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The method of "averaging" is often used in Hamiltonian systems of two degrees of freedom to find periodic orbits. Such 
periodic orbits can be reconstructed from the critical points of an associated "reduced" Hamiltonian on a "reduced space". 
This paper details the construction of the reduced space and the reduced Hamiltonian for the semisimple 1 : 1 resonance case. 
The reduced space will be a 2-sphere in R 3, and the reduced differential equations will be Euler's equations restricted to this 
sphere. The orbit projection from the energy surface in phase space to this sphere will be the Hopf map. The results of the 
paper are related to problems in physics on "degeneracies" due to symmetries of classical two-dimensional harmonic 
oscillators and their quantum analogues for the hydrogen atom. 

1. Introduction 

I t  is the purpose  of this paper  to detail the 
construct ion of the reduced space and the 
reduced Hamil tonian for  the two degree of 
f reedom semisimple 1:1 resonance  case (the 
terminology will be explained below). This is 
one of the simplest  nontrivial  examples  where  
reduct ion can be explicitly carried out with ap- 
plications to such problems as the H 6 n o n -  
Heiles Hamil tonian (see [5], [13, 14], and [21]). 
A special case of such a sys tem is the two- 
dimensional  isotropic harmonic  oscillator. Jauch 
and Hill [12] observed  that  the quantum 
mechanical  degeneracies  of  this harmonic  oscil- 
lator were  due to its SU(2) dynamical  symmet ry  
group (see also [6]). Later  Dulock and McIntosh  
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[7] found that  for  the harmonic  oscillator the 
space of all orbits of a given energy (which is 
topologically a 3-sphere in R 4) could be mapped  
by  the H o p f  mapping to the standard 2-sphere in 
R 3 (see also [9, p. 169] and [13-15]). The H o p f  

mapping (given in (1.5) below) maps distinct 
orbits of  the oscillator (which are great  circles 
on the 3-sphere) to distinct points of  the 2- 
sphere which is then the reduced space (orbit 
space) for  this oscillator. Finally it was realized 
by  [2], [20, p. 120], and [17] that  the dynamics  of 
the harmonic  oscillator induced dynamics  on the 
reduced phase  space which are given by  Euler ' s  
equations for  a rigid body  (see also [13, p. 58]). 
For  some of the background to [12] and [7] we 
refer  to [8] and [3]. 

An important  use of the reduced space is for  
finding periodic orbits of real analytic Hamil-  
tonian sys tems of differential equations with 
two degrees of f reedom.  This involves 
"averag ing"  the Hamil tonian H out to some 
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order and truncating to obtain a polynomial 
Hamiltonian in "normal  fo rm"  as in (1.2) and 
(1.3) below. If the t runcated Hamiltonian system 
has periodic orbits that are actually 
reparametr ized orbits of the flow generated by 
the quadratic terms of H, then these will show 
up as critical points of an associated reduced 
Hamiltonian on the reduced space [1, p. 306]. 
The explicit construction of the reduced Hamil- 
tonian for our case turns out to be trivial and is 
detailed in (2.24)-(2.26) below. Having located 
such periodic orbits for  the truncated Hamil- 
tonian, one can try to carry them over  to the 
original, full Hamiltonian. In the case that the 
periodic orbits originate as the energy increases 
f rom an equilibrium point of the Hamiltonian at 
energy zero, this can often be done by some 
perturbation scheme that then gives their exis- 
tence in the original Hamiltonian flow at low 
positive energies (see for example [19]). Such a 
program is carried out in detail in [5], [13, 14], 
and [21]. 

Let  ( R  4, to = dx 1 A dyl + dx2 ^ dyz) be a sym- 
plectic vector  space with global coordinates 
(x~, x2, Yl, Y9. We define the linear map tob by 
tob(O/OXi) = dyi and tob(O/Oyl) = -dxi  for  i = 1, 2, 
and set to~=(tob)-l.  By the semisimple 1:1 
resonance case we mean that the quadratic 
terms H E of our Hamiltonian have the form 

1 2 H2(Xl, X2, Yl, Y 2 ) = ~ ( x l + x 2 + y 2 + y ~ .  (1.1) 

H 2 is semisimple because the linear Hamiltonian 
vector  field X: = to ~(dH2) is diagonalizable over  
the complex numbers (see (3.5) and (3.6) below). 
Moreover ,  since i is a double eigenvalue of X2 
at the origin (which is an equilibrium point of 
X2), we say X2 (or HE itself) is in 1 : 1 resonance.  

