessor architecture is investi-

gated, and methods are developed for increasing algorithm efficiency. The model prob-

lem under investigation is the solution by red-black Successive Over Relaxation of the

heat equation; most of the techniques to be described here also apply equally well to the

solution of elliptic partial differential equations by red-black or multicolor SOR methods.

This paper identifies methods for reducing communication traffic and overhead on a

multiprocessor and reports the results of testing these methods on the Intel iPSC Hyper-

cube. We examine methods for partitioning a problem's domain across processors, for

reducing communication traffic during a global convergence check, for reducing the

number of global convergence checks employed during an iteration, and for concurrently

iterating on multiple time-steps in a time dependent problem. Our empirical results show

that use of these methods can markedly reduce a numerical problem's execution time.

Research was supported by the National Aeronautics and Space Administration under

NASA Contract Nos NASI-17070 and NASI-18107 while the authors were in residence

at ICASE, NASA Langley Research Center, Hampton, VA 23665.
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1. Introduction

The efficient implementation of algorithms on multiprocessor machines requires that

the effects of communication delays be minimized. Reduction of communication delay

effects in message passing machines may be brought about by restructuring algorithms.

Ways in which the effect of communication delays can be reduced by such restructur-

ings include: (1) reducing tile quantity of information that must be communicated, (2)

reducing the the frequency with which messages must be sent, (3) overlapping commun-

ication with computation. The above goals may not in practice be mutually compatible.

The relative importance of the three aspects of communication delay reduction will

depend on the architecture under consideration [SALT85a], [SALT85b],[VOIG85].

The effects of these delays on tile performance of a model problem on a hypercube

multiprocessor architecture are investigated, and methods are developed for increasing

algorithm efficiency. A hypercube multiprocessor[RATT85] is a collection of processors

or nodes connected by a communication network with a hypercube topology. A hyper-

cube has 2d ideIltical nodes where d represents the dimension of the hypercube. Each

node in a hypercube is connected to d other neighbors. Nodes are assigned addresses

from 0 to 2_--1. Two nodes of a hypercubc are connected when the binary expansion of

the nodes _ ;tddresses differs in one bit position.

The model problem under investigation is the solution by red-black Successive Over

Relaxation [YOUN71] of the heat equation; most of the techniques to be described here

also apply equally well to the solution of elliptic partial differential equations by red-

black or multicolor SOR methods. The model problem is solved on an N dimensional
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hypercube by decomposing the domain into 2N regions and assigning one region to each

processor. The regions are chosen either as strips or as rectangles and are mapped onto

the architecture using a grey code [SAAD85]. Due to the grey code mapping, processors

assigned adjacent regions of the domain are directly connected.

The two sources of communication delays in a simple iterative method such as SOR

are the need to exchange information between the boundaries of the subdomain assigned

to each processor and the need to check convergence. We examine a variety of factors

which help determine the interprocessor communication costs. In this paper methods of

reducing both of these sources of communication delays are proposed.

The time required to transmit a packet of information from one processor to

another to which it is directly linked may be approximately expressed as

o_"b w fl

where b is the number of bytes contained in the message, a is the bandwidth of the com-

munication channel, and fl is the overhead for sending a message. When a is consider-

ably smaller than fl, overhead for communication is high in comparison to the communi-

cation bandwidth. In this case, there may be significant performance advantages in

arranging an algorithm so that information that must be transmitted is sent in large

quantities.

In the Intel hypercube used in the experiments described in this paper,/_>>a, and

communication may not be overlapped with computation to any appreciable extent.

Given a multiprocessor with these characteristics, reducing the number of messages that

must be sent by processors is consequently the main goal of the work to be described. In
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- sections 3,4 and 5 methods are described that may be used to reduce the number of mes-

sages that must be sertt by each processor and to consequently reduce the effect of the

communication overhead fl- Section 3 explores the consequences on the hypercube perfor-

mance of the simple observation that the number of messages that must be sent by a

processor when a domain is partitioned into strips is at most two, while a processor may

have to send four messages when a domain is partitioned into square regions. Allowing

iterations to sweep over more than one timestep is a method used in section 5 to decrease

the number of messages that must be sent.

In a hypercube, it is possible to perform communications that combine results from

all processors and to disseminate the results thus obtained in a time that grows loga-

rithmically in the number of processors involved. When communication overheads are

large, convergence testing may be quite costly despite this logarithmic growth. In sec-

tion 4.1 two logarithmic methods for combining the results obtained from local conver-

gence checks are advanced and compared. In both methods, for all but very small

hypercubes, the communication delays resulting from convergence checking are compar-

able or greater in size to the delays arising from the communication of the boundary

variable vah:es.

