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Abstract. In this paper we define and study triangulated categories in which the Hom-

spaces have Krull dimension at most one over some base ring (hence they have a natural 2-step

filtration), and each factor of the filtration satisfies some Calabi–Yau type property. If C is such

a category, we say that C is Calabi–Yau with dim C � 1. We extend the notion of Calabi–Yau

reduction to this setting, and prove general results which are an analogue of known results

in cluster theory. Such categories appear naturally in the setting of Gorenstein singularities

in dimension three as the stable categories CMR of Cohen–Macaulay modules. We explain

the connection between Calabi–Yau reduction of CMR and both partial crepant resolutions

and Q-factorial terminalizations of SpecR, and we show under quite general assumptions that

Calabi–Yau reductions exist. In the remainder of the paper we focus on complete local cAn
singularitiesR. By using a purely algebraic argument based on Calabi–Yau reduction of CMR,

we give a complete classification of maximal modifying modules in terms of the symmetric

group, generalizing and strengthening results in [7, 10], where we do not need any restriction

on the ground field. We also describe the mutation of modifying modules at an arbitrary (not

necessarily indecomposable) direct summand. As a corollary when k D C we obtain many

autoequivalences of the derived category of the Q-factorial terminalizations of SpecR.
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2 Iyama and Wemyss, Reduction and MMAs

1. Introduction

1.1. Overview. LetR be a commutative Gorenstein ring of dimension 3. This paper de-

velops algebraic tools, specifically CY reduction and other commutative algebraic techniques,

that allow us to deduce various results related to the geometry of partial resolutions of SpecR

by arguing directly on the base R. Let us first explain why this should be possible.

Suppose that we have a chain of crepant morphisms (see Section 1.3)

Yn ! Yn�1 ! � � � ! Y1 ! SpecR:

Then as the spaces get ‘larger’ the corresponding singular derived categories

Dsg.Yi /´ Db.cohYi /= perf.Yi /

get ‘smaller’, since the singularities are improving under crepant modification. The ‘largeness’

of these categories is measured by the number of modifying objects that they contain (for the

definition, see Section 1.3), the best case being when there are no non-zero modifying objects,

in which case the space must be a Q-factorial terminalization of SpecR (see [16]).

Now under favorable conditions, each Yi is derived equivalent to some ring ƒi , and

whenever this happens necessarily ƒi has the form ƒi Š EndR.Mi / 2 CMR for some

Mi 2 refR (see [16]). In this case, we obtain full subcategories Zi of Dsg.ƒi / and full

dense functors

Dsg.ƒn/ Dsg.ƒn�1/

�

Zn�1

�

� � �

Zn�2

Dsg.ƒ1/
�

Z1

Dsg.R/

�

Z0

(see Section 3.1). Calabi–Yau reduction gives us the language in which to say Dsg.ƒi / is

obtained by quotienting the subcategory Zi�1 of Dsg.ƒi�1/, i.e. a way of obtaining Dsg.ƒi /

from the previous level. Even better, we do not have to do this step-by-step, as in the above

setup there is a functor from a certain subcategory Z of Dsg.R/ all the way to Dsg.ƒn/, and we

can obtain Dsg.ƒn/ by simply quotienting Z (see Section 3.1).

Thus the idea is that we should be able to detect all the categories Dsg.ƒi /, and thus all

the categories Dsg.Yi /, by tracking this entirely in the category Dsg.R/ D CMR associated

with the base singularity R. We thus view any CY reduction of the category CMR as the

‘shadow’ of a partial crepant resolution of SpecR and in this way CMR should ‘see’ all the

singularities in the minimal models Yn of SpecR.

1.2. CY categories of dimension at most one. We begin in a somewhat more general

setting. We let C denote a triangulated category, and we suppose that M � Z are full (not

necessarily triangulated) subcategories of C .

Theorem 1.1. With the setup as above, assume further that M is functorially finite in

Z, and that Z is closed under cones of M-monomorphisms and cocones of M-epimorphisms

(see Section 2.1 for more details). Then Z=ŒM� has the structure of a triangulated category.
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Iyama and Wemyss, Reduction and MMAs 3

We then show that Z=ŒM� inherits properties from C . We fix a commutative d -dimen-

sional equi-codimensional CM ring R with a canonical module !R. For X 2 modR, we

denote by flR X the largest sub R-module with finite length.

Definition 1.2 (D Definition 2.2). Let C be an R-linear triangulated category. We as-

sume dimR C � 1, i.e. dimR HomC .X; Y / � 1 for all X; Y 2 C . Let

TC .X; Y /´ flR HomC .X; Y /

for every X; Y 2 C . Then there exists a short exact sequence

0! TC .X; Y /! HomC .X; Y /! FC .X; Y /! 0:

We say that an autoequivalence S WC ! C is a Serre functor if for all X; Y 2 C there are

functorial isomorphisms

D0.TC .X; Y // Š TC .Y; SX/; D1.FC .X; Y // Š FC .Y Œ1�; SX/;

where Di ´ Extd�i
R .�; !R/. If S ´ Œn� is a Serre functor for an integer n, we say that C is

an n-Calabi–Yau triangulated category of dimension at most one, and write ‘C is n-CY with

dimR C � 1’.

Now if C is n-CY with dimR C � 1 and n � 2, we say that an objectM 2 C is modifying

if HomC .M;MŒi�/ D 0 for all 1 � i � n � 2 and further TC .M;MŒn � 1�/ D 0. Given a

modifying object M , we define

ZM ´
®
X 2 C j HomC .X;MŒi�/ D 0 for all 1 � i � n � 2 and TC .X;MŒn � 1�/ D 0

¯
;

CM ´ ZM=ŒM�:

The following is our main result in this abstract setting.

Theorem 1.3 (D Theorem 2.7, Theorem 2.9). Let M be a modifying object in an n-CY

triangulated category C with dimR C � 1 and n � 2.

(1) CM is an n-CY triangulated category with dimR CM � 1.

(2) Assume that C is Krull–Schmidt and M is basic. Then there exists a bijection between

basic modifying objects with summand M in C and basic modifying objects in CM .

We call the category CM the Calabi–Yau reduction of C with respect to M .

1.3. CY reduction in Dsg.R/. We then apply and improve the general results in Sec-

tion 1.2 in the setting of our original motivation (Section 1.1). When R is a commutative

Gorenstein ring, it is well known that Dsg.R/ ' CMR (see [6]). As an application of AR

duality on not-necessarily-isolated singularities we obtain the following, which is our main

motivation for studying n-CY categories C with dimR C � 1.

Theorem 1.4 (D Theorem 3.1). Let R be a commutative d -dimensional equi-codimen-

sional Gorenstein ring with dim SingR � 1. Then CMR is a .d�1/-CY triangulated category

with dimR.CMR/ � 1.
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4 Iyama and Wemyss, Reduction and MMAs

Now to relate Section 1.2 to our previous work [15], the next result says that when R is

Gorenstein and M 2 CMR, the notion of modifying introduced in Section 1.2 is equivalent to

the condition EndR.M/ 2 CMR, which was the definition of modifying used in [15].

Lemma 1.5 ([15, Theorem 4.3]). LetR be a commutative d -dimensional equi-codimen-

sional Gorenstein ring with dim SingR � 1, and let M 2 CMR. Then EndR.M/ 2 CMR if

and only ifM is a modifying object in CMR (i.e. HomCMR.M;MŒi�/ D 0 for all 1� i � d�3

and TCMR.M;MŒd � 2�/ D 0).

By Theorem 1.4 and Lemma 1.5, the first part of the next result is an immediate corollary

of Theorem 1.3.

Corollary 1.6 (D Theorem 3.5). LetR be a commutative d -dimensional equi-codimen-

sional Gorenstein normal domain with dim SingR � 1, and let M 2 CMR be modifying.

(1) The CY reduction .CMR/M of CMR is .d � 1/-CY with dimR.CMR/M � 1.

(2) .CMR/M ' CM EndR.R˚M/ as triangulated categories.

As in [15], we view modifying modules as the building blocks of our theory:

Definition 1.7 ([15]). (1) We say that a modifying R-module M is maximal modi-

fying (or simply MM) if whenever M ˚ X is modifying for some X 2 refR, then

X 2 addM . If M is an MM module, we say that EndR.M/ is a maximal modification

algebra (MMA).

(2) We say that M 2 CMR is cluster tilting (or simply CT) if

addM D ¹X 2 CMR j HomR.M;X/ 2 CMRº:

Recall that a normal scheme X is defined to be Q-factorial if for every Weil divisor D,

there exists n 2 N for which nD is Cartier. IfX and Y are varieties, then a projective birational

morphism f WY ! X is called crepant if f �!X D !Y . A Q-factorial terminalization of X is

a crepant projective birational morphism f WY ! X such that Y has only Q-factorial terminal

singularities.

Using Corollary 1.6 together with our previous work relating MMAs to the minimal

model program, we obtain the following. Recall we say that a module M is a generator if

R 2 addM .

Theorem 1.8 (D Theorem 3.14). Let R be a three-dimensional Gorenstein normal do-

main over C with rational singularities. If some Q-factorial terminalization Y of SpecR is

derived equivalent to some ring ƒ, then there exists an MM generator M 2 CMR of R such

that

(1) the CY reduction .CMR/M of CMR is triangle equivalent to Dsg.Y /,

(2) .CMR/M is a 2-CY triangulated category with dimR.CMR/M D 0 and has no non-zero

rigid objects.
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Iyama and Wemyss, Reduction and MMAs 5

Thus we can detect the Q-factorial terminalizations of SpecR on the level of CY reduc-

tion of CMR.

1.4. Mutation of MM modules and tilting mutation. The results of CY reduction

in Section 1.3 allow us to deduce the existence of MM generators in certain concrete exam-

ples (see Section 1.5), and so the question becomes how to deduce that they are all the MM

generators.

Suppose that R is a complete local normal Gorenstein domain with dimR D 3, and we

denote by MMGR the set of isomorphism classes of basic MM generators of R. By [15, §6.2]

we have an operation on MMGR called mutation which gives a new MM generator �i .M/ for

a given basic MM generator M D R ˚ .
L
i2I Mi / by replacing an indecomposable non-free

direct summand Mi of M . We denote by EG.MMGR/ the exchange graph of MM generators

of R, i.e. the set of vertices is MMGR, and we draw an edge between M and �i .M/ for each

M 2 MMGR and i 2 I .

In this setting we have the following.

Theorem 1.9 (D Theorem 4.3). If the exchange graph EG.MMGR/ has a finite con-

nected component C , then EG.MMGR/ D C .

Thus by Theorem 1.9 if we start with an MM generator M and show that only finitely

many MM modules are produced after repeatedly mutating at all possible indecomposable non-

free direct summands, then we can conclude that this finite list of MM generators are all. This

fact will be used in Section 1.5, and is also needed in the geometric setting of Nolla–Sekiya

[19, §5.5].

1.5. cAn singularities. The remainder of this paper consists of an application of the

above techniques to the case of complete local cAn singularities. Let k be any field, and let

S ´ kŒŒx; y��. For f 2 m where m´ .x; y/, let

R´ SŒŒu; v��=.f � uv/

and f D f1 � � � fn be a factorization into prime elements of S . For any subset I � ¹1; : : : ; nº

we denote

fI ´
Y

i2I

fi and TI ´ .u; fI /

the latter being an ideal of R. For a collection of subsets

; ¨ I1 ¨ I2 ¨ � � � ¨ Im ¨ ¹1; 2; : : : ; nº;

we say that F D .I1; : : : ; Im/ is a flag in the set ¹1; 2; : : : ; nº. We say that the flag F is

maximal if n D mC1. We can (and do) identify maximal flags with elements of the symmetric

group (see Section 5). Given a flag F D .I1; : : : ; Im/, we define

T F ´ R˚

� mM

jD1

TIj

�

and so for each ! 2 Sn we let

T ! ´ R˚ .u; f!.1//˚ .u; f!.1/f!.2//˚ � � � ˚ .u; f!.1/ � � � f!.n�1//:
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6 Iyama and Wemyss, Reduction and MMAs

As an application of results above, we have the following.

Theorem 1.10 (D Theorem 3.5 (2), Proposition 5.7). Let F D .I1; : : : ; Im/ be a flag,

and let .CMR/TF be the CY reduction of CMR with respect to T F . Then we have triangle

equivalences

CM EndR.T
F / ' .CMR/TF '

mC1M

iD1

CM

�
kŒŒx; y; u; v��

.fI i nI i�1 � uv/

�
;

where by convention I0 WD ; and ImC1 D ¹1; 2; : : : ; nº.

We remark that Theorem 1.10 is expected from, and generalizes, some results in [16, §5]

which rely on very precise information regarding the singularities in the Q-factorial terminal-

izations of SpecR. Here there are no restrictions on the field, and also our method generalizes;

since in many other examples the explicit forms of Q-factorial terminalizations are not known,

being able to argue directly on the base singularity SpecR is desirable.

In fact, most of the proof of Theorem 1.10 can be reduced to the following calculation,

in dimension one.

Theorem 1.11 (D Theorem 3.8). Let S D kŒŒx; y�� be a formal power series ring of

two variables over an arbitrary field k, let f; g 2 S and R ´ S=.fg/ be a one-dimensional

hypersurface.

(1) CMR is a 2-CY triangulated category with dimR.CMR/ � 1.

(2) S=.f / is a modifying object in CMR, and the CY reduction .CMR/S=.f / of CMR is

triangle equivalent to CM.S=.f // � CM.S=.g//.

Then, combining Theorem 1.10 with the mutation in Section 1.4, we are able to give

a complete classification of the modifying, MM and CT R-modules. This generalizes and

strengthens results from [7] and [10], since our singularities are not necessarily isolated, and

there is no restriction on the ground field.

Theorem 1.12 (D Theorem 5.1). Suppose that f1; : : : ; fn 2 m ´ .x; y/ � kŒŒx; y��

are irreducible power series. Let R D kŒŒx; y; u; v��=.f1 � � � fn � uv/.

(1) The basic modifying generators ofR are precisely T F , where F is a flag in ¹1; 2; : : : ; nº.

(2) The basic MM generators of R are precisely T ! , where ! 2 Sn.

(3) R has a CT module if and only if fi … m2 for all 1 � i � n. In this case, the basic CT

R-modules are precisely T ! , where ! 2 Sn.

This gives many examples of MMAs, and we give (in Corollary 5.33) the explicit quivers

of these MMAs. We then specialize the field to k D C in order to apply our results to geometry.

As a corollary to Theorem 1.12 we obtain the following remarkable result.

Corollary 1.13 (D Theorem 5.20, Corollary 5.21). Let k D C.

(1) The MM modules are precisely .I ˝R T
!/�� for some ! 2 Sn and some I 2 Cl.R/.
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Iyama and Wemyss, Reduction and MMAs 7

(2) There are only finitely many algebras (up to Morita equivalence) in the derived equiva-

lence class containing the MMAs.

(3) There are only finitely many algebras (up to Morita equivalence) in the derived equiva-

lence class containing the Q-factorial terminalizations of SpecR.

Keeping k D C and R as above, we then move from studying the Q-factorial termi-

nalizations of SpecR to the arbitrary partial crepant resolutions of SpecR, which in general

have canonical singularities. We produce many examples of derived equivalences and auto-

equivalences on these singular spaces. The partial crepant resolutions of SpecR have a certain

number of curves above the origin, and all singularities on these curves have the form uv D fI
(see [16, Section 5.1]). We describe the partial resolutions combinatorially in terms of flags F ,

and denote the corresponding spaces by XF (see Section 5.5 below for more details).

Theorem 1.14 (D Corollary 5.38). Let F and G be flags in ¹1; 2; : : : ; nº. Then XF

and XG are derived equivalent if they have the same number of curves above the origin of

SpecR, and the singularities of XF can be permuted to the singularities of XG .

In fact, Theorem 1.14 comes very easily from a simple calculation which determines the

mutations of a given modifying module:

Theorem 1.15 (D Theorem 5.31). Fix a flag F D .I1; : : : ; Im/, and associate to F the

module T F and the combinatorial picture P .F / (see Section 5.4). Choose ;¤J � ¹1; : : : ; mº.

Then �J .T
F / is the module corresponding to the J -reflection of P .F /.

In particular, since in the proof of Theorem 1.12 we prove that the exchange graph of MM

modules is connected, Theorem 1.14 gives the following alternative proof of [8] in the case of

complete local cAn singularities, which does not involve the argument passing to dimension

four:

Corollary 1.16. Let R D C ŒŒx; y; u; v��=.f1 � � � fn � uv/. Then all Q-factorial termi-

nalizations of SpecR are derived equivalent.

We remark that although all the results above are given in the complete local setting, this

is mainly for our own convenience, since it simplifies calculations. Most of our results also

hold in the polynomial setting, but the proofs are much more technical.