We will consider polynomial  Hamiltonian 
functions of the form 

?I 

H = ~ H21, (1.2) 

where the H2~ are homogeneous  polynomials of 

degree (2i) in the variables (xl, x2, yl, Y2). We 
will assume that H is in normal form w.r.t. H2;  

that is, the Lie derivative of H w.r.t, the 
Hamiltonian vector  field X2 vanishes. In stan- 
dard notation [1, p. 79 and p. 192] we have 

Lx2(H)  = X2(H) = {H, H2} = 0, (1.3) 

where {,} denotes Poisson brackets defined 
w.r.t, the symplectic form to above. We show in 
section 3 that (1.3) is equivalent to 

n = n ( W l ,  W2,  W3,  W4)  , (1.4) 

where the Wj, j = 1, 2, 3, 4, are quadratic poly- 
nomials in the variables (Xl, x2, Yl, Y2) given in 
(2.10) below. The Wj are referred to as " H o p f  
variables" and the map 

(xl, x2, yl, yO--'(W1, W2, W3) (1.5) 

is the standard " H o p f  map"  when restricted to 
the 3-sphere in R 4. Thus H as in (1.2) being in 
normal form w.r.t. H2 means that H can be 
expressed as a polynomial (1,4) in these Hopf  
variables. 

We mention two standard ways of computing 
the normal form w.r.t. H2 of a given Hamil- 
tonian up to some order,  so that on truncating 
the higher order terms we have (1.2) with (1.3). 
The original scheme for computing the Birkhoff 
normal form of a Hamiltonian was modified by 
Gustavson in [10] to apply to resonance cases 
such as (1.1). An account  of this method can 
also be found in [18, pp. 10-13]. An alternate 
technique uses the method of Lie series (see [1, 
pp. 500-502] and the references  therein). This 
latter method was applied to the H6non-Hei les  
Hamiltonian in [5]. 

We can now summarize the results of this 
paper. Le t  S 7 denote the standard n-sphere in 

R "÷1 centered at the origin with radius r. In 
section 2 we will carry out the reduction process 
on the Hamiltonian vector  field Xn = to ' (dH)  
restricted to M = S~2a)1~2 = H21(h) C R 4 (see [1, p. 
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299 and p. 304]). We will find that the reduced 
space MR = MR(h) can be identified as the 
sphere S~2h)C R 3 by factoring the canonical pro- 
jection 7r : M -~ MR through the following com- 
mutative diagram: 

M S ~2h)1/2 J = , su(2)* 

MR -- S ~2h) ' su(2) 

(1.6) 

Here  J is the Ad*-equivariant momentum map 
associated to a linear SU(2) action on R 4, 7 is 
the standard Killing form on the Lie algebra 
su(2) with induced linear map yb:SU(2)~ SU(2)* 
and T ~= (~/b)-~, and (2A):R3---~ su(2) is a natural 
identification map. The orbit map "tr sends dis- 
tinct periodic orbits of the flow of X2 in M to 
distinct points in M R. The factor  of 2 in the 
identification map (2h) has been put  in so that ~r 
will be precisely the standard Hopf  mapping [11, 
p. 654], and (~/bo A)(MR) will be an orbit in 
su(2)* of the coadjoint  action of SU(2) on the 
dual of its Lie algebra. 

The factoring of ~r in (1.6) allows us to cal- 
culate explicitly the induced symplectic form toR 
on MR satisfying the pullback relation ~r*toR = 
/*tO, where i: M ~ R 4 is inclusion. We can then 
find the reduced Hamiltonian K that is asso- 
ciated to H by K o zr = H oi, and the reduced 
vector  field X r  = (toR)*(dK) on MR. In (2.29) we 
show that this reduced vector  field is just 
Euler 's  equations restricted to the sphere MR 
(see [13, p. 58]). That  the orbit project ion 7r is 
the Hopf  map was expressed in [7]. 

We will use the notation of [1] throughout  
(see also [16, Lectures  3 and 4]). 