In both of the above schemes, communications for global convergence checking

occur after each iteration. Two methods are proposed and tested for reducing the fre-

quency with which communication is required for global convergence checking. The first

method discussed in section 4.2 checks for global convergence only when certain neces-

sary conditions are fulfilled. One necessary condition is that all subdomains have
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detected convergence at some point in their computations. Other necessary conditions

result from the fact that global convergence requires all processors to detect local conver-

gence at a given iteration. In section 4.3 a method is proposed that utilizes a logarithmic

method for checking for convergence but employs a statistical methodology to schedule

convergence checks only at critical iterations.

In the following sections experimental results will be presented that pertain to the

solution of a model problem. The partial differential equation being solved is the heat

equation on the unit square with dirichlet boundary conditions and with the first two

modes used as the initial condition. The heat equation is solved using optimally over-

relaxed red-black SOR on 64 by 64, 128 by 128, 256 by 256 point meshes with timesteps

of 0.004, 0.002 and 0.001 respectively. All experimental results were obtained using a 64

processor Intel iPSC hypercube.

2. Effect of Problem Size on Performance

As has been widely reported [FOX84],[ORTE85], in order to obtain better perfor-

mance from the multiprocessors, one should have a balance between computation and

communication costs. If the communication costs are too high as compared to the costs

of computations, then the performance is bound to deteriorate. The obvious way to

improve the performance is to increase the size of the subdomain assigned to each pro-

cessor without increasing the communication costs proportionately. In Figure 1, we dep-

ict the performance of the system in terms of efficiency, as the domain size is varied from

64 by 64 through 256 by 256 grid sizes. Here the efficiency of an N-processor system is

defined as the ratio of the time taken to solve the problem on one processor to the time
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taken to solve the problem on N processors, times the number of processors. As expected

the efficiency drops as the number processors is increased, but the rate at which it drops

is much more gradual as the grid size is increased. In all the experiments performed here

the domain was subdivided into strips. The model problem was solved for five

timesteps, and the efficiencies were computed by measuring the elapsed time to find the

solutions of the first five time-steps.

3. The Effect of Domain Partitioning on Performance

The cost of communicating information from one processor to another in a hyper-

cube multiprocessor is a function of the amount of data that must be sent, the number

of packets of data into which the data is placed, and the logical distance of the proces-

sors from one another in the hypercube. The domain of a PDE may be decomposed into

regions with a variety of shapes, with certain shapes provably optimal with respect to

minimizing the number of variable values that must be communicated across boundaries. 1

The regions may then be mapped onto a hypercube in a way that attempts to minimize

the number of intermediate nodes that messages must traverse in going from the boun-

dary of one region to another [SAAD85].

We considered domain decompositions consisting of strips and rectangles; such

shapes are easier to program and can be mapped onto a hypercube so all processors that

need to send messages to one another are directly linked. It is easily demonstrated that

[1] Reed, D., Patrick, M., and Adams, L. to be submitted to IEEE Transactions on Com-

puters
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in a domain divided into rectangles, less information must be transmitted across boun-

daries during each iteration than would be the case with a domain divided into strips.

On the other hand, in a domain divided into rectangles, regions may have four neighbors

while when the domain is divided into strips, each region may have no more than two

neighbors.

We examine the trade-off in costs between the division of a domain into rectangles

and the division of a domain into strips in C color SOR. Assume a 2 n by 2n point

domain and 2m processors. The domain may be divided into 2 m 2 by 2n- m

rectangles, or alternately into 2 n by 2 n-m strips. In 6' color SOR the values of points

are adjusted one color at a time. Each time a color is adjusted, all rectangles in the inte-

rior of the domain must send four packets. If the number of colors used in the SOR

sweeps is not equal to the number of points on a side of a rectangle or strip, the number

of values to be communicated may differ by one between sweeps over different colors.

Rectangles in the interior of a domain, i.e. those with four neighbors during the

course of each iteration, must send 2 C packets of average size
C

and must send 2 C packets of average size 2 Strips in the interior of a domain,C

2 n

i.e. those with two neighbors, must send 2 C packets of average size --.
C

The comparison of costs between strips and rectangles depends on the overhead for

sending each message, on the per-byte cost of transmitting information, on the number



-7-

of processors, and on the size of the domain. Figure 2 depicts a comparison between

local communication costs when the model problem is solved with domains of varying

size. For domains of size 256 by 256 or smaller, the use of strips led to smaller communi-

cation delays than the use of rectangles, while for a domain with 512 by 512 mesh points

the use of rectangles led to the smaller delays. Figure 3 depicts the local communication

costs for rectangles compared to the local communication cost "for strips for varying

numbers of processors in a 64 by 64 point domain. Note that the communication cost

for rectangles exceeds that for strips when at least eight processors are utilized. When

eight or fewer processors are used, the number of packets that must be sent in a domain

divided into rectangles is equal to the number of packets that must be sent in a strip

divided domain. The above local communication costs were measured in the following

way. The model problem was solved for a given domain size for 50 iterations over 3

timesteps, and then for the same domain size the program was run without sending any

messages. The difference in the execution times between the program runs that sent

messages and those that did not was used to give an estimate of time spent in communi-

cating boundary information. Note that neither of the program runs performed any

communication for convergence checking.

4. Convergence Checking Schemes

In this section it will be shown that the communication required in testing for glo-

bal convergence at the end of an iteration may be quite costly. Several methods for

reducing this delay are then experimentally examined.
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Our experiments presumed that convergence had been achieved when

where X i is the vector valued solution approximation after the ith iteration, and Eis our

, tolerance.TheII"11 normaboveyieldsthemaximalabsolutedifferencebetweencom-

ponentsof X i and Xi_ 1. Our techniques do not depend on this particular norm; any

other norm could be used. Convergence checking in a multiprocessor involves two dis-

tinct costs. The first is simply the time required to compute the component differences.

The second cost is the time required for the processors to communicate and combine

their respective local convergence results to determine whether global convergence is

achieved at the end of an iteration. This latter cost is a function of the multiprocessor

communication delay and the scheme used to combine the component differences. We

will first look at ways to combine differences during a global convergence check on the

hypercube. We then discuss two different ways of reducing the number of convergence

checks used during an iterative solution.

4.1. Combination Methods

We compared two different ways of combining component differences during a con-

vergence check. Both of these methods first require each processor to find the maximal

component difference over its own piece of the domain. Each processor then sets its con-

vergence flag equal to i if this maximal difference over the processor's domain is less

than €; the flag is otherwise 0. Clearly convergence is achieved if and only if every

processor's convergence flag is 1. The two methods differ in how they cause processors to

exchange and combine these flags. Both schemes have time complexity O(logz(m)) , m
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being the dimension of the hypercube.

The first scheme, to be called the tree method, requires 2rn stages. In m stages, a

logical AND is taken of all convergence flags and the resulting flag ends up in node 0. If

the value of this logical AND is 1, global convergence has occurred; otherwise global con-

vergence has still not been detected. During each stage k, O<.k<m of communication,

each of 2rn/(k+l) processors sends to another processor a flag that indicates its current

knowledge of whether global convergence has occurred. Let <dm_l,...,d0> be the binary

expansion of the address of a node, and let dk represent the complement of binary digit

dk. Let Flagk<d._l, dA,...,do>represent the current knowledge of global convergence in the

node with address <dm_l,dk,...,do> at the beginning of communication stage k. In stage

k, processor <dm_l,dk,...,do> will send Flagk<d._l,dk,...,do>to processor <drn_l,.._k,...,d0>

if d o..... dk_l=O and dk = 1. Upon the receipt of the flag, processor

k.l

<dm_l,.."dk,...,do> will set Flag <d,_,,_,...,d0> = Flagk<d,__,.._,...,do> AND

Flagk<d.-_,dk....,do>" This process terminates at Node 0. Node 0 at this point distributes

the information on whether global convergence has occurred. Distributing the conver-

gence results also requires m stages of communication.

Another method of checking for convergence can be accomplished in m stages of

communication. This procedure is similar in principle to the cascade method for com-

puting sums [HOCK81] and will be called the cascade method for checking convergence.

In this method, during each stage of communication each processor sends a flag Flagkp

indicating its current knowledge of whether global convergence has occurred to another

processor. At the end of the m stages, the resulting flag obtained in all processors is the
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logical AND of all convergence flags.

The cascade process functions as follows: Let <zdm_l,...,d0> be the binary expan-

sion of the address of a node. In stage k, 0_k<m, processor <dm_l,dk,...,do> will send

Flagk<d,_l, dk,...,do> to processor _dm_l,..'dk,...,do>. Upon receipt, processor

k+l

_dm_l,.._k,...,d0> will set Flag <d.-x,'dk,...,d0>equal to the logical AND of flags

Flagk<d.-_,.._ ....,do> and Flagk<d,__,d_,...,do>.This process terminates after rn stages, and at

this point the flag Flagm<d.__,d,,...,do> in each processor is the logical AND of all conver-

gence flags. The flow of data corresponding to the two convergence checking processes is

depicted in figure 4. This figure illustrates that the tree method has a single processor

detect and then report global convergence; the cascade method requires all processors to

calculate the global convergence state.

The cost per iteration of the tree and cascade convergence checking methods is dep-

icted in figure 5, along with the cost per iteration of local communication between strips

and the per-iteration computation cost for a 64 by 64 mesh point model problem. The

cost of convergence checking is estimated by running the model problem for 3 timesteps,

50 iterations per timestep both with and without the convergence checking methods and

comparing the run times. When the convergence checking methods were utilized, a

minor modification in the program caused the convergence results thus obtained to be

ignored. The additional time required for convergence checking information could hence

be ascertained by comparing the timings of programs that otherwise performed identical

computations.



-11-

The cascade convergence checking method requires each processor to send and to

receive four messages per iteration when a cube with 16 processors is used. Each itera-

tion, four messages containing boundary variable values must also be sent and received

by nodes assigned strips that are on the interior of the domain. When a cube with 16

processors is utilized, the communication cost of sending boundary variable values and of

sending convergence flag information is indeed comparable. The cost of sending the

boundary variable values is slightly greater, presumably due to larger amounts of data

per packet.

The cost of the tree method of convergence checking is only slightly greater than the

cost of the cascade method despite the fact that it requires twice as many stages. In the

tree method, during eaeh stage of the computation a processor is called upon either to

send or receive a message, while in the cascade method each processor must both send

and receive a message during each stage. Further experimentation has indicated that in

a number of contexts, there appears to be a substantial time penalty associated with

requiring a processor to both send and receive a message during a given stage of com-

munication.

4.2. Asynchronous Convergence Checking

This section discusses one means of reducing the number of convergence checks

required during an iterative solution. This scheme is called asynchronous convergence

checking, or the A CC scheme. The A CC's basic idea is to check for global convergence

only when certain necessary conditions are fulfilled. One necessary condition is that all

subdomains have detected convergence at some point in their computations. Other
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necessary conditions, to be expanded upon later, result from the fact that global conver-

gence requires that all processors detect local convergence at a given iteration.

Discussion of the ACC is facilitated by a few definitions. At the end of an iteration,

a processor's subdomain is in one of two states: noneonverged, or presumptively co_

verged. This nomenclature emphasizes that convergence over a processor's subdomain

does not guarantee global convergence at that iteration, nor does it prohibit a subdomain

from oscillating between nonconvergence and presumptive convergence. Global conver-

gence is achieved if and only if all the subdomains achieve presumptive convergence at

the end of the same number of iterations. If the computations were to continue, all sub-

domains would be expected to remain in this state indefinitely. A convergence sequence

for a subdomain is a maximal sequence of iterations during which the subdomain is

presumptively converged; the first iteration of the sequence is the convergence sequence

header. Thus a convergence sequence header identifies an iteration where a subdomain

passes from nonconvergence to presumptive convergence. A subdomain's oscillation

between nonconvergence and presumptive convergence gives rise to a series of conver-

gence sequences, each with a distinct header. It is important to note that if global con-

vergence is achieved at iteration j, then 3"is a convergence sequence header for at least

one subdomain. The A CC method looks for global convergence only at certain iterations

which serve as convergence sequence headers of one or more subdomains, but not at all

the convergence sequence headers found in the system. The global convergence test is

made centrally, in a processor known as the c-host. The high cost of communication

between Intel hypercube nodes and their system host led us to designate a hypercube
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node as c-host for global convergence checks.

Under the A CC method, the c-host makes an informed guess at when the global

convergence might have been achieved; after communicating with the other processors,

the c-host either confirms or rejects the guess. A rejection is followed by another guess.

This process is continued until the confirmation takes place. Implementation of A CC

requires each processor to always maintain its subdomain's current convergence state,

and the convergence sequence header if the subdomain is presumptively converged. We

now separately describe the three component parts of the method, the initial guess, the

processor guess response, and the guess confirmation/generation.

