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ABSTRACT

A simple and effective procedure for the reduction of
truncation error in planar near-field to far-field transfor-
mations is presented. The starting point is the consider-
ation that the actual scan plane truncation implies a re-
liability of the reconstructed plane wave spectrum of the
field radiated by the antenna only within a certain region
inside the visible range. Then, the truncation error is re-
duced by a Maxwellian continuation of the reliable por-
tion of the spectrum: after back propagating the measured
field to the antenna plane, a condition of spatial concen-
tration of the primary field is exploited to define a conver-
gent iterative process which is also stable against mod-
erately noisy data. Far-field patterns reconstructed from
both simulated and measured near-field data demonstrate
the effectiveness of the proposed procedure.

1. INTRODUCTION

Planar near-field measurements constitute a well known
and widely used technique for characterizing the radia-
tion from antennas [1, 2]. However, the finite size of the
scanning area introduces an error in the reconstructed far-
field pattern, denoted in literature as truncation error. Due
to this error, the reconstructed radiation pattern is reli-
able only within a certain angular region. With a phys-
ical equivalence, the truncation error may be attributed
to the presence of a perfectly absorbing (”black”) screen
positioned around the scan plane. Thus, the angular re-
gion of reliability of the reconstructed pattern is bounded
by the rays running from the edge of the antenna aper-
ture through the boundary of the scan area [3]. This im-
poses a minimum size of the scan plane for a desired an-
gular region of coverage and a given separation distance
between the antenna under test (AUT) and the measure-
ment plane (a minimum distance is necessary to reduce
multiple reflections). However, long measurement times
and complex facilities are required to cover large scan ar-
eas. A method allowing one to reduce truncation errors
without requiring additional measurements would signif-
icantly speed up and simplify the measurement process.
Truncation effects can be partially mitigated by apply-
ing to the near-field scan data proper window functions

having a smooth taper at the edges of the scan plane
[4, 5, 6]. However, only narrow regions of the far-field
pattern can be corrected using this technique. An alter-
native approach consists in employing near-field data to
determine equivalent magnetic currents on the AUT aper-
ture through the solution of an EFIE [7] or an optimiza-
tion technique [8]. However, these methods may become
highly time-consuming for electrically large apertures. A
different strategy based on a priori information on the
AUT geometry, exploits a nonreduntant representation of
the radiated field to estimate the near-field data falling
outside the scanning area [9]. A procedure based on
the method of minimum extension to extrapolate antenna
measurements data when the current distribution can be
represented as a system of point sources and line sources
has also been presented [10]. A key point emerging from
most of the cited works is that the utilization of available
a priori information is essential to define an efficient pat-
tern reconstruction process.
The purpose of this paper is to present a new simple and
effective procedure for the reduction of truncation error
in plane-rectangular near-field measurements of aperture
antennas.
The basic idea of the proposed algorithm is to extrapolate
the radiated pattern outside the reliable region exploiting
the hypothesis that, on the AUT plane, the electric field is
mostly concentrated inside the antenna aperture. To this
end, the simple relationship existing between the far-field
pattern and the visible part of the Plane Wave Spectrum
(PWS) of the aperture field [11] is exploited to argue that
the aperture PWS reconstructed from truncated measure-
ment is reliable only inside a certain spectral region. As
a consequence, the problem of pattern reconstruction is
restated in terms of extrapolating the remaining part of
the visible region of the PWS from its reliable portion. A
mathematically equivalent problem has previously been
investigated in the framework of image superresolution,
aiming at increasing the resolution of images [12]. Any a
priori information which imposes appropriate constraints
on the function to be restored is necessary to avoid ill-
posedness of the problem. In the case of image process-
ing, examples of possible constraints are so-called non-
negativity, level and edge preserving constraints. Further-
more, for finite objects, a space constraint resulting from
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their known physical extension can be used. This condi-
tion can be assumed also in the case of near-field planar
measurements of aperture antennas after back propagat-
ing the field to the AUT plane, as long as the field can
be assumed concentrated on the antenna aperture. Un-
der this hypothesis, a rigorous spectrum extrapolation is
based on the analytic continuation of entire spectral func-
tions; it is indeed well known that a function with finite
spatial extent possesses a spectrum which is an entire
function, i.e. an analytic function on the entire complex
plane. The extrapolation process is however delicate in
presence of noise. Indeed, the conventional procedure
of analytic continuation based on calculating local Taylor
converging series can not be applied to measured data,
since the derives needed are very noise sensitive; fur-
thermore, the Taylor series must be truncated in practice,
thus introducing a further source of error. An alternative
approach consists in expanding the given portion of the
spectrum in terms of prolate spheroidal wave functions
[13], to obtain a representation valid everywhere [14].
However, also this method is plagued by noise amplifi-
cation [15].
In this paper, the spectral extrapolation is performed by
utilizing the general method of alternating orthogonal
projections. Such a procedure was first proposed by Ger-
chberg [12] in the framework of image resolution en-
hancement, and further investigated by Papoulis [16]. It
has been demonstrated that, in the absence of noise, the
iterative algorithm converges in norm to the correct solu-
tion, and it is also quite robust against moderately noisy
data. As a consequence, this method can provide also a
good estimate of the wide angle lobes of the far-field pat-
tern, when applied to the problem of pattern reconstruc-
tion.
Since the proposed technique relies on the assumption
that the primary field is concentrated inside the AUT
aperture, it is particularly suitable to the analysis of ra-
diation of apertures in large ground planes; however, nu-
merical results based on simulated as well as measured
near-field data have shown that it can provide a signifi-
cant reduction of truncation error for a much wider class
of aperture antennas.
It is worth noting that the method described in this paper
also provides an accurate representation of the aperture
field distribution. In fact, a similar iterative procedure
has already been applied to determine, from far-field data,
surface distortions in large reflector antennas [17] and the
individual element excitations of planar arrays for pattern
synthesis [18] or array antenna diagnosis and calibration
[19].
This contribution is organized as follows: first, the math-
ematical formulation of the method of alternating orthog-
onal projections is briefly summarized in Section 2; then,
its application to the problem of pattern reconstruction is
described in Section 3. Numerical results are presented
in Section 4. Finally, conclusions are drawn in Section 5.