Conventions. Throughout R will always denote a commutative noetherian ring, and in

Section 5 R will always denote kŒŒx; y; u; v��=.f � uv/. All modules will be left modules,

so for a ring A we denote modA to be the category of finitely generated left A-modules, and

ModA will denote the category of all left A-modules. Throughout when composing maps fg

will mean f then g, similarly for quivers ab will mean a then b. Note that with this con-

vention HomR.M;X/ is an EndR.M/-module and HomR.X;M/ is an EndR.M/op-module.

For M 2 modA we denote addM to be the full subcategory consisting of summands of fi-

nite direct sums of copies of M , and we denote projA´ addA to be the category of finitely

generated projective A-modules.
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8 Iyama and Wemyss, Reduction and MMAs
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Section 5.2.

2. Triangulated and CY reduction

2.1. Triangulated reduction. In this section we let C denote a triangulated category,

and we suppose that M � Z are full (not necessarily triangulated) subcategories of C .

Recall that we say a morphism f WA! B in C is an M-monomorphism if

.f �/WHomC .B;M/! HomC .A;M/

is surjective for all M 2M. We say that f is an M-epimorphism if

.�f /WHomC .M;A/! HomC .M;B/

is surjective for allM 2M. Similarly, we say that f is a left M-approximation of B if A 2M

with f an M-monomorphism, whereas we say that f is a right M-approximation of A if

B 2M with f an M-epimorphism.

Throughout this subsection we assume that M � Z satisfies the following:

(1) Every Z 2 Z admits a left M-approximation Z ! MZ and a right M-approximation

NZ ! Z (i.e. M is functorially finite in Z).

(2a) Whenever Z1
f
�! Z2 in Z is an M-monomorphism, if we complete f to a triangle

Z1
f
�! Z2

g
�! C

h
�! Z1Œ1�

then C 2 Z and g is an M-epimorphism.

(2b) Whenever Z2
g
�! Z3 in Z is an M-epimorphism, if we complete g to a triangle

B
f
�! Z2

g
�! Z3

h
�! BŒ1�

then B 2 Z and f is an M-monomorphism.

Recall that we denote Z=ŒM� to be the additive category with the same objects as Z,

but the morphism sets are defined to be HomZ=ŒM�.X; Y / ´ HomZ.X; Y /=M.X; Y / where

M.X; Y / is the submodule of morphisms that factor through an object in M. The following

result generalizes [17, Theorem 4.2] where a very restrictive condition HomC .M;MŒ1�/ D 0

was assumed. Also we refer to [18] for a related result.

Theorem 2.1. With the assumptions (1), (2a) and (2b) as above, U´ Z=ŒM� has the

structure of a triangulated category.

Proof. We first define an autoequivalence h1i on U. For Z 2 U fix a left M-approxi-

mation Z
˛Z��!MZ in Z, then define Zh1i to be the cone of ˛Z in C , so we have a triangle

Z
˛Z
��!MZ

ˇZ
��! Zh1i


Z
��! ZŒ1�
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Iyama and Wemyss, Reduction and MMAs 9

Note by assumption (2a) that Zh1i 2 Z. Now for f 2 HomU.Z1; Z2/ consider

(2.1) Z1 MZ1 Z1h1i Z1Œ1�

Z2 MZ2 Z2h1i Z2Œ1�

˛Z1
//

ˇZ1
//


Z1
//

˛Z2
//

ˇZ2
//


Z2
//

f

��

g

��

h´f h1i

��

f Œ1�

��

where g exists because ˛Z1
is an M-monomorphism, and h exists by TR3.

We define f h1i ´ h. It is standard to check that h1i is a well-defined functor U ! U

(e.g., [17, Proposition 2.6]). For the quasi-inverse functor, for every Z 2 U fix a right M-

approximation NZ
"Z��! Z in Z, then define Zh�1i via the triangle

Zh�1i
ıZ
��! NZ

"Z
��! Z

�Z
��! Zh�1iŒ1�:

In a similar way h�1i gives a well-defined functor U ! U. Since by assumption (2a) ˇZ is

a right M-approximation, and by assumption (2b) ıZ is a left M-approximation, it is easy to

check that h1i and h�1i are quasi-inverse to each other.

We now define triangles. For Z1
a
�! Z2 an M-monomorphism, we complete a to a

triangle

Z1
a
�! Z2

b
�! Z3

c
�! Z1Œ1�

and so obtain a commutative diagram

(2.2) Z1 Z2 Z3 Z1Œ1�

Z1 MZ1 Z1h1i Z1Œ1�

a
//

b
//

c
//

˛Z1
//

ˇZ1
//


Z1
//

 

��

d

��

where  exists since a is an M-monomorphism, and d exists by TR3. We define triangles in

U to be all those isomorphic to the sequences

Z1
a
�! Z2

b
�! Z3

d
�! Z1h1i

obtained in this way. We now check the axioms of a triangulated category.

TR1 (a) Let Z 2 U, then Z
id
�! Z is an M-monomorphism in Z, so

Z Z 0 ZŒ1�

Z MZ Zh1i ZŒ1�

id
// // //

˛Z
//

ˇZ
//


Z
//

 

��

d

��

shows that Z
id
�! Z ! 0! Zh1i is a triangle in U.

TR1 (b) Every sequence isomorphic to a triangle is by definition a triangle.

TR1 (c) Suppose that

Z1
f
�! Z2

is a morphism in U. Then

Z1
.˛Z1

f /
�����!MZ1

˚Z2
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10 Iyama and Wemyss, Reduction and MMAs

is an M-monomorphism in Z, so completing to a triangle gives

(2.3) Z1 MZ1
˚Z2 Z3 Z1Œ1�

Z1 MZ1 Z1h1i Z1Œ1�

.˛Z1
f /
//

.g1
g2
/

// //

˛Z1
//

ˇZ1
//


Z1
//

 

��

d

��

which shows that

Z1
f
�! Z2

g2
�! Z3

h
�! Z1h1i;

being isomorphic in U to

Z1
.˛Z1

f /
������!MZ1

˚Z2
.g1

g2
/

���! Z3
h
�! Z1h1i;

is a triangle in U.

TR2 (Rotation) Suppose that

Z1
a
�! Z2

b
�! Z3

d
�! Z1h1i

is a triangle in U. By (2.3) we can assume that a is an M-monomorphism, and the triangle

arises from the commutative diagram (2.2).

Now by rotating (2.2) we have a commutative diagram of triangles

(2.4) Z2 Z3 Z1Œ1� Z2Œ1�

MZ1 Z1h1i Z1Œ1� MZ1
Œ1�

b
//

c
//

�aŒ1�
//

ˇZ1
//


Z1
//

�˛Z1
Œ1�

//

 

��

d

��

 Œ1�

��

from which it follows that c � .�˛Z1
Œ1�/ D 0. Hence applying the octahedral axiom

(2.5) Z3 Z1Œ1� Z2Œ1� Z3Œ1�

Z3Œ1�

Z1Œ2�

Z2Œ2�

MZ1
Œ1�

.MZ1
˚Z3/Œ1�

Z1h1iŒ1�

c �aŒ1� �bŒ1�

�˛Z1
Œ1�

.1 0/

.0
1/

0

�ˇZ1
Œ1�

�
Z1
Œ1� cŒ1�

and rotating we obtain a triangle

Z2
e
�!MZ1

˚Z3
f
�! Z1h1i

gD�
Z1
�aŒ1�

���������! Z2Œ1�
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Iyama and Wemyss, Reduction and MMAs 11

where f is an M-epimorphism since ˇZ1
is, and the diagram (2.5) commutes. By assumption

(2b) e is an M-monomorphism, so there exists a commutative diagram of triangles

(2.6) Z2 MZ1
˚Z3 Z1h1i Z2Œ1�

Z2 MZ2 Z2h1i Z2Œ1�

e
//

f
//

�
Z1
�aŒ1�

//

˛Z2
//

ˇZ2
//


Z2
//

�

��

h

��

and so by definition

Z2
e
�!MZ1

˚Z3
f
�! Z1h1i

h
�! Z2h1i

is a triangle in U. We now claim that the diagram

(2.7) Z2 MZ1
˚Z3 Z1h1i Z2h1i

Z2 Z3 Z1h1i Z2h1i

e
//

f
//

h
//

b
//

d
//

�ah1i
//

Š .0
1/

��

commutes in U, as this proves that the rotation

Z2
b
�! Z3

d
�! Z1h1i

�ah1i
����! Z2h1i

is a triangle in U. The left square in (2.7) commutes immediately from the commutativity of

the top right square in (2.5). For the middle square in (2.7), write f D
�f1

f2

�
, so f D f2. Then

from (2.5) we see that f2 � 
Z1
Œ1� D cŒ1�, hence

.d � f2/ � 
Z1

(2.4)
D c � c D 0:

This implies that d � f2 factors through ˇZ1
, thus d D f2 and so the middle square in (2.7)

commutes. For the right-hand square in (2.7), note that

.hC ah1i/ � 
Z2

(2.6)
D �
Z1

� aŒ1�C ah1i � 
Z2

(2.1)
D 0:

This implies that hC ah1i factors through ˇZ2
and so h D �ah1i as required.

The proofs of TR3 and TR4 are identical to those in [17, Theorem 4.2].

2.2. CY categories and CY reduction. In this subsection we let R denote a d -dimen-

sional equi-codimensional (i.e. dimRm D dimR for all m 2 MaxR) CM ring with a canonical

module !R. We assume that all our categories C are R-linear, in the sense that each Hom-set

in C is a finitely generated R-module such that the composition map is R-bilinear.

Let

CMi R´
®
X 2 modR j depthRm

Xm D dimRm
Xm D i for all m 2 MaxR

¯

be the category of CM R-modules of dimension i . Then the functor

Di ´ Extd�i
R .�; !R/WmodR! modR
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12 Iyama and Wemyss, Reduction and MMAs

gives a duality Di WCMi R ! CMi R. In the rest let T ´ CM0R and F ´ CM1R. Thus

CM0R is the category of finite length R-modules. Clearly we have HomR.T ;F / D 0, and

also we have dualities D0W T ! T and D1WF ! F . Any X 2 modR has a unique maximal

finite length submodule, which we denote by flR X .

Recall from the introduction the following.

Definition 2.2. Let C be an R-linear triangulated category. We assume dimR C � 1,

where

dimR C ´ sup
®
dimR HomC .X; Y / j X; Y 2 C

¯
:

For every X; Y 2 C , by setting TC .X; Y / ´ flR HomC .X; Y /, there exists a short exact

sequence

0! TC .X; Y /! HomC .X; Y /! FC .X; Y /! 0

with TC .X; Y / 2 T and FC .X; Y / 2 F . We say that an autoequivalence S WC ! C is a Serre

functor if for all X; Y 2 C there are functorial isomorphisms

D0.TC .X; Y // Š TC .Y; SX/; D1.FC .X; Y // Š FC .Y Œ1�; SX/:

If S D Œn� is a Serre functor for an integer n, we say that C is an n-Calabi–Yau triangulated

category of dimension at most one.

Remark 2.3. We remark that the usual definition of n-CY is to simply take R D k

where k is an algebraically closed field, so T D modR, F D 0 and D0 D Homk.�; k/.

For our main examples of n-CY triangulated categories C with dimR C � 1, we refer the

reader to Section 3.

Definition 2.4. Fix n � 2 and suppose that C is an n-CY triangulated category with

dimR C � 1. We say that M 2 C is modifying if

(1) HomC .M;MŒi�/ D 0 for all 1 � i � n � 2;

(2) TC .M;MŒn � 1�/ D 0.

Given a modifying object M , we define

ZM ´
®
X 2 C j HomC .X;MŒi�/ D 0 for all 1 � i � n � 2 and TC .X;MŒn � 1�/ D 0

¯
:

Since C is n-CY, we have

ZM D
®
X 2 C j HomC .M;XŒi �/ D 0 for all 1 � i � n � 2 and TC .M;XŒn � 1�/ D 0

¯
:

We call the factor category CM ´ ZM=ŒM� the reduction of C .

Remark 2.5. Since our category C is R-linear, by assumption all Hom-sets are finitely

generated R-modules. In particular, for any M 2 C this implies that

HomC .X;M/ 2 mod EndC .M/op and HomC .M;X/ 2 mod EndC .M/

for all X 2 C . Below, this allows us to construct both left and right .addM/-approximations.
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Iyama and Wemyss, Reduction and MMAs 13

Now we wish to show that given a modifying objectM in an n-CY triangulated category

C with dimR C � 1, then the reduction CM has a structure of an n-CY triangulated category

with dimR CM � 1. First we need the following technical lemma.

Lemma 2.6. Suppose thatM is a modifying object in an n-CY triangulated category C

with dimR C � 1, with n � 2. Let

(2.8) Z1
f
�! Z2

g
�! C ! Z1Œ1�

be a triangle in C with Z1; Z2 2 ZM and f is an .addM/-monomorphism. Then C 2 ZM

holds and g is an .addM/-epimorphism.

Proof. Claim 1: HomC .C;MŒi�/ D 0 for all 1 � i � n� 2. When n D 2 there is noth-

ing to prove, so we suppose n > 2. Simply applying HomC .�;M/ to (2.8) and using the fact

that Z1; Z2 2 ZM , together with the surjectivity of .f �/WHomC .Z2;M/ ! HomC .Z1;M/,

verifies the claim.

Claim 2: We next claim that

HomC .C Œ1 � n�;M/
gŒ1�n��
�����! HomC .Z2Œ1 � n�;M/

is injective. To verify this, if n D 2 then applying HomC .�;M/ to (2.8) gives an exact

sequence

HomC .Z2;M/
f �
�! HomC .Z1;M/! HomC .C Œ�1�;M/

gŒ�1��
����! HomC .Z2Œ�1�;M/

from which the surjectivity of .f �/ gives the injectivity of .gŒ�1��/. If n > 2 then the exact

sequence

HomC .Z1Œ2 � n�;M/ D 0! HomC .C Œ1 � n�;M/
gŒ1�n��
�����! HomC .Z2Œ1 � n�;M/

verifies the claim.

Hence Claim 2 shows that TC .C Œ1 � n�;M/ embeds inside

HomC .Z2Œ1 � n�;M/ D FC .Z2Œ1 � n�;M/:

Since HomR.T ;F / D 0 we deduce that TC .C Œ1 � n�;M/ D 0. This, together with Claim 1,

shows that C 2 ZM .

It remains to show that g is an .addM/-epimorphism. If n > 2, then we deduce that

HomC .M;Z1Œ1�/ D 0 and so .�g/WHomC .M;Z2/! HomC .M;C / is surjective, as required.

Hence we can assume that n D 2. Now we have the following commutative diagram with exact

rows:

0 TC .Z2;M/ HomC .Z2;M/ FC .Z2;M/ 0

0 TC .Z1;M/ HomC .Z1;M/ FC .Z1;M/ 0

// // // //

// // // //

f �
����

so since HomR.T ;F / D 0 we obtain an induced surjection

(2.9) FC .Z2;M/
f �
�! FC .Z1;M/! 0:
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14 Iyama and Wemyss, Reduction and MMAs

Now applying HomC .M;�/ to (2.8) and D1 to (2.9) and comparing them, we have a commu-

tative diagram

HomC .M;Z2/ HomC .M;C / HomC .M;Z1Œ1�/ HomC .M;Z2Œ1�/

0 FC .M;Z1Œ1�/ FC .M;Z2Œ1�/

�g
// //

�f Œ1�
//

//
�f Œ1�

//

�� ��

of exact sequences. Since Z1; Z2 2 ZM , the two vertical maps are isomorphisms. Thus the

injectivity of .�f Œ1�/ implies the surjectivity of .�g/.

The following theorem is the main result of this section.

Theorem 2.7. Let M be a modifying object in an n-CY triangulated category C with

dimR C � 1. Then CM is an n-CY triangulated category with dimR CM � 1 and n � 2.

The fact that CM is triangulated follows by combining Lemma 2.6, its dual and Theo-

rem 2.1. It is also clear that dimR CM � 1 holds since HomCM
.X; Y / is a factor module of

HomC .X; Y / for all X; Y 2 C . To prove the dualities, we need the following observations.

Proposition 2.8. For any X; Y 2 CM , we have functorial isomorphisms

(1) HomCM
.X; Y hii/ Š HomC .X; Y Œi �/ for all i with 1 � i � n � 2,

(2) TCM
.X; Y hn � 1i/ Š TC .X; Y Œn � 1�/.

Proof. Step 1: We claim for all X; Y 2 CM that TCM
.Y;Xh1i/ Š TC .Y;XŒ1�/ if

n D 2, and HomCM
.Y;Xh1i/ Š HomC .Y;XŒ1�/ if n > 2. Considering X and Y as objects

in C , applying HomC .Y;�/ to the triangle

(2.10) X
˛X
��!MX

ˇX
��! Xh1i


X
��! XŒ1�

gives an exact sequence

HomC .Y;MX /
�ˇX
��! HomC .Y;Xh1i/! HomC .Y;XŒ1�/! HomC .Y;MX Œ1�/:

Since ˇX is a right .addM/-approximation, Cok.�ˇX / D HomCM
.Y;Xh1i/. Thus we obtain

an exact sequence

(2.11) 0! HomCM
.Y;Xh1i/! HomC .Y;XŒ1�/! HomC .Y;MX Œ1�/:

If n D 2 then TC .Y;MX Œ1�/ D 0, which forces TCM
.Y;Xh1i/ Š TC .Y;XŒ1�/. If n > 2 then

HomC .Y;MX Œ1�/ D 0, hence HomCM
.Y;Xh1i/ Š HomC .Y;XŒ1�/.

Step 2: We claim that HomC .X; Y h1iŒi �/ Š HomC .X; Y Œi C 1�/ for all X; Y 2 CM and

all 1 � i � n � 3. If n � 3 this is vacuously true, so we assume that n > 3. In this case, the

claim follows by applying HomC .X;�/ to the triangle

(2.12) Y
˛Y
��!MY

ˇY
��! Y h1i


Y
��! Y Œ1�:
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Iyama and Wemyss, Reduction and MMAs 15

Step 3: We claim that if n > 2, then TC .X; Y h1iŒn � 2�/ Š TC .X; Y Œn � 1�/ for all

X; Y 2 CM . Applying HomC .X;�/ to the triangle (2.12), we obtain an exact sequence

0! HomC .X; Y h1iŒn � 2�/! HomC .X; Y Œn � 1�/! HomC .X;MY Œn � 1�/:

Since TC .X;MY Œn � 1�/ D 0, the claim follows.

Step 4: Now we show the assertions. For any i with 1 � i � n � 2, we have

HomCM
.X; Y hii/

Step 1
Š HomC .X; Y hi � 1iŒ1�/

Step 2
Š HomC .X; Y hi � 2iŒ2�/

Step 2
Š � � �

Step 2
Š HomC .X; Y h1iŒi � 1�/

Step 2
Š HomC .X; Y Œi �/:

Thus (1) holds. On the other hand, for n D 2, Step 1 shows that (2) holds. For n > 2,

TCM
.X; Y hn � 1i/

Step 1
Š TC .X; Y hn � 2iŒ1�/

Step 2
Š TC .X; Y hn � 3iŒ2�/

Step 2
Š � � �

Step 2
Š TC .X; Y h1iŒn � 2�/

Step 3
Š TC .X; Y Œn � 1�/

shows that (2) holds.

Proof of Theorem 2.7. Step 1: First we establish the D0 duality for CM .

For any X; Y 2 CM , we have functorial isomorphisms

TCM
.Y;Xh1i/

Prop. 2.8
Š TC .Y;XŒ1�/

C Wn-CY
Š D0.TC .X; Y Œn � 1�//

Prop. 2.8
Š D0.TC .X; Y hn � 1i//:

Consequently, we have the D0 duality for CM .

Step 2: We claim that we have an exact sequence

(2.13) 0! FCM
.Y;Xhn � 1i/! FC .Y;XŒn � 1�/

�˛X Œn�1�
������! FC .Y;MX Œn � 1�/:

If n D 2, then this is true by (2.11). If n > 2 then applying HomC .Y;�/ to (2.10) we obtain

an exact sequence

0! HomC .Y;Xh1iŒn � 2�/! HomC .Y;XŒn � 1�/! HomC .Y;MX Œn � 1�/:

Since HomC .Y;Xh1iŒn � 2�/ Š HomCM
.Y;Xhn � 1i/ by Proposition 2.8 (1) and the right

term equals FC .Y;MX Œn � 1�/ by Y 2 ZM , we have an exact sequence

0! HomCM
.Y;Xhn � 1i/! HomC .Y;XŒn � 1�/! FC .Y;MX Œn � 1�/:

Since TCM
.Y;Xhn � 1i/ Š TC .Y;XŒn � 1�/ by Proposition 2.8 (2), the claim follows.

Step 3: Now we establishD1 duality for CM . Applying HomC .�; Y / to (2.10) and using

the fact that ˛X is a left .addM/-approximation gives an exact sequence

HomC .MX ; Y /! HomC .X; Y /! HomCM
.X; Y /! 0:

Applying D1 and using the functorial isomorphism D1.X/ Š D1.X= flR X/ for X 2 modR

with dimR X � 1, we have the upper sequence in the following commutative diagram:
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16 Iyama and Wemyss, Reduction and MMAs

0 D1.FCM
.X; Y // D1.FC .X; Y // D1.FC .MX ; Y //

0 FCM
.Y;Xhn � 1i/ FC .Y;XŒn � 1�/ FC .Y;MX Œn � 1�/

// // //

// //
�˛X Œn�1�

//

'
��

'
��

of exact sequences, where the lower sequence is (2.13). Thus we have the desired isomorphism.

Theorem 2.9. Let C be a Krull–Schmidt n-CY triangulated category with dimR C � 1

and n � 2, and let M be a basic modifying object. Then there exists a bijection between

basic modifying (respectively MM, CT) objects with summand M in C and basic modifying

(respectively MM, CT) objects in CM .

Proof. Any basic maximal modifying object N 2 C with summand M belongs to ZM .

For any X 2 ZM , it follows from Proposition 2.8 that X is modifying as an object in C if and

only if it is modifying as an object in CM . Thus we have the assertion.

We say that a modifying objectM 2 C is cluster tilting (or simply CT) if ZM D addM .

The following observation will be used in Section 5.

Corollary 2.10. Let M 2 C be a modifying object and CM be the CY reduction of C

with respect to M .

(1) M is MM if and only if CM has no non-zero modifying objects.

(2) M is CT if and only if CM D 0.

2.3. D0 duality implies D1 duality. In this subsection, we keep the notation as in the

previous subsection, but now we suppose that R is a complete local CM ring, with canonical

!R. We denote C0 ´ ¹X 2 C j EndC .X/ 2 T º. By Remark 2.5 the following observation is

clear.

Lemma 2.11. Let X 2 C . Then X 2 C0 if and only if HomC .X; Y / 2 T holds for all

Y 2 C if and only if HomC .Y;X/ 2 T for all Y 2 C .

The aim of this subsection is to show that when R is complete local, any D0 duality on

C0 determines the D0 and D1 dualities on C .

Theorem 2.12. Assume dimR C � 1. Let S be an autoequivalence of C such that for

allX; Y 2 C0 there exists a functorial isomorphism �X;Y WHomC .X; Y / Š D0 HomC .Y; SX/.

(1) For all X; Y 2 C there exists a functorial isomorphism

�X;Y WTC .X; Y / Š D0
�
TC .Y; SX/

�
:

(2) For all X; Y 2 C there exists a functorial isomorphism

 X;Y WFC .X; Y / Š D1
�
FC .Y Œ1�; SX/

�
:

Brought to you by | University of Glasgow Library

Authenticated

Download Date | 11/1/16 12:51 PM



Iyama and Wemyss, Reduction and MMAs 17

Proof. For every Y 2 C let IY be the annihilator of the R-module EndC .Y /. Since

R=IY is a local noetherian ring of dimension at most one, we can fix an element t 2 m

(depending on Y ) such that R=.IY C .t// is artinian.

For each ` � 0, consider a triangle

(2.14) Y
t`

�! Y
˛`
�! Y`

ˇ`
�! Y Œ1�:

We first claim that Y` 2 C0 for all ` � 0. Applying HomC .X;�/, we have an exact sequence

(2.15) .X; Y /
t`

�! .X; Y /
�˛`
��! .X; Y`/

�ˇ`
��! .X; Y Œ1�/

t`

�! .X; Y Œ1�/:

This gives rise to a short exact sequence

0! R=.t`/˝R .X; Y /
�˛`
��! .X; Y`/

�ˇ`
��!

®
f 2 .X; Y Œ1�/ j t`f D 0

¯
! 0:

The right- and left-hand terms are modules over the artinian ring R=.IY C .t
`// and hence are

finite lengthR-modules. It follows that the middle term has finite length, i.e. HomC .X; Y`/2 T .

This holds for all X 2 C , so by Lemma 2.11 Y` 2 C0, as claimed.

Now if ` is sufficiently large, then the kernel of the map t`W .X; Y Œ1�/ ! .X; Y Œ1�/ is

TC .X; Y Œ1�/, and so (2.15) gives an exact sequence

(2.16) 0! R=.t`/˝R .X; Y /
�˛`
��! .X; Y`/

�ˇ`
��! TC .X; Y Œ1�/! 0:

On the other hand, applying HomC .�; SX/ to (2.14), we have an exact sequence

.Y Œ1�; SX/
t`

�! .Y Œ1�; SX/
ˇ`�
��! .Y`; SX/

˛`�
��! .Y; SX/

t`

�! .Y; SX/:

Again for sufficiently large `, we have an exact sequence

(2.17) 0! R=.t`/˝R .Y Œ1�; SX/
ˇ`�
��! .Y`; SX/

˛`�
��! TC .Y; SX/! 0:

(a) We now show that there exists a functorial isomorphism

HomC .X; Y / Š D0 HomC .Y; SX/

for all X; Y 2 C if either X or Y belongs to C0.

First we assume X 2 C0. Since X and Y` belong to C0, we have exact sequences

0 .X; Y / .X; Y`/ .X; Y Œ1�/ 0

0 D0.Y; SX/ D0.Y`; SX/ D0.Y Œ1�; SX/ 0

//
�˛`

//
�ˇ`

// //

//
D0.˛`�/

//
D0.ˇ`�/

// //

Š �X;Y`

��

for sufficiently large ` by (2.16) and (2.17).

We now show that the composition

(2.18) .X; Y /
�˛`
��! .X; Y`/

�X;Y`����! D0.Y`; SX/
D0.ˇ`�/
�����! D0.Y Œ1�; SX/

is zero. For any f 2 .X; Y / and g 2 .Y Œ1�; SX/, consider the following commutative diagram:
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18 Iyama and Wemyss, Reduction and MMAs

.X;X/ D0.X; SX/

.X; Y`/ D0.Y`; X/

�X;X
//

�X;Y`
//

�f˛`

��

D0.f ˛`�/

��

Considering 1X 2 .X;X/, we have that �X;Y`
.f ˛`/ is equal to the image of �X;X .1X /

under the map D0.f ˛`�/. But the composition (2.18) is the image of �X;Y`
.f ˛`/ under the

map D0.ˇ`�/, and hence the composition (2.18) is equal to the image of �X;X .1X / under the

map D0.f ˛`ˇ`�/. Since ˛`ˇ` D 0, this is zero and so the assertion follows.

In particular, �X;Y`
W .X; Y`/! D0.Y`; SX/ induces an injective map

�X;Y ´ �X;Y`
j.X;Y /W .X; Y /! D0.Y; SX/

and a surjective map .X; Y Œ1�/! D0.Y Œ1�; SX/. Thus lengthR.X; Y / � lengthR.Y; SX/ and

lengthR.X; Y Œ1�/ � lengthR.Y Œ1�; SX/ hold. Replacing Y Œ1� in the second inequality by Y ,

we have lengthR.X; Y / D lengthR.Y; SX/. Thus �X;Y has to be an isomorphism.

It is routine to check � is independent of ` and t , and functorial. The case Y 2 C0 follows

immediately from the case X 2 C0.

(1) Let X; Y 2 C . Since Y` belong to C0, we have exact sequences

0 R=.t`/˝R .X; Y / .X; Y`/ TC .X; Y Œ1�/ 0

0 D0.TC .Y; SX// D0.Y`; SX/ D0.R=.t
`/˝R .Y Œ1�; SX// 0

//
�˛`

//
�ˇ`

// //

//
D0.˛`�/

//
D0.ˇ`�/

// //

�X;Y`

��

for sufficiently large ` by (2.16) and (2.17). Since
T
`�0 t

`.X; Y / D 0, we have

TC .X; Y / \ t
`.X; Y / D 0

for sufficiently large `. Thus the natural map TC .X; Y / ! R=.t`/˝R .X; Y / is injective for

sufficiently large `, and we have exact sequences

0 TC .X; Y / .X; Y`/

0 D0.TC .Y; SX// D0.Y`; SX/ D0.R=.t
`/˝R .Y Œ1�; SX// 0

//
�˛`

//

//
D0.˛`�/

//
D0.ˇ`�/

// //

�X;Y`

��

Now we show that the following composition is zero (caution: we can not use the argu-

ment in (a) since we do not have �X;X ):

TC .X; Y /
�˛`
��! .X; Y`/

�X;Y`����! D0.Y`; SX/
D0.ˇ`�/
�����! D0.Y Œ1�; SX/:

For m � 0, consider a triangle

X
tm

��! X
˛0

m
��! Xm

ˇ 0
m
��! XŒ1�
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Iyama and Wemyss, Reduction and MMAs 19

and a commutative diagram

TC .X; Y / .X; Y`/ D0.Y`; SX/ D0.Y Œ1�; SX/

.Xm; Y / .Xm; Y`/ D0.Y`; SXm/ D0.Y Œ1�; SXm/

�˛l
//

�X;Y`
//

D0.ˇ`�/
//

�˛l

//

�Xm;Y`

//

D0.ˇ`�/
//

˛0
m�

OO

˛0
m�

OO

D0.�S˛
0
m/

OO

D0.�S˛
0
m/

OO

The lower composition is zero by (2.18), and for sufficiently large m the left vertical map is

surjective. Hence the upper composition is also zero, and so the assertion follows.

In particular, the map �X;Y`
W .X; Y`/ ! D0.Y`; SX/ induces an injective map

TC .X; Y /! D0.TC .Y; SX//, so we have an induced injective map

�X;Y ´ �X;Y`
jTC .X;Y /WTC .X; Y /! D0.TC .Y; SX//:

Thus we have lengthR TC .X; Y / � lengthR TC .Y; SX/. By replacing X and Y by Y and SX ,

respectively, we have

lengthR TC .X; Y / D lengthR TC .Y; SX/:

Thus �X;Y has to be an isomorphism.

It is routine to check � is independent of ` and t , and functorial.

(2) We have a commutative diagram of triangles:

(2.19) Y Y Y`�1 Y Œ1�

Y Y Y` Y Œ1�

t`�1
//

˛`�1
//

ˇ`�1
//

t`
//

˛`
//

ˇ`
//

t

OO


`

OO

t

OO

By (2.16), for sufficiently large ` we have a commutative diagram of exact sequences

0 R=.t`�1/˝R .X; Y / .X; Y`�1/ TC .X; Y Œ1�/ 0

0 R=.t`/˝R .X; Y / .X; Y`/ TC .X; Y Œ1�/ 0

//
�˛`�1

//
�ˇ`�1

// //

//
�˛`

//
�ˇ`

// //

1

OO

�
`

OO

t

OO

Now the inverse limit of the right column t WTC .X; Y Œ1�/! TC .X; Y Œ1�/ is zero. Since taking

inverse limits is left exact, we have an isomorphism

(2.20) .X; Y / D lim
 �
`

R=.t`/˝R .X; Y /
�˛`

Š lim
 �
`

.X; Y`/

by taking inverse limits of each column.

On the other hand, by (2.19) and (2.17), we have a commutative diagram of exact se-

quences:

0 R=.t`�1/˝R .Y Œ1�; SX/ .Y`�1; SX/ TC .Y; SX/ 0

0 R=.t`/˝R .Y Œ1�; SX/ .Y`; SX/ TC .Y; SX/ 0

//
ˇ`�1�

//
˛`�1�

// //

//
ˇ`�

//
˛`�

// //

t

��


`�

��

Brought to you by | University of Glasgow Library

Authenticated

Download Date | 11/1/16 12:51 PM



20 Iyama and Wemyss, Reduction and MMAs

in which every Hom-set has finite length. Hence applyingD0, we have a commutative diagram

of exact sequences:

0 TC .X; Y / .X; Y`�1/ D0.R=.t
`�1/˝R .Y Œ1�; SX// 0

0 TC .X; Y / .X; Y`/ D0.R=.t
`/˝R .Y Œ1�; SX// 0

//
�˛`�1

// // //

//
�˛`

// // //

�
`

OO

t

OO

Since the Mittag-Leffler condition is satisfied, taking the inverse limits of each column, we

obtain an exact sequence

0! TC .X; Y /! lim
 �
`

.X; Y`/! lim
 �
`

D0.R=.t
`/˝R .Y Œ1�; SX//! 0:

Comparing with (2.20), we have an isomorphism

FC .X; Y / D
.X; Y /

TC .X; Y /
Š lim
 �
`

D0.R=.t
`/˝R .Y Œ1�; SX//:

Now by Proposition 2.13 below, we have an isomorphism

 X;Y WFC .X; Y / Š D1.Y Œ1�; SX/ D D1.FC .Y Œ1�; SX//:

It is routine to check that  is functorial. This finishes the proof.

