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(Received 19 March 1979; accepted for publication 14 December 1979) 

The main purpose of this paper is to describe a technique of reduction, whereby from the class of 

evolution equations for matrices of order N solvable via the spectral transform associated to the 

(matrix) linear Schrodinger eigenvalue problem, one derives subclasses of nonlinear evolution 

equations involving less than N 2 fields. To illustrate the method, from the equations for matrices 

of order 2 two subclasses of equations for 2 fields (rather than 4) are obtained. The first class 

coincides, or rather includes, that solvable via the spectral transform associated to the generalized 

Zakharov-Shabat spectral problem; further reduction to nonlinear evolution equations for a 

single field reproduces a number of well-known equations, but also yields a novel one (highly 

nonlinear). The second class also yields highly nonlinear equations; some examples are given, 

including another novel evolution equation for a single field. 

PACS numbers: 02.30.Jr 

1. INTRODUCTION 

Recently we have introduced and discussed a class of 

matrix nonlinear evolution equations that can be solved via 

the spectral transform associated with the matrix Schro

dinger spectral (or "scattering") problem. I These equations 

involve generally N 2 fields (here and below N is the order of 

the matrices under consideration); but this number can be 

reduced by identifying equations (or rather classes of equa

tions) that are satisfied by matrices having some special 

structure. For instance the requirement that a matrix of or

der Nbe Hermitian halves the number of independent fields 

(from N 2 complex fields to N 2 real fields); the requirement 

that it be symmetrical reduces the number of independent 

fields to!N (N + 1); and so on. Such reductions are, however, 

rather trivial, and the corresponding restrictions on the class 

of evolution equations, that are required to guarantee com

patibility with the time evolution, are easily established. I But 

other reductions are also possible, that decrease the number 

of independent fields by inducing nontrivial relations be

tween different matrix elements that are compatible with the 

time evolution (for appropriately restricted classes of equa

tions). The main purpose of the present paper is to introduce 

a technique to identify such reductions. The method is then 

illustrated by applying it to the case of matrices of order 2, 

thereby obtaining, from the general class of equations in

volving 4 independent fields, sublcasses of equations involv

ing only two fields, or just a single one. One such class coin

cides with (or rather includes, since there is one added 

element of generality) that solvable via the spectral trans

form associated to the generalized Zakharov-Shabat spectral 

problem
2

; a result that has been obtained independently by 

Jaulent and Leon.3 

For matrices of order 4, the simpler equation of the 

a)Permanent address: Istituto di Fisica, Universita di Roma, 00185 Roma, 
Italy. 

class solvable via the Schrodinger spectral transform has 

been analyzed by Bruschi, Levi, and Ragnisco. 4 This equa

tion involves of course 16 fields; reduced versions involving 

respectively 10, 8, 6, 5, or 4 fields have also been obtained, by 

iden tifying the cases in which some of the 16 fields, if vanish

ing at the initial time, continue to vanish for all time. 4 Thus 

these reductions are rather simple; although the equations 

obtained in this manner are certainly far from trivial. All 

these reductions can be treated by the technique described in 

this paper, but this technique is actually richer. We plan to 

present the results obtained by its application to matrices of 

order 3 and 4 in separate papers. 

The plan of this paper, and an outline of its content, can 

be evinced from the titles of the following sections and sub

sections. Here we merely report two novel, highly nonlinear 

evolution equations involving a single field, whose solvabil

ity is demonstrated below. The first reads 

u, = Uxxx - 6u x I u2 
- (u + Uxx - 2U

3
)2/ 

[a 2 
_ 4(u2 + u; - u4)]J; (1.1) 

u=u(x,t), u( + 00 ,t) = 0, u( - 00 ,t) = 0 if a
2

=/= 1, 

u( - 00 ,t ) = arbitrary constant if a
2 

= 1. 

The second reads 

v, = Vxxx - i v~ + VX [A exp(v) + B exp( - v} + C]; 

v=v(x,t }, v( + 00 ,t} = 0, v( - 00 ,t) = 0 

or 

v( - oo,t) = In(B /A). 

2. PRELIMINARIES AND NOTATION 

(1.2) 

The class of matrix nonlinear evolution equations solv

able via the spectral transform associated with the matrix 

Schrodinger spectral problem reads I 

Q, = am(l~)[O'm,Q] +/3I"(~)CiO'I" . (2.1) 
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Here and below Q Q (x,t) is a matrix of order N vanishing 

(sufficiently fast l
) asymptotically, 

Q(± co,t)=O. (2.2) 

Latin subscripts run from 1 to N 2 
- 1, Greek sUbscripts 

from 0 to N 2 - 1 and repeated subscripts are summed upon. 

The N 2 matrices U /1 provide a basis for matrices of order N, 
with Uo = 1; the 2N2 - 1 functions am (z) and.B/1 (z) are ratios 

of entire functions (in all interesting cases, they are in fact 

rational functions; in most interesting cases, they are just 

polynomials of low degree); except for these restrictions, 

these functions are arbitrary, and it is their choice that char

acterizes each particular evolution equation of the class (2.1). 

The possibility to solve the Cauchy problem for (2.1) via the 

spectral transform technique is maintained even if the func

tions am and.B /1 depend explicitly on the time variable t; but 

we assume, for the sake of simplicity, that they are time inde

pendent. Then the evolution Eq. (2.1) is invariant under time 

translations; the (Cauchy) problem we shall always have in 

mind is the determination of Q (x,t ) for t> ° given by 

Q (x,O) = Q (x) (2.3) 

(of course with Q ( ± co) = 0). Finally the integro-differen

tial operators 1:.. and (!., are defined by the following formulas 

that detail their action on the generic matrix F(x): 

1:..F (x) = Fxx(x) - 21 Q(x,t),F(x) J + (!., f" dx' F(x'),(2.4) 

(!.,F(x) = 1 QxCx,t ),F(x) J 

+ [Q(X,t), L"" dx' [Q(X',t),F(X')]]. (2.5) 