2. Reduction of Xn 

We begin the reduction of the Hamiltonian 
vector  field Xu by showing that the hypotheses  
of the reduction theorem [1, p. 299 and p. 304] 
are satisfied for the Sl-action on R 4 generated by 

X2. Since H is in normal form, 0 = Lx2(H)= 

-LxH(H2), implying that H2 is an integral of XH. 
Thus for h > 0  the flow of Xn  leaves the 3- 
sphere M - - H E l ( h )  invariant, and Xn restricts 
to M. The flow of the linear Hamiltonian vector  
field X2 defines an Sl-action • : [0, 2Ir) x R4-~ R 4 
by 

{ (cos 012 (sin 012\ 
• (t, x) = ~t(x) = \ - ( s i n  012 (cos t)I2) x' (2.1) 

where /2=(01 1°) and x = ( x l ,  x2, yl, y:). ~t is a 
linear symplectic mapping of (R 4, to), and the 
S~-momentum mapping associated to • is just 
HE itself which is trivially Ad*-equivariant. 
Since ~ restricts to a free and proper  S~-action 
on M, the reduction process in [1, p. 299], ap- 
plied to the momentum map/-/2, yields a smooth 
orbit manifold MR = M/S 1. The smooth sur- 
jective orbit map 7r :M---~MR together with to 
determines a unique symplectic form toR on MR 
by the pullback relation ¢r*toa = i 'to, where 
i: M ~ R 4 is inclusion. Now (1.3) implies that H 
is invariant under the action of qbt, hence by [1, 
p. 304] there is an induced Hamiltonian K on 
MR such that K o w = H o i and 

7r,XH(x) = XK(Tr(x)), for  all x ~ M, (2.2) 

where ~r, is the tangent map of 7r. 
We now determine a model for  (MR, toR, ~r) by 

factoring 7r through a momentum mapping 
associated to a linear SU(2) action on (R 4, to). 
One can easily show that any two models for 
the reduced space are symplectomorphic.  

With A, B E gl(2, R) we let 

U(2) = Sp(4, R) f'l SO(4, R) 

= { ( a - a B ) [ ( a a t +  BB')= I=, aB'  = BA t} 

(2.3) 

be the unitary group with Lie algebra 

u(2) = sp(4, R) f) so(4, R) 

ot (2.4) 
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(We remark that in many books on Lie groups 
Sp(4, R) is denoted by Sp(2, R), etc.) Then 

SU(2) = ( ( A - A B ) E  U(2)I det(A + i B ) =  1 ) (2 .5 )  

W2 = 2(x2y, - xly2), 

w 3  = + 

W , =  (x2+x~+ y~+ y~) = 2H2. (2.10) 

is the special unitary group with Lie algebra 

su(2) = ( ( b  - ab) ~ u(2) I Tr(b) = 0}. (2.6) 

The Wj(x) = (ejx, e4x) for j = 1, 2, 3, 4, satisfy 
the identity 

+ + w4 (2.11) 

Let  The mapping J can then be written 

0 0 0 1 0 1 0 0 
0 1 -1  0 0 

e l =  --1 0 , e 2 =  0 0 0 , 

- 0 0 0 0 - 1  

e3 

0 0 1 0 
0 0 0 -1  

- 1  0 0 0 
0 1 0 0 

e4 
0 

= z  0 0 . 

-1  0 

(2.7) 

Then {el, e2, e3, e4} is a basis for u(2), and 
{el, e2, e3} is a basis for su(2). 

For V E S U ( 2 )  and x E R  4 the linear sym- 
plectic action (V, x ) ~  V .  x of SU(2) on (R 4, to) 
has an associated momentum mapping j:R4---> 
su(2)* given by (see [1, pp. 287-288(iv)]) 

] ( x )  . e = ½to(ex, x) ,  (2.8) 

J ( x )  = ½[W,e* + W2e* + W3e*], (2.12) 

where {e*} is the basis of su(2)* dual to {ei}. 
We now show that J ( M )  is a coadjoint orbit 

in su(2)*. For V E SU(2) and e ~ su(2) we have 
for every x E R 4 

J ( V x )  " e = l to(eVx,  Vx )  = ½to(V-l eVx ,  x)  

= J ( x ) .  V - l e V ,  (2.13) 

o r  

] ( V x )  * = Ad v-i o J (x ) .  (2.14) 

Thus, ] is an Ad*-equivariant momentum map- 
ping for the linear symplectic action of SU(2) on 
(R 4, to). Since SU(2) gives a transi t ive action on 
the 3-sphere M, we have for x0 = ((2h) ~/2, 0, 0, 0) 
that 

where e = (ale~ + a2e2 + a3e3) ~ su(2) and the aj, 
j = 1, 2, 3, are real coefficients. 