Initial Guess

As soon as a subdomain is presumptively converged for the first time, its processor

reports the corresponding convergence sequence header to the c-host. The c-host makes

the first guess after receiving such a message from each processor; let (3"1,"" ",3"k}be the

received header values. The c-host optimistically guesses that global convergence is

achieved as early as is possible, at iteration 3"max= max{3"l, " " " ,3"k}. The c-host then

tells each processor that ]max is a potential point of global convergence.

Processor Guess Response

Suppose a processor receives a guess (not necessarily the first guess) JG from the c-host.

At iteration .ip, ]p >1Ja, the processor sends back the current convergence sequence

header if jp is part of a convergence sequence. A message is sent immediately after such a

3"9is found.



-14-

Guess Confirmation/Generation

As described above, each processor responds to a guess Ja by returning a convergence

sequence header to the c-host. The c-host either confirms or rejects the guess as soon as

every processors' response is received. Letting Jmax be the maximal value among these

responses, the guess JG is confirmed if Jc --Jmax; in this case global convergence is

achieved at iteration JG, and the c-host instructs all processors to stop iterating. If

Jc ( Jmax, then JG is rejected, and the value Jmax is sent to all processors as as the next

guess.

We can show that the ACC identifies an iteration achieving global convergence;

furthermore, if the solution cannot drift out of global convergence (even temporarily),

then the A CC is guaranteed to identify the first iteration achieving global convergence.

The first claim is proven by contradiction. Suppose that A CC confirms iteration JA as a

point of global convergence, but that some processor P has a nonconverged subdomain

at iteration JA. By the confirmation process described above, JA is the maximum header

value in response to a guess JG, and JA = JG. Consider P's response to this guess, at

(say) iteration jp. Clearly jp _ Jc, since P does not respond until it has iterated at least

to JG and is presumptively converged. Furthermore, jp _ JG since P's subdomain is non-

converged at iteration JA = Ja. But JA is the maximum among all responses to JG, so

Jp _ Jc, a contradiction. We also show that AGC finds the first globally converged itera-

tion if the solution never diverges from global convergence. Suppose that global conver-

gence is achieved first at iteration jr, and that the ACG first detects global convergence

at J_t. For the sake of contradiction, suppose that JA _Jf. Since A CC does detect global
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convergence,we must have JA _ Jl;forthesakeofcontradiction,supposethatJA _ Jr.

JA isa convergencesequenceheaderfrom some processorP; thusP'ssubdomainwas not

convergedatiterationJA - 1 _ Jl"Thisisa contradiction,sincewe have assumed that

globalconvergenceatj!impliesconvergenceinP foralliterationsj _ j/.Thus JA = Jr,

showingthatA CC findsthefirstgloballyconvergediteration.

The A CC scheme isasynchronousinthattheprocessorsneversynchronizewaiting

forconvergenceinformationand inthattheprocessorsdo not necessarilysendthemes-

sagesto the c-hostat the end of the same iteration.Unlikeasynchronouschaotic

methods, we stillpresume thattheprocessorssynchronizewiththeirneighborsateach

iteration.The communicationcostsrequiredby the A CG method arequitesmall.The

A CC requiressubstantiallyfewermessagesthanstandardconvergencechecking;further-

more, the communicationmay be overlappedwith computation.From thisaspect,the

A CC isclearlysuperiortostandardconvergencechecking.However,theA C7C doesincur

two additionalcomputationalcosts.The minimalcostisexecutionoftheA CC logic;the

secondcostoccursbecauseeach processorcontinuesto iterateuntilitistoldto stop.

Thus each processor"overshoots",doing slightlymore computationeven afterglobal

convergenceisachieved.In practice,neitherofthesecostsprovedtobe significant;the

improvement overstandardconvergencecheckingissubstantial,as discussedinsection

5.

Furtherimprovementsin the A CC scheme are possible.With a cube of large

dimension,we can distributethe c-hostfunctionby formingclustersofsmallercubes;

A CC isthen appliedlocallyat a cluster.A clusterreaching"global"convergenceis
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logically equivalent to presumptive convergence in a subdomain; a central c-host would

determine global convergence using ACC at a global level. Another improvement is

achieved by checking a subdomain's convergence only at selected iterations. The compu-

tational cost of checking convergence is saved, at the risk of doing more iterations than

are required. In a similar vein, the scheme discussed in the next section formally

schedule8convergencechecksand balancesthebenefitsofskippingcheckswithitsrisks.

4.3. Maximized Expected Work

We now considera secondmethod ofreducingthenumber ofconvergencechecks.