Proposition 2.13. For anyM 2modR such thatR=.AnnM C .t// is artinian, we have

lim
 �

�
� � �

t
�! D0.M=t

3M/
t
�! D0.M=t

2M/
t
�! D0.M=tM/

�
Š D1.M/:

Proof. Since for each ` � 0 the kernel of the map t`WM � t`M has finite length, we

have an isomorphism

(2.21) t`WD1.t
`M/ Š D1.M/

for all ` � 0. Now consider the following commutative diagram of exact sequences:

0 t`�1M M M=t`�1M 0

0 t`M M M=t`M 0

// // // //

// // // //

t
��

t
��

t
��

Applying HomR.�; !R/ and using (2.21), we have a commutative diagram of exact sequences

D1.M/ D1.M/ D0.M=t
`�1M/ D0.M/

D1.M/ D1.M/ D0.M=t
`M/ D0.M/

t`�1
// // //

t`
// // //

t

OO

t

OO

t

OO
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Iyama and Wemyss, Reduction and MMAs 21

Using the isomorphism D0.M/ Š D0.flRM/, we obtain a commutative diagram of exact

sequences:

0 R=.t`�1/˝R D1.M/ D0.M=t
`�1M/ D0.flRM/

0 R=.t`/˝R D1.M/ D0.M=t
`�1M/ D0.flRM/

// // //

// // //

1

OO

t

OO

t

OO

Since the inverse limit of the right column is zero, we have an isomorphism

D1.M/ D lim
 �
`

R=.t`/˝R D1.M/ Š lim
 �
`

D0.M=t
`M/

by taking the inverse limit of each column.

3. Application to geometry: CY reduction in Dsg.R/

The aim of this section is to apply results in previous sections to CY triangulated cate-

gories appearing in geometry. In Section 3.1 we relate CY reduction to our previous work on

maximal modification algebras [15], then in Section 3.2 we give natural examples of CY re-

duction in the setting of one-dimensional hypersurfaces. We outline some of the consequences

in Section 3.3.

3.1. CY reduction and MMAs. Let R be a commutative equi-codimensional Goren-

stein ring with dimR D d . The functor Di ´ Extd�i
R .�; R/WmodR ! modR induces the

duality of the category of Cohen–Macaulay R-modules of dimension i . As an application of

AR duality on not-necessarily-isolated singularities [15], we have the following.

Theorem 3.1. Let R be a commutative equi-codimensional Gorenstein ring with

dimR D d and dim SingR � 1. Then CMR is a .d � 1/-CY triangulated category with

dimR.CMR/ � 1.

Proof. Let C D CMR. Then the assumption dim SingR � 1 implies that

dimR HomC .X; Y / � 1

for all X; Y 2 C . By [15, Theorem 3.1], there exist functorial isomorphisms

D0.flR HomC .X; Y // Š flR HomC .Y;XŒd � 1�/;

D1

� HomC .X; Y /

flR HomC .X; Y /

�
Š

HomC .Y;XŒd � 2�/

flR HomC .Y;XŒd � 2�/

for all X; Y 2 C . Thus the assertion follows.

Before stating the next theorem, we need some preliminaries. We consider the setup of

Lemma 3.4, where in addition we assume that R is normal. We fix M 2 refR which is non-

zero, and we denote by ref EndR.M/ the category of EndR.M/-modules which are reflexive
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22 Iyama and Wemyss, Reduction and MMAs

as R-modules, and by CM EndR.M/ the category of EndR.M/-modules which are maximal

Cohen–Macaulay as R-modules. Clearly we have ref EndR.M/ � CM EndR.M/. The fol-

lowing is a basic observation on the category of reflexive modules [20] (see also [14, Proposi-

tion 2.4 (2) (i)]).

Proposition 3.2. For any M 2 refR which is non-zero, we have an equivalence

(3.1) HomR.M;�/W refR! ref EndR.M/:

Thus the category ref EndR.M/ does not depend on the choice ofM . On the other hand,

the category CM EndR.M/ strongly depends on the choice of M . Actually the equivalence

(3.1) clearly induces an equivalence

(3.2) HomR.M;�/W
®
X 2 refR j HomR.M;X/ 2 CMR

¯
' CM EndR.M/

and we have the following observation.

Proposition 3.3. For any generatorM 2 refR, the equivalence (3.2) gives a fully faith-

ful functor

CM EndR.M/! CMR:

In particular, we have the following embeddings:

CMR � refR � modR

[ k \

CM EndR.M/ � ref EndR.M/ � mod EndR.M/

Proof. This is clear since

CM EndR.M/ '
®
X 2 refR j HomR.M;X/ 2 CMR

¯
� CMR:

Now we assume that M belongs to CMR and is modifying in CMR. The second con-

dition is equivalent to EndR.M/ 2 CMR by the following observation [15, Theorem 4.3,

Corollary 4.4].

Lemma 3.4. Let R be a commutative equi-codimensional Gorenstein ring with

dimR D d � 2 and dim SingR � 1 and M 2 CMR.

(1) EndR.M/ 2 CMR if and only if M 2 CMR is modifying in the sense of Definition 2.4.

(2) If M is modifying, then

ZM D
®
X 2 CMR j HomR.M;X/ 2 CMR

¯

D
®
Y 2 CMR j HomR.Y;M/ 2 CMR

¯
:

Moreover, in this case CM EndR.M/ has a structure of a Frobenius category since

CM EndR.M/ D
®
X 2 mod EndR.M/ j ExtiEndR.M/.X;EndR.M// D 0 for all i � 1

¯

Brought to you by | University of Glasgow Library

Authenticated

Download Date | 11/1/16 12:51 PM



Iyama and Wemyss, Reduction and MMAs 23

holds (see the proof of [14, Corollary 3.4 (5) (i)]). We denote by CM EndR.M/ the stable

category, where we factor out by those morphisms which factor through projective EndR.M/-

modules.

On the other hand we denote by

Dsg.EndR.M//´ Db.mod EndR.M//=Kb.proj EndR.M//

the singular derived category. Since EndR.M/ has injective dimension d on both sides (see

the proof of [14, Theorem 3.1 (6) (2)]), we have a triangle equivalence

Dsg.EndR.M// ' CM EndR.M/

by a standard theorem of Buchweitz [6, Theorem 4.4.1 (2)].

The following gives an interpretation of CM EndR.M/ as a CY reduction of CMR.

Theorem 3.5. Let R be an equi-codimensional Gorenstein normal domain with

dimR D d � 2 and dim SingR � 1, and let M 2 CMR be a modifying generator of R.

(1) The CY reduction .CMR/M of CMR is .d � 1/-CY with dimR.CMR/M � 1.

(2) .CMR/M ' CM EndR.M/ as triangulated categories.

Proof. Assertion (1) is an immediate consequence of Theorems 2.7 and 3.1.

Assertion (2) follows from

.CMR/M D ZM=ŒM� ' CM EndR.M/=ŒEndR.M/� D CM EndR.M/:

In the setting of Theorem 3.5, we have the following criterion of maximality in terms of

the corresponding CY reduction by Corollary 2.10.

Corollary 3.6. Let R be an equi-codimensional Gorenstein normal domain with

dimR D d � 2 and dim SingR � 1, and M 2 CMR be a modifying generator of R. Then

M is an MM generator of R if and only if the corresponding CY reduction .CMR/M has no

non-zero modifying objects.

We end this subsection with the following iterated version of Theorem 3.5.

Corollary 3.7. Let R be an equi-codimensional Gorenstein normal domain with

dimR D d � 2 and dim SingR � 1, and let M D R˚M1 ˚ � � � ˚Mn be a modifying R-

module. Let M0´ R, Ni ´
Li
jD0Mj and ƒi ´ EndR.Ni /.

(1) There is a chain of fully faithful functors

CMƒn ! CMƒn�1 ! � � � ! CMƒ1 ! CMR:

(2) The CY reduction .CMƒi /HomR.Ni ;NiC1/ of CMƒi is triangle equivalent to CMƒiC1.

Proof. (1) Clearly

ZNn
� ZNn�1

� � � � � ZN1
� CMR:

Applying the equivalence HomR.M;�/WZNi
' CMƒi from (3.2) shows the assertion.

Brought to you by | University of Glasgow Library

Authenticated

Download Date | 11/1/16 12:51 PM



24 Iyama and Wemyss, Reduction and MMAs

(2) The embedding CMƒi ' ZNi
� ZNiC1

' CMƒiC1 in (1) induces an equivalence

Z
ƒi

HomR.Ni ;NiC1/
´

®
X 2 CMƒi j Homƒi

.HomR.Ni ; NiC1/; X/ 2 CMR
¯

' ZNiC1
' CMƒiC1

which sends HomR.Ni ; NiC1/ to ƒiC1. Thus we have

.CMƒi /HomR.Ni ;NiC1/ D Z
ƒi

HomR.Ni ;NiC1/
=ŒHomR.Ni ; NiC1/�

' CMƒiC1=ŒƒiC1� D CMƒiC1:

3.2. CY reduction for one-dimensional hypersurfaces. Let S D kŒŒx; y�� be a formal

power series ring of two variables over an arbitrary field k. For f; g 2 S , let

R´ S=.fg/

be a one-dimensional hypersurface. Then M 2 modR is a CM R-module if and only if

flRM D 0. Our main result in this subsection is the following.

Theorem 3.8. With notation as above, the following assertions hold.

(1) CMR is a 2-CY triangulated category with dimR.CMR/ � 1.

(2) S=.f / is a modifying object in CMR, and the CY reduction .CMR/S=.f / of CMR is

triangle equivalent to CM.S=.f // � CM.S=.g//.

We give the proof in the remainder of this subsection. First we note that the natural

surjections R! S=.f / and R! S=.g/ induce fully faithful functors CM.S=.f //! CMR

and CM.S=.g//! CMR.

Lemma 3.9. With notation as above, X 2 CMR satisfies flR Ext1R.S=.f /; X/ D 0 if

and only if X=fX 2 CMR.

Proof. Applying HomR.�; X/ to the exact sequence

0! S=.g/
f
�! R! S=.f /! 0

gives an exact sequence

0! HomR.S=.f /; X/! X
f �
�! HomR.S=.g/; X/! Ext1R.S=.f /; X/! 0:

In particular, flR Ext1R.S=.f /; X/ D 0 if and only if

HomR.S=.g/; X/

fX
2 CMR:

On the other hand, exchanging f and g in the above exact sequence, we have

X

HomR.S=.g/; X/
2 CMR
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Iyama and Wemyss, Reduction and MMAs 25

since HomR.S=.f /; X/ 2 CMR and CMR is closed under submodules. Since we have an

exact sequence

0!
HomR.S=.g/; X/

fX
!

X

fX
!

X

HomR.S=.g/; X/
! 0

and CMR is closed under submodules and extensions, we have

HomR.S=.g/; X/

fX
2 CMR

if and only if X=fX 2 CMR. Thus the assertion follows.

We also need the following easy observation, which is valid for any dimension.

Lemma 3.10. Let A and B be n� n matrices over S such that AB D fgIn D BA and

X ´ Cok.Sn
A
�! Sn/. Then the following conditions are equivalent.

(1) X 2 CM.S=.f //.

(2) There exists an n � n matrix B 0 over S such that AB 0 D f In D B
0A.

(3) All entries in B belong to .g/.

If these conditions are satisfied, then flR Ext1R.S=.f /; X/ D 0 D flR Ext1R.S=.g/;�R.X//.

Proof. (1)) (2) is clear since A gives a matrix factorization of f .

(2)) (3) Since A is invertible as a matrix over k..x; y//, we have B D gB 0.

(3)) (1) is clear since we have matrix factorization A.g�1B/ D f In D .g
�1B/A.

Since flR.X=fX/ D flR X D 0 by (1), we have flR Ext1R.S=.f /; X/ D 0 by Lemma

3.9. Since �R.X/ D S
n=B.Sn/, we have

�R.X/=g�R.X/ D S
n=.B.Sn/C gSn/ D Sn=gSn

by (3). Thus flR.�R.X/=g�R.X// D 0 and we have flR Ext1R.S=.g/;�R.X// D 0 by

Lemma 3.9.

Let

ZS=.f /´
®
X 2 CMR j flR Ext1R.S=.f /; X/ D 0

¯
:

Then the CY reduction .CMR/S=.f / is given by ZS=.f /=ŒR ˚ S=.f /�. The following is a

crucial step.

Lemma 3.11. We have

ZS=.f / D add
®
R; Y;�R.Z/ j Y 2 CM.S=.f //; Z 2 CM.S=.g//

¯
:

Proof. The inclusion “�” follows from Lemma 3.10. We shall show “�”. Assume that

X 2 CMR satisfies flR Ext1R.S=.f /; X/ D 0. Take a minimal free resolution

0! Sn
A
�! Sn ! X ! 0
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26 Iyama and Wemyss, Reduction and MMAs

of the S -module X , where A is an n � n matrix over S . Then we have a free resolution

(3.3) S2n
.A fIn/
������! Sn ! X=fX ! 0

of the S -module X=fX , where In is the identity matrix of size n. On the other hand X=fX

belongs to CMR by our assumption and Lemma 3.9. Since fX is contained in the radical

of X , the minimal numbers of generators of X and X=fX are the same. Thus we have a

minimal free resolution

(3.4) 0! Sn
B
�! Sn ! X=fX ! 0

of the S -module X=fX , where B is an n � n matrix over S . Let BC D f In D CB be the

corresponding matrix factorization. We write more explicitly

B D

 
f Im O

O B 0

!
; C D

 
Im O

O C 0

!

for some m with 0 � m � n where all entries of C 0 belong to .x; y/ and

B 0C 0 D f In�m D C
0B 0:

Since (3.4) is minimal, we can obtain (3.3) by adding a trivial summand and thus obtain a

commutative diagram

S2n Sn X=fX 0

S2n Sn X=fX 0

.A fIn/
// // //

.B O/
// // //

ED
�
E1 E2

E3 E4

�
Š

��

ŠF

��

where the vertical maps are isomorphisms andEi (1 � i � 4) is an n�nmatrix over S . Hence

by replacing B and C by BF�1 and FC , respectively, we can assume F D In. Then we have

BE1 D A and BE2 D f In. Since BC D f In and B is invertible as a matrix over k..x; y//,

we have

E2 D C D

 
Im O

O C 0

!
:

Now we write E1 as

E1 D

 
G1 G2

G3 G4

!
;

where G1 is an m �m matrix. Then the map

.G3 G4 O C 0/WS2n ! Sn�m

given by the n �m rows of the invertible matrix E is a split epimorphism. Since all entries of

the right part .O C 0/ are in the unique maximal ideal .x; y/ of S , the left part

.G3 G4/WS
n ! Sn�m
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Iyama and Wemyss, Reduction and MMAs 27

must be a split epimorphism. Hence there exists an n � n invertible matrix U such that

.G3 G4/U D .O In�m/. Then

AU D BE1U D

 
f Im O

O B 0

! 
G1 G2

G3 G4

!
U D

 
G0
1 G0

2

O B 0

!
;

where all entries of G0
1 and G0

2 are in .f /. Since C 0B 0 D f In�m, the n � n invertible matrix

V ´

 
Im �f �1G0

2C
0

O In�m

!

over S satisfies

VAU D

 
G0
1 O

O B 0

!
:

Since both U and V are invertible, we have that X D Cok.Sn
A
�! Sn/ is a direct sum of

Cok.Sm
G0

1��! Sm/ and Cok.Sn�m B 0

��! Sn�m/. Since all entries of G0
1 are in .f /, the former

belongs to �R.CM.S=.g/// by Lemma 3.10 (3)) (1). Since B 0C 0 D f In�m, the latter

belongs to CM.S=.f // by Lemma 3.10 (2)) (1).

Lemma 3.12.

(1) Hom.CMR/=ŒS=.f /�.Y; Y
0/ D HomCM.S=.f //.Y; Y

0/ for all Y; Y 0 2 CM.S=.f //.

(2) Hom.CMR/=ŒS=.g/�.Z;Z
0/ D HomCM.S=.g//.Z;Z

0/ for all Z;Z0 2 CM.S=.g//.

Proof. (1) Let Y; Y 0 2 CM.S=.f //. Since CM.S=.f // ! CMR is fully faithful,

it suffices to show that if a map Y ! Y 0 factors through addR, it also factors through

add.S=.f //. Consider an exact sequence

0! .f /
b
�! R

a
�! S=.f /! 0:

We only have to show that any map R ! Y 0 factors through a (i.e. a is a left CM.S=.f //-

approximation). Applying HomR.�; Y
0/, we have an exact sequence

0! HomR.S=.f /; Y
0/
a�
�! HomR.R; Y

0/
b�
�! HomR..f /; Y

0/;

where we have .b�/ D 0 since Y 0 2 CM.S=.f //. Hence .a�/ is an isomorphism and we are

done.