With ( , )  as the standard inner product on R 4, 
we have 

J ( x )  . e = (1/2)(ex, e4x) 

= (1/2)[alW1 + aEW2 + a3W31, (2.9) 

where the W~ are the Hopf variables (see [11, p. 
654]) 

W l = 2 ( X l X 2 + y l y ~ ,  

J ( M )  = ](SU(2) • Xo) 
= {Ad*-~ o ](Xo) I V e SU(2)} c su(2)*, 

(2.15) 

where J ( X o ) = h e * .  Thus, in particular, the 
coadjoint orbit ] ( M )  is even dimensional and 
has a standard symplectic form given by the 
Kiri l lov-Kostant-Souriau theorem [1, p. 302]. 
We now determine a symplectic form D on this 
coajoint orbit so that J*D = i ' to where i : M 
R 4 is inclusion. 

Let  x E R 4 = P and . l (x)  = p~ E su(2)* = Q. Let 
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~p(x) denote the infinitesimal generator at x 
corresponding to ~ ~ su(2) of the above linear 
action of SU(2) on P, and ~o(t~) the cor- 
responding entity for the Ad*-action of SU(2) 
on Q (see [1, p. 267] for definitions). Letting Y. 
denote the tangent map of J, the equivariance 
relation (2.14) implies J . ~ e ( x ) =  ~o(/.~) (see [1, p. 
270]). Let  {, } denote the Poisson brackets given 
by the standard symplectic form to on R 4 (see [1, 
p. 192]). On infinitesimalizing the Ad*-equivari- 
ance of J in formula (2.14), we obtain for ~, ~ E 
su(2) on setting J 'g2 = i ' to (see [1, p. 276 and p. 
281] for notation): 

It follows that (3,*oJ)(M) is an orbit of the 
adjoint action of SU(2) on its Lie algebra. 
Infinitesimalizing the equivariance relation 
(2.18) gives for ~ s u ( 2 ) =  T and su (2 )*=Q 
(see [1, p.270]) 

Vb(~r) = to ° V b, (2.19) 

since (3,b). = 3,b as 3,b is linear. A computation 
similar to (2.16) then shows that the symplectic 
form g )=  (3,b)*I'/ on this adjoint orbit satisfies 

t)(~r, n~)(~) = 3,(~, [~, n]) (2.20) 

a(6o,  no )0 , )  = o ( J , ~ p ,  J , n p ) ( J x )  
= (J*O)(~e,  np)(X) 
= to(6,, rt,,)(x) 
= to(Xm),  Xj(~))(x) 

= {J(O,  J('o)}(x) 
= Y[~, n l (x)  
= J ( x ) .  [~, ~]  

= ~ • [~, "o]. (2.16) 

Thus D is the Kiri l lov-Konstant-Souriau form on 
the coadjoint orbit J(M) (modulo signum; see [1, 
p. 303]). 

We will eventually realize the reduced space 
MR in R 3, and for this purpose we must first pass 
from su(2)* to su(2). Let  e = E~=I aiei and e ' =  
E3=1 a~ei be in su(2). We define a positive definite 
inner product 3' on su(2) by 

3,(e, e') = -~Tr(e • e') = [ala~ + a2a~+ a3a~]. 
(2.17) 

Then 3, is a Killing form on su(2) that induces a 
linear map 3,b:su(2)~su(2)* by 3 ,b(e ) .e '=  
3,(e,e'). We set 3,,=(3,b)-~. A direct com- 
putation then shows that the following diagram 
is commutative: 

3, b 

su(2) , su(2)* 

1 
su(2) , su(2)* 

(2.18) 

for ~, rl, v E su(2) where ~r(v) = [~, v] (see [1, 
pp. 267-268(b)]). 

The last stage in realizing the reduced space 
M R as a subset of R 3 requires an identification of 
su(2) with R 3. Let  {ft,f2,[3} be the standard 
orthonormal basis of R 3. Define a linear map 
) t : R  3--* su(2) by )t(f~)= ~e~ for i = 1, 2, 3. With F 
as the standard inner product on R 3, note that 
(2),) is an isometry of (R 3, F) with (su(2), y); that 
is, (2X)'3, = F. 