Here of course, as well as above and below, sUbscripted var

iables denote partial differentiation, and the square and 

curly brackets with a comma inside indicate as usual com

mutators and anticommutators: 

[A,B]=AB-BA, IA,BJ=AB+BA. (2.6) 

The solvability via spectral transform of(2.1) hinges 

essentially on the fact that the corresponding evolution 

equation for the reflection coefficient R (k,t) is linear 1 : 

R,(k,t) = [A ( - 4k 2),R (k,t)] 

+ 2ik 1 B ( - 4k 2),R (k,t ) J ; (2.7) 

here and always below 

(2.8) 

In fact, to solve completely the Cauchy problem via the spec

tral transform, the time evolution of the appropriate param

eters corresponding to the discrete part of the spectrum (if 

any) must also be given I; but we assume for simplicity that 

these results can all be extracted by analytic continuation in 

k of R to the poles on the upper imaginary axis I; so that in the 

following we limit our analysis to the time evolution of R. 

This simplifies considerably our presentation; of course the 

results are then, strictly speaking, established only for Her

mitian matrices Q vanishing asymptotically faster than ex

ponentially; but they clearly have a more general validity, as 

can be easily demonstrated by looking directly also at the 

time evolution of the part of the spectral transform associat

ed to discrete eigenvalues. 1 
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The basic tool of our treatment obtains from the Wrons
kian-type formulas 1 

2ik [F( - 4k 2),R (k)] 

= f~+",oo dxiP(x,k H fm(1:..)[um,Q(x)] J l[I'(x,k), (2.9a) 

(2ik )21 H ( - 4k 2),R (k)J 

= L+",OO dxiP(x,k H h/1 (1:..)(!"U/1 J l[I'(x,k). (2.9b) 

Here and below,fm (z) and hi' (z) are arbitrary entire func

tions (in fact, in all applications below, low-order 

polynomials); 

(2.10) 

1[1' and 1[1' are appropriate matrix solutions of the Schrodinger 

equation characterizing the spectral problem I; while the re

maining symbols have already been defined. We have not 

indicated explicitly, in these equations, the time dependence 

(of R, Q, iF, and 1[1'); indeed these equations are merely a 

consequence of the spectral problem, having nothing to do 

with the time evolution. But they remain of course valid if Q, 
and therefore also R, iP and 1[1', depend on time (such depen

dence is indeed, from the spectral point of view, purely 

parametric). 

3. REDUCTION TECHNIQUE 

The task here is to identify matrices Q having a special 

structure that is maintained as they evolve in time according 

to (2.1), or rather according to some appropriate subclass of 

(2.1). The essential requirement characterizing such a spe

cial structure is that it induce, at any given time, relations 

between the different matrix elements of Q, so as to reduce 

the number of these that can be assigned independently (as 

functions of x, for any given t and in particular for t = 0); 

these relations need not be algebraic, but can in fact be inte

gro-differential (see below). 

Since the time evolution (2.1) of Q is complicated, while 

the corresponding time evolution (2.7) of R is simple [indeed 

this simplicity constitutes the foundation of the spectral 

transform technique to solve (2.1)], it is clearly easier to find 

matrices R that have a special structure compatible with the 

time evolution. On the other hand, since there is a one-to-one 

correspondence between Rand Q (up to the discrete spec

trum part of the spectral transform, that, as explained above, 

is ignored in this analysis), clearly to any reduction in the 

number of independent elements of R (each being a function 

of k ) there corresponds an analogous reduction in the num

ber of independent elements of Q (each being a function of x). 

Thus the main question is to translate a special struc

ture of R into the corresponding special structure of Q; or 

rather, to identify those special structures of R that make 

such a translation easy (namely, to identify those restrictions 

on R such that the corresponding restrictions on Q are easily 

ascertained). A convenient tool to achieve this goal was re

ported at the end of Sec. 2, for the results (2.9) imply that, if 

the matrix Q (x,t ) satisfies the (nonlinearintegro-differential) 

equation 

F. Calogero and A. Degasperis 24 



(3.1) 

the corresponding matrix R (k,t ) satisfies the linear equation 

[F(-4k2),R] +2ik [H(-4k2),R ) =0, (3.2) 

where the matrices F and H are of course defined by (2.10). 

Note that in these equations the 2N2 - 1 functionsfm (z) and 

hI' (z) are arbitrary (they must be entire; in all practical appli

cations they will be low-order polynomials). 

The matrix equation (3.2) yields of course, for given F 

andH, N 2 homogeneous linear equations fortheN 2 elements 

of R; thus, for a generic choice of F and H, it is compatible 

only with the trivial solution R = 0. But for appropriate 

choices of F and H, the restriction (3.2) merely implies a 

reduction in the number of independent elements of R; and 

the corresponding relation for Q is then explicitly given by 

(3.1). Note that this last equation is generally integro-differ

ential and nonlinear [see (2.4) and (2.5)]; however, if the 

functionsfm (z) and hi' (z) are polynomials of very low order 

(zero, or perhaps one) (3.1) can be explicitly solved; namely 

the relations between the different matrix elements of Q im

plied by (3.1) can be rewritten as explicit expressions of some 

elements in terms of the others (see below). 

Of course this process of reduction can be applied more 

than once, namely it can be required that R satisfy n equa

tions of type (3.2) (with F(z) = F(;)(z), H (z) = H (;)(z), 

j = 1 ,2, ... ,n), the corresponding Q being then constrained by 

the n corresponding equations of type (3.1). 

Thus, this technique provides the possibility to trans

late appropriate types of constraint on R (k ) into the corre

sponding constraints on Q (x), and vice versa. Let us empha

size that one is displaying here certain properties of the 

spectral transform, that have a priori nothing to do with the 

time evolution, and which may indeed also have applications 

just in the context of the spectral (or "scattering") problem. 

