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Abstract

Reduction theory for mechanical systems with symmetry has its roots in the clas-
sical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poincaré and
others. The modern vision of mechanics includes, besides the traditional mechanics
of particles and rigid bodies, field theories such as electromagnetism, fluid mechanics,
plasma physics, solid mechanics as well as quantum mechanics, and relativistic theories,
including gravity.

Symmetries in these theories vary from obvious translational and rotational sym-
metries to less obvious particle relabeling symmetries in fluids and plasmas, to subtle
symmetries underlying integrable systems. Reduction theory concerns the removal of
symmetries and their associated conservation laws. Variational principles along with
symplectic and Poisson geometry, provide fundamental tools for this endeavor. Re-
duction theory has been extremely useful in a wide variety of areas, from a deeper
understanding of many physical theories, including new variational and Poisson struc-
tures, stability theory, integrable systems, as well as geometric phases.

This paper surveys progress in selected topics in reduction theory, especially those
of the last few decades as well as presenting new results on nonabelian Routh reduction.
We develop the geometry of the associated Lagrange—Routh equations in some detail.
The paper puts the new results in the general context of reduction theory and discusses
some future directions.
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California Institute of Technology
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1 Introduction

This section surveys some of the literature and basic results in reduction theory. We will
come back to many of these topics in ensuing sections.

1.1 Overview

A Brief History of Reduction Theory. We begin with an overview of progress in
reduction theory and some new results in Lagrangian reduction theory. Reduction theory,
which has its origins in the classical work of Euler, Lagrange, Hamilton, Jacobi, Routh and
Poincaré, is one of the fundamental tools in the study of mechanical systems with symmetry.
At the time of this classical work, traditional variational principles and Poisson brackets were
fairly well understood. In addition, several classical cases of reduction (using conservation
laws and/or symmetry to create smaller dimensional phase spaces), such as the elimination
of cyclic variables as well as Jacobi’s elimination of the node in the n-body problem, were
developed. The ways | in Wthh reduction theory has been generahzed and applied since that
time las been rath nera Abraham and Marsden

860| [1884] pioneered reduction for Abelian groups.

. ’ ]
ﬁ;ﬁ, discovered many of the basimymplecﬁc and Poisson geometry and

their link with symmetry. Meanwhile, discovered the generalization of the
Euler equations for rigi chanics and fluids to general Lie algebras. This was more
or less known toﬁmfor SO(3), as we shall explain in the bod

The f reduction theory began with the fundamental papers of m
and m‘j Arnold focussed on systems on Lie algebras and their duals, as in the
works of Lie and Poincaré, while Smale focussed on the Abelian case giving, in effect, a
modern version of Routh reduction.

With hindsight we now know that the description of many physical systems such as
rigid bodies and fluids requires noncanonical Poisson brackets and constmmed vamatzonal
principles of the sort studied by Lie and Poincaré. An example of a
bracket on g*, the dual of a Lie algebra g, is called, following |Mars
the Lie—Poisson bracket. These structures were known to Lie around 1890 although Lie
seemingly did not recognize their importance in mechanics. The symplectic leaves in these
structures, namely the coadjoint orbit symplectic structures, although implicit in Lie’s work,
were discovered by Kirillov, Kostant, and Souriau in the 1960’s.

To synthesize the Lie algebra reduction methods of with the techniques
of on the reduction of cotangent bundles by Abelian groups. |Marsden and
Weinstein [1974] developed reduction theory in the general context of symplectlc manifolds
and equivariant momentum maps; related results, but with a different; i nd con-
struction (not stressing equivariant momentum maps) were found by |

The construction is now standard: let (P, ) be a symplectic manifold and let a Lie
group G act freely and properly on P by symplectic maps. The free and proper assumption
is to avoid singularities in the reduction procedure as is discussed later. Assume that this
action has an equivariant momentum map J : P — g*. Then the symplectic reduced
space J7(p)/G,, = P, is a symplectic manifold in a natural way; the induced symplectic
form €, is determined uniquely by 7%Q,, = i*Q where 7, : J=!(u) — P, is the projection
and il - I () — P is the inclusion. If the momentum map is not equivariant, |Souriau
[1970] discovered how to centrally extend the group (or algebra) to make it equivariant.

Cdadjoint orbits were shown to be symplectic reduced spaces bylMarsden and Weinstein

[1974]. In the reduction construction, if one chooses P = T*G, with G acting by (say left)
translation, the corresponding space P, is identified with the coadjoint orbit O, through
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1 together with its coadjoint orbit symplectic structure. Likewise, the Lie—Poisson bracket
on g* is inherited from the canonical Poisson structure on T%G by Poisson reduction, that
is, by simply identifying g* with the quotient (T*G)/G. _[t is not clear who first explicitly
observed this, but it is smplicit in many works such as [Lie [1890] 1976],
Guillemin and Sternberg 19801 and [Marsden and Welnstem [1982J[T983]. but is explicit in
sden, Wein 1 and hml 1 and in |HQIH1§§ and Marsden 1983'

showed that P, is symplectically diffeomorphic
to an orbit reduced space P# = J- ( ) /G and from this it follows that P, are the sym-
plectic leaves in P/G. This paper was also one of the first to notice deep links between
reduction and integrable systems, b subject. continned by, for example, |Bobenko, Reyman
and Semenov-Tian-Shansky [1989] in their spectacular group theoretic explanation of the
integrability of the Kowalewski top.

The way in which the Poisson structure on P, is related to that on P/G was clarified in
a generalization of Poisson reduction due to Marsd 986]
also proven useful in integrable systems (see, e.g., m{ mﬁ

Reduction theory for mechanical systems with symmetry has proven to be a power-
ful tool enabling advances in stability theory (from the Arnold method to the energy-
momentum method) as well as in bifurcation theory of mechanical systems, geometric phases
via reconstruction—the inverse of reduction—as Well as uses in control theory from stabi-
lization results to a deeper understanding of | introduction to some
of these ideas and for further references, see

More About Lagrangian Reduction. Routh reduction for Lagrangian systems is classi-
cally associated with systems havm;z cvchc varlableb ( thls is almost synonymous with having
an Abelian symmetry group); 88| Arnold, Ko-
zlov and Neishtadt [1988] and in , §8.9. A key feature of Routh
reduction is that when one drops the EulerfLagrange equations to the quotient space asso-
ciated with the symmetry, and when the momentum map is constrained to a specified value
(i.e., when the cyclic variables and their velocities are eliminated using the given value of
the momentum), then the resulting equations are in Euler-Lagrange form not with respect
to thd_Lacrancian itself. but with respect to the Rowuthion. In his classical work |IRouth
[1877] applie ‘rheqe 1deaq to stability theory, a precyrsor to the energy-momentum method
for stability ( ; see for an exposition and
references). Of course, Routh’s stability method is still widely used in mechanics
Another key ingredient in Lagrangian reduction is the classical work of

in which the Fuler—Poincaré equations were introduced. Poincaré realized that both the
equations of fluid mechanics and the rigid body and heavy top equations could all be de-
scribed in Li ic terms in a i The imporance of these equations was

realized by [1949) and

Tangent and Cotangent Bundle Reduction. The simplest case of cotangent bundle
reduction is reduction at zero in which case one chooses P = T*(@Q and then the reduced
space at u = 0 is given by Py = T*(Q/G), the latter with the canonical symplectic form.
Another basic case is when G is Abelian. Here, (T%Q), = T*(Q/G) but the latter has a
symplectic structure modified by magnetic terms; that is, by the curvature of the mechanical
connection.

The Abelian version of cotangent bundle reduction was developed by [Smale 0]l an
Satzer [1977] and was generalized to the nonabelian case in Abraham and Marsden [1978]
Kummer [1981 | introduced the interpretations of these results in terms of a connection, now
called the mechanical connection. The geometry of this situation was used to great effect
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in, for example,@mmm, hmaj lQSZg]m, andwm.
Routh reduction may be viewed as the Lagrangian analogue of cotangent bundle reduction.
Tangent and cotangent bundle reduction evolved into what we now term as the “bundle
picture” or the “gauge theory of [
gomery, Marsden and Ratiu [1984] a t work was moti-
vated and influenced by the work of on a Yang-Mills
construction that is, in turn, motivated by Wong s equations, that is, the equations for a
particle moving in a Yang-Mills field. The main result of the bundle picture gives a structure
to the quotient spaces (T*Q)/G and (T'Q)/G when G acts by the cotangent and tangent
lifted actions. We shall review this structure in some detail in the body of the paper.

showed how to gener-
alize the Routh theory to the nonabelian case as well as realizing how to get the Euler—
Poincaré equatlons for matrix groups by the nnportant technlque of reducing variational
principle
[1987] and

extends the Euler Pomcare case to arbitrary configuration manifolds. This work was in the
context of the Lagrangian analogue of Poisson reduction in the sense that no momentum
map constraint is imposed.

One of the things that makes the Lagrangian side of the reduction story interesting
is the lack of a general category that is the Lagrangian analogue of Poisson manifolds.

Such a catego|rv that of Lagrange-Poincaré bundles, is developed in|Cendra, Marsden and
Ratiu [2000a], with the tangent bundle of a configuration manifold and a Lie algebra as
its most basic example. That work also develops the Lagrangian analogue of reduction
for central extensions and, as in the dase of symplectic reduction by stages ( see|Mau1rsden7
Misiolek, Perlmutter and Ratiu [1998, BOOQ]), cocycles and curvatures enter in this context
in a natural way.

The Lagrangian analogue of the bundle picture is the bundle (T'Q)/G, which, as shown
later, it a vector bundle aver Q /G this bundle was studied in|Cendra, Marsden and Ratiu
[2000&]. In particular, the equations and variational principles are developed on this space.
For @ = G this reduces to Euler—Poincaré reduction and for G Abelian, it reduces to the
classical Routh procedure. Given a G-invariant Lagrangian L on T'Q), it induces a Lagrangian
lon (TQ)/G. The resulting equations inherited on this space, given explicitly later, are the
Lagrange—Poincaré equations (or the reduced Euler—Lagrange equations).

Methods of Lagrangia; useful in, for example, optimal control
Wed in m to extend the falling cat theorem of

to the case of nonholonomic systems as well as non-zero values of the

momentum map.

Semidirect Product Reduction. Recall that in the simplest case of a semidirect prod-
uct, one has a Lie group G that acts on a vector space V' (and hence on its dual V*) and then
one forms the semidirect product S = G(©® V, generalizing the semidirect product structure
of the Euclidean group SE(3) = SO(3) ® R3.

Consider the isotropy group G, for some ag € V*. The semidirect product reduction
theorem states that each of the symplectic reduced spaces for the action of G4, on T*G
is symplectically diffeomorphic to a coadjomt orbit in (g®V)*, the dual of the Lie algebra
of the semi-direct p oduct was developed by |Guillemin
and Sternberg [1978 Ratiu [1980a)[TORT] [[O37] MI Marsden, Ratiu and Weinstein
[1984a[b].
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This construction is used in applications where one has “advected quantities” (such as
the direction of gravity in the heavy top, density in compressible flow and the magnetic
field 1 worangian counterpart was de pﬂi_m_lHolm Marsden and Ratiu

[19981] along wi ications to continuum mechanics. |Cendra, Holm, Hoyle and Marsden
[1998] applied this 1dea tolthe MaxwellVlasov equations of plasma 5h§§1§§ | Cendra, Holm,
Marsden and Ratiu [1998] showed how Lagrangian semidirect product theory it fits into the
general framework of Lagrangian reduction.

Reduction by Stages and Group Extensions. The semidirect product reduction the-
orem can be viewed using reduction by stages: if one reduces T*S by the action of the
semidirect product group S = GOV in two stages, first by the action of V' at a point ag
and then by the action of G, . Semldlrect product reduction by stages for actions of semidi-
rect products on gepe S § was developed and applied to underwater
vehicle dynami ted partly by semidirect product
reduction, |[Ma gave a significant general-
ization of semidirect product theory in which one has a group M with a normal subgroup
N C M (so M is a group extension of N) and M acts on a symplectic manifold P. One
wants to reduce P in two stages, first by N and then by M/N. On the Poisson level this is
easy: P/M = (P/N)/(M/N), but on the symplectic level it is quite subtle.

Cotangent bundle reduction by stages is especially interesting for group extensions. An
example of such a group, be51des semidirect products, is the Bott-Virasoro group, where the
Gelfand-Fuchs s the curvature of a mechanical connection. The
|| briefly described above, contains a Lagrangian
analogue of reductlon for group extens10nb and reduction by stages.

Singular Reduction. Singular reduction starts with the observation of Emale [197( I that
z € P is a regular point of J |iff z has no continuous isotropy. Motivated by this. |Arms,
Marsden and Moncrief [1981, showed that the level sets J71(0) of an equivariant
momentum map J have quadratlc singularities at points with continuous symmetry. While
such a result i n finite dimensional manifolds, the main
examples of [Arms, Marsden and Moncrief [1981] were, in fact, infinite dimensional—both
the phase space and the group. b.tj;.o_[;l_9_8_7_] has shown that if G is a compact Lie group,

J=1(0)/G is an orbifald_ﬂingﬂ&ned;@m_ia_dmﬂ;[ related to convexity properties of the
momentum map (seelGuillemin and Sternberg [1982], for example).

The detailed structure of J=1(0 je groups acting on finite dimensional
manifolds was developed inlSj
actio 3 3 g". 10rtega
[1998] and IO 1 2 redid the entire smgular reduction theory for proper

Lie group actlons starting with the point reduced spac _! e
to the more algebraic approach to reduction theory of
Specific examplek_of singular reduction and further references may be found inl Cubhman

and Bates [1997]. This theory is still under development.

The Method of Invariants. This method seeks to parameterlze quotlent spaces by group
invariant functions. It has a rich history going back
been of great use in bifurcation with symmetry (seelGolu C f
for instance). In mechanics, the method was developed by Kummer Cushrnan Rod and
coworkers in %h? 1980’s. %Yf will not _attempt to give a literature survey here, other than
to refer to mer [1990]L IKirk. Marsden and Silber [1996].]1 Alber, Luther, Marsden and

Robbins [1998] and the book of [Cushman and Bates [1997) for more details and references.
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The New Results in this Paper. The main new results of the present paper are:

1. In §B.1] a global realization of the reduced tangent bundle, with a momentum map
constraint, in terms of a fiber product bundle, which is shown to also be globally
diffeomorphic to an associated coadjoint orbit bundle.

2. §3.51shows how to drop Hamilton’s variational principle to these quotient spaces

3. We derive, in §3.8] the corresponding reduced equations, which we call the Lagrange—
Routh equations, in an intrinsic and global fashion.

4. In §4lwe give a Lagrangian view of some known and new reconstruction and geometric
phase formulas.

The Euler free rigid body, the heavy top, and the underwater vehlcle are used to 111ustrate
some of the points of the theory. The main technique imarily
on the work of [Mars 3d 000all on
nonabelian Routhlreduction theory, but with the recent developments in Cendra Marsden
and Ratiu [2000a] in mind.

1.2 Bundles, Momentum Maps, and Lagrangians

The Shape Space Bundle and Lagrangian. We shall be primarily concerned with the
following setting. Let @ be a configuration manifold and let G be a Lie group that acts
freely and properly on Q. The quotient Q/G =: S is referred to as the shape space and @
is regarded as a principal fiber bundle over the base space S. Let 7o ¢ : Q — Q/G = S be
the canonical prOJect1011|DWe call the map 7g ¢ : Q — Q/G the shape space bundle.

Let ((-,-)) be a G-invariant metric on @, also called a mass matriz. The kinetic energy
K : TQ — R is defined by K(vg) = 3{(vg,vg)). If V is a G-invariant potential on @, then
the Lagrangian L = K — V : TQ — R is also G-invariant. We focus on Lagrangians of this
form, although much of what we do can be generalized. We make a few remarks concerning
this in the body of the paper.

Momentum Map, Mechanical Connection, and Locked Inertia. Let G have Lie
algebra g and J, : TQ) — g* be the momentum map on 7'Q, which is defined by Jz(v,) £ =
(vg,€0(q))). Herev, € T,Q, € € g, and &g denotes the infinitesimal generator corresponding
to &.

Recall that a principal connection A : T'(Q) — g is an equivariant g-valued one form on
T'Q that satisfies A({g(¢)) = £ and its kernel at each point, denoted Hor,, complements the
vertical space, namely the tangents to the group orbits. Let 2 : TQ) — g be the mechanical
connection, namely the principal connection whose horizontal spaces are orthogonal to
the group orbits®l For each ¢ € Q, the locked inertia tensor J(q) : g — g*, is defined
by the equation (J(¢)¢,n) = {(€o(q),no(q))). The locked inertia tensor has the following
equivariance property: J(g-¢q) = Adj-13(¢) Adg-1, where the adjoint action by a group
element g is denoted Ad, and Ad}l denotes the dual of the linear map Ad,-1 : g — g. The
mechanical connection 2 and the momentum map J;, are related as follows:

Jr(vg) = 3()A(vg) ie., Wlvg) = J(q)*lJL(vq). (1.1)

IThe theory of quotient manifolds guarantees (b the action is free and proper) that Q/G is a
smooth manifold and the map 7 g is smooth. See mmﬂwﬁmumeor the proof of
these statements.

2 its geometry also play an interesting and key role in computer vision. See for example,
Le and Kendall [1993]l]
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In particular, or from the definitions, we have that J;({g(¢)) = J(g)§. For free actions
and a Lagrangian of the form kinetic minus potential energy, the locked inertia tensor is
invertible at each ¢ € ). Many of the constructions can be generalized to the case of regular

1992)).

Horizontal and Vertical Decomposition. We use the mechanical connection 2 to
express v, (also denoted ¢) as the sum of horizontal and vertical components:

vg = Hor(vg) + Ver(vg) = Hor(vg) + £q(q)
where £ = 2(vy). Thus, the kinetic energy is given by

K(vg) = 5 {(vgr ) = 5 (Hox(uy), Hor(u)) + 3 (€a(0). €a(@))

Being G-invariant, the metric on @ induces a metric ((-,-))s on S by (uz,vz)s = (uq, vq),
where ug,vq € T4Q are horizontal, 7 ¢(¢) =  and Tng ¢ - ug = Ug, T'TQ,¢ - Vg = Ug.

Useful Formulas for G i wing formulas are assembled for conve-
nience (see, for example, for the proofs). We denote the action
of g € G onapoint ¢ € Q by g¢g =g 9= Dy(q), so that &, : Q — @ is a diffeomorphism.

1. Transformations of generators: T®, - £o(q) = (Adgé)g(g - ¢). which we also write,
using concatenation notation for actions, as g - £o(¢) = (Adg&)o(g - q).

2. Brackets of Generators: [£g,n0] = —[£, 7)o

3. Derivatives of Curves. Let ¢(t) be a curve in @ and let ¢g(¢) be a curve in G. Then

d

5 (9(1) -a(t) = (Adger) €(t)) (9(t) - a(t)) + g(t) - 4(t)

= 9(0)- [(6())g (a(®) + ()] (1:2)

where £(t) = g(t)™" - (1)

It is useful to recall the Cartan formula. Let o be a one form and let X and Y be two
vector fields on a manifold. Then the exterior derivative da of « is related to the Jacobi-Lie
bracket of vector fields by da(X,Y) = X[a(Y)] - Ya(X)] — o([X,Y]).

1.3 Coordinate Formulas

We next give a few coordinate formulas for the case when G is Abelian.

The Coordinates and Lagrangian. In a local trivialization, @ is realized as U x G
where U is an open set in shape space S = Q/G. We can accordingly write coordinates
for Q as =%, 0 where %, a = 1,...n are coordinates on S and where 6%, a = 1,... ,r are

coordinates for G. In a local trivialization, 8% are chosen to be cyclic coordinates in the
classical sense. We write L (with the summation convention in force) as

. 1 . 1 ..
L(z®,4°,6%) = Egaﬁg'ca:zﬁ + Jaad 0% + 5gabeaeb —V(z®). (1.3)

The momentum conjugate to the cyclic variable 6% is J, = 8L/09“ = Goa®® + gap0?, which
are the components of the map Jy.
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Mechanical Connection and Locked Inertia Tensor. The locked inertia tensor is the
matrix I, = gep and its inverse is denoted I’ = ¢%°. The matrix I, is the block in the
matrix of the metric tensor g;; associated to the group variables and, of course, I @b need not
be the corresponding block in the inverse matrix ¢*/. The mechanical connection, as a vector
valued one form, is given by A* = df® + A¢dx*, where the components of the mechanical
connection are defined by A% = ¢%g,,. Notice that the relation Jy(v,) = J(q) - A(vy) is
clear from this component formula.

Horizontal and Vertical Projections. For a vector v = (2%, 9“), and suppressing the
base point (z%,0%) in the notation, its horizontal and vertical projections are verified to be

Hor(v) = (2%, —g“bgabs'ca) and Ver(v) = (0, 0% + gabgaba':"‘).

Notice that v = Hor(v) + Ver(v), as it should.

Horizontal Metric. In coordinates, the horizontal kinetic energy is

1 1 o o 1 o
59(Hor(v), Hor(v)) = 59(15:6%5 — Gaa g™ gppi®i” + ggaag“bgwxaxﬁ
1 e
=5 (905 = gaag""gop) #°3” (1.4)

Thus, the components of the horizontal metric (the metric on shape space) are given by
Aaﬁ = Ggap — gadgdagﬁa'
1.4 Variational Principles

Variations and the Action Functional. Let ¢ : [a,b] — Q be a curve and let g =

d% ._o4= be a variation of q. Given a Lagrangian L, let the associated action functional

S1(q-) be defined on the space of curves in @ defined on a fixed interval [a, b] by

b
6r(g:) = / L(qe, ¢ ) dt .

The differential of the action function is given by the following theorem.

Theorem 1.1. Given a smooth Lagrangian L, there is a unique mapping EL(L) : Q —
T*Q, defined on the second order submanifold

. d?q )
Q= ﬁ(()) q a smooth curve in Q

of TTQ, and a unique 1-form O, on T'Q, such that, for all variations dq(t),

b

b d2q dq .
as.(a(t) -da(t) = [ o) (G2 ) -sade+ 0u (51) 5] | (15)
where
d ~ d d
=g ), 0=l Gl e

The 1-form Of so defined is called the Lagrange 1-form.
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The Lagrange one-form defined by this theorem coincides with the Lagrange one form
obtained by pulling back the canonical form on T*Q by the Legendre transformation. This
term is readily shown to be given by

dq =~
@L (dt) 5q

In verifying this, one checks that the projection of 5;] from TT'Q to T'Q under the map T'7q,
where 7g : TQ — @ is the standard tangent bundle projection map, is dg. Here we use
FL:TQ — T*Q for the fiber derivative of L.

b

= (FL(q(t) - 4(t)), 69)|"

a

1.5 Euler—Poincaré Reduction

In rigid body mechanics, the passage from the attitude matrix and its velocity to the body
angular velocity is an example of Euler—Poincaré reduction. Likewise, in fluid mechanics,
the passage from the Lagrangian (material) representation of a fluid to the Eulerian (Spatlal)
representation is an example of EulT.LEcﬁma.mm_"ﬂbese examples are well known
and are spelled out in, for example, IMarsden and Ratin [1999).

For g € G, let TL, : TG — TG be the tangent of the left translation map Ly, : G —
G;h v+ gh. Let L : TG — R be a left invariant Lagrangian. For what follows, L does not

have to be purely kinetic energy (any invariant potential would be a constant, so is ignored),
although this is one of the most important cases.

Theorem 1.2 (Euler—Poincaré Reduction). Let | : g — R be the restriction of L to
g =T.G. For a curve g(t) in G, let {(t) = T'Lyy)-19(t), or using concatenation notation,
& =g71g. The following are equivalent:

(a) the curve g(t) satisfies the Euler—Lagrange equations on G;

(b) the curve g(t) is an extremum of the action functional

S1(90) = [ Lig(o) )t
for variations dg with fived endpoints;

(c) the curve £(t) solves the Euler—Poincaré equations
as_ i
dtss — ¢

where the coadjoint action adg is defined by (adgv,C) = (v, [€,¢]), where §,¢ € g,
v e g, (-,) is the pairing between g and g*, and [-,-] is the Lie algebra bracket;

(1.6)

(d) the curve &(t) is an extremum of the reduced action functional

maz/ﬁﬂmm,

for variations of the form 0§ = 1+ &, 1], where n = TLy-10g = g~ '8g vanishes at the
endpoints.

There is, of course, a similar statement for right 1nvarlant Lagrangians; one needs to

change A 1ia he form §¢ = n—[€, 7).
See [Mars g ] | for a proof of
this t \ A\trix 1ps and Bloch Krlshnaprasad Marsden and Ratiu

he infinite

[1996] for the case of ite di i
dimensional case, see
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1.6 Lie—Poisson Reduction

Lie—Poisson reduction is the Poisson counterpart to Euler—Poincaré reduction. The dual
space g* is a Poisson manifold with either of the two Lie—Poisson brackets

{f,k}i<u>=i< {gﬁ g/’j> w7

where 6f/6p € g is defined by (v,df/du) = Df(u) - v for v € g*, and where D denotes
the Fréchet derivative! In coordinates, (£1,...,£™) on g relative to a vector space basis
{e1,...,em} and corresponding dual coordinates (i1, ... , i) on g*, the bracket (L) is

of ok
(b)) = £aCe g £

where Cj. are the structure constants of g defined by [e,.er] = CSe.. The Lie-Poisson
bracket appears explicitly in m 875 see i i ).

Which sign to take in (E is determined by understanding how the Lie—Poisson bracket
is related to Lie—Poisson reduction, which can be summarized as follows. Consider the
left and right translation maps to the identity: A : T*G — g* defined by oy — (TeLg)* oy €
TYG =g* and p : T*G — g*, defined by ay — (TeRy)*ay € T/G = g*. Let g* denote g*
with the minus Lie-Poisson bracket and let g7} be g* with the plus Lie-Poisson bracket. We
use the canonical structure on 7*(Q unless otherwise noted.

Theorem 1.3 (Lie—Poisson Reduction—-Geometry). The maps
A:T°Q —g- and p:T°Q — g}
are Poisson maps.

This procedure uniquely characterizes the Lie—Poisson bracket and provides a basic ex-
ample of Poisson reduction. For example, using the left action, A induces a Poisson diffeo-
morphism [A] : (T*G)/G — g*.

Every left invariant Hamiltonian and Hamiltonian vector field is mapped by A to a
Hamiltonian and Hamiltonian vector field on g*. There is a similar statement for right
invariant systems on 7*G. One says that the original system on T*G has been reduced to
g*. One way to see that A and p are Poisson maps is by observing that they are equivariant
momentum maps for the action of G on itself by right and left translations respectively,
together with the fact that equivariant momentum maps are Poisson maps!

If (P,{,}) is a Poisson manifold, a function C' € F(P) satistying {C, f} = 0 for all
f € F(P) is called a Casimir function. Casimir functions are constants of the motion for
any Hamiltonian since C' = {C, H} = 0 for any H. Casimir functions and
play, theory of relative equilibria (see, for examplm
andm and references therein and for references and a discussion of
the relation between Casimir functions and momentum maps).

Theorem 1.4 (Lie—Poisson Reduction—Dynamics). Let H : T*G — R be a leﬁ muart-
ant Hamiltonian and h : g* — R its restriction to the identity. For a curve a(t) € g(t G

let u(t) =T Ly - a(t) = Ma(t)) be the induced curve in g*. The following are equivalent:

Iiﬂnmmmwmmsmd case one needs to worry about the existence of df/du. See, for instance,
Marsden and Weinstein U 82 11 QR’%JII for applications to plasma phvsics and flinid mechanics andl Marsden and
Ratiu [1999] for additional references. The notation §f/du is used to conform to the functional derivative
notation in classical ﬁeld theory]

4The fact that equivaria
in the works df Lie and in K
Schmid [1983] and [Holme

history. It was given implicitly
Marsden, Weinstein, Ratiu and
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(i) a(t) is an integral curve of Xp, i.e., Hamilton’s equations on T*G hold;

(ii) for any smooth function F € F(T*G), F = {F,H} along a(t), where {,} is the
canonical bracket on T*G;

(iii) p(t) satisfies the Lie—Poisson equations

dp .
i (1.8)

where adg : g — g is defined by ade n = [§, 1] and adg is its dual;

(iv) for any f € F(g*), we have f = {f,h}_ along u(t), where {,}_ is the minus Lie-
Poisson bracket.

There is a similar statement in the right invariant case with {-,-}_ replaced by {-,-}+ and
a sign change on the right hand side of (L8].

The Lie—Poisson equations in coordinates are

oh
0a=CL —pg.
b 6ﬂb#d

Given a reduced Lagrangian [ : g — R, when the reduced Legendre transform Fl : g — g*
defined by & — p = 61/6¢ is a diffeomorphism (this is the regular case), then this map takes
the Euler—Poincaré equations to the Lie-Poisson equations. There is, of course a similar
inverse map starting with a reduced Hamiltonian.

Additional History. The symplectic and Poisson theory of mechanical systems on Lie
groups could easily have been given shortly after Lie’s wor in i f

S ,_J:J.g.ld_lmi;ur_ﬂ&a.l_ﬂum antil the work of ; !
@m Sudarshan and Mukunda
[1 were apparently unaware of Lie’s work on the Lie-Poisson bracket and
ofmork on the Euler Poincaré equations. One is struck by the large amount

i 1bject, whi is not unique to mechanics.

] @ﬁfﬁl h Poincaré’s work on
the Euler—Poincaré equatlons to the attention of the community. [Poincare Poincare [1910] goes on to
study the effects of the deformation of the earth on its precession—he apparently recognizes
the equations as Euler equations on a semidirect product Lie algebra. has
no bibliographic references, so it is rather hard to trace his train of thought or his sources;
in particular, he gives no hints that he understood the work of Lie on the Lie—Poisson
structure.

In the dynamics of ideal flyids, the Fuler—Poincaré variational principle is essentially

that of “Lin constraints”. See [Cendra and Marsden [1987] for a discussion of this theory
and for further references. Variational principles in fluid mechanics itself has an interesting

history, going back to Ehrenfest. Boltzmann. and Clebsch, but again. there was little, if

any, contact with the heritage of Tie and Poincaré on the subject. Interestingly. ISeliger

and Whitham [1968] remarked that “ mains somewhat mysterious from a
mal view”. See als W

volume 2, equations A on page 212, are the Euler—Poincaré equations
for the rotation group written out explicitly for a reasonably general Lagrangian. Lagrange
also developed the key concept of the Lagrangian representation of fluid motion, but it is not
clear that he understood that both systems are special instances of one theory. Lagrange
spends a large number of pages on his derivation of the Euler—Poincaré equations for SO(3),
in fact, a good chunk of volume 2 of Mécanique Analytique.
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1.7 Examples

The Free Rigid Body—the Euler Top. Let us first review some basics of the rigid
body. We regard an element A € SO(3), giving the configuration of the body as a map
of a reference configuration B C R?® to the current configuration A(B); the map A takes
a reference or label point X € B to a current point = A(X) € A(B). When the rigid
body is in motion, the matrix A is time dependent and the velocity of a point of the
body is & = AX = AA~1z. Since A is an orthogonal matrix, A"'A and AA~! are skew
matrices, and so we can write © = AA~'z = w x z, which defines the spatial angular
velocity vector w. The corresponding body angular velocity is defined by 2 = A~ 1w, i.e.,
A~1Av = Qx v so that Q is the angular velocity relative to a body fixed frame. The kinetic
energy is
1

K =5 [ p)IAX . (1.9)

where p is a given mass density in the reference configuration. Since
IAX]| = w x 2| = A (w x 2)|| = @ x X,

K is a quadratic function of €. Writing K = %QTI Q) defines the moment of inertia
tensor I, which, if the body does not degenerate to a line, is a positive definite 3 x 3 matrix,
or equivalently, a quadratic form. This quadratic form can be diagonalized, and this defines
the principal axes and moments of inertia. In this basis, we write I = diag(1y, I, I3).

The function K (A, A) is taken to be the Lagrangian of the system on T SO(3). Tt is left
invariant. The reduced Lagrangian is k(€2) = %QTI Q. One checks that the Euler—Poincaré
equations are given by the classical Euler equations for a rigid body:

I =II x 0, (1.10)

where IT = IQ is the body angular momentum. The corresponding reduced variational
principle is

6/bl(ﬂ(t))dt —0

for variations of the form Q2 = 3 + Q x 3.

By means of the Legendre transformation, we get the corresponding Hamiltonian de-
scription on T* SO(3). The reduced Hamiltonian is given by h(IT) = 1IT- (I7'II). One
can verify directly from the chain rule and properties of the triple product that Euler’s
equations are also equivalent to the following equation for all f € F(R3): f = {f, h}, where

the corresponding (minus) Lie-Poisson structure on R? is given by
{f,k}dAI) = -11- (Vf x Vk). (1.11)

Every function C' : R® — R of the form C(II) = ®(||II||?), where ® : R — R is a
differentiable function, is a Casimir function, as is readily checked. In particular, for the
rigid body, ||TI||? is a constant of the motion.

In the notation of the general theory, one chooses Q@ = G = SO(3) with G acting on
itself by left multiplication. The shape space is Q/G = a single point.

As explained above, the free rigid body kinetic energy is given by the left invariant metric
on @ = SO(3) whose value at the identity is (21, €2)) = IQ; - Qo, where Q, Qs € R? are
thought of as elements of s0(3), the Lie algebra of SO(3), via the isomorphism @ € R?
Qe s0(3), Qv :=Q x v. The Lagrangian equals the kinetic energy.
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The infinitesimal generator of € € so(3) for the action of G is, according to the definitions,
given by €g0(3)(A) = £A € Ta SO(3). The locked inertia tensor is, for each A € SO(3), the

linear map J(A) : 50(3) — s0(3)* given by <3(A)é,ﬁ> - <<éQ(A),f7Q(A)>> - <</;-“A,1A7At>> .

Since the metric is left SO(3)-invariant, and using the general identity (A~1¢) = A7IEA,
this equals

(A7€a,A70A ) = (A7l A7) = (AT€) - (IA™'n) = (ATAT'¢) .

Thus, identifying J(A) with a linear map of R? to itself, we get J(A) = ATA~L.
Now we use the general definition (Jr,(vq),§) = (vq,&q(q))) to compute the momentum
map J, : TSO(3) — R for the action of G. Using the definition £ = A=A, we get

(JL(A,A),€) = (A EA)A = (ATTA, AT EAN = (IN) - (A7) = (AIR) - €.
Letting v = AII, where II = I2, we get Jp (A, A) = , the spatial angular momentum.
According to the general formula 2A(v,) = J(¢)"'JL(v,), the mechanical connection
A(A) : Ta SO(3) — s0(3) is given by A(A, A) = AI"'A~1r = AQ. This is A(A) regarded
as taking values in R3. Regarded as taking values in so0(3), the space of skew matrices,
we get A(A, A) =AQ =AQA ! = AA-! the spatial angular velocity. Notice that the
mechanical connection is independent of the moment of inertia of the body.

The Heavy Top. The system is a spinning rigid body with a fixed point in a gravitational
field, as shown in Figure

M = total mass
g = gravitational
acceleration
Q = body angular
velocity of top
| = distance from fixed
point to center of mass

center of mass

Figure 1.1: Heavy top

One usually finds the equations written as:

II=T1I x Q + MgIT x x
I=rxQ.
Here, M is the body’s mass, II is the body angular momentum, € is the body angular

velocity, g is the acceleration due to gravity, x is the body fixed unit vector on the line
segment connecting the fixed point with the body’s center of mass, and [ is the length of



1.7 Examples 15

this segment. Also, I is the (time independent) moment of inertia tensor in body coordinates,
defined as in the case of the free rigid body. The body angular momentum and the body
angular velocity are related, as before, by IT = IQ. Also, I' = A~ 'k, which may be thought
of as the (negative) direction of gravity as seen from the body, where k points upward and
A is the element of SO(3) describing the current configuration of the body.

For a discussion of the Lie-Poisson nature of thebe equatlons on the dual of the Lie
algebia_se of the Fuclidean group and for furt and Ratiu
[1999]. For the Euler—Poincaré point of view, see . These
references also discuss this example from the semidirect product point of view, the theory
of which we shall present shortly.

Now we discuss the shape space, the momentum map, the locked inertia tensor, and the
mechanical connection for this example. We choose Q = SO(3) and G = S!, regarded as
rotations about the spatial z-axis, that is, rotations about the axis of gravity.

The shape space is Q/G = S?, the two sphere. Notice that in this case, the bundle
7g.¢ : SO(3) — S? given by A € SO(3) — I' = A~ 'k is not a trivial bundle. That is, the
angle of rotation ¢ about the z-axis is not a global cyclic variable. In other words, in this
case, Q cannot be written as the product S? x S'. The classical Routh procedure usually
assumes, often implicitly, that the cyclic variables are global.

As with the free rigid body, the heavy top kinetic energy is given by the left invariant
metric on Q = SO(3) whose value at the identity is (€21, Q) = 1€ -5, where Q;, Q, € R?
are thought of as elements of s0(3). This kinetic energy is thus left invariant under the action
of the full group SO(3).

The potential energy is given by MglA~'k-x. This potential energy is invariant under
the group G = S'. As usual, the Lagrangian is the kinetic minus the potential energies.

We next compute the infinitesimal generators for the action of G. We identify the Lie
algebra of G with the real line R and this is identified with the (trivial) subalgebra of so(3)
by & — Ek. These are given, according to the definitions, by £so(3)(A) = ¢kA € Ta SO(3).

The locked inertia tensor is, for each A € SO(3), a linear map J(A) : R — R which we
identify with a real number. According to the definitions, it is given by

I(A)en = (AN ) = (Ea(A),na(A)) = ((¢kA, nkA ).
Using the definition of the metric and its left SO(3)-invariance, this equals
<<§f<A, nl&A>> — ¢ <<A—11}A, A‘1RA>> = 0 (A%, A'K)) = & (ATA'K) -k
Thus, J(A) = (ATA7'k) - k, that is, the (3,3)-component of the matrix ATA™!,

Next, we compute the momentum map Jy, : 7SO(3) — R for the action of G. According
to the general definition, namely, (J1(vq),&) = (vg,£0(q))), we get

(IL(A,A), g> — (A ckA)a = ¢ (ATTA ