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ABSTRACT: In this paper, the reduction method uses the concepts of stability-equation 
and important poles to find the denominator of the reduced model. Then the numerator 
of the reduced model is found by complex curve fitting. This method tends to 
simultaneously guarantee a stable reduced model from a stable system and obtain a 
satisfactory result, since it considers the distribution of important poles. Examples are 
presented to illustrate this advantage. 

I. Introduction 

The simplification of a linear dynamic system is often desirable and 
sometimes necessary in the analysis and design of a complex system. Several 
simplification methods exist in frequency domain. The approximation method 
of Chen and Shieh (1) is a continued fraction expansion method. Vittal-Rao 
and Lamba (2) present a method based on the least squares approximation of 
the frequency response data, and this method is simplified by Reddy (3). 
Several methods have also been developed for obtaining a guaranteed stable 
low-order system if the original high-order system is stable. Hutton and 
Friedland (4) use the stability criterion of Routh for obtaining the reduced 
model. Appiah (5) employs the Hurwitz polynomial approximant as charac- 
teristic polynomials and the partial PadC approximation to guarantee a stable 
reduced-model. These two methods are equivalent (6) and called the Routh- 

Hurwitz method. It is also pointed out that if the dominant poles are not 
closest to the origin, the Routh-Hurwitz approximation fails to produce a 
good lower order model. Apparently the stability-equation method (7-9) also 
suffers from the same drawback because far-off poles and/or zeros of the 
stability equation of the characteristic polynomial are discarded. To overcome 
this defect, a generalization of the Routh method is developed by Shamash 
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(10) to obtain several different reduced models. All methods considering the 
stability problem mentioned above are developed by first approximating the 
characteristic polynomial followed by finding the numerator of the simplified 
transfer function. Different approaches in consideration of the stability prob- 
lem are Chebyshev polynomial techniques (11, 12) which deal with the 
stability problem from the whole transfer function, then the defect mentioned 
by Shamash (6) is eliminated. However, these methods may fail due to the 
existence of pure imaginary poles after the transformation from C plane 
(defined by Langholz and Bistritz) to s plane. Recently, a method similar to 
the stability-equation method was given by Wan (13) using the Mihailov 
criterion and the PadC approximation technique. 

From (7-9, 13), it has been shown that the reduction methods based on 
stability-equation theory are simple and powerful. In this paper, a method for 
model reduction is developed from the concept of stability-equation; im- 
portant poles and complex curve fitting to avoid the defect were discussed by 
Shamash (6). This method guarantees a stable reduced model if the original 
system is stable. 

II. Properties of Reducing a Hurwitz Polynomial from Stability-Equation Method 

Consider a Hurwitz polynomial 

M(s) = ao+ al3 + * - - + a,s”. (1) 

The stability equations of M(s) can be written as (7-9) 

M,(s) = a0 n (1 + s2/zZ) 
i=l 

(2) 

MO(S) = a1s h (1 + S21Pi) (3) 
i=l 

where II and l2 are the integer parts of n/2 and (n - 1)/2, respectively, and 

z:<p:<z;<p;<z:<p:< *.* (4) 

Then the reduced Hurwitz polynomial M(s) can be obtained by discarding the 
factor with larger magnitudes of p: or z: (7-9) as 

where 

110 

M’(s) = MXS) + l&(s) 

= aA + ais + a;s2 + . * * + airs”‘, n’< n 

Mxs) = a0 fi (1 + S2/z:) 
i=l 

(5) 

(6) 

Journal of the Franklin Institute 
Pergamon Press Ltd. 



Reduction of Transfer Functions from the Stability-Equation Method 

Mi(s) = a,s fi (1 + s2/p$ 
i=l 

and ml and m2 are the integer parts of n’/2 and (n’- 1)/2, respectively. 
Property 1: M’(s) is approximated to M(s) as s +O. It is easily seen that 

the factor (1-t s’/z:) or (1 + s2/p$) is less significant as s -+O if zi or p? is of 
larger magnitude. Then M’(s) obtained by discarding these factors with larger 
magnitudes of pz or z; is to approximate M(s) as s +O. 