(2) follows from (1) by swapping f and g.

Proof of Theorem 3.8. (1) By Theorem 3.1, we have that CMR is a 0-CY triangulated

category with dimR.CMR/ � 1. Since R is a hypersurface, Œ2� is isomorphic to the identity

functor (see [11, 27]). Thus the assertion follows.

(2) Step 1: For Y 2 CM.S=.f // and Z 2 CM.S=.g//, we show

Hom.CMR/=ŒS=.f /�.Y;�R.Z// D 0 D Hom.CMR/=ŒS=.f /�.�R.Z/; Y /:

In particular, .CMR/S=.f / D ZS=.f /=ŒR ˚ S=.f /� decomposes a product of a full subcate-

gory consisting of objects in CM.S=.f // and that consisting of objects in �R.CM.S=.g// by

Lemma 3.11.
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28 Iyama and Wemyss, Reduction and MMAs

Let

0! Sn
A
�! Sn ! Y ! 0 and 0! Sm

A0

��! Sm ! Z ! 0

be free resolutions, and AB D f In D BA and A0B 0 D gIm D B
0A0 be matrix factorizations.

For any a 2 HomR.Y;�R.Z//, there exist matricesC andD over S which make the following

diagram commutative:

0 Sn Sn Y 0

0 Sm Sm �R.Z/ 0

//
A

// // //

//
fB 0

// // //

D
��

C
��

a
��

Multiplying B to the equality AC D fDB 0 from the left, we have C D BDB 0. Thus we have

a commutative diagram

0 Sn Sn Y 0

0 Sn Sn .S=.f //n 0

0 Sm Sm �R.Z/ 0

//
A

// // //

//
fIn

// // //

//
fB 0

// // //

B
�� ��

D
��

DB 0

�� ��

which shows that a factors through add.S=.f //.

For any b 2 HomR.�R.Z/; Y /, there exist matrices C and D over S which make the

following diagram commutative:

0 Sm Sm �R.Z/ 0

0 Sn Sn Y 0

//
fB 0

// // //

//
A

// // //

D
��

C
��

b
��

Multiplying B to the equality fB 0C D DA from the right, we have B 0CB D D. Thus we

have a commutative diagram

0 Sm Sm �R.Z/ 0

0 Sn Sn .S=.f //n 0

0 Sn Sn Y 0

//
fB 0

// // //

//
fIn

// // //

//
A

// // //

B 0C
��

C
�� ��

B
�� ��

which shows that b factors through add.S=.f //.

Step 2: By Lemma 3.12 (1) we have

Hom.CMR/S=.f /
.Y; Y 0/ D HomCM.S=.f //.Y; Y

0/

for all Y; Y 0 2 CM.S=.f //. It remains to show

Hom.CMR/S=.f /
.�R.Z/;�R.Z

0// D HomCM.S=.g//.Z;Z
0/

Brought to you by | University of Glasgow Library

Authenticated

Download Date | 11/1/16 12:51 PM



Iyama and Wemyss, Reduction and MMAs 29

for all Z;Z0 2 CM.S=.g//. Since �R gives an equivalence Œ�1�WCMR ! CMR and

�R.S=.f // D S=.g/, we have

Hom.CMR/=ŒS=.f /�.�R.Z/;�R.Z
0// Š Hom.CMR/=ŒS=.g/�.Z;Z

0/:

This equals HomCM.S=.g//.Z;Z
0/ by Lemma 3.12 (2). Thus the assertion follows.

3.3. General remarks and conjectures. The concept of CY reduction has been in-

vented as an algebraic tool for proving statements regarding modifying and maximal modi-

fying modules on the base singularity SpecR. There is now a conjectural geometric picture

underlying this theory, and the following is a slightly weaker version of [16, Conjecture 1.8].

Conjecture 3.13. Let R be a three-dimensional Gorenstein normal domain over C

with rational singularities, so CMR is a 2-CY triangulated category with dimR.CMR/ � 1.

Then there exists a CY reduction .CMR/M of CMR with dimR.CMR/M D 0, and further

.CMR/M has no non-zero rigid objects.

This is somewhat remarkable, since in this level of generality CMR is not Krull–Schmidt,

and has many modifying objects. Yet it still will admit an extremely well-behaved CY reduc-

tion. The best case scenario is when .CMR/M D 0, which is equivalent to there existing an

NCCR of R.

We remark that the conjecture is true in quite a broad setting:

Theorem 3.14. Let R be a three-dimensional Gorenstein normal domain over C with

rational singularities. If some Q-factorial terminalization Y of SpecR is derived equivalent

to some ring ƒ, then there exists an MM generator M 2 CMR of R such that .CMR/M is

triangle equivalent to Dsg.Y /. In particular, Conjecture 3.13 is true.

Proof. Let f WY ! SpecR denote the Q-factorial terminalization which is derived

equivalent to ƒ. Combining [16, Theorem 4.16, Remark 4.17], which uses the fact that

k D C so the singularities of Y are Zariski locally isolated hypersurface singularities, we get

ƒ Š EndR.N / for some reflexive R-module N which is an MM R-module. By [15, Corol-

lary 4.18 (2)] there exists an MM generator M 2 CMR of R. Since all MMAs are derived

equivalent in dimension three [15, Theorem 4.16], we have

Db.mod EndR.M// ' Db.mod EndR.N // ' Db.cohY /

which after factoring by perfect complexes gives

.CMR/M
Thm. 3.5
' CM EndR.M/ ' Dsg.EndR.M// ' Dsg.Y / ,!

nM

iD1

CM OX;xi
;

where ¹xi j 1 � i � nº are the (necessarily isolated) singular points of Y (see [16, Theo-

rem 3.2]). Thus

dimR.CMR/M � dimR

� nM

iD1

CM OX;xi

�
D 0

holds. By [16, Theorem 3.11], each CM OX;xi
has no non-zero rigid objects, hence the same

is true for .CMR/M .
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30 Iyama and Wemyss, Reduction and MMAs

Corollary 3.15. Let R be a three-dimensional Gorenstein normal domain over C with

rational singularities. If the Q-factorial terminalizations of SpecR have one-dimensional fi-

bres, then Conjecture 3.13 is true.

Proof. By [24] the Q-factorial terminalizations carry a tilting bundle, so the result fol-

lows from Theorem 3.14.

4. Mutation

4.1. Mutation of MM generators. In this section we recall the notion of mutation of

modifying modules and their basic properties given in [15, Section 6.2], then give a method

to prove when a given set of MM generators are all. In Section 5 we will apply this result

together with the techniques of CY reduction developed in the previous sections to classify all

MM generators over certain explicit singularities.

Throughout the section we assume that R is a complete local normal Gorenstein domain

with dimR D 3. Mutation is an operation for modifying R-modules which gives a new modi-

fying R-module for a given basic modifying R-module by replacing a direct summand of M .

We recall how this is defined [15, §6].

We let M ´
L
i2I Mi be a modifying R-module with indecomposable direct sum-

mandsMi , where without loss of generality we assume thatM is basic, i.e. allMi are pairwise

non-isomorphic. We denote by

HomR.�; R/´ .�/�W refR! refR

the duality functor. For a subset J of I , set MJ ´
L
j2J Mj and J c ´ InJ . Thus we have

MJ ˚MJ c DM . Now we take a minimal right .addMJ c /-approximation

N
f
�!MJ

of MJ , which means that

� N 2 addMJ c and .�f /WHomR.MJ c ; N /! HomR.MJ c ;MJ / is surjective,

� if g 2 EndR.N / satisfies f D gf , then g is an automorphism.

Since R is complete, such an f exists and is unique up to isomorphism. A right mutation of

M is defined as

�C
J .M/´MJ c ˚ Kerf:

Dually we define a left mutation of M as

��
J .M/´ .�C

J .M
�//�;

which is the cokernel in refR of a minimal left .addMJ c /-approximation ofMJ defined dually.

Below we collect basic properties.

Proposition 4.1 ([15, Theorem 6.10, Summary 6.25]). (1) �C
J .M/ and ��

J .M/ are

modifying R-modules and satisfy �C
J .�

�
J .M// ŠM Š ��

J .�
C
J .M//.
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Iyama and Wemyss, Reduction and MMAs 31

(2) If M is an MM (respectively, CT) R-module, then so are �C
J .M/ and ��

J .M/.

(3) If M is an MM (respectively, CT) R-module, and J D ¹iº, then �C
J .M/ Š ��

J .M/,

which we denote by �i .M/.

It is immediate from Proposition 4.1 (1) and (3) that if M is an MM R-module, then

�i .�i .M// ŠM holds. The following is the main result of [15, §6].

Theorem 4.2 ([15, Theorem 6.8]). Let R be a complete local d -dimensional Goren-

stein normal domain, let M ´
L
i2I Mi be a basic modifying R-module and choose any

; ¤ J � I . Then EndR.M/ and EndR.�
˙
J .M// are derived equivalent.

For the case ��
J .M/, the derived equivalence is given by a tilting EndR.M/-module VJ

constructed as follows. Let gWMJ ! N 0 be a minimal left .addMJ c /-approximation of MJ .

For the induced map .�g/WHomR.M;MJ /! HomR.M;N
0/, our tilting EndR.M/-module is

given by

VJ ´ HomR.M;MJ c /˚ Cok.�g/:

This gives rise to an equivalence

RHom.VJ ;�/WD
b.mod EndR.M//! Db.mod EndR.�

�
J .M///

but note that this functor is never the identity. On the other hand ��
J .M/ D M can happen

(see Section 5).

4.2. MM mutation and tilting mutation. In the rest of this section, we specialize

the previous setting to the case when modifying modules are MM generators. Moreover,

we mutate them at non-free indecomposable summands. We denote by MMGR the set of

isomorphism classes of basic MM generators of R. Thus for a given basic MM generator

M D R˚ .
L
i2I Mi /, we have a new MM generator �i .M/ by replacing an indecomposable

non-free direct summand Mi of M . We denote by EG.MMGR/ the exchange graph, thus the

set of vertices is MMGR, and we draw an edge betweenM and �i .M/ for eachM 2 MMGR

and i 2 I .

One of the difficulties in mutation for MM generators is that �i .M/ can be isomorphic to

M , which never happens in mutation in 2-CY triangulated categories C with dim C D 0. It is

shown in [15, Theorem 1.25 (1) (2)] that �i .M/ is isomorphic to M if and only if the algebra

EndR.M/=.1 � ei / is not artinian. In this case we have a loop at M in EG.MMGR/.

The aim of this subsection is to prove the following result, which is an analogue of

[1, Corollary 4.9] for 2-CY triangulated categories. However, due to the existence of loops in

EG.MMGR/, we need a more careful argument.

Theorem 4.3. Let R be a complete local normal Gorenstein domain with dimR D 3.

If EG.MMGR/ has a finite connected component C , then

EG.MMGR/ D C:

To prove Theorem 4.3 requires some preparation. Fix an MM generatorM0 2 CMR and

ƒ´ EndR.M0/. Then the functor

F ´ HomR.M0;�/WmodR! modƒ
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32 Iyama and Wemyss, Reduction and MMAs

is fully faithful and (since R is normal) induces an equivalence F W refR ! refƒ, where we

denote by refƒ the full subcategory of modƒ consisting of modules that are reflexive as R-

modules. Recall we say that T 2 modƒ is a tilting ƒ-module if

� proj.dimƒ T � 1,

� Ext1ƒ.T; T / D 0,

� there exists an exact sequence 0! ƒ! T 0 ! T 1 ! 0 with T 0; T 1 2 addT .

We denote FacT to be the full subcategory of modƒ consisting of factor modules of finite

direct sums of copies of T . One important property of tilting modules is

(4.1) FacT D
®
X 2 modƒ j Ext1ƒ.T;X/ D 0

¯
:

In particular, for any X 2 FacT there is an exact sequence

(4.2) 0! Y ! T 0 ! X ! 0

with Y 2 FacT and T 0 2 addT . From this we immediately get

(4.3) addT D
®
X 2 FacT j Ext1ƒ.X;FacT / D 0

¯
:

It is shown in [15, Theorem 1.19] that F gives an injective map

F WMMGR! tiltƒ;

where we denote by tiltƒ the set of isomorphism classes of basic tilting ƒ-modules.

The main ingredient of the proof of Theorem 4.3 is tilting mutation theory initiated by

Riedtmann–Schofield and Happel–Unger [12, 21]. We refer to [2] for a general treatment of

tilting mutation. Recall that tiltƒ has a natural structure of partially ordered set: We write

T � U if Ext1ƒ.T; U / D 0, or equivalently by (4.1) FacT � FacU . It is immediate from (4.3)

that T � U � T implies that T Š U .

On the other hand, for a basic tilting ƒ-module T and an indecomposable direct sum-

mand Ti of T , there exists at most one basic tilting ƒ-module �i .T / D .T=Ti / ˚ T
�
i such

that Ti 6Š T
�
i (cf. [21]). We call �i .T / a tilting mutation of T . In this case, we have either an

exact sequence

0! Ti
f
�! T 0 ! T �

i ! 0

with a minimal left .addT=Ti /-approximation f , or an exact sequence

0! T �
i ! T 0 g�! Ti ! 0

with a minimal right .addT=Ti /-approximation g. We have T > �i .T / in the former case,

and T < �i .T / in the latter case. Conversely T �
i obtained from one of the above sequences

gives �i .T / if T �
i has projective dimension at most one (see, e.g., [14, Proposition 5.2]).

We denote by EG.tiltƒ/ the exchange graph of tiltingƒ-modules, i.e., the set of vertices

is tiltƒ and we draw an edge between T and �i .T / for all T 2 tiltƒ and i such that �i .T /

exists.

We prepare the following results.
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Iyama and Wemyss, Reduction and MMAs 33

Proposition 4.4. Assume that T;U 2 tiltƒ satisfies T > U .

(1) There exists an exact sequence 0 ! T 00 ! T 0 ! U ! 0 with T 0; T 00 2 addT and

addT 0 \ addT 00 D 0.

(2) There exists an exact sequence 0 ! T ! U 0 ! U 00 ! 0 with U 0; U 00 2 addU and

addU 0 \ addU 00 D 0.

(3) There exists a tilting mutation T 0 of T such that T > T 0 � U .

(4) There exists a tilting mutation U 0 of U such that T � U 0 > U .

Proof. Although these results follows easily from [2], we give a direct proof for the

convenience of the reader.

(1) Applying (4.2) to X ´ U , we have an exact sequence 0! Y ! T 0 ! U ! 0 with

T 0 2 addT and Y 2 FacT . Applying Ext1ƒ.�;FacT /, we have an exact sequence

0 D Ext1ƒ.T
0;FacT /! Ext1ƒ.Y;FacT /! Ext2ƒ.U;FacT / D 0

since proj.dimƒ U � 1. Thus Ext1ƒ.Y;FacT / D 0 holds and we have Y 2 addT by (4.3).

Replacing the map T 0 ! U by a minimal right .addT /-approximation gives the last statement

(see, e.g., [2, Lemma 2.25]).

(2) We regard Ext1ƒ.U; T / as an Endƒ.U /-module. Take a surjective map

f WHomƒ.U; U
00/! Ext1ƒ.U; T /

of Endƒ.U /-modules with U 00 2 addU , then this gives an exact sequence

(4.4) 0! T ! X ! U 00 ! 0:

Applying Homƒ.U;�/ to (4.4), we have an exact sequence

Homƒ.U; U
00/

f
�! Ext1ƒ.U; T /! Ext1ƒ.U;X/! Ext1ƒ.U; U

00/ D 0

which shows Ext1ƒ.U;X/ D 0 and hence X 2 FacU by (4.1). Applying Ext1ƒ.�;FacU/ to

(4.4), we have Ext1ƒ.X;FacU/ D 0. Thus X 2 addU by (4.3). The last statement follows by

a similar argument as in (1).

(3) Take an exact sequence 0 ! T 00 b
�! T 0 a

�! U ! 0 from (1). Since T > U , we

have T 00 ¤ 0. Take an indecomposable direct summand Ti of T 00, and let �WTi ! T 00 be the

inclusion. Let f WTi ! V be a minimal left .addT=Ti /-approximation of Ti . Since T 0 and

T 00 have no non-zero common direct summands, T 0 2 addT=Ti holds, and �b factors through

f . Hence f has to be injective, and so it only remains to prove that Cokf has projective

dimension at most one. Since we have a commutative diagram

0 Ti V Cokf 0

0 T 00 T 0 U 0

//
f

// // //

//
b

//
a

// //

�
�� �� ��

of exact sequences, we have an exact sequence

0! V ˚ .T 00=Ti /! Cokf ˚ T 0 ! U ! 0;

which immediately implies proj.dimƒ Cokf � 1.