But of course if Q, and therefore R, evolve in time, the ques

tion of compatibility of any condition imposed on these ma

trices arises: if at the initial time Q resp. R satisfy a certain 

restriction of type (3.1) resp. (3.2), shall they satisfy it for all 

subsequent time? We identify below subclasses of the evolu

tion Eq. (2.1) for which this is the case; clearly each evolution 

equation of these subclasses may be considered to describe 

the evolution of M fields, with M < N 2 (the precise value of M 

in each case depending on the specific case under consider

ation, see, for instance, the examples discussed below). 

As we have already mentioned, rather than discussing 

the compatibility of a restriction of type (3.1) with the time 

evolution (2.1) ofQ it is convenient to consider the compati

bility of the corresponding restriction of type (3.2) with the 

time evolution (2.7) of R; the correspondence between Rand 

Q being then a guarantee that one kind of compatibility im

plies the other. 

Let us thus define 

Z (k,t) = [F( - 4k 2),R (k,t)] + 2ik [H ( - 4k 2),R (k,t) J, 
(3.3) 

in order to ascertain when Z (k,t) = ° is compatible with 

(2.7). Differentiating with respect to t and using (2.7) one 

easily obtains 
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Z,(k,t) 

= [A ( -4k 2),Z(k,t)] + 2ik [B ( -4k 2),Z (k,t») 

+ C (k,t) (3.4) 

with 

C (k,t )=[R (k,t ),([A ( - 4k 2),F ( - 4k 2)] - 4k 2[B ( - 4k 2), 

H( -4k2)])] -2ik [R (k,t),([B( -4k 2),F( -4k2)] 

+ [A (-4k2),H( -4k 2)])). (3.5) 

Thus Z (k,O) = ° implies Z (k,t ) = 0 for t> 0 provided 

C (k,t) = 0; (3.6) 

this last equation is therefore the compatibility condition. 

Note that C, as defined by (3.5), depends on the matrices 

F and H, that characterize the restrictive condition (3.2), and 

on the matrices A and B, that characterize the evolution 

equation (2.7); it depends moreover on R itself, that is of 

course a priori unknown except for the requirement that it 

satisfy the restriction (3.2). Thus (3.6) is required to hold for 

any R compatible with (3.2). Of course (3.6) is required to 

hold for all values of k. 

There is always at least one evolution equation of the 

class (2.1) for which the compatibility condition holds, 

namely the "scalar" case corresponding to 

am(z) = (3m (z) = 0, 

or equivalently 

A = 0, B =(3o( -4k 2)1. 

(3.7a) 

(3.7b) 

Examples in which the reduction process is compatible with 

a larger subclass of (2.1) than this are given below. 

If the compatibility condition (3.6) is satisfied, a matrix 

Q, that has been reduced by the condition (3.1) to have only 

M < N 2 independent elements (each being a function of x, for 

given t ), may be required to evolve in time according to (2.1). 

Then this matrix evolution equation, although correspond

ing formally to N 2 scalar equations, yields in fact only M 

coupled evolution equations, the remaining N 2 - M being 

automatically satisfied. Thus one is finally left with a system 

of M coupled evolution equations for M fields; these may be 

assigned (as functions of x, for - 00 < x < 00) at any given 

time (and in particular at the initial time t = 0), their values 

at all subsequent times being then determined by the require

ment that they obey the system of evolution equations. 
In conclusion, the process of reduction can be summa

rized as follows: (i) choose the matrices F (z) and H (z); (ii) 

ascertain the constraint they imply on R through (3.2); (iii) 

ascertain the constraint implied on A (z) and B (z) by the re

quirement that (3.6) hold for any R compatible with (3.2), as 

determined in step (ii) [of course with the sameF (z) andH (z) 

in (3.6) as in (3.2)]. All these steps are algebraic, and they 

determine the class of reduced evolution equations. The cor

responding structure for the matrix Q is determined by (3.1); 

this last step need not be purely algebraic. This process of 

reduction may be performed more than once, with different 

Gudicious!) choices of F and H. 

4. APPLICATION TO MATRICES OF ORDER 2 

In this section the analysis is restricted to matrices of 

F. Calogero and A. Degasperis 25 



order 2, in which case the natural choice for the basic matri

ces u
ll 

identifies them with the standard Pauli matrices: 

(1o=(~ ~), (11=(~ ~), 

(12 = ( ~ - ~). (13 = ( ~ _ ~ ); (4.1) 

((1m,(1nl = 28mn , [Um,un ] =2iEmn/(1/· 

Here of course 8mn is the (symmetrical) Kronecker symbol 

(8mn = 1 if m = n, 8mn = 0 if m 'in) and Emn/ is the (com

pletely antisymmetrical) Ricci symbol (E123 = 1). It will be 

convenienttorepresentalsothematricesQ (x,t )andR (k,t )in 

this basis, writing 

Q=QIl(1/l =QO+Q",(1m' R=RIl (11l =RO+Rm(1m· 
(4.2) 

Thus our task here is (i) to analyze the constraint condi

tion (3.2) [for various possible choices of the matrices F (z) 

and H (z)] and to investigate how it reduces the number of 

independent components of R; (ii) to identify, using the con

dition (3.6), the subclass ofthe nonlinear evolution equations 

(2.1) that are compatible with the constraint; (iii) to extract 

from the corresponding constraint (3.1) relations determin

ing some of the elements of Q in terms of the others, or equiv

alently some of the components Qfl in terms of the remaining 

ones; (iv) to write explicitly the novel class of nonlinear evo

lution equations for the reduced number of fields, introduc

ing at this stage if need be an appropriate notation (to make 

contact with known results) and discussing some specific 

examples. 

We note first of all that, as can be easily shown, there is 

no choice of the matrices F and H in (3.2) that reduces the 

number of independent components of R from 4 to 3. There 

exist instead several possibilities to reduce the independent 

components to 2; and then the reduction process can be ap

plied once more (sometimes rather trivially, sometimes non

trivially; see below) to reduce to one field only. The more 

interesting instances are discussed in Sec. 4.1-4.4. 