Thismethod employsa statisticalmethodologyto scheduleconvergencetestsatcritical

iterations.Upon the completionof a scheduledtest,the next convergencetestis

scheduledon thebasisofthecostoftestingconvergenceand thecostsofschedulingthe

next test"too far"in the futureafterconvergencehas been achieved.The iteration

chosenistheone maximizingthe "expectedwork" perunittime and isthusdubbed the

ME W method.

The MEW method entailsa certainamount ofmathematicalformalism.First,we

definethe ithiterationerrorestimateEl:

We model the convergence behavior of an iterative method by assuming that

v. vl-e (1)

We say that the solution has converged at iteration n if En _ E for our tolerance €. The

key issue in this formulation is the estimation of A. If the exact value of A were known,
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. thenthe firstconvergediterationis foundby solvingfor rzin the equationE= El'e -'_'n.

Sincethe exactvalueof Aisnotknown,it mustbeestimated.

Our treatmentof Ais Bayesian(thereaderunfamiliarwithBayesianestimationcan

consult[SCHM69]or anystandardstatisticaltext). Weviewa convergencetest as a sta-

tisticalobservationof A.The observationof Acreatedby calculatingEj is derivedfrom

relation(1):

A = 1"(ln(Ei) - ln(E1)) • (2)

We suppose that an observed value of A is a normal random variable N(A,a2). A here is

2 is a samplingvariancewhichwe will alsothe true unknownconvergencerate, anda 8

estimate. We furthermoresupposethat we havesomepriorknowledgeof what Amight

be. This prior knowledgeis encodedwith a normal (prior) probabilitydistribution

N(Apr,CrpZr)describingthe likelihoodof Atakingany particularvalue.Giventhe parame-

z and an observationA, Bayes'Theoremsaysthat the posteriordistributionofters )tpr , O'pr

A is normal N(Apt,apzt)where

O'pr 0"8

"_pt = 2 2 2 _ 0.2
g_pr

°'Pr + aa I
O'pr -k

and

2 2
2 O'Pr .as

G'Pt ---- 2 2 "
apr -]- a 8

The posterior distribution incorporates our prior knowledge of A with the additional

information afforded by A. The scheduling of our next convergence test (presuming

Ej > _) depends in part on this distribution.
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We next examine the mechanics of our convergence test scheduling, temporarily

2 Suppose we have adeferring discussion of prior determination and the estimation of a s.

prior distribution of A, and we make a convergence test at iteration j. We then calculate

2
Apt and apt as described. From iteration j, we view the probable future behavior of con-

vergence at iteration j + d as though we are at the first iteration. That is, we presume

that the convergence model for iterations j + d, d > 0, is

Ej+d Ej',
It can be shown that sensitivity to measurement errors in A is reduced by using this

modification. The probability of not observing convergence at iteration 3"+ d is easily

seen to be identical to the probability that A is less than the threshold Ty(d), where

I
Appealing to the normal structure of the posterior distribution, we thus have

Prob{A < Ty(d)} = _[ Ty(d) - APt}apt

where q) is the standard normal cumulative distribution function. We use the probabil-

ity above as an estimate of the probability that we will not have converged by iteration

j+d.

We can now detail the scheduling decision. Let I be the delay cost of performing a

convergence test, and let D be the time required to perform one iteration without a con-

vergence test. If we schedule the next convergence test at iteration j + d, the total time

required to do d iterations and perform the test is d'D + I. Then the average required

number of iterations per unit time achieved by this decision is
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d { Tj(d)-Api )i_=1'_ --O'pr (3)

d'D+I _"

We find the d = draax which maximizes the expression above and schedule the next con-
_t

vergence test at iteration j + draax. Maximization of expression (3) balances the cost of

testing convergence with the cost and uncertainity of doing more iterations than are

required. As a function of d, expression (3) has at most one local maximum which is

easily found. The convergence test scheduling decision at iteration j + dmax uses the

N(Apt,a_t ) distribution as its prior.

The mechanics of our scheduling policy illustrate how we deal with uncertainty

about _. This policy is also dependent on quantities we now discuss: the sampling vari-

2 and the initial prior distribution of A. There are situations where significantance a s

prior knowledge of convergence behavior is known. The model problem is time-

dependent, so we need to solve the equations at each of a number of time steps. The

convergence behavior of the method at time steps in the near past is a good predictor of

the convergence behavior in the near future. In fact, after the first three time steps, we

were able to construct very reasonable priors before beginning a time step's iterations.