The proof of (4) is simpler.
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34 Iyama and Wemyss, Reduction and MMAs

The following comparison between MM mutation and tilting mutation is important.

Lemma 4.5. Let M D R˚ .
L
i2I Mi / 2 MMGR.

(1) If �i .M/ 6ŠM , then F.�i .M// D �i .F.M//.

(2) If�i .F.M// exists and belongs to refƒ, then�i .M/ 6ŠM and F.�i .M//D�i .F.M//.

Proof. (1) Since M and �i .M/ differ at only the i -th indecomposable summand, so do

F.M/ and F.�i .M//. Thus �i .F.M// D F.�i .M// holds by definition of tilting mutation.

(2) Assume that �i .F.M// ´ F.M=Mi / ˚ X belongs to refƒ. Then we have either

an exact sequence

(4.5) 0! F.Mi /
f
�! F.M 0/

g
�! X ! 0

with a minimal left addF.M=Mi /-approximation f , or an exact sequence

(4.6) 0! X
f
�! F.M 0/

g
�! F.Mi /! 0

with a minimal right addF.M=Mi /-approximation g.

We consider the case when the sequence (4.5) exists. Since F W refR ! refƒ is an

equivalence and X is reflexive by our assumption, there exists Y 2 refR and a complex

(4.7) 0!Mi
a
�!M 0 b�! Y ! 0

of R-modules for which F applied to (4.7) gives (4.5). Since the image of (4.7) by the functor

F D HomR.M0;�/ is the exact sequence (4.5) and M0 is a generator, the sequence (4.7)

must also be exact. Since F W refR ! refƒ is an equivalence, a has to be a minimal left

.addM=Mi /-approximation of Mi . Thus �i .M/ D .M=Mi /˚ Y and we have

F.�i .M// D �i .F.M//:

Since the tilting mutation �i .F.M// is never isomorphic to F.M/ by the partial order, we

have �i .M/ 6ŠM .

The same argument works when the sequence (4.6) exists.

Now we denote by S the subset of tiltƒ consisting of those tilting ƒ-modules which

belong to refƒ and have F.R/ as a direct summand. By [15, Theorem 1.19] the following

observation is clear.

Proposition 4.6. F gives an injective map F WMMGR! S .

We need the following property of S with respect to the partial order on tiltƒ.

Lemma 4.7. If T 2 tiltƒ and U 2 S satisfies T � U , then T 2 S .

Proof. Since T � U , by Proposition 4.4 (1) and (2), there exist exact sequences

0! T ! U 0 ! U 1 ! 0 and 0! T1 ! T0 ! U ! 0

with U i 2 addU and Ti 2 addT for i D 0; 1. Since U i is a reflexive R-module, so is

T by the first sequence. Since F.R/ 2 addU and F.R/ is a projective ƒ-module, we have

F.R/ 2 addT from the second sequence. Thus we have T 2 S .
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Iyama and Wemyss, Reduction and MMAs 35

We denote by EG.S/ the full subgraph of EG.tiltƒ/ with the set S of vertices. The

following is a main step in the proof.

Proposition 4.8. Let C be a connected component of EG.MMGR/. Then F.C/ is a

connected component of EG.S/.

Proof. By Lemma 4.5 (1), F.C/ is contained in some connected component of EG.S/.

Thus we only have to show that if two vertices T and U (T ¤ U ) in EG.S/ are connected by

an edge and T 2 F.C/, then U 2 F.C/. Now T has a direct summand F.R/, so we can write

T D F.M/ with M D R˚ .
L
i2I Mi / 2 C . Since U has a direct summand F.R/, we have

U D �i .T / for some i 2 I . But U belongs to refƒ, so U D F.�i .M// by Lemma 4.5 (2).

Since �i .M/ 2 C , we have U 2 F.C/, and so the assertion follows.

The next simple criterion for connectedness of EG.S/ generalizes [12, Corollary 2.2].

Proposition 4.9. Suppose that S is a subset of tiltƒ that satisfies the property: if

T 2 tiltƒ and U 2 S satisfies T � U , then T 2 S . Then whenever EG.S/ has a finite

connected component C , necessarily EG.S/ D C .

Proof. We can assume that C is non-empty. Fix T 2 C . Sinceƒ � T , we haveƒ 2 S .

Applying Proposition 4.4 (3) repeatedly, we have a sequence

T D T0 < T1 < T2 < � � �

such that TiC1 is a tilting mutation of Ti for all i . This sequence has to be finite since each Ti
belongs to S by our assumption and hence belongs to the finite connected component C . Thus

T` D ƒ holds for some `, and in particular ƒ belongs to C .

Now fix any U 2 S . Applying Proposition 4.4 (4) repeatedly, we have a sequence

ƒ D V0 > V1 > V2 > � � �

such that ViC1 is a tilting mutation of Vi and Vi � U for all i . This sequence has to be

finite since each Vi belongs to S by our assumption and hence belongs to the finite connected

component C . Thus Vm D U holds for some m, and in particular U belongs to C . Hence we

have EG.S/ D C .

Proof of Theorem 4.3. We know that F.C/ is a finite connected component of EG.S/

by Proposition 4.8. Applying Lemma 4.7 and Proposition 4.9 gives F.C/ D EG.S/. Since

F WMMGR! S is injective by Proposition 4.6, it follows that C D EG.MMGR/.

5. Complete local cAn singularities

In this section we fix notation for complete local cAn singularities, as they will be used

throughout. We work over an arbitrary field k, let S D kŒŒx; y�� be a formal power series ring

and fix f 2 .x; y/. Let

R´ SŒŒu; v��=.f .x; y/ � uv/
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36 Iyama and Wemyss, Reduction and MMAs

and f D f1 � � � fn be a factorization into prime elements of S . For any subset I � ¹1; : : : ; nº

set I c D ¹1; : : : ; nºnI and denote

fI ´
Y

i2I

fi and TI ´ .u; fI /;

where TI is an ideal of R generated by u and fI . Since we have the equality

(5.1) .u; fI / D .v; fIc /uf �1
Ic ;

we have TI Š .v; fIc /. For a collection of subsets ; ¨ I1 ¨ I2 ¨ � � � ¨ Im ¨ ¹1; 2; : : : ; nº,

we say that F D .I1; : : : ; Im/ is a flag in the set ¹1; 2; : : : ; nº. We say that the flag F is

maximal if n D mC 1. Given a flag F D .I1; : : : ; Im/, we define

T F ´ R˚

� mM

jD1

TIj

�
:

So as to match our notation with [7] and [10], we can (and do) identify maximal flags with

elements of the symmetric group Sn. Hence we regard each ! 2 Sn as the maximal flag

¹!.1/º � ¹!.1/; !.2/º � � � � � ¹!.1/; : : : ; !.n � 1/º:

We denote

T ! ´ R˚

� n�1M

jD1

T¹!.1/;:::;!.j /º

�
:

5.1. MM generators and CT modules. The aim of this subsection is to use CY reduc-

tion to help to prove the following result.

Theorem 5.1. Let the setup be as above.

(1) The basic modifying generators ofR are precisely T F , where F is a flag in ¹1; 2; : : : ; nº.

(2) The basic MM generators of R are precisely T ! , where ! 2 Sn.

(3) R has a CT module if and only if fi … m2 for all 1 � i � n. In this case, the basic CT

R-modules are precisely T ! , where ! 2 Sn.

The following is an immediate application.

Corollary 5.2. Write f D f
a1

1 � � � f
at

t for some distinct prime elements fi , and some

ai 2 N. Then R has precisely
.a1C���Cat /Š
a1Š���at Š

basic MM generators.

Proof. All basic MM generators have the form T ! for some ! 2 Sa1C���Cat
by Theo-

rem 5.1. Accounting for the repetitions, there are precisely
.a1C���Cat /Š
a1Š���at Š

of these.

The strategy of proof of Theorem 5.1 is to use Knörrer periodicity, the CY reduction

prepared in Section 2, together with the MM mutation from Section 4. Let us start with the

following observation.
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Lemma 5.3. .u; fI / 2 CMR for any subset I of ¹1; 2; : : : ; nº.

Proof. This is clear since .u; fI / arises from the matrix factorization

R2

�
�fIc u
v �fI

�

���������! R2

�
fI u
v fIc

�

�������! R2 ! .u; fI /! 0:

We also need the following simple calculations.

Lemma 5.4. For any decomposition f D abc with a; b; c 2 S , we have isomorphisms

(1) .u; b/ Š HomR..u; a/; .u; ab//, r 7! .�r/;

(2) .u; ac/u�1 Š HomR..u; ab/; .u; a//, r 7! .�r/, where .u; ac/u�1 is a fractional ideal

of R generated by 1 and acu�1.

Proof. Let I and I 0 be non-zero ideals of R. Since R is a domain, we have an isomor-

phism ¹q 2 Q j Iq � I 0º Š HomR.I; I
0/, q 7! .�q/ for the quotient field Q of R.

(1) Clearly we have .u; b/ � ¹q 2 Q j .u; a/q � .u; ab/º. Conversely, any element q

belonging to the right-hand side is certainly contained in ¹q 2 Q j .u; a/q � .u; a/º which

equals R since R is normal. Thus it remains to show that if r 2 R satisfies .u; a/r � .u; ab/,

then r 2 .u; b/.

View such an r 2 R as an element of SŒŒu; v��, then since ar 2 .u; ab/ we can write

ar D up C abq in R for some p; q 2 SŒŒu; v��. Since f � uv is contained in the SŒŒu; v��-

ideal .u; ab/, we still have ar D up C abq in SŒŒu; v�� for some p; q 2 SŒŒu; v��. Then

a.r � bq/ D up, so since a and u have no common factors, we have r � bq 2 .u/. Thus

r 2 .u; b/.

(2) By (5.1), we have

HomR..u; ab/; .u; a// D HomR..v; c/uc
�1; .v; bc/u.bc/�1/

D HomR..v; c/; .v; bc//b
�1;

which equals .v; b/b�1 D .u; ac/u�1 by (1).

Immediately we have the following consequence.

Proposition 5.5. T F is a modifying R-module for any flag F in the set ¹1; 2; : : : ; nº.

Next we show that T F is an MM R-module if F is maximal (see Corollary 5.11 below).

For this, we need Knörrer periodicity. Let

R[´ S=.f /;

then there is a triangle equivalence

KWCMR[
�
�! CMR

called Knörrer periodicity (valid for any field k by [23, Proposition 3.1]) which is defined as
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38 Iyama and Wemyss, Reduction and MMAs

follows [27]: For any X 2 CMR[, we have a free resolution

R[˚n
B
�! R[˚n

A
�! R[˚n ! X ! 0;

where A and B are n� n matrices over S satisfying AB D f In D BA. Then K.X/ is defined

by the following exact sequence:

R˚2n

�
B �u
�v A

�

������! R˚2n

�
A u
v B

�

�����! R˚2n ! K.X/! 0:

For any subset I � ¹1; 2; : : : ; nº, and any flag F D .I1; : : : ; Im/ in the set ¹1; 2; : : : ; nº, we

define

SI ´ S=.fI / Š R
[=.fI / and SF ´ R[ ˚

� mM

jD1

SIj

�
:

Again we identify maximal flags with elements of the symmetric group, and so for ! 2 Sn we

set S! ´
Ln
jD1 S¹!.1/;:::;!.j /º. The following is immediate:

Lemma 5.6. (1) K.SF / Š T F for any flag F in the set ¹1; : : : ; nº.

(2) K.S!/ Š T ! for any ! 2 Sn.

The following is the key step.

Proposition 5.7. Given a flag F D .I1; : : : ; Im/, we have a triangle equivalence

.CMR/TF '

mC1M

iD1

CM
� kŒŒx; y; u; v��

.fI i nI i�1 � uv/

�
;

where by convention I0´ ; and ImC1´ ¹1; 2; : : : ; nº.

Proof. Since the equivalence KWCMR[ ' CMR sends T F to SF by Lemma 5.6, we

only have to calculate the CY reduction of CMR[ with respect to SF . Applying Theorem 3.8

repeatedly, it is triangle equivalent to
LmC1
iD1 CM.S=.fI i nI i�1//. Applying Knörrer periodicity

to each factor again, we have the result.

It is known that under certain assumptions on the base field k, Œk�D 0 (and so ŒR[�D Œm�)

in the Grothendieck group K0.modR[/. However, since we do not have any assumptions on

the field k, below we require the following technical observation.

Lemma 5.8. Let m D .x; y/ be the maximal ideal of R[. Then ŒK.m/� D 2ŒR� in

K0.modR/=hŒX� j dimR X � 1i.

Proof. Since f 2 m, by changing variables if necessary, we can assume that f is not

a multiple of y. Then we can find g; h 2 kŒŒx; y�� such that f D xg C yh and g.x; 0/ ¤ 0.

Now a projective presentation of m is given by

R[˚2

�
x �h
y g

�

�����! R[˚2

�
g h

�y x

�

�����! R[˚2

�
x
y

�

���! m! 0
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Iyama and Wemyss, Reduction and MMAs 39

and thus a projective presentation of K.m/ is given by

R˚4

AD

0
B@
x �h �u 0
y g 0 �u

�v 0 g h
0 �v �y x

1
CA

���������������! R˚4

BD

0
B@
g h u 0

�y x 0 u
v 0 x �h
0 v y g

1
CA

�������������! R˚4 ! K.m/! 0:

We claim that the sequence

(5.2)

0! K.m/! R˚4 d3DB
����! R˚4

d2D

0
@
x �h �u
y g 0

�v 0 g
0 �v �y

1
A

�������������! R˚3
d1D

�
g

�y
v

�

�������! R! C ! 0

is exact for C ´ R=.g; y; v/. We first show that Ker d2 D Im d3. For the i -th column Ai of

A, we have a linear relation A4 D �.h=v/A1 � .x=v/A2 over the quotient field Q of R. Thus

we have

Ker
�
Q˚4 Q˝Rd2

�����! Q˚3
�
D Ker

�
Q˚4 Q˝RA

�����! Q˚4
�

and hence

Ker d2 D R
˚4 \ Ker

�
Q˚4 Q˝Rd2

�����! Q˚3
�

D R˚4 \ Ker
�
Q˚4 Q˝RA

�����! Q˚4
�
D KerA D Im d3:

We next show that Ker d1 D Im d2. The regular sequence .g; y; v/ on SŒŒu; v�� gives an exact

sequence

SŒŒu; v��˚3
e2D

 
y g 0

�v 0 g
0 �v �y

!

������������! SŒŒu; v��˚3
e1D

�
g

�y
v

�

�������! SŒŒu; v��:

Assume that the image .a; b; c/ 2 R˚3 of .a; b; c/ 2 SŒŒu; v��˚3 satisfies d1.a; b; c/ D 0.

Then e1.a; b; c/ D .f � uv/s holds for some s 2 SŒŒu; v��, which implies

e1.a � sx; b C sh; c C su/ D 0:

Thus there exists .a0; b0; c0/ 2 SŒŒu; v��˚3 such that .a � sx; b C sh; c C su/ D e2.a
0; b0; c0/.

This implies .a; b; c/ D d2.s; a
0; b0; c0/, which shows the assertion.

Hence (5.2) is exact, thus ŒK.m/� D 2ŒR� C ŒC � holds. Since C D kŒŒx; u��=.g.x; 0//

and g.x; 0/ ¤ 0, we have dimR C � 1 and so the result follows.

Now to show that T F is an MM R-module for any maximal flag F , we need to first

understand the case when f is irreducible. The following extends [10, Proposition 4.3] by

removing field restrictions.

Proposition 5.9. (1) Cl.R/ is generated by Œ.u; f1/�; : : : ; Œ.u; fn/�.

(2) Assume that f is irreducible (i.e. n D 1). Then

(a) R is factorial;

(b) any modifying R-module is free.
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40 Iyama and Wemyss, Reduction and MMAs

Proof. (1) By dévissage, R[, m and the factors S=.f1/; : : : ; S=.ft / of the minimal

primes generate K0.modR[/. There are isomorphisms

K0.modR[/=hŒR[�i ' K0.CMR[/
K
' K0.CMR/ ' K0.modR/=hŒR�i;

thus K0.modR/ is generated by ŒR�, ŒK.m/� and ŒK.R[=.fi //� D Œ.u; fi /� for 1 � i � n.

Now by [5, VII.4.7], there is an isomorphism

Z˚ Cl.R/ D K0.modR/=hŒX� j dimR X � 1i;

which implies

Cl.R/ D K0.modR/=hŒR�; ŒX� j dimR X � 1i:

Thus by Lemma 5.8, it follows that Cl.R/ is generated by Œ.u; fi /� for 1 � i � n.

(2) R is factorial by (1), since .u; f / Š R. Assertion (b) follows from factoriality of R

and Dao’s result [9, Theorem 3.1 (1)] (see also [16, Theorem 2.10]).