Property 2: The roots of M’(s) tend to be approximated to the n’ least 
magnitude roots of M(s). From experience, this phenomenon becomes more 
apparent if the magnitudes of the n - n’ largest magnitude roots of M(s) are 
much larger than the magnitudes of the n’ least magnitude roots of M(s). This 
property can be stated as follows. Since M(s) can be expressed as 

M(S) = a0 fi (1+ S/Xi) 
i=l 

63) 

where -Xi are roots of M(s) which may be complex numbers. Another way 
of approximating the M(s) as s + 0 can also be obtained by deleting the 
terms (1 + s/x;) with the n - n’ largest magnitudes of Xi. Thus, the reduced 
polynomial is 

M”(S) = a0 fi (1 + s/Xi). (9) 
i=l 

Hence 
M’ = M”(s) (101 

as s+O. 
Property 3: If the roots of M’(s) tend to be approximated to the n’ largest 

magnitude roots of M(s), M’(s) can still be obtained by the stability-equation 
method. It can be done by first finding the reciprocal polynomial M,(s) of 
M(s) defined by 

M,(S) = aOSn + a,S”-’ + . * * + a,_,S + a,, (11) 

and then reducing M,(S) from the stability-equation method to obtain 

M’XS) = c,rS”’ + cn,_,sn’-’ + * - * + co. (12) 

Finally, the reduced polynomial is found by finding the reciprocal polynomial 
of MMS) as 

M’(s) = c,, + c,,_~s + + - . + cos”‘. (13) 

It is because the reciprocal transformation transforms a small value of s to a 
large value of S and vice versa. 
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FIG. 1. The loci of M(s) and M’(s) in Example 1. 

Example 1 
Consider the following polynomial 

M(s)=6+lls+6s2+S3. (14) 

The roots of M(s) are - 1, - 2 and - 3. If n’ = 2, M’(s) in (5) can be obtained 
as 

M’(s) = 6+ 11s +6s*. (1% 

The loci of M(s) and M’(s) are shown in Fig. 1. It is easily seen that 
M’(s) = M(s) if w < 0.5. This is as stated in Property 1. The roots of M’(s) 
are = 0.9167 k 0.3997j. Although these two roots are not close to - 1 and - 2, 
there is a tendency to depart from the largest magnitude root - 3. 

Example 2 
Consider the following polynomial 

M(s) = 1000000 + 1010100S + 10101S2 + S3. (16) 

The roots of M(s) are - 1, - 100 and - 10000. If n’= 2, the reduced 
polynomial obtained from (5) is 

M’(s) = 1000000+ 1010100S + 10101S2. (17) 

The roots of the above polynomial are - 1 and - 99 which are close to the 
two least magnitude roots of M(s). In this case, the magnitude of - 10000 is 
much larger than the magnitude of - 1 or - 100. If the roots of M’(s) are to 
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approximate the larger magnitude roots of M(s), then M’(s) in (13) is 
obtained as 

M’(s) = 1010100 + 10101s + s*. (18) 

The roots of the above polynomial are - 101.01 and -9999.99 which are 
indeed close to the two largest magnitude roots of M(s). 

III. Model Reduction Based on Complex Curve Fitting and Stability Equation 

Methods 

Consider a linear time-invariant system having the transfer function 

H(s) = 
b,+ bls + - - - + b,_,s”-’ N(s) =- 

aO+ als + . * . + a,s” M(s)’ 
(19) 

The problem of model reduction is to approximate the transfer function 
expressed in (19) by a lower order transfer function 

H’(s) = 
b;+ b;s + . . - + bk_,s”‘-’ N’(s) 

aA+ ais + . . . + aksn’ =~‘(s), n’<n (20) 

where ai and b; are to be determined, while keeping the response of (20) as 
close to that of (19) as possible. 

In this section a procedure for reducing a model while preserving its 
stability property is given. This procedure consists of three steps: First, test 
for the relative importance of the poles of H(s); Second, find M’(s), 
denominator of the reduced transfer function H’(s) as defined by (20), based 
on the stability-equation method; Third, determine N’(s), numerator of H’(s), 
via minimization of the frequency response errors between the original and 
the reduced models. The procedure is described in detail as follows. 