4.1 Simple example: The class of nonlinear evolution 
equations solvable via the generalized Zakharov
Shabat spectral problem as a subcase of the class of 
nonlinear evolution equations solvable via the matrix 
SchrOdinger spectral problem 

Set 

F(z) = 0, H (z) = U 3' (4.1.1) 

in (3.2). There immediately follows 

R (k,t) = R I(k,t )(11 + Rz{k,t )(12' (Ro(k,t) = R3(k,t) = 0). 
(4.1.2) 

It is also easy to obtain the corresponding relations for Q (x,t ) 

that obtain inserting (4.1.1) in (3.1): 

Q (x,t) = Qo(x,t) + QI(X,t )(11 + Qz{x,t )(12' (Q3(X,t) = 0), 
(4.1.3) 

QO<x,t) = [i~ dx' QI(X"t)r + [1"0 dx' Q2(X',t)r 

(4.1.4) 

To obtain the last equation, we have used the boundary con-
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dition QO< + 00 ,t ) = 0; the condition Qo( - 00 ,t ) = 0 im

plies a constraint on QI and Q2 (see below). 

We consider next the compatibility condition (3.6), and 

using (4.1.2) it is easily seen that it implies 

A (z) = a 3(z)(13' (al(z) = a 2(z) = 0), 

B (z) = (3o(z), VJl(Z) = (32(Z) = (33(Z) = 0). 

(4.1.5a) 

(4.1.5b) 

[Actually the compatibility condition does not con

strain{33' but the validity of(3.2) with (4.1.1) implies that the 

(33 term does not contribute in the nonlinear evolution equa

tion (2.1); thus by setting (33 = 0 no generality is lost.] 

Thus the subclass of nonlinear evolution equations for 

the two fields QI and Q2 reads 

Qt(x,t) = 2{3o(~.JQx(x,t) + aJl.~.)[u3,Q (x,t)], (4.1.6) 

where of course L is defined by (2.4) and Q is expressed in 

terms ofQl and ti2 by (4.1.3) and (4.1.4). The corresponding 

equation for the reflection coefficient R (k,t ) reads of course 

R t (k,t) = 4ik{3o( - 4k 2)R (k,t) + a 3( - 4k 2) [(13,R (k,t)]. 

(4.1.7) 

To show the complete correspondence of these equa

tions to those solvable via the generalized Zakharov-Shabat 

spectral problem (Ref. 2) we introduce the matrix 

( 
0 q(X,t)) 

V(x,t) = r(x,t) 0 

= (1lql(x,t) + i(12q2(X,t), (4.1.8) 

so that 

q = ql + q2' r = ql - qz; ql = ~(q + r), q2 = ~(q - r), 
(4.1.9) 

and we relate it to Q (x,t ) via the formula 

Q = Vx + V 2 = (qr qx), 
rx qr 

(4.1.10) 

so that 

fX> dx' QI(X',t) = - ql(x,t), 

1"0 dx' Q2(X' ,t ) = - iq2(X,t ), 

QI=qlx' Q2=iq2X· (4.1.11) 

This last formula provides some motivation for introducing 

the "matrix Miura transformation"S (4.1.10). The corre

sponding formula for R reads 

with 

( 
0 a

l
-

I
( - k,t)) 

R(k,t)= al+l(k,t) o. (4.1.12) 

With these notations (4.1.6) and (4.1.7) become 

(13Vt(X,t) + r(~zs)v(x,t) = 0, (4.1.13) 

at I ± i(k,t) ± y(k )al ± I(k,t) = 0, (4.1.14) 

( r(x,t») 
v(x,t) q(x,t) 

r(k) = - 4ik{3o( - 4k 2) + 2ai - 4k 2), 

(4.1.15) 

(4.1.16) 

the matrix integro-differential operator ~zs being defined by 

the formula 
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(

u(l)(X) ) 

0s U(2)(X) 

= ~ ( Ux (I)(X) ) + i (r(X,t) ) 
2i - Ux (2)(X) q(X,t) 

X f" dx' [r(x',t )U(2)(X') - q(X',t )U(l)(X')], (4.1.17a) 

or equivalently 

0su(x) = (2i)-10"3Ux(X) 

- u(x,t) 1''' dx' (u(x',t )'0"2U(X')). (4.1.17b) 

The complete equivalence of these equations to those of Ca

logero and Degasperis2 is apparent. 

Actually the class of nonlinear evolution equations ob

tained here is more general than that of Calogero and Dega

speris,2 because there one had the condition that the two 

fields q and r vanish asymptotically (x- ± 00) together with 

all their derivatives, while here one must require that Q van

ish asymptotically (x_ ± 00) with all its derivatives, namely 

[see (4.1.10)] all the derivatives of the two fields q and rare 

required to vanish asymptotically, but the two fields them

selves need not both vanish as x- - 00 [that they should 

vanish as x_ + 00 is implied by (4.1.11) and (4.1.9)] 

q(x,t) _ 0, r(x,t) - 0, q(x,t )r(x,t ) - O. 
x- + 00 x_ + 00 X"-----" - 00 

To display an explicit example, we set 

aiz) = (2i)-·(a + bz), f3o(z) = !(e + dz). 

Then the nonlinear evolution equations read 

(4.1.18) 

(4.1.19) 

r, = iar + ib [rxx - 2(qr)r] + erx + d [rux - 6(qr)rx ], 

(4.1.20a) 

q, = -iaq-ib [qxx -2(qr)q] +cqx 

+ d [qxxx - 6(qr)qx ], 

or equivalently [see (4.1.9)] 

q.t = - iaq2 - ib [q2xx -2(q~ - q~)q2] + eq.x 

(4.1.20b) 

+ d [q.xxx -6(qi - qDq.x], (4.1.2Ia) 

q2' = -iaq.-ib [q.xx -2(qi -q;)ql] +eq2x 

+d [q2xxx -6(qi -q~)q2x]. (4.1.2Ib) 

A reduction of the class of nonlinear evolution equa

tions solvable via the matrix Schrodinger spectral problem 

to the class solvable via the "generalized Zakharov-Shabat 

spectral problem" can be performed also in the case ofmatri

ces of order N, in close analogy to the treatment given here. 