We simply used the last time step's effective A as the prior mean (found by solving

E = El'e -'_'N for A, knowing that exactly N iterations were required); we used the sample

variance of the last three time steps' effective A's for our prior variance. The Bayesian

formulation can also exploit user experience with the solution method's convergence; this

experience could be summarized as a prior distribution.
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At the beginning of the computation we might well presume no prior knowledge of

the convergence behavior. We gain some insight into this behavior by testing for conver-

gence after each of the first few iterations. As before, a convergence test is viewed as an

observation of A. If we could assume that each observation is independent of any other,

we could then use the sample mean as the initial prior mean Apt, and the sample vari-

2 However, successive2 and the prior variance apr.ance as both the sampling variance a,

errors Ei and Ei+ 1 are not independent. Their correlation leads to a biased estimation of

Apr and the underestimation of z To compensate for this conflict of mathematicalapr.

assumption and practical reality, we devised the constrained projection rule. This rule

states that if convergence is tested at iteration j, the next convergence test must be

scheduled before iteration 2"j + 1. This rule forces additional convergence tests at the

beginning of the computation, and affords protection from wildly optimistic scheduling

decisions. We thus used the sample statistics to construct our prior information, but then

protected ourselves from a bad prior with the constrained projection rule. In our experi-

ence, this rule was effectively invoked only at the beginning of the computation. After

this startup period, our underlying assumption of independence between observations of

2 is then reason-A is better satisfied, and the statistics are more accurate. The variance a,

ably taken to be the sample variance of the observed _'s to date.

The MEW method is an excellent vehicle for encapsulating both our prior

knowledge, and the knowledge gained about convergence as the solution progresses.

Furthermore, it is simple to program, and its sensitivity to changes in the problem or

problem distribution across processors lies only in the parameters I and D. The empirical
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study described in the next section shows that MEW is quite effective in reducing con-

vergence checking delay.

5. Convergence Checking Performance

The effects of employing the three different convergence schemes on the algorithm

performance (on a 128 by 128 grid) is depicted in Figure 6. The model problem was

solved on a cube with 1, 2, 4, 8, 16, 32, and 64 processors; our implementation of ACC

dedicated one node to the c-host function, so that we did not test this method with 64

processors (the maximum cube size on our system). In each test the domain was subdi-

vided into strips of equal size, assigned one to each processor so that adjacent strips were

mapped onto adjacent processors. In Figure 6, the measured performance in terms of

time-steps advanced per second is plotted as a function of the number of processors.

Note that the best one can achieve is a line with a slope of one. Figure 6 illustrates that

the performance of all three convergence schemes degrades with an increasing number of

processors. The standard convergence scheme checking scheme depicted here involves the

use of the tree method of global convergence checking used each iteration. The tree

method of convergence checking was utilized as scheduled in the MEW scheme. Results

obtained for the cascade method of convergence checking are quite similar to those dep-

icted here. The standard convergence scheme's deterioration is rapid, while the other

two schemes degrade gradually. The difference between the MEW and A CC schemes is

not significant. Both have essentially the same communication costs, as very few A CC

guesses and MEW checks were required on each time-step. The ACC overshoot after glo-

bal convergence was between three to five percent. The MEW scheme has a lower
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computation cost than A CC because it skips local convergence checking on some itera-

tions altogether. The ACC scheme checks the state of each subdomain every iteration,

although we observed a ten percent improvement by checking every other iteration. The

difference in local convergence checking accounts for the slight difference in the two

schemes' performance. All three methods showed similar effects on the algorithm perfor-

mance when the grid size was changed to 64 by 64 or 256 by 256.

6. l_eduction of Communication Delays Resulting from Windows

Reduction of communication delays in the iterative solution of the linear equations

produced by a discretization of a time dependent problem can be effected by iteratively

solving more than one timestep during a given stage of the computations. The boundary

variable values from more than one timestep can be sent in a packet, thus reducing the

effect of the message transmission overhead.

In an iterative solution of a time dependent problem, one generally iterates over

each timestep individually until convergence at that timestep is detected. One may

instead iterate over more than one timestep during each stage of a computation. Assume

that we are iterating over variables at timesteps tl,.. , tn. During each iterative sweep, all

variables are updated in each of the timesteps included in the window. Following the

sweep, the right hand sides of equations at timesteps t2,..,t n are updated to account for

changes in the variable values at the earlier timesteps. Convergence is checked at tl, and

when global convergence is detected at this time the window shifts up one timestep to

encompass t2,...,tn+ 1. It has been shown [SALTZ85], that the asymptotic rate of conver-

gence of SOR implemented with windows is equivalent to that of SOR applied to each
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timestep individually. In other words the total number of sweeps over each timestep

required for a given degree of error reduction does not, in an asymptotic sense, change

with the window size. For finite difference equations in which time discretization is by

Crank Nicholson or Backwards Euler methods, the operation count for each sweep over a

timestep is minimally effected by the use of windows. In practice, the computational

work required to solve a problem increases quite gradually with window size.