We compute from (2.7) the su(2) Lie 
bracket [el, e2] = (et,e2- e2e0 =-2e3 .  Hence 
[)tf~, )tfz] = - h ( . f t  ×Y2) where x is the standard 
cross product on R 3. There are corresponding 
identities on cyclic permutation of the indices. 
Thus X :R3--* su(2) is a Lie algebra isomorphism 
relative to (-1) x as the bracket operation on R 3. 

Letting j =(X -1o3,~oJ), we derive from 
(2.12) that 

J(X) = [Wlf I + W2f2 + W3f3] --(Wt,  W2, W3)E R 3. 
(2.21) 

Restricting x ~ M, the identity (2.11) implies 

J (M)  = S~2h) C R 3. (2.22) 

Thus the coadjoint orbit in su(2)* has now been 
mapped onto a sphere in R 3. We can now com- 
pute the symplectic form toR on this sphere 
satisfying t0R= )t'g). Let  ~x  P and ~] x P be 
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2 tangent vectors  at fi E S(2h). Let  h(~) = ~, h(~)  = 
~, h(fi) = v be in su(2), and recall that X(~ x ~) = 
- [~ ,  v], etc. Then using (2.20) we have 

,o~(~ x ~, ~ x ~)(~) = ( x * ~ ) ) ( ~  x ~, ,) x ~)(~) 
= ~)(x(~ x ~), x(~ x ~))0,) 
= ~)([f, .1, [n ,  ~ ] ) ( v )  

= v 0 ' ,  [~, n ] )  
= -~y((2h)(~) ,  (2,~)(~ x ~)) 
= - ][(2h)*'y](k, ~ x ,~) 

1 = -~F(v, ~ x ~]), (2.23) 

since (2h) is an isometry.  Note  that  the result is 
independent  of the representat ion of the tangent  
vectors  ~ ×  fi = ( ~ +  rfi)× ~ where r ~ W .  

For  h = ~ formulas  (2.21) and (2.22) show that  
the map J is the H o p f  map of S 3 onto S 2 (see 
[11, p. 654]). The H o p f  map is a fibration of S 3 
over  S 2 with fiber S ~ and H o p f  invariant  + 1. One 

easily calculates f rom (2.10) that Lx2(W~)= 0 for 
i = 1, 2, 3, 4, and hence the componen t s  of J are 
integrals of 3(2. Thus each fiber (J)-~(w) for 

2 w E S(2h) is an integral manifold of X2 that  is 

diffeomorphic to S 1 and hence is a unique 
orbit  in M. We choose  (MR, (-OR, "/7") = (S(2h) , 2  (OR, ~)  

as a model  for  the reduced space and note that  
by  our construct ion J = 7r : M ~ M R  satisfies 

•'*tOR = i*oJ where  OR is given by  (2.23). We can 
now compute  the induced differential equations 

on MR. 

In section 3 below we show that  (1.3) implies 
that  H as in (1.2) satisfies 

H2i(Xl, x2, Yl, Y2) = KI(W1, W2, W~, W4), (2.24) 

where Ki is a homogeneous  polynomial  of 
degree i in the H o p f  variables (2.10). Lett ing 
w = (wl, w2, w3) be global coordinates  on R 3, we 

define 

n 
Ke(w) = ~= Ki(wl, w2, W3, 2h), (2.25) 

and set 

K = K elMR. (2.26) 

Clearly K o ~" = H o i, so that K is the reduced 
Hamil tonian associated to H (see [1, p. 304]). 
By (2.23) the Hamil tonian vector  field XK(w)= 
A × w satisfies for an arbi trary tangent vector  
B ×  w at w ~ M R :  

F(w x VKe(w),  B) = F(VKe(w), B x w) 
= dK(w)  • (B x w) 

= , .oR(XK(w),  B x w)(w) 
= tOR(A X W, B X W)(W) 

= -~4r (w ,  A x B )  
1 

= W ( X K ( w ) ,  B) .  (2.27) 

Again, the result is independent  of the 
representat ion of the tangent vector  B × w = 
(B + rw) x w where r ~ R 1. Since B is arbitrary,  
the reduced vector  field XK is just Euler ' s  
equations (modulo the factor  4) restricted to 

MR: 

iv = Xr (w)  = 4w x VKe(w),  (2.28) 

o r  

(XK o rr)(x) = 4~r(x) x [(VK e) o 7r(x)]. (2.29) 

Note  that by  (2.29) the critical points of K on 
M R are  just  the points where  VKe(w) is normal 

to the sphere MR at w. I f  X~:(~r(p)) = 0, then p is 
called a relative equilibrium for H. There  is then 

an orbit  of XH through p that is a 
reparametr ized  orbit  of Xn2 (see [1, p. 306]). 
Under  suitable conditions this will be a periodic 
orbit  of Xn. This approach  was used in [5] and 
[13, 14] to find periodic orbits at low posit ive 
energies in the H6non-Hei les  and related 
Hamil tonians.  For  computat ional  purposes  in- 
volving stability questions about  the periodic 
orbit, it is of ten convenient  to rotate the critical 
point to one of the poles (0, 0, - 2 h ) .  This can be 
done by  a rotat ion of MR that  is induced by a 
linear symplect ic  change of coordinates in R 4 
given by  a suitable V ~ SU(2). This construct ion 
and the applications to stability analysis of the 
periodic orbits are given in [5] and [13, 14] (see 
also [4, pp. 36-38]). 
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3. Normal  form of the semisimple 1:1 resonance and transforms P.(xl,  x2, Yl, Y2) to 

We now verify the relation given in formula 
(2.24). For an alternate proof see [5, lemma 4.1]. 
Recall that the Hopf variables of (2.10) satisfy 
Lx2(W~)=0 for i = 1 , 2 , 3 , 4 ,  and that (wE+ 
W] + wE) = w].  Let  P,(Xl, X2, yh Y2) (resp. 
Qm(W1, WE, Wa, W4)) be the vector space of 
homogeneous polynomials with real coefficients 
in the specified variables of degree n (resp. m). 
Because L× 2 is a derivation we have 

Qm(Wl, W2, W3, W4) 
c Ker(Lx2 [ P2m(Xl, X2, Yh Yz)). (3.1) 

We wish to show that equality holds in (3.1). 
This will be done by computing the dimensions 
of the vector spaces on both sides of (3.1). 
Using the above relation between the Hopf  
variables we see that as vector spaces we have 

HPn(Zl, Z2, zq, Z2) 

= { E  c(il, 6, Jl, j2)z'l'z~e{'e~ I (il + i2 + jl -~- J2) = n, 

and 

c ( i .  6, fi, J9 = e(fi, h,  il, 6)}. (3.7) 

Since any polynomial in HP.  lying in 
Ker(L~t2 [HP. )  corresponds to a unique poly- 
nomial in P. lying in Ker (Lx2lP . )  under the 
above coordinate change (3.4), we have 

dim Ker(Lx21 P,)  = dim Ker(Lx:= I HP,).  (3.8) 

N o w ,  

]z)(z~ z2 zl z~) L£2(Z~l'Z~r~l~r~) = -i(i l  + i2 - j, - " ,, ,2-,1-, 
(3.9) 

Q m ( W h  W2, W3, W4)= Qm(Wh W2, W3) 

+ W4. Qm-l(Wl, W2, W3). (3.2) 
implies that dim Ker(L~21 HP.)  is the number of 
non-negative integer solutions of 

Now the dimension of the right-hand side of 
(3.2) is 

½(m + 2)(m + 1) + ½(m + 1)(m) = (m + 1) 2. (3.3) 

To compute the dimension of Ker(Lx2 [ P,)  we 
introduce complex conjugate variables (k = 1, 2) 

(il + i2 - Jl - h) = O, 

01+ i2 + fi + jz)= n, 

which is equivalent to 

2(il + i2) = n = 2(J 1 + J2)- 

(3.10) 

(3.11) 

Zk = Xk + iyk, 

Zk = Xk -- iyk, 

alazk = ½[a/axk - i a / a y d ,  

a/a~,k = ½[a/axk + i a / a y d .  

(3.4) 

This coordinate change diagonalizes 

X2 = [yl(a/axl) + y2(a/axz) - Xl(a/ay3 - x2(a/ayg]. 
(3.5) 

to 

X2 = - i [z l (313z1)  + z2(alaz9 
- ~1 ( o / a ~  1) - ~ 2 ( a / a  ~.9], (3.6) 

Thus n =2m for some m in order that 
Ker(Lx2lP,)  be non-zero. The number of non- 
negative integer solutions of (3.11) when n = 2m 
is (m + 1) 5, and hence equality holds in (3.1). 
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