We propose, however, to treat this problem in a separate 

paper, where we shall also provide a more detailed analysis 

of the connection between the two spectral problems [such 

an analysis may also serve to better motivate the transforma

tions (4.1.10) and especially (4.1.12), that have been given 

here without much explanation of their origin]. 
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4.2 Further reduction: Identification of a novel highly 
nonlinear class of solvable equations for a single field 

In Sec. 4.1 we described the reduction of the class of 

nonlinear evolution equations solvable via the 2 X 2 matrix 

Schrodinger spectral problem to that solvable by the gener

alized Zakharov-Shabat problem Ref. 2. As is well-known, 

several classical nonlinear evolution equations are contained 

in this class, including in particular the nonlinear Schro

dinger equation, the modified K dV equation and the sine

Gordon equation. These equations (in particular the last 

two, that are generally written for a single real field) can be 

obtained by applying once more the reduction technique; but 

these developments are too trivial and well-known to deserve 
reporting. In this section we consider instead a less trivial 

additional reduction of the class of evolution equations 

(4.1.6) [with (4.1.3) and (4.1.4)], namely that resulting from 

the choice, in (3.1) and (3.2), of 

(4.2.1) 

where Co and clare constant. 

It is then immediately seen that 

R (k,t) = R.(k,t )[0"1 + i(co - 4k
2
cd0"2] = R1(k,t )F( - 4k

2
). 

(4.2.2) 

The derivation of the corresponding formula for Q, re

sulting from the constraint (3.1) that now reads 

[O"I>Q] + i(eo + C.~)[0"2,Q] = 0, (4.2.3) 

is less elementary; we outline the main steps in the Appen

dix. The final result is most conveniently written in terms of 

the fields ql and q2 of Sec. 4.1 [see in particular (4.1.8-

4.1.11)], and it reads 

q2 = [e~1 - cI(2q~ - q.xx)]I 

[l-4coClqi +4c~(q~ -qix)r
12

• (4.2.4) 

Next one considers the compatibility condition (3.6), 

and it is easily seen that it implies a 3 = O. 

In conclusion, a class of nonlinear evolution equations 

for the single field 

u(x,t )==q.(x,t), (4.2.5) 

solvable by the spectral transform technique obtains setting 

a 3 = 0 in (4.1.6), letting f3o(z) be an arbitrary entire function 

(or more generally, the ratio of two entire functions), and 

expressing the matrix Q in terms of the single field u as im

plied by (4.1.8H4.1.11), and (4.2.4-4.2.5). Equivalently but 

more simply, the same class of nonlinear evolution equations 

obtains from (4.1.13), with y(z) odd in z and entire (or, more 

generally, the ratio of two entire functions), the fields rand q 

being given in terms of u by (4.1.9), (4.2.4), and (4.2.5). 

The asymptotic boundary conditions that must supple

ment this class of equations, so as to assure consistency, via 

(4.2.5), (4.1.11), (4.1.10), and (4.1.9), with the assumed as

ymptotic vanishing of Q and its derivatives, require U to van
ish with its derivatives as x- + 00, 

0= u( + oo,t) = ux( + oo,t) = uxx ( + oo,t) = ' .. , (4.2.6a) 

and moreover that all the derivatives of u vanish as 
x_- 00, 

O=ux(- oo,t)=uxA- oo,t)= ... ; (4.2.6b) 

but the value of u itself as x- - 00 is required to vanish only 
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if c6 #- 1 (elementary algebra shows that, if C6 = 1, any as

ymptotic value of u is consistent with the requirement that 

the matrix Q vanish asymptotically): 

u(- co,t)=O if C6#-1, 

u( - co,t) = arbitrary constant, if c6 = 1. (4.2.6c) 

In fact it is easily seen that, provided c~ = 1 and C I #- 0, u 
might even diverge as x~ - co [but the derivatives of u 

must vanish, see (4.2.6b)]. 

Of course another requirement on u is that Q2' as given 

by (4.2.4) and (4.2.5), be finite for - co <x < co; a condition 

sufficient to guarantee this is the requirement that u itself be 

regular and that the denominator on the right-hand side of 

(4.2.4) not vanish for real x. It is clearly sufficient that all 

these conditions hold at the initial time, since they are then 

automatically guaranteed to hold throughout the time 

evolution. 

A simple example of nonlinear evolution equation of 

this class obtains inserting (4.2.4)-(4.2.5) in (4.1.21a) (of 

course with a = b = 0, as required by the consistency condi

tion that forces a 3(z) to vanish; see above). It reads 

Ut = cU x + d (uxxx - 6u x [u2 - (cou - 2C lU
3 + Cl uxx )2/ 

(1-4coclu2+4ciu4-4ciu~)]). (4.2.7) 

The change of dependent and independent variables 

u(x,t) = (ColC I)I/2U'(X',t '), x = (CoIC I )I/2(X + ct), 

t' = d (ColC.)3/2t, (4.2.8) 

yields for u'(x',t') the neater equation 

u, = U xxx - 6u x (u
2 

- (u - 2u3 + uxxf/ 

[a 2 
- 4(u2 

- u4 + u;)]J, (4.2.9) 

that we have written omitting all primes (for notational con

venience; and we persevere below), and setting Co = Va. The 

boundary conditions for this equation are 

0= u( + co,t) = ux ( + co,t) = uxx ( + co,t) = ... ; 

(4.2. lOa) 

0= ux ( - co,t) = uxx ( - co,t) = ... ; (4.2. lOb) 

u( - co ,t ) = ° if a
2 #- 1, 

u( - co ,t) = arbitrary constant if a2 
= 1. (4.2.lOc) 