Communication costs are reduced in two ways when one iterates over windows of

timesteps in a time dependent problem. The first is the previously stated fact that fewer

but larger packets need be sent for the transmission of boundary variable data. Because

convergence need be checked only at the lowest timestep in a window, the number of

global communications required to check for convergence is reduced by a factor of l/win-

dow size as long as the total number of sweeps over each timestep does not change with

window size, as is approximately the case for small windows. Thus if the total number

of sweeps over each timestep were independent of window size and the cost per packet

were independent of the size of the packet, the overall cost of communication would be

reduced by a factor of 1/window size. Finally, some computation time is saved because

the computations required for local convergence checking need only be carried out at the

lowest timestep in a window.

Algorithm performance is improved by the use of windows of a relatively small size.

A number of experiments were carried out to demonstrate this, the results of one set are

shown in figure 7. The model problem was solved on a 64 by 64 point domain, and the

rate of computation resulting from the use of windows of sizes 1,2 and 3 is shown. A
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notable improvement in performance is seen in comparing windows of size 1 and 2; a less

marked improvement in performance is seen when a window of size 3 was utilized. This

result is expected as the computational cost increases as window size is increased, and

communication delays can be reduced by no more than a factor of l/window size.

The use of windows decreases the cost of of communicating boundary variables and

communication flags at the cost of increased storage requirements and an increase in the

computation required for each timestep. The methods for reducing the costs of global

convergence checking described here have minimal costs and storage requirements. It is

hence natural that the methods should be used together. In figure 8 are depicted results

for the model problem solved on a 128 by 128 point domain using windows of sizes 1 and

2 with Bayesian MEW convergence test scheduling and using windows of sizes 1 and 2

with standard convergence testing. The use of both windowing and Bayesian conver-

gence test scheduling together led to additional improvements in performance over that

obtained through the use of either separately.

7. Conclusion

The sources of communication delays in the solution of a model problem by red-

black SOR have been identified and their relative contribution quantified under a

number of circumstances. A number of methods have been proposed and tested to reduce

the effects of each of these sources of communication delay.

In a message passing multiprocessor whose overhead for communication /3 is sub-

stantially larger than the bandwidth a, there is considerable motivation to reduce the
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number of messages that must be sent. In section 3 the discussion and experimental

tests on domain partitioning indicate that improvements in performance may in many

circumstances be obtained by reducing the number of messages that must be sent even

when the total number of bytes to be sent must increase. In section 5 it is seen that

through the use of windows the number of messages that must be sent is decreased. In

this case the trade-off is a small increase in the cost of computation, and again an

overall performance improvement is noted.

Checking global convergence when message overhead is high is quite costly, and

methods were described in section 3 to perform tests efficiently and to reduce the number

of such tests required. It is demonstrated in section 5 that the effects of using windows

and of using methods that reduce the effects of convergence costs can have a complemen-

tary effect of performance.

It should be noted that convergence testing is the only non-local communication in

red-black SOR. Both the A CC and the ME W method greatly reduce global communica-

tion and are consequently expected to be quite useful in architectures where the interpro-

cessor connectivity is more restricted, such as a ring or a mesh multiprocessor. In these

architectures combining results from all processors may be quite expensive for large

machines.
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FIGURE1. EFFECT OF DOMAIN SIZE ON PARALLEL EFFICIENCY
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FIGURE2. EFFECT OF SUBDOMAIN SHAPE ON COMMUNICATIONCOST PER ITERATION,
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FIGURE3, EFFECT OF SUBDOMAIN SHAPE ON BOUNDARY VARIABLE COMMUNICATION COST
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FIGURE 5, COMPARISON OF BOUNDARY VARIABLE COMMUNICATION COST,
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FIGURE 6. EFFECT OF CONVERGENCE CHECKING SCHEMES ON ALGORITHM PERFORMANCE.
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FIGURE 7. EFFECT OF WINDOWS ON PERFORMANCE.
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FIGURE 8. EFFECT OF WINDOWS AND OF CONVERGENCE CHECKING SCHEMES ON

PERFORMANCE. (GRID: 128 X 128 J SHAPE: STRIPS)
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