Step 1. Test for the relative importance of poles 
Express a given transfer function H(s) by partial fraction expansion 

follows: 
as 

"0 

H(S)=Z(Sfpi) j=l(S+:%+l)i i=,(s+p.o+2)i+ **’ 
-_+i +kJ Ci 

+i 
i=* (S +T%+,Ji 

(21) 

where nO+r,+r2+ **a + G = n. We define the significance measure of each 
individual term in (21) by its steady-state response at any specified frequency. 
For the special case where a transfer function exhibits low-pass charac- 
teristic, as most control systems do, the dc steady-state response of each term 
in (21) can be taken as the significance measure. Thus the relative importance 
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of all individual terms in (21) is reflected by the set 

For example, if JA2/p2/ has the largest magnitude in S, then the term A,/s + p2 
is the most important term and - p2 is considered the most important pole. If 
l&IP&+~l, 1 5 r 5 rl, has the next largest magnitude in S, then the term 
B,/(s + pno+Jr is the next important term and -p+,+, with multiplicity r are 
considered the next important poles, etc. The first n’ important poles of H(s) 
can be found easily in this manner. Based on this test, we know how the n’ 
important poles are distributed. The n’ important poles may be the least 
magnitude roots of M(s), or the largest magnitude roots of M(s), or the poles 
which are neither the least magnitude nor the largest magnitude roots of 
M(s), or both the least and largest magnitude roots of M(s). 

Step 2. Determine M’(s) 
Based on the distribution of the n’ important poles, M’(s) can be found as 

follows: 
(i) If n’ important poles are the least magnitude roots of M’(s) then M(s) 

can be found by using the stability-equation method (7-9) directly. 
(ii) If n’ important poles are the largest magnitude roots of M(s), then 

M’(s) can be found in two steps. First we find the reciprocal polynomial of 
M(s) by (11). Then the stability-equation method can be applied to ap- 
proximate M,(S) by an n’-th degree polynomial W(S). Then M’(s) is taken to 
be the reciprocal polynomial of W(S). 

(iii) If the n’ important poles do not belong to the above mentioned 
distribution types, the methods of (i) and (ii) can still be applied if we separate 
the system H(s) into two (or more) subsystems as 

H(s) = H,(s) + H2(s), H,(s) &W/M,W, H2 ~N2w42W (23) 

where H,(s) has n; important poles which are the least magnitude poles of 
H,(s) and H,(s) has n; important poles which are the largest magnitude poles 
of H2(s), where ni + ni = n’. Then the reduced polynomial M;(s)(MJ(s)) of 
order n;(n;) can be obtained from method (i) (method (ii)). Finally, M’(s) is 
obtained from the product of M;(s) and MS(s). 

Remark: If either n; = 0 or n; = 0, temporary reduction of the model H(s) 
is required before obtaining the n’-th order reduced model. It can easily be 
seen from Example 5. 

Step 3. Determine N’(s) 
Normalize coefficients ah in H’(s) and a0 in H(s) to a6 = a,,; thus we have 

(-b;o:+biw+- ***)+j(blbJi-biw:+ *‘*I_ -bh +H(jw,)+e, (24) 
_- 

M’(h) M'(jq) ’ ’ 
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where Ei is the frequency response error between actual model H(joi) defined 
by (19) and the reduced model H’(joi) defined by (20). By setting bl, = bO for 
consistent d.c. steady-state response and comparing the imaginary and real 
parts on both sides of (24), we have 

Re [M’(bi)] (_ &; + Q,,; _ . . , )+ Irn [M’(h)] (biwi _ &,,j + . . . ) 

IM’tioi)I* IM’(j412 

- Re t M’(h)1 bo = 
IM’(h)I* 

+ Re [H(joi)] + Re [Ei] (25) 

~(&+b;o;+ a**)+ Re [M’(jyN (bjw, _ b;@?+ . . . ) 

(M’(hi)I ’ ’ 

= Im [M’h)lbo 
IM’(j412 

+ Im [H(jwi)l+ Im [Cl* (26) 