Let us emphasize once more that the technique to solve 

this equation is through the equivalence of (4.2.7) to (2.1) 

with am = O,13m = 0, f3o(z) = !(c + dz) and Q given in terms 

of u by (4.1.8-4.1.11) and (4.2.4-4.2.5). This implies of course 

not only the possibility of solving the Cauchy problem I [giv

enu(x,O)onecanclearlycomputeQ (x,O); and given Q (x,t ) one 

can recover u(x,t ) with just one quadrature, as implied by 

(4.1.11 n, but also to obtain all the results associated with the 

solvability of (2.1) by the spectral transform technique: An 

infinite number of conserved quantities, Backlund transfor

mation, all the soliton phenomenology. I Here we merely re

port the single soliton solution of (4.2.9), that reads 

u(x,t) = 2pa[(1 + 4p2f - a2]-1/2/coshl2p[x - 5(t)]J, 

(4.2.11) 

with 
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(4.2.12) 

In writing this equation we assume that p is a positive con

stant such that the square root on the right-hand side of 

(4.2.11) is real, or equivalently, such that the quantity v de

fined setting 

cothv = (1 + 4p2)1a, (4.2.13) 

is real. Note that the soliton of this equation moves with 

constant speed; this is in contrast with the generic behavior 

of the solitons associated with matrix nonlinear evolution 

equations, I but it agrees with the generic behavior of the 

solitons of the nonlinear evolution equations of the Zak

harov-Shabat class (4.1.13),2 of which after all (4.2.9) is 

merely a subcase (although one that would not have been 

easy to discover without the technique given above). We also 

report the spectral transform I of the matrix Q corresponding 

to (4.2.11); it has of course R = 0, and a two-fold degenerate 

discrete eigenvalue - p2, so that the matrix C associated 

with ie has the structure 

C = C I + C2 (4.2.14) 

Cj = 2p exp(2p 5j)Pj , j = 1,2, (4.2.15) 

51 = 5 - (2p)-1 In sinlvL, 52 = 51 - i1r/(2p), (4.2.16) 

(4.2.17) 

fi~j) = 0, j = 1,2. 

Note that the constant f-l is in fact not present in C, 

C = 2p exp(2p5 )(<TI sinhv + i<T2 coshv), (4.2.19) 

and accordingly does not appear in (4.2.11). Let us empha

size that, for equations obtained by reduction, the fact that 

the solitons may correspond to degenerate discrete eigenval

ues appears not to be exceptional.4 

Let us finally discuss some limiting properties of the 

solutions u(x,t;a) of Eq. (4.2.9). 

Clearly u(x,t; co ) satisfies the mK dV equation 

(4.2.20) 

(with 1] = +1); and indeed in this limit (4.2.11) yields the 

single-soliton solution of the mK dV equation (this solution 

is imaginary; indeed it is (4.2.20) with 1] = -1 that has real 

solitons). 

Another limiting case obtains setting 

U(€X,EJ t;2/E) = i'" dx' sin[ 2 i~ dx" ii(x" ,t)], (4.2.21a) 

ii(x,t) = ~ ~ arcsin [ ~ U(EX,E"t;2/E)] , 
2 dx dx 

(4.2.21b) 

with E~O. It is then easily seen that ii(x,t ) satisfies again the 

mK dV equation (4.2.20) (with 1] = -1). 

A third limiting case obtains setting instead 

u(Ex,E3t;l) 

= - f" dx' exp [ - 2 i~ dX"U(X",t)] , (4.2.22a) 

U(x,t) = ~~ln[~U(EX'E3t;I)], (4.2.22b) 
2 dx dx 
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again with E---+<). It is easily seen that also ii(x,t) satisfies the 

mK dV equation (4.2.20) with (71 = +1). 

It is remarkable that these three limiting procedures all 

yield sol utions of the mK dVequation. It should however be 

noted that while the first two prescriptions produce solu

tions of mK dV that vanish asymptotically, the last one ap

pears to yield solutions that diverge asymptotically; the way 

is thereby opened to the study of the Cauchy problem for the 

mK dV equation with diverging asymptotic behavior, that 

however does not appear to be anywhere as interesting and 

important as the analogous problem for the K dV equation.6 

4.3. Another class of nonlinear evolution equations 

involving two fields 

In this section we consider another reduction of the 

class of evolution equations (2.1) for matrices of order 2, that 

again decreases the number of independent fields from 4 to 2, 

but in a different fashion than in Sec. 4.1. It obtains setting in 

(3.2) 

F(z) = - i(yo + YIZ)O"I' H (z) = Y0"3' 

There immediately follows 

R (k,t) = - [(Yo - 4k 2YI)/(2iyk )]Rz(k,t) 

+ R I(k,t )0"1 + RzCk,t )0"2, 

(Rik,t) = 0), 

or equivalently 

R (k,t) = Ro(k,t) + R I(k,t )0"1 

- [2iyk /(Yo - 4k 2yl )]Ro(k,t )0"2' 

(4.3.1) 

(4.3.2a) 

(Rik,t) = 0). (4.3.2b) 

These two expressions display the fact that R contains now 

only 2 independent components; while their equivalence is 

quite obvious, the first is to be preferred in the special case 

Yo = YI = 0, the second in the special case Y = 0 (see below). 

The corresponding expression for Q obtains inserting 

(4.3.1) in (3.1). After some labor, that we consider sufficient

ly straightforward not to warrant any reporting, there ob

tains the result 

Q(x,t) = Q,,(x,t) + QI(X,t)O"I + Qz(X,t)0"2' (Qix,t) = 0), 

(4.3.3) 

Qo(x,t) = (y + 2YI W2)~2 [Yl(Y + 2Yl W2)W2xx - fz W~x 
+ W~(y + y 1W2)2 + YoW2(y+ y 1W2) 

+ y2 W i + 4fz U 2 
- 4YIYUW1], (4.3.4) 

~ = ~(x,t) = Ioc dx' Qj(x/,t), 

Q/x,t) = - ~xCx,t), j = 1,2, 

U= U(x,t) = - L" dx' Ql(X/,t)W2(x',t), 

V(x,f) = - W1(x,f)W2(x,t) 

+ L'" dx' Qz(x',t)W1(x',t). 

(4.3.5) 

(4.3.6a) 

(4.3.6b) 

Note the similarity of this definition of ~ to the definition 

(4.1.11) of the fields q j; the differences are caused by the 

need, in Sec. 4.1, to reproduce the notation of Calogero and 

Degasperis. 2 
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We consider next the compatibility condition (3.6), and 

using (4.3.2) it is easily seen that it implies 

a1(z) = i[(yo + YIZ)/y]/33(Z), 

az(z) = f3zCz) = 0, 

aiz) = i[yz/(yo + Y1Z)]/31(Z), 

(4.3.7a) 

(4.3.7b) 

(4.3.7c) 

withf3o(z),f3l (z), andf32(z) arbitrary entire functions, or rath

er ratios of entire functions. Note moreover that the con

straint condition (3.2) with (4.3.1), together with (4.3.7a), 

implies that thea 1 and 133 terms in (2.1) cancel each other, so 

that one can set, without loss of generality, 

(4.3.7d) 

In conclusion the class of nonlinear evolution equations 

that we have now obtained corresponds to (2.1) with the 

functions am (z) andf3,u (z) restricted by the conditions (4.3.7) 

and with the matrix Q given by (4.3.3-4.3.6). This class, for 

any choice of the functions am and f3,t [compatible with 

(4.3.7)], yields two coupled evolution equations for the two 

fields Ql(X,t) and QzCx,t), or equivalently for the fields 

WI (x,t ) and Wz(x,t) of (4.3.5) (indeed the evolution equa

tions have generally a neater appearance when written in 

terms of the dependent variables Wj rather than Q j; see 

below). The boundary conditions to be required are clearly 

0= W/ + oo,t) = WjxC + oo,t) = W jxx ( + oo,t) = "', 

j = 1,2, (4.3.8a) 

and 

0= WjxC - oo,t) = WjXxC - oo,t) = ... , j = 1,2. (4.3.gb) 

As for the values of the fields Wj as x- - 00, the relevant 

condition must be read from (4.3.4), corresponding to the 

requirement 

(4.3.8) 

The first example we consider corresponds to the choice 

Yl = 0, f3o(z) = !(c + dz), f3l(z) = -! byo/Y. (4.3.9) 

Then one obtains for the two fields 

u(x,t) = W1(x,t), V(X,f) Wz(x,f) +! yoly (4.3.10) 

the evolution equations 

u, = - b [vxx -2v(u
2 + v2 

- C 2)] + cux 

+d[uxxx -6UxCU2+V2-C2)], (4.3.11a) 

v, = b [u xx -2u(u 2 + v2 
- C 2)] + CVx 

+ d [vxxx -6vxCu
2 + v2 

- C
2
)], (4.3.11b) 

where we have introduce the constant 

C=! Yo/Y. (4.3.12) 

Assuming the constants b, c, d, and C 2, as well as the fields u2 

and v2
, to be real, one can introduce the complex field ifJ (x,t ) 

setting 

ifJ (x,t ) = u(x,t) + iv(x,t ). (4.3.13) 

Then the two evolution equations (4.3.11) combine into the 

single equation 

ifJr = ib [ifJxx - 27J( 1 ifJ 12 - 1 C 12)ifJ ] + cifJx 

+ d [ifJ xxx - 67J( 1 ifJ 12 - 1 C 12)ifJ x], 71 = ± 1 

(4.3.14) 
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(for'T/ = + I, u, v, and C are real; for'T/ = - I, they are 

imaginary). Moreover the boundary conditions for the field 

<p (x,I), besides requiring the asymptotic vanishing of all its 

derivatives, read 

<p ( + 00 ,I ) = iC, I <p ( - 00 ,I) I = I C I· 

Thus the field 

t/J(x,l) = exp( - ial + ip)<p (X,I), 

(4.3.15) 

(4.3.16) 

where a and p are real constants, satisfies the "generalized 

Hirota equation"? 

t/Jt = - iat/J + ib [t/J xx - 2'T/( I t/J 12 - I C 1
2
)t/J] + ct/J x 

+d[t/Jxxx -6'T/(1t/J12_ICI2)t/Jx], (4.3.17) 

with boundary conditions 

I t/J( + 00 ,f ) I = I t/J( - 00 ,I ) I = I C I· 

[Note that the last equation need not imply 

t/J( + oo,t) = t/J( - oo,t).] 

(4.3.18) 

Of course subcases of this equation are the (generalized) 

versions of the nonlinear Schrodinger equation and of the 

mK dV equation, that obtain respectively for a = c = d = 0, 

b = I, reading 

it/Jt = -t/Jxx +2'T/(1t/J12_ICI2)t/J, 

'T/= ± I, It/J(± oo,t)1 = ICI, (4.3.19) 

and for a = b = c = 0, d = I, t/J(x,t) = t/J·(x,1 ) = u(x,t), 

reading 

Ut = Uxxx - 6'T/(u 2 
- I C 12)U, 

'T/= ± 1, u
2(± oo,t)= ICI

2
• (4.3.20) 

The second example we consider corresponds to the 

choice 

(4.3.21) 

One obtains then the two nonlinear evolution equations 

~,(X,/) = c~x(x,t) + d [~xxx(x,t) 

-6Qo(x,t) Jfjx(x,t)], j= 1,2, (4.3.22) 

with Qo given in terms of WI and W2 by (4.3.4)-(4.3.6). These 

equations are rather complicated; but they yield a simpler 

equation if a further reduction is performed. This is dis

cussed in Sec. 4.4. 

4.4 Further reduction: Novel solvable nonlinear 
evolution equation for a single field 

The further reduction that we apply here is directly sug

gested by the structure of (4.3.22), that is clearly compatible 

with the position 

W2(x,t) = u(x,I), WI(x,l) =PU(X,I), (4.4.1) 

P being a constant. This implies [see (4.3.5)-(4.3.6)] 

U (x,t) = - ~ pU2(X,1 ) (4.4.2) 

and [see (4.3.4)] 

Qo(x,l) = (y + 2ylu)-2{ YI(Y + 2ylu)uxx - ftu; 

+ u(y + YIU)[YO + (1 + p2)(y + ylu)uJ). (4.4.3) 

Thus one obtains now for the single field u(x,t ), or rather 

for the field 
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u'(x' ,I') = 2(y Ily)u(x,1 ), x' = AX + pI, I' = dA 3/, 
(4.4.4) 

the nonlinear evolution equation (hereafter all equations are 

written for the primed variables, but dropping all primes for 

notational convenience) 

- ~ [ _ 1 2/(1 ) u, - uxx 2 Ux + U 
ax 
+ tA(1 +u)3-B/(1 +u)+Cu], 

where 

A = - i(1 + p2)y2/(ftA 2), 

B = A + ~ yoI(YIA 2), 

C= -A -B+(d -p)/(dA 3
). 

(4.4.5) 

(4.4.6a) 

(4.4.6b) 

(4.4.6c) 

Of course some of these constants can be eliminated or set to 

unity by appropriate choices of the constants A andp. 

The boundary condition to be associated with (4.4.5) 

requires all derivatives of u to vanish asymptotically, and 

moreover u itself to vanish as x_ + 00 (we are assuming 

A>O): 

0= u( + 00,1) = ux( + 00,/) = uxx ( + 00,1) = "', 

(4.4.7a) 

O=ux(- oo,t)=uxx (- oo,t)=.... (4.4.7b) 

As for the value of u as x_ - 00, the following four possi

bilities are all compatible with the condition Qo( - 00 ,t ) = 0: 

u(-oo,t)= -1±1, u(-oo,t)= _1±(BIA)1/2; 

(4.4.7c) 

of course the last one can be contemplated, for real u, only if 

the ratio B I A is positive (this we assume below). 

Another interesting version of the nonlinear evolution 

equation (4.4.5) obtains setting 

u(x,t) = expBv(x,t)] -1, (4.4.8) 

since v obeys then the nonlinear equation 

v, = Vxxx - ! v! + Vx [A exp(v) + B exp( - v) + C ], 

(4.4.9) 

while the boundary conditions read 

0= v( + oo,t) = vxC + oo,t) = vxx ( + oo,t) = "', 

O=vx(- oo,t)=vxxC- 00,1)="', 

v( - 00,1) = 0 or v( - oo,t) = In(B I A ). 

(4.4. lOa) 

(4.4. lOb) 

(4.4.lOc) 

Let us note that the expression of the (matrix) reflection 

coefficient corresponding to the matrix Q of(4.3.3)-(4.3.5) 

and (4.4.1)-(4.4.3) reads 

R (k,t) = Ro(k,t )[1 - 2iky(yo - 4k 2Yltl(p(71 + (72)]' 

(4.4.11) 

and evolves according to the simple equation 

ROt(k,t) = 2ik (c - 4k 2 d )Ro(k,t) (4.4.12) 

[here we are again using the unprimed t variable; see (4.4.4)]. 

Finally let us note the limiting cases that can be ob

tained from (4.4.9) [or equivalently (4.4.5)], setting 

v(x,t) = Et/J(X,t), (4.4.13) 
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(4.4.14a) 

(4.4. 14b) 

c = - 2A
2
€-2, (4.4.14c) 

and considering the limit €-<l. Then (4.4.9) becomes 

tPr =tPxxx +tPx(Ao+AltP+A2~) (4.4.15) 

with the boundary conditions 

0= tP( ± oo,f) = tPx( ± oo,f) = tPxx( ± oo,f) = .... 
(4.4.16) 

This equation is, however, already contained in the class 

considered in Sec. 4.3 [see (4.3.17)]. 

5. CONCLUDING REMARKS 

The main purpose of this paper has been to present the 

method of reduction. Since the worth of any pie is apparent 

only in the eating, we have also applied it, but in the simplest 

context, namely to matrices of order 2. This has not only 

displayed the connection between the class of nonlinear evo

lution equations solvable by the spectral transform associat

ed to the Zakharov-Shabat spectral problem2 and those 

solvable by the matrix Schr6dinger problem, 1.3 but has in 

fact provided some generalization of the Zakharov-Shabat 

class (by allowing a less restrictive asymptotic behavior of 

the solutions). Moreover novel classes of nonlinear evolution 

equations involving two fields, or a single field only, have 

been obtained; we have displayed some of these, that provide 

therefore novel additions to the stock of nonlinear partial 

differential equations of evolution type solvable by the spec

tral transform technique. All these equations possess of 

course all the properties characteristic of the "soliton" equa

tions; and it is straightforward to display such properties 

using the formalism given in this paper and elsewhere. 1 

A number of additional applications are naturally sug

gested by the results of this paper; in particular we shall 

report separately the findings yielded by the application of 

this approach to matrices of order higher than two. 
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APPENDIX 

In this Appendix we indicate how the nonlinear inte

gro-differential equation (4.2.3) [with (4.1.8)-(4.1.11) and of 

course (2.4)-(2.5)] can be solved to yield (4.2.4). 

Trivial algebra yields first of all 

. . [ 6 2 4 2 q2x + IC~.x + IC. q.xxx - q.xq. + qL,q2 

+4q2A.q2 + 4q2x L" dx' q2X<X')ql(X')] = O. (AI) 
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It is then convenient to set 

w(x) = 100 

dx'q.X<x')qz{x'), 

qz(x) = - wx<x)lq.x<x), 

(A2a) 

(A2b) 

and to note that the left-hand side of (A 1) is a perfect differ

ential, so that integration from x to 00 yields 

q2 + ic~. + ic.(q.xxx -2qi +4q2W) = O. (A3) 

Multiply this equation by q.x, and use (A2b) to elimi

nate q2' One obtains again in this manner a perfect differen

tial, whose integration from x to 00 yields the equation 

(A4) 

This is immediately solved for w (to identify the correct solu

tion out of the two possible ones note that w must vanish 

when q.x and q. vanish, since this is what happens in the 

limit x- + 00), and subsequent insertion in (A2b) yields 

(4.2.4). 
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