2. THE METHOD OF ALTERNATING ORTHOG-
ONAL PROJECTIONS

The method of alternating orthogonal projections [20] is
a general iterative algorithm that can be used to effec-
tively reconstruct a partially known signal starting from
the available data and other prior knowledge. The math-
ematical formulation of the method is summarized in the
following.
Consider a Hilbert space H with elements f, p, q. Let P
be any closed linear subspace of H and Q its orthogonal
complement, that is the set containing all the elements of
H which are orthogonal to every element in P . Accord-
ing to the projection theorem, every f ∈ H possesses a
unique decomposition

f = p + q (1)

in which p ∈ P and q ∈ Q. The linear operators P
and Q are then introduced to define the projections of a
function f onto P and Q, respectively, i.e.

p = Pf ; (2a)
q = Qf = (f − Pf) = (1− P )f. (2b)

Now, assume that f belongs to a closed linear subspace
P1, and that only its projection onto another closed lin-
ear subspace P2, p2 = P2f , is available. Then, it can
be demonstrated [20] that f is uniquely determined by
p2 if and only if the two sets P1 and Q2 have empty
intersection. In that case, in the absence of noise, there
exists an effective recursive algorithm for the recovery of
f employing only the operations of projection onto P1

and Q2 Indeed, the condition f ∈ P1 implies P1f = f ,
hence, the following relationship is readily derived

p2 = P2f = P2P1f = (1−Q2)P1f = f−Q2P1f. (3)

Starting from there, the following sequence is generated

fk+1 = p2 + Q2P1f
k. (4)

It can be demonstrated that the sequence {fk} converges
to f in norm, and that the convergence is strictly mono-
tonic [20]. Furthermore, under proper conditions on the
two subsets P1 and P2, this iterative reconstruction al-
gorithm can also be shown to be stable against moder-
ately noisy data [20]. Equation (4) represents therefore
the step of an effective iterative procedure for retrieving
the unknown function f .