Using the frequency response data of H(s) at k different frequencies Oi, i = 1, 
2 k we obtain from (25) and (26) 2k linear equations which can be .., , 
akanged in the following form: 

Xe=#I+e (27) 

where 

Im w1 - Re W’(jwJ1 oi - Im [M’(jw)l o: Re [M’(jy)l w; . . . 
M’(bd(* IM’(h)i* IM’(h)/* IM’WJI 

Re W(j41 o, Iy:nZ’(j;dl o: - ~;~f’(~dl w: - ;;!f’(fJl w; . . 
IM’(h)l* ’ id, * 01 01 

x= ; 

Im [M’(jodl olr - Re [M’(jdl of - Im [M’(j%)l w: Re [M’(jdl ot. . . 
IM’(jw.)1* IM’(jd* /M’(jd* IM’(jd* 

tM’(j%)l ok Im tM’(j%)l o; - Re [&f&k)] o; - Im [M’(bk)l o; . . . 

IM’(bk)1* IM’&Jk)(* (M’(i@k)l* 

8 = [b; b; b;. . . b;,-JT 

Re W(jwWo 
’ = [ - (M’(h)l* + ReW(jw)l (M’(jul)l Irn ‘“‘(jo1)23bo + Im [H(jwJ] . . . 

Im [M’(jdh + lrn [H(juk)l 1 T - Re[M’(jwdlbo 
IM’(jok)12 + Re’H(jok)l (M’(jb&)(* 
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and 

e = [Re [E,] Im [E,] . . . Re [Q] Im [ek]]r. 

With the obtained values of M’(jmi), the coefficient vector 8 can be found by 
ordinary least-squares method as 

8 = (xrx)-‘xr@. (28) 

Thus the transfer function H’(s) of the reduced model is obtained. 

Example 3 
Consider the system (2, 3, 7, 8) 

H(s) = 
1 

s3+6s2+ lls+6 

and choose the order of the reduced model as n’ = 2. Express (29) as 

1 0.5 H(s)=0.5_- - 
s+l s+2+s+3’ (30) 

(29) 

It is easily seen that the two important poles of H(s) are - 1 and -2 which 
are the least magnitude roots of M(s). As discussed in (i) of step 2 in this 
section, we obtain M’(s) = 6 + 11 s + 6s2 by applying the stability-equation 
method. Then based on the 21 frequency response data generated from H(s) 
at 0, =0, 0.25, 0.5,. . . , 5.0, we obtain N’(s) from 
model is 

H’(s) = 
0.1667 - 0.0141s 
1 + 1.8333s + s2 ’ 

(28) so that the reduced 

(31) 

Several models from other reduction methods are also given below for 
comparison: 

H’(s) = 
0.1667 - 0.0278s 

1 + l.6667s + o.6944sf by Chen and Shieh (1970) (32) 

H(s)= ’ 6 + 1 1 s + 6sf by Chen et al. (1980) 

H’(s) = 
11 

66 + 121s + 6os~ by Shamash (1980). 

(33) 

(34) 

The Chebyshev polynomial expansion method (12) can not be applied to this 
example over the frequency interval of 0 to 5 rad/sec due to the existence of a 
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pair of pure imaginary poles after transformation from 5 to s plane. If Wan’s 
method is used to minimize 

I Og[amp (H(jw)) - amp (H’(jw))]’ dw (35) 

where or = 5, the reduced model is 

H’(s) = 6 + 10.021+ 6s 
’ -o’1631s 2 by Wan (1981). (36) 

If the same frequency interval is considered, both the Vittal Rao and Lambas’ 
and the Reddy’s methods result in unstable models as 

H’(s) = l”~1~~l(~s-+o;4$2 by Vittal Rao and Lamba (1974) (37) 

H’(s) = I _ o”iE7i + s2 by ReW (1976). (38) 

The frequency responses of the original system and the above mentioned 
reduced models are plotted in Fig. 2. It should be noted that the best reduced 
model of (29) is obtained from the Chen and Shiehs’ method. However, this 
method may result in unstable models if the original system is stable (9). 