Remark 5.10. It is possible to give another proof of Proposition 5.9 (2) (b) by appealing

instead to a result by Huneke–Wiegand [13, Theorem 3.7]. If f is irreducible then R[ is a

one-dimensional domain, so necessarily it is an isolated singularity and thus CMR[ is Hom-

finite. By Knörrer periodicity, CMR is Hom-finite, so R is an isolated singularity. Thus by

[16, Proposition 2.9 (2), (3)], to prove Proposition 5.9 (2) (b) it is enough to show that any

M 2 CMR[ satisfying Ext1
R[.M;M/ D 0 is free. Now we have

Ext1
R[.TrM;M �/ D HomR[.M

�Œ2�;M �Œ1�/

D HomR[.MŒ1�;M Œ2�/ D Ext1
R[.M;M/ D 0;

so the exact sequence [3]

0! Ext1
R[.TrM;M �/!M ˝R[ M � ! HomR[.M �;M �/! Ext2

R[.TrM;M �/! 0

shows that M ˝R[ M � 2 CMR[. Since R[ is a domain, M 2 CMR[ has constant rank.

Hence, since R[ is a hypersurface, Theorem 3.7 of [13] implies that M is free.

Corollary 5.11. (1) T ! is an MM generator of R for all ! 2 Sn.

(2) T ! is a CT R-module if and only if fi … .x; y/
2 for all i .

Proof. (1) By Propositions 5.7 and 5.9 (2) (b), every modifying object in .CMR/T! is

zero. Thus the assertion follows from Corollary 2.10.

(2) By Corollary 2.10, T ! is a CT R-module if and only if .CMR/T! D 0. By Proposi-

tion 5.7, this is equivalent to that fi … .x; y/
2 for all i .

We now calculate the mutations �i .T
!/ introduced in Section 4.

Lemma 5.12. For any decomposition f D abcd with a; b; c; d 2 S , we have an exact

sequence

0! .u; ab/
.1 c/
���! .u; b/˚ .u; abc/

.�c
1 /���! .u; bc/! 0:
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Iyama and Wemyss, Reduction and MMAs 41

Proof. Clearly the sequence is a complex, and the right map is surjective and the left

map is injective. We only have to show that the kernel of the right map is contained in the

image of the left map, or equivalently .uc; bc/ \ .u; abc/ � .uc; abc/. Any element in the

left-hand side can be written as ucp C bcq D ur C abcs for some p; q; r; s. It is enough to

show q 2 .u; a/. Since R D SŒŒu; v��=.f � uv/, we have an equality

ucp C bcq D ur C abcs C .abcd � uv/t

in SŒŒu; v�� for some p; q; r; s; t 2 SŒŒu; v��. Thus we have

bc.q � as � adt/ D u.r � vt � cp/:

Since SŒŒu; v�� is factorial and bc and u have no common factors, we have q�as�adt 2 .u/.

Thus q 2 .u; a/ as we required.

Lemma 5.13. With the assumptions in Lemma 5.12, assume that g 2 S is either a

factor of b or has abc as a factor.

(1) The map HomR..u; b/˚ .u; abc/; .u; g//
.1 c/�
����! HomR..u; ab/; .u; g// is surjective.

(2) The map HomR..u; g/; .u; b/˚ .u; abc//
�.c

1/��! HomR..u; g/; .u; bc// is surjective.

Proof. (1) Assume that g has abc as a factor. Using the isomorphisms in Lemma 5.4, the

map is given by
�
1
c

�
W .u; b�1g/˚ .u; .abc/�1g/ ! .u; .ab/�1g/, which is clearly surjective.

All other cases can be checked similarly.

Recall that T ! is given byR˚.u; f!.1//˚.u; f!.1/f!.2//˚� � �˚.u; f!.1/ � � � f!.n�1//.

Let si ´ .i i C 1/ be a permutation in Sn.

Lemma 5.14. The MM mutation �i .T
!/ of T ! with respect to the summand

.u; f!.1/ � � � f!.i// is T !si .

Proof. We only have to consider the case ! D id. By Lemma 5.12, the sequence

0! .u; f1 � � � fi /! .u; f1 � � � fi�1/˚ .u; f1 � � � fiC1/! .u; f1 � � � fi�1bfifiC1/! 0

is exact. By Lemma 5.13, the left map is a minimal left .addT !=.u; f1 � � � fi //-approximation.

Thus we have

�i .T
!/ D

� T !

.u; f1 � � � fi /

�
˚ .u; f1 � � � fi�1bfifiC1/ D T !si

as required.

We consider mutations at non-indecomposable summands later in Section 5.4.

Proof of Theorem 5.1. (2) It is shown in Corollary 5.11 (1) that T ! for any ! 2 Sn is

an MM generator of R. We need to show that there are no more. By Lemma 5.14, the MM

generators T ! for all ! 2 Sn form a finite connected component in MMGR. By Theorem 4.3,

they give all MM generators of R.
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42 Iyama and Wemyss, Reduction and MMAs

(1) Since dimR D 3, every modifying generator is a summand of an MM generator

[15, Corollary 4.18]. Hence (1) is immediate from (2).

(3) Since dimR D 3, if there exists a CT R-module, then CT R-modules are precisely

the MM generators of R (see [15, Proposition 5.11 (2)]). Thus the first assertion of (3) follows

from Corollary 5.11 (2), and the second assertion of (3) follows from (2).

Recall that the length `.w/ of an element w 2 Sn is the minimal number k for each

expression w D si1 : : : sik . The weak order on Sn is defined as follows: w � w0 if and only if

`.w0/ D `.w/C `.w�1w0/.

Theorem 5.15. With the setup as above, assume that R is an isolated singularity, or

equivalently .fi / ¤ .fj / as ideals of S for any i ¤ j .

(1) The map Sn ! MMGR, ! 7! T ! is bijective.

(2) The exchange graph EG.MMGR/ is isomorphic to the Hasse graph of the partially

ordered set Sn with respect to the weak order.

Proof. (1) By assumption, two subsets I and I 0 of ¹1; 2; : : : ; nº satisfy TI Š TI 0 if and

only if I D I 0. Thus two elements ! and !0 in Sn satisfy T ! Š T !
0

if and only if ! D !0.

(2) By Lemma 5.14, the edges in EG.MMGR/ connect ! and !si for any ! 2 Sn and

1 � i � n � 1. This is nothing but the Hasse graph of Sn.

Example 5.16. We give examples for n D 4.

(1) If .f1/ D .f2/ D .f3/ D .f4/, then EG.MMGR/ is the following:

1111

2

31

(2) If .f1/ D .f2/ D .f3/ ¤ .f4/, then EG.MMGR/ is the following:

1114

1

2

3
1141

1

2
1411

3

1
4111

2

3

(3) If .f1/ D .f2/ ¤ .f3/ D .f4/, then EG.MMGR/ is the following:

1331

2

1

1133

1

3

2
1313

3

1

3131
2
3311

1

3
3113

2

3
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(4) If .f1/ D .f2/, .f3/ and .f4/ are different, then EG.MMGR/ is the following:

3114

2

3

1314

1

3

3141
2

11341

2

3

1341

2

1

3411 3

1

11431

2

1431
1

4311 3

1413

3

1

4131

2

4113

3

2

(5) If .fi / ¤ .fj / for all i ¤ j , then EG.MMGR/ is the following:

3124
2

3

3214

3

1324

1

3

2314

1

3

3142

2

3241

2

1234
1

2

3

2134

2

3

1342

2

1

2341

1

2

3412
3

1

3421

1

1243
1

2

2143

2

1432

1

2431

1

4312
3

4321

1423

3

1

2413

3

1

4132

2

4231

2

4123

3
2

4213

3

There is a geometric interpretation of all these examples in terms of curves; for example

the following will be given a geometric interpretation in Example 5.39.

Example 5.17. Let n D 5. If .f1/ D .f2/ ¤ .f3/ D .f4/ D .f5/, then EG.MMGR/

is the following:
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44 Iyama and Wemyss, Reduction and MMAs

11333

4

3

1

2

31133

4

2

3

33113

3

1

4

33311

4

2

1

13133

4

1

3

31313

2

4

33131

3

1
13313

2

1

4

31331

3

2

13331

12

3

5.2. The class group of R. In this section we give a complete description of the class

group Cl.R/, which is independent of the base field k. This requires the following lemma. We

denote by Ch.R/ the Chow group of R (see, e.g., [22]).

Lemma 5.18. (1) There is an injective homomorphism Cl.R/! Ch.R/ sending

I 7!
X

htpD1

lengthAp
..R=I /p/Œp�:

(2) Let g; h 2 kŒŒx; y��, and suppose that gh divides f . Then

(a) Œ.u; g/�C Œ.u; h/� D Œ.u; gh/� in Cl.R/;

(b) ..u; g/˝R .u; h//
�� Š .u; gh/.

(3) If f
c1

1 � � � f
ct

t with each ci � 0 is contained in the principal ideal .u/ of R, then ci � ai
for all i .

Proof. (1) See, e.g., [22, §1.2].

(2) By Lemma 5.3, .u; gh/ is a CMR-module of rank one. It follows that .u; gh/2Cl.R/

and hence by (1) we only have to show that

lengthAp
..R=.u; g//p/C lengthAp

..R=.u; h//p/ D lengthAp
..R=.u; gh//p/

for all height one primes p. We know that

R=.u; g/ D kŒŒx; y; v��=.g/;

R=.u; h/ D kŒŒx; y; v��=.h/;

R=.u; gh/ D kŒŒx; y; v��=.gh/:

Since we have an exact sequence

0! kŒŒx; y; v��=.g/
h
�! kŒŒx; y; v��=.gh/ �! kŒŒx; y; v��=.h/! 0;

the equality in assertion (a) holds by localizing at p.

Assertion (b) follows immediately from (a).

(3) The element f
c1

1 � � � f
ct

t is zero in R=.u; v/ D kŒŒx; y��=.f /. Thus f
c1

1 � � � f
ct

t must

be a multiple of f .
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This allows us to describe the class group Cl.R/.

Theorem 5.19. As above, R ´ kŒŒx; y; u; v��=.f � uv/ and we write the decomposi-

tion into irreducibles f D f
a1

1 � � � f
at

t with ai � 1 and .fi / ¤ .fj / for all i ¤ j . Then

Cl.R/ Š
Zt

h.a1; : : : ; at /i
;

where Œ.u; fi /� corresponds to the element .0; : : : ; 0; 1; 0; : : : ; 0/.

Proof. LetMi´ .u; fi /, then it follows from Proposition 5.9 (1) that ŒMi � for 1� i � n

generate the class group. Moreover, by Lemma 5.18 (2) (a), the relation
Pt
iD1 ai ŒMi � D 0 is

satisfied.

We need to show that
Pt
iD1 bi ŒMi � D 0 implies that .b1; : : : ; bt / is an integer multiple

of .a1; : : : ; at /. To prove this, we can without loss of generality assume that bi � 0 for all i ,

by if necessary adding a multiple of .a1; : : : ; at / to .b1; : : : ; bt /. Throughout, we let I be the

ideal of R given by

I ´ .u; f1/
b1 � � � .u; ft /

bt :

(a) We claim that, if bi D 0 for some i , then .b1; : : : ; bt / D .0; : : : ; 0/. Assume that

bi � 0 for all i , and bi D 0 for some i . Then I� is a free R-module since

ŒI�� D �

tX

iD1

bi ŒMi � D 0:

We identify I� with the fractional ideal

I� D ¹x 2 Q j xI � Rº

in the quotient field Q of R. Then I� is generated by an element in Q. Since 1 2 I�, there

exists r 2 R such that I� D R.1=r/. Then we have I � Rr , which implies

.u; f1/
b1 � � � .u; ft /

bt � .r; f � uv/

as ideals of kŒŒx; y; u; v��. In particular, ub for b ´ b1 C � � � C bt and F ´ f
b1

1 � � � f
bt

t

are contained in .r; f � uv/. Factoring by u � fi and v � f=fi , we have that f bi and F are

contained in the principal ideal of kŒŒx; y�� generated by s ´ r juDfi ; vDf=fi
. Since f bi and

F do not have a common factor by the assumption bi D 0, we have that s is a unit in kŒŒx; y��

and so it must have a constant term. Hence r must also have a constant term, thus r is a unit in

kŒŒx; y; u; v��, and so I� D R.

Now let g ´
Qt
iD1 f

max¹ai �bi ;0º
i . Then .g=u/I � R since all generators of I ex-

cept F are multiples of u, and moreover gF is a multiple of f , which equals uv. Hence

g=u 2 I� D R holds. Thus g is contained in the ideal .u/ of R, and by Lemma 5.18 (3) we

have .b1; : : : ; bt / D .0; : : : ; 0/. Thus the claim (a) holds.

(b) We now prove the theorem. Without loss of generality, we assume that b1=a1 � bi=ai
for all i . Then

.c1; : : : ; ct /´ b1.a1; : : : ; at / � a1.b1; : : : ; bt /
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46 Iyama and Wemyss, Reduction and MMAs

satisfies
Pt
iD1 ci ŒMi � D 0, c1 D 0 and ci � 0 for all i . Applying (a) to .c1; : : : ; ct /, we have

ci D 0 for all i , and so .b1; : : : ; bt / D
b1

a1
.a1; : : : ; at /, which implies b1

a1
D bi

ai
for all i . Now if

b1

a1
is an integer we are done, otherwise by subtracting an integer multiple of .a1; : : : ; at / from

.b1; : : : ; bt /, we can assume 0 � b1 < a1, from which necessarily 0 � bi < ai holds for all i .

But then using Lemma 5.18 (2) (b) repeatedly, we see that

I�� Š .u; f
b1

1 � � � f
bt

t /:

Since u does not belong to .f
b1

1 � � � f
bt

t /, the R-module I�� is non-free except the case

.b1; : : : ; bt / D .0; : : : ; 0/, by Lemma 5.18 (3).

5.3. MM modules. We keep the notations from previous sections, but we now set

k D C. This assumption is necessary in the proof of Corollary 5.21 (2) and Lemma 5.23.

The purpose of this subsection is to prove the following theorem, which extends Theorem 5.1

to cover non-generators.

Theorem 5.20. Let R D CŒŒx; y; u; v��=.f .x; y/ � uv/ as above, then the basic MM

R-modules are precisely .I ˝R T
!/�� for some ! 2 Sn and some I 2 Cl.R/.

Together with the description of the class group from Theorem 5.19, this gives a full

description of all MM R-modules. Before we prove Theorem 5.20, we give the following

surprising corollary.

Corollary 5.21. Let R D CŒŒx; y; u; v��=.f .x; y/ � uv/ as above.

(1) There are only finitely many algebras (up to Morita equivalence) in the derived equiva-

lence class containing the MMAs of R.

(2) There are only finitely many algebras (up to Morita equivalence) in the derived equiva-

lence class containing the Q-factorial terminalizations of SpecR.

Proof. (1) Since R is a normal three-dimensional domain, MMAs are closed under de-

rived equivalences [15, Theorem 4.8]. Thus we only have to show that there are only finitely

many MMAs up to Morita equivalence. By Theorem 5.20 every MMA of R is Morita equiva-

lent to EndR..I ˝R T
!/��/ for some ! 2 Sn and some I 2 Cl.R/. Since

EndR..I ˝R T
!/��/ Š EndR.T

!/;

there are at most nŠ possible algebras. Thus the result follows.

(2) By [16, Theorem 1.9] every Q-factorial terminalization is derived equivalent to an

MMA. Thus the assertion follows by (1).

The strategy to prove Theorem 5.20 is to use the following easy fact.

Lemma 5.22. Let M 2 refR be a modifying R-module. If M has a direct summand I

whose rank is 1, then M Š .I ˝R N/
�� for some modifying generator N of R.

Proof. Let N ´ HomR.I;M/. Then clearly N is a generator of R and we have

M Š .I ˝R N/
��. Since EndR.N / Š EndR.M/, we have that N is a modifying generator

of R.
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Iyama and Wemyss, Reduction and MMAs 47

On the other hand, we require the following lemma.

Lemma 5.23. Suppose that k D C. Then for any modifying R-module M , we can

choose a hyperplane section t satisfying the following two conditions.

(1) R=.t/ is an Am singularity, where m is the degree of the lowest term of f minus one.

(2) t acts on E ´ Ext1R.M;M/ as a non-zerodivisor.

Proof. Since R is a cAm singularity (see, e.g., [7, Proposition 6.1 (e)]), a generic hyper-

plane section t satisfies the condition (1). If t acts on E as a zero divisor, then t is contained in

an associated prime ideal of E. But flR E D 0 by Lemma 1.5, so any associated prime ideal of

E is necessarily non-maximal. Since E has only finitely many associated prime ideals, we can

find a hyperplane t which is not contained in any associated prime ideal of E, and furthermore

satisfies (1).

This gives the following result, which generalizes [24, Example A1] and [10, Proposi-

tion 4.3].

Proposition 5.24. Assume k D C. Then any indecomposable modifying R-module has

rank 1.

Proof. Suppose that M 2 refR is indecomposable and satisfies EndR.M/ 2 CMR.

By Lemma 1.5 we have flR Ext1R.M;M/ D 0. By Lemma 5.23 we can pick t 2 R such that

R1´ R=.t/ Š kŒŒx; y; z��=.x2 C y2 C zm/;

and t acts on Ext1R.M;M/ as a non-zerodivisor. Denote ƒ ´ EndR.M/. Then applying

HomR.M;�/ to the exact sequence

0!M
t
�!M !M=tM ! 0

yields

0! ƒ
t
�! ƒ! HomR.M;M=tM/! Ext1R.M;M/

t
�! Ext1R.M;M/:

Since t acts on Ext1R.M;M/ as a non-zerodivisor, we have

ƒ=tƒ Š HomR.M;M=tM/ Š EndR.M=tM/ D EndR1
.M=tM/:

In particular, EndR1
.M=tM/ 2 CMR1, so by [4, Proposition 4.1] we have

ƒ=tƒ Š EndR1
.M=tM/ Š EndR1

..M=tM/��/

with .M=tM/�� 2 CMR1. Since M is indecomposable, we have that ƒ D EndR.M/ is

a local ring. Thus ƒ=tƒ Š EndR1
..M=tM/��/ is also a local ring, and so .M=tM/�� is

indecomposable. Since R1 is a simple surface singularity of type Am�1, it is well known (e.g.,

[27]) that all indecomposable CM R1-modules have rank one. Thus we have

1 D rkR1
..M=tM/��/ D rkR1

.M=tM/ D rkR.M/:

Proof of Theorem 5.20. It follows immediately from Theorem 5.1, Lemma 5.22 and

Proposition 5.24.
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48 Iyama and Wemyss, Reduction and MMAs

5.4. General MM mutation. We once again work over a general field k. In order to

extend Lemma 5.14 and describe mutation for non-maximal flags, it is combinatorially useful,

given some (possibly non-maximal) flag F D .I1; : : : ; Im/ in the set ¹1; 2; : : : ; nº, to assign

to F the following picture consisting of m curves:

P .F /´ � � �
C1 C2 Cm

g1 g2 g3 gm gmC1

where gj ´ fIj nIj �1
for all 1 � j � mC 1, with I0´ ; and ImC1´ ¹1; 2; : : : ; nº.

If we denote M0 ´ R and Mj ´ .u; fIj / D .u;
Qj
iD1 gi /, and set T F ´

Lm
jD0Mj ,

then T F is the modifying generator of R corresponding to F . The correspondence between

non-free summands of T F and curves of P .F / is as follows:

� � �

.u;fI1
/ .u;fI2

/ .u;fIm /

g1 g2 g3 gm gmC1

This gives us a combinatorial model to visualize mutation.

Remark 5.25. The combinatorial model P .F / has geometric meaning when k D C,

since it is precisely the fibre above the origin of a certain partial crepant resolution, denoted

XF in [16, §5]. In the more general case of an arbitrary field (i.e. in the setting above), we do

not know whether the derived equivalence with a geometric space holds, but it turns out that

the combinatorial model is still useful.

Example 5.26. Consider f D f1f2f3f4f5f6 with a flag F D .¹2; 3º ¨ ¹2; 3; 1º/.

Then F corresponds to

f2f3 f1 f4f5f6

The corresponding T F is R˚ .u; f2f3/˚ .u; f1f2f3/.

We are interested in mutations of non-free summands of T F , so since above such sum-

mands correspond to subsets of the curves, pick an arbitrary ; ¤ J � ¹1; : : : ; mº. Now write

J as a disjoint union of connected components:

Definition 5.27. A connected component of J is a collection of consecutive numbers

from i1 to i2 inside ¹1; : : : ; mº, each of which belongs to J , such that i1�1 … J and i2C1 … J .

We write J D
`t
jD1 Jj as a disjoint union of connected components.

Geometrically, if say m D 6 and J ´ ¹2; 3; 5º then we are simply bunching the curves

corresponding to J into connected components as in the following picture:

g1 g2 g3 g4 g5 g6 g7

J1´¹2;3º J2´¹5º
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The mutation operation acts on the set of modifying modules, hence on T F , and hence

on the set of P .F /. Below (see Theorem 5.31) we will justify the following intuitive geometric

picture:

g1 g2 g3 g4 g5 g6 g7

g1 g4 g3 g2 g6 g5 g7

��
J

where each connected component of J gets reflected. It is clear from this picture (and indeed

we prove it in Theorem 5.31) that ��
J .M/ DM if and only if J is componentwise symmetric.

Definition 5.28. For a given flag F D .I1; : : : ; Im/, associate the combinatorial picture

P .F / as above. For ; ¤ J � ¹1; : : : ; mº, we define the J -reflection of P .F / as follows:

the number of curves remains the same, but the new position of the gi is obtained from the

positions in P .F / by reflecting each connected component of J in the vertical axis.

We now build up to Theorem 5.31. To fix some convenient notation, we write

J D

ta

jD1

Jj

and denote by Jj D ¹lj ; lj C 1; : : : ; uj � 1; uj º the connected components of J , where lj
stands for the lower bound and uj stands for the upper bound.

Lemma 5.29. Fix flag F D .I1; : : : ; Im/, and choose ; ¤ J � ¹1; : : : ; mº. Write

J D
`t
jD1 Jj and consider one of the summands Mi of T F which lies in J . Say Mi lives in

the component Jj , then the following sequence is exact:

0!Mi

�
inc

Quj C1

aDiC1
ga

�
������������!Mlj �1 ˚Muj C1(5.3)
 Quj C1

aDiC1
ga

� inc

!

����������!
�
u;
�Qlj �1

bD1
gb
��Quj C1

aDiC1ga
��
! 0:

Proof. This is a special case of Lemma 5.12.

Lemma 5.30. The dual short exact sequence of (5.3), namely

0!
�
u;
�Qlj �1

bD1
gb
��Quj C1

aDiC1ga
���
!M �

lj �1 ˚M
�
uj C1 !M �

i ! 0;

is a minimal right add M
�

M�
J

-approximation of M �
i .

Proof. This is a special case of Lemma 5.13.

Theorem 5.31. Fix a flag F D .I1; : : : ; Im/, and associate to F the module T F and

the combinatorial picture P .F /, as before. Choose ; ¤ J � ¹1; : : : ; mº, then ��
J .T

F / is the

module corresponding to the J -reflection of P .F /.
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50 Iyama and Wemyss, Reduction and MMAs

Proof. Consider the first connected component J1. By Lemma 5.30 we know that Mu1

mutates to .u; .
Ql1�1
bD1

gb/gu1C1/
��, which is isomorphic to .u; .

Ql1�1
bD1

gb/gu1C1/.

Similarly, Mu1�1 mutates to .u; .
Ql1�1
bD1

gb/gu1C1gu1
/. Continuing, we see that Mu1�i

mutates to .u; .
Ql1�1
bD1

gb/gu1C1 � � �gu1�iC1/ for all 1 � i � u1 � l1. Since the combinatorial

picture is built by ordering the summands in increasing lengths of products, we see that in

the combinatorial picture, the component J1 has been reflected. The proof that the remaining

components are reflected is identical.

Example 5.32. As in Example 5.26, consider the case f D f1f2f3f4f5f6 with flag

F D .¹2; 3º ¨ ¹2; 3; 1º/. Then T F D R˚ .u; f2f3/˚ .u; f1f2f3/, which pictorially is

f2f3 f1 f4f5f6

Pick summand .u; f1f2f3/, then the mutation is given by

f2f3 f1 f4f5f6 f2f3 f4f5f6 f1

and so ��.T F / D R˚ .u; f2f3/˚ .u; f2f3f4f5f6/.

We now calculate the quiver of EndR.T
F /. For a given flag F D .I1; : : : ; Im/ we set

g1´ fI1
; gj ´ fIj =fIj �1

for 2 � j � m; gmC1´ f=fIm
:

Corollary 5.33. Given a flag F D .I1; : : : ; Im/, with notation as above the quiver of

EndR.T
F / is as follows:

m�2

TI1
TI2

��� TIm

R

inc
g2

inc
g3

inc
gm

inc
g1 g

mC1
u

u R TI1

g1

u

g2
u

inc

mD1

together with the possible addition of some loops, given by the following rules:

� Consider vertex R. If .g1; gmC1/ D .x; y/ in the ring kŒŒx; y��, add no loops at ver-

tex R. Hence suppose .g1; gmC1/ ¨ .x; y/. If there exists t 2 .x; y/ such that

.g1; gmC1; t / D .x; y/, add a loop labelled t at vertex R. If there exists no such t ,

add two loops labelled x and y at vertex R.

� Consider vertex TIi
. If .gi ; giC1/ D .x; y/ in the ring kŒŒx; y��, add no loops at ver-

tex TIi
. Hence suppose .gi ; giC1/ ¨ .x; y/. If there exists t 2 .x; y/ such that

.gi ; giC1; t / D .x; y/, add a loop labelled t at vertex TIi
. If there exists no such t ,

add two loops labelled x and y at vertex TIi
.

Proof. (1) Since HomR.R;R/ Š HomR.TIi
; TIi

/ Š R, we first must verify that at

each vertex we can see the elements u; v; x; y as cycles at that vertex. Certainly u is there (as
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it is the path followed anticlockwise around the circle), and certainly v is there (being the path

followed clockwise around the circle). It is possible to see cycles x and y at every vertex by

the rules for loops.

(2) Since HomR.R; TIi
/ Š TIi

, we must verify that we can see the generators of TIi
as

paths from vertex R to vertex TIi
. But this is clear, as

Qi
jD1 gj is the clockwise path, and u is

the anticlockwise path.

(3) As a module over the centre, the paths from vertex TIi
to vertex R are generated

by two paths from vertex TIi
to R, namely the one clockwise, which is

f
ufI

, and the one

anticlockwise, which is inclusion. Since HomR.TIi
; R/ Š .u; f

fI
/ by Lemma 5.4, clearly this

is isomorphic to paths from TIi
to R.

(4) The argument for paths from TIi
to TIj is identical to the argument in (3), using the

isomorphism in Lemma 5.4.

Remark 5.34. When k is algebraically closed of characteristic zero, we remark that

there are at least two other methods for computing the quiver of EndR.T
F /. One way would

be to use reconstruction on one-dimensional fibres à la GL.2;C/McKay Correspondence [25].

Another is to compute the quiver of EndR.T
F / in the one-dimensional setting, as in [7, Propo-

sition 4.10], and then use Knörrer periodicity. This last method only gives the quiver of the

stable endomorphism algebra, so more work would be needed.

5.5. Geometric corollaries. To apply Section 5.4 to geometry, in this subsection we

revert to the assumption that k D C. As remarked before in Remark 5.25, given a flag

F D .I1; : : : ; Im/ we can associate a scheme XF that gives a partial crepant resolution of

SpecR. The procedure is described in [16, §5.1]: first blowup the ideal .u; fI1
/ on SpecR

to obtain a space denoted XF1 . Then on XF1 blowup the ideal .u; fI2nI1
/ to obtain a space

XF2 . On XF2 blowup the ideal .u; fI3nI2
/ to obtain a space XF3 , and so on. Continuing in

this fashion we obtain a chain of projective birational morphisms

XFm ! XFm�1 ! � � � ! XF1 ! SpecR

and we define XF ´ XFm . The following was shown in [16, Theorem 5.2].

Theorem 5.35. XF is derived equivalent to EndR.T
F /, and the fibre above the origin

of the composition XF ! SpecR can be represented by the picture

(5.4)
g1 g2 g3

���
gm gmC1

where gj ´ fIj nIj �1
for all 1 � j � mC 1 with I0 ´ ; and ImC1 ´ ¹1; 2; : : : ; nº. The

dots in the above picture represent the possible points where the scheme XF is singular, where

the dot marked gi is a point which complete locally is given by CŒŒx; y; u; v��=.gi � uv/.

Combining this information together with Theorems 4.2 and 5.31, we can now produce

derived equivalences between partial crepant resolutions of SpecR, and also produce derived

autoequivalences.

Theorem 5.36. Every collection of curves above the origin in the partial resolution

XF ! SpecR determines a derived autoequivalence of XF .
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Proof. Pick a collection of curves ¹Cj j j 2 J º. For simplicity, we give the proof for

the case jJ j D 1, but the general situation is the same. Pick a curve C in XF , so locally the

fibre above the origin (5.4) is

gi�1 gi giC1 giC2

��� ���

NowXF is derived equivalent to EndR.T
F / by Theorem 5.35, and by Theorem 5.31, mutating

the summand .u; fIi
/

gi�1 gi giC1 giC2

��� ���
gi�1 giC1 gi giC2

��� ���

gives us a derived equivalence between EndR.T
F / and EndR.T

G /, where G is the flag as-

sociated with the reflection. Since XG is derived equivalent to EndR.T
G / by Theorem 5.35,

composing equivalences it follows that XF is derived equivalent to XG . If gi D giC1 then

XF D XG and so this is our derived autoequivalence of XF . Otherwise gi ¤ giC1, and so in

this case reflecting again

gi�1 giC1 gi giC2

��� ���
gi�1 gi giC1 giC2

��� ���

gives a derived equivalence between XG and XF . Composing the chain of equivalences

Db.cohXF /! Db.cohXG /! Db.cohXF / is then our desired autoequivalence.

Now we note that even if two partial crepant resolutions of SpecR both contain the same

number of curves above the origin, they need not be derived equivalent:

Example 5.37. In the case f D xxy, the crepant partial resolutions with one curve are

x xy xy x y x2 x2 y

X ¹1º X ¹1;3º X ¹3º X ¹1;2º

The two spaces X ¹1º and X ¹1;3º are derived equivalent via mutation, and the two spaces X ¹3º

and X ¹1;2º are also derived equivalent via mutation. However they are not all derived equiva-

lent, since if Db.cohX ¹1º/ � Db.cohX ¹3º/ then Dsg.X
¹1º/ � Dsg.X

¹3º/, which by [16, The-

orem 3.2 (2)] gives

CM CŒŒu; v; x; y��=.uv � x2/ � CM CŒŒu; v; x; y��=.uv � xy/:

But this is impossible, since (for example) the left-hand side has infinite dimensional Hom-

spaces, whereas in the right-hand side all Hom spaces are finite dimensional.

The following is immediate from the theory of mutation:

Corollary 5.38. In the case k D C, suppose F D .I1; : : : ; Im/ and G D .J1; : : : ; Jm0/

are flags. Then XF and XG are derived equivalent ifm D m0 and the singularities of XF can

be permuted to the singularities of XG .
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Proof. Since Db.XF / ' Db.EndR.T
F // and Db.XG / ' Db.EndR.T

G //, the result

follows if we establish that EndR.T
F / and EndR.T

G / are derived equivalent. Now mutation

always gives derived equivalences (see Theorem 4.2), and mutation corresponds to permuting

the order of the singularities (see Theorem 5.31). Hence if the singularities of XF can be

permuted to the singularities of XG , certainly there is a finite sequence of mutations which

transforms P .F / into P .G /, hence EndR.T
F / and EndR.T

G / are derived equivalent.

Example 5.39. Let f D f 21 f
3
3 D f1f1f3f3f3. Then the exchange graph (removing

loops) for maximal modifying generators is the following, which has already been observed in

Example 5.17:

f1 f1 f3 f3 f3 f3 f1 f1 f3 f3 f3 f3 f1 f1 f3 f3 f3 f3 f1 f1

f1 f3 f1 f3 f3 f3 f1 f3 f1 f3 f3 f3 f1 f3 f1

f1 f3 f3 f1 f3 f3 f1 f3 f3 f1

f1 f3 f3 f3 f1

where for clarity we have illustrated only those that are connected via a mutation by an inde-

composable summand. If we include mutations by more than one summand, there are many

more connecting lines.

Remark 5.40. Geometers will recognize the above picture, since when k D C it cor-

responds exactly to the flops of (single) curves on the Q-factorial terminalizations of SpecR.

This is addressed in detail in [26].

By Example 5.37 and Corollary 5.38, for general partial resolutions it is clear that very

rarely will T F1 and T F2 be linked by mutations. However, if both T F1 and T F2 have the

maximal number of summands (i.e. P .F1/ and P .F2/ have the maximal number of curves),

the homological algebra is much better behaved. We already know that the exchange graph

for MM generators is connected (Section 5.1). Combining this with Corollary 5.38 in the case

k D C proves Corollary 1.16 in the introduction, namely:

Corollary 5.41. All Q-factorial terminalizations of SpecR are derived equivalent.
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