3. APPLICATION TO PATTERN RECONSTRUC-
TION FROM TRUNCATED MEASUREMENTS

It is well known that the following simple relationship
exists between the far-field pattern of an antenna and the
Fourier-type PWS f(kx, ky) of the aperture field [11]

E(r, θ, φ) =
je−jkr

r
k cos θ f(k sin θ cos φ, k sin θ sin φ)

(5)
where k is the wavenumber and an ejωt time dependence
has been assumed. If the far-field pattern is derived from



Figure 1. Geometry for the measurement setup and rel-
evant angular reliable region for the reconstructed far-
field pattern.

truncated planar near-field data, it can be assumed reli-
able only within the angular region defined by the rays
running from the edge of the aperture through the bound-
ary of the scan area [3] (Fig. 1). After defining the reliable
angular region of the pattern on the basis of the AUT and
scan plane geometry, the relationship (5) allows one to
readily identify a reliable region of the PWS obtained by
Fourier transforming the truncated spatial domain mea-
surements. For instance, in the frequent case in which
both the scan area and the AUT have a rectangular pro-
file, centered with respect to the z axis (Fig. 1), such a
spectral region is defined by the following relationship
{
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(6)
in which θx and θy are the reliable angles in the principal
planes. These angles are defined by

θx =
Lx −Dx

2d
; θy =

Ly −Dy

2d
(7)

where Dx, Dy and Lx, Ly are the dimensions of the AUT
and of the scan plane along x and y, respectively, and d is
the distance between the AUT and the scan plane. Equa-
tion (6) defines a spectral region contained within two
ellypses, as shown in Fig. 2. After performing a probe
correction in the spectral domain, like in [21], the spec-
trum is back propagated to the AUT plane; this step is
readily performed through a near-field to near-field trans-
formation [2]. Then, the problem of pattern reconstruc-
tion is rephrased in terms of extrapolation of the spec-
trum of a space-limited field and solved by applying the
Gerchberg-Papoulis algorithm [12, 16], which constitutes
a special implementation of the method of alternating or-
thogonal projections.
With respect to the notation introduced in the previous
section, the subsets P1 can be identified with the sub-
sets comprising all field distributions which vanish out-
side the antenna aperture, and P2 with the subset com-
prising all functions whose spectrum is zero outside the
reliable spectral region. Accordingly, p2 corresponds to

Figure 2. Reliable region of the Fourier aperture PWS for
the measurement setup shown in Fig. 1 (yellow area).

the reliable part of the spectrum. Hence, following the
algorithm described in the previous section, the iterative
procedure consists of the following steps:
1. the spectrum is inverse Fourier transformed into the
space domain to yield an estimate of the field distribution
on the AUT plane;
2. the field distribution is projected onto the set P1, by
setting all the samples outside the antenna aperture to
zero;
3. thus modified, the field distribution is Fourier trans-
formed back to the spectral domain ;
4. the generated spectrum is projected onto the set Q2 by
setting to zero all the samples falling inside the reliable
region;
5. the resulting pattern is added to the known projection
p2, so that the previous values are restored where the orig-
inal spectrum is reliable.
These steps are iteratively applied until a proper conver-
gence criterion (based on the estimated object energy out-
side the assumed extent of the aperture field or the dif-
ference function energy between the estimated and the
true spectrum over the range of the known spectrum) is
reached.
To sum up, the first step of the proposed procedure con-
sists in deriving the PWS of the aperture field on the AUT
plane aperture from the truncated measurements, i.e.

f0(kx, ky) = F{ES(x, y)uS(x, y)}ejkzd (8)

where ES is the scan plane tangential field, F is the
Fourier transform operator, and uS(x, y) is a function
equal to 1 for (x, y) belonging to the scan area and equal
to 0 elsewhere. In (8), probe correction has been ne-
glected for the sake of simplicity. Then, the first iteration
of the algorithm can be formulated as follows

p1(x, y) = F−1{f0(kx, ky)}u(x, y) (9a)
q2(kx, ky) = F{p1(x, y)} [1− UR(kx, ky)] (9b)

f(kx, ky) = f0(kx, ky)UR(kx, ky) + q2(kx, ky). (9c)

where u(x, y) is a function equal to 1 inside the AUT
aperture area and to 0 elsewhere, and UR(kx, ky) is equal
to 1 inside the reliable region and to 0 elsewhere.