Im 

- Original system -.-.- (36) 

--- Proposed method _.._.. (33) 

. . . . . . . . . . (32) -**-- (34) 

Re 

-0.04 -0 0.04 008 012 0 16 

FIG. 2. The frequency responses of the original and the reduced models in Example 3. 
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Example 4 
Consider the following system (10) 

H(s) = 
8169.13375~~ + 50664.96749~~ + 9984.32343s + 500 

100~~ + 10520~~ + 52101~~ + 10105s + 500 * (39) 

If n’ is selected as 2, then the important poles can be found to be the largest 
magnitude poles of H(s). As discussed in (ii) of step 2 in this section, M’(s) is 
obtained as M’(s) = 100~~ + 10520s + 52100.0403. Then based on 101 
frequency response data generated from (39) at oi = 0, 2, 4,. . . ,200, the 
reduced model is obtained as 

8166.0459s + 52100.0403 
H’(s) = lOOs’+ 10520s + 52100.0403’ (40) 

For comparison, the models obtained from other reduction methods are given 
below: 

10105.24135s + 500 
H’(s) = 52100s2 + lolo5s + 5oo by Chen et al. (1980) (41) 

H’(s) = 
8 1.69 1 s + 520.048 

s* + 105.2s + 520.048 by 

If Wan’s method is used to minimize (35) for 

Shamash (1980). (42) 

wr = 200, the reduced model is 

- Original system (42 1, proposed method 

---- (41) -._._. (43) 

w 
100 

-10 - 

\ 
\ 
\ \ 

-20 - ’ ‘\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

FIG. 3. The frequency responses of the original and the reduced models in Example 4. 
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obtained as: 

3070120.676575s + 500 
H’(s) = 52100S2 + 3070000S + 5oo by Wan (1981). (43) 

The frequency response of the original system and the reduced models are 
shown in Fig. 3. 

Example 5 
Consider the following system 

H(s) = 
9.01s2+ 1000.1s + 1000 

s3+111s2+1110s+1000 

_ 0.01 I 10 1 -___ 
s+l s+lO s+lOO’ 

(44 

(45) 

If the order of the reduced model is selected to be n’ = 1, the important pole 
- 10 obtained is neither the least nor the largest magnitude pole of H(s). 
Following the procedure discussed in (iii) of step 2, we express H(s) as 

H(s) = H,(s) + H2(s) = ;*T;;;;;; -A. 

- Original system 

-_-_- Proposed method ---- (52) 

(46) 

FIG. 4. The frequency responses of the original and the reduced models in Example 5. 
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Since H,(s) has the important pole at largest magnitude pole of H,(s), the first 
order approximation of H,(s) is obtained following (ii) of step 2 and step 3 as 

Hi(s) = $j+. (47) 

Now, comparing Hi(s) and H*(s), the important pole is the least magnitude 
pole of H;(s) + E&(s). Thus, according to (i) of step 2 and step 3, the reduced 
first order model of H(s) is obtained by reducing the temporarily reduced 
model Hi(s) + H*(s) as 

1100 
H’(s)= 111s + 1100 

For comparison, the first order reduced models 
consider the stability property are listed below. 

(48) 

from other methods which 

1000 
H’(s) = 1110s + 1000 

by Chen et al. (1980) 

H’(s) = 
1000 

1110s+1000 

I 

by Shamash (1980) 

H’(s) = & 

(49) 

(50) 

(51) 

H’(s) = -& by Wan (1981). (52) 

The frequency responses of the original and the reduced models are plotted in 
Fig. 4. It is easy to see that the proposed method provides a superior result. 

IV. Conclusion 

Since the stability-equation method for reducing a Hurwitz polynomial has 
been proved to be a simple and powerful technique, the reduction method 
discussed in this paper is based on this method. We first discuss the properties 
of using the stability-equation method to reduce a Hurwitz polynomial. Then 
we use these properties and complex curve fitting for model reduction. This 
approach can be considered as an extension of the stability-equation method 
by considering the original pole distribution. The advantages of the proposed 
method are: (1) all the reduced models are stable if the original system is 
stable; (2) the reduced system can be emphasized over a desired frequency 
interval via complex curve fitting. It is also clear that the proposed method 
can be modified to simplify a discrete-time system by the use of bilinear 
transformation (7). 
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