The generic iteration is then

fk+1(kx, ky) = f0(kx, ky)UR(kx, ky)+

F{F−1{fk(kx, ky)}u(x, y)} [1− UR(kx, ky)]
(10)

This procedure converges to the true solution in the sense
that the energy of the error spectrum, given by the differ-
ence between the correct spectrum and the reconstructed
one, decreases monotonically for an increasing number
of iterations. This can be explained as follows. The er-
ror spectrum is zero over the region in which the correct
spectrum is known; as a consequence, its inverse Fourier
transform has an infinite extent. This means that the spa-
tial counterpart of the spectral error is distributed all over
the infinite aperture plane. By setting to zero all the val-
ues outside the known extent of the true aperture, the al-
gorithm will therefore reduce the energy of the spatial
error, and, by Parseval’s theorem [22], also the energy of
the error spectrum. The error function so corrected has a
spectral counterpart distributed all over the spectral plane.
Thus, the further spectral manipulation, with substitution
of zero spectral error in the reliable region, implies a fur-
ther reduction of the error energy. Thus, at each iteration,
the error energy is reduced twice. However, the amount
of error energy reduction per iteration decreases by in-
creasing the number of iterations.
The construction holds under the assumption that on the
aperture plane the field distribution is zero outside the
AUT boundary. This condition is rigorously satisfied in
the presence of an infinite ground plane, while for finite
apertures the presence of diffracted fields gives a min-
imum amount of energy outside the aperture. In these
cases, a more general constraint, taking into account the
expected behavior of the diffracted field, could be applied
to increase the effectiveness of the method [23]. How-
ever, it has been found that an early termination of the
iterations can yield a useful extrapolation of the spectrum
of interest, provided that the energy of the unknown field
distribution outside the assumed spatial extent is suffi-
ciently small. This result has been also theoretically jus-
tified by Papoulis [16]. In practice, better results are ob-
tained using in the procedure an equivalent aperture ex-
tending slightly beyond the AUT boundaries, to take into
account the presence of diffracted fields, even if this will
in general slow down the convergence of the algorithm.
The algorithm is also subject to other sources of errors,
such as discretization, noise, distortion and computer
roundoff. These issues have been studied in [12] and [16]
and have been shown to be a relatively minor problem. In
particular, noise and distortion may to a certain extent be
removed from the measured spectrum data on the basis
that they are generally not capable of being continued to
yield a finite object of a given extent.
The resulting procedure is very simple, only requiring the
computation of Fourier transforms, which can be made
quite rapid by the use of Fast Fourier Transform tech-
niques [24]. As a matter of fact, the spectrum recon-
structed from near-field data and back propagated to the
AUT plane is typically restricted to the visible region.
Hence, in practical implementation of the proposed al-
gorithm, the spectrum is extended by zero filling before
starting the iterative procedure. This step allows the it-

(a)

(b)

Figure 3. Comparison between the pattern obtained by
the conventional near-field to far-field transformation of
truncated simulated data and pattern obtained by apply-
ing the proposed procedure. The boundaries of the re-
liable region are shown with vertical dashed lines. a)
uniform aperture, φ = 0◦ plane. b) electric dipole array,
φ = 0◦ plane.

erative procedure result in a valid estimate also of the
evanescent components of the PWS; such components,
while negligible on the scan plane, are necessary to cor-
rectly represent the aperture field distribution.
The method of alternating orthogonal projection could in
principle be directly applied to extrapolate the near-field
data, by exploiting the condition that on the measurement
plane the spectrum is limited to the visible region. How-
ever, preliminary investigations conducted on simulated
data have shown a much slower convergence as compared
to the proposed procedure; indeed, such an alternative ap-
proach does not take advantage of the a priori informa-
tion on the antenna geometry and position. Furthermore,
in practical cases the necessity of probe correcting the
measured data makes it preferable performing the extrap-
olation process in the spectral domain.



4. NUMERICAL RESULTS

The proposed procedure has first been validated through
the application to noiseless simulated near-field data.
The first case is a 3 m× 3m square aperture uniformly
illuminated with a x−polarized electric field at the fre-
quency of 1.307 GHz, and thus a wavelength of about
0.23 m. 35 × 35 near-field samples separated by a half
wavelength distance are collected in a plane at a distance
of 5λ from the antenna aperture. Thus, the scan plane
dimensions are Lx = Ly ' 4 m, corresponding to the
reliability angles θx = θy ' 24◦. In Fig. 3(a), the am-
plitude of the co-polar component of the radiated field
(according to Ludwig’s third definition [25]) obtained by
directly applying a near-field to far-field transformation
to this truncated set of data is compared with the results
obtained after 25 iterations of the proposed iterative tech-
nique; the theoretical pattern is also shown as a reference.
It is apparent that a very good estimate of the pattern is
obtained also for the wide angle lobes. It is wort noting
that the fact that the near-field data are noiseless does not
imply that the part of the spectrum which is assumed reli-
able is error free. Indeed, the scan plane truncation causes
some limited errors also inside the so called reliable re-
gion [3]. As a consequence, the good results obtained for
this first configuration testify the validity of the proposed
procedure when applied to moderately noisy data.

As a second test case, a 12 × 12 element array of x-
polarized half-wavelength electric dipoles has been con-
sidered. The operating frequency is 1.51 GHz, corre-
sponding to a wavelength of about 0.2 m. The distances
between the elements along x and y are dx = dy = 0.15
m; thus, the dimensions of the array are Dx = Dy = 1.8
m. 31 × 31 near-field samples separated by a half wave-
length distance are collected in a plane at a distance of 5λ
from the antenna aperture. Thus, the scan plane dimen-
sions are Lx = Ly ' 3 m, corresponding to the reliabil-
ity angles θx = θy ' 33◦. The results obtained for to the
co-polar component of the radiated field in the φ = 0◦
plane by applying 10 iterations of the proposed proce-
dure are shown in Fig. 3(b). Although in this case, differ-
ently from the previous configuration, the electric field on
the AUT plane is not zero outside the AUT boundaries,
numerical results show that the proposed procedure can
anyway provide a useful correction to the far-field pat-
tern with a quite small number of iterations. However, it
must be noted that the improvement is less significant in
the orthogonal plane.
The iterative algorithm has been also applied to measured
near-field data and some results relevant to a x-polarized
rectangular horn antenna are reported in Fig. 4. The an-
tenna dimensions along x and y are Dx = 161 mm and
Dy = 226 mm, respectively, but larger values (Dx = 211
mm, Dy = 253 mm) have been considered in the itera-
tive procedure in order to account for the presence of the
diffracted field; the near-field was measured at 13 × 13
points, covering an area of dimensions Lx = Ly = 325
mm. The distance between the scan plane and the AUT
was d = 70 mm, corresponding to the reliability angles
θx ' 39◦ and θy ' 27◦. The operating frequency was
5.3 GHz. Fig. 4(a) reports the results for the co-polar pat-
tern in the plane φ = 0◦, while the results relevant to the

(a)

(b)

Figure 4. Far-field pattern from a rectangular horn: com-
parison between the pattern obtained by the conventional
near-field to far-field transformation of truncated mea-
sured data and pattern obtained by applying 60 iterations
of the proposed procedure. The boundaries of the reliable
region are shown with vertical dashed lines. a) φ = 0◦
plane. b) φ = 135◦ plane.

plane φ = 135◦ are shown in Fig. 4(b). The reference
pattern has been obtained by independent measurements
in the DTU-ESA facility. Also in this case, a very good
far-field pattern estimate is obtained.

5. CONCLUSIONS

In this work, an effective application of the alternating
projections algorithm is proposed for truncation error re-
duction; it exploits the a priori knowledge on the AUT
geometry and position and it exhibits a quite fast conver-
gence. The procedure is based on the use of the reliable
part of the spectrum and on the requirement that the tan-
gential electric field is concentrated on the antenna aper-
ture. The algorithm has been applied to simulated as well
as measured near-field data and in both cases it has turned
out to be very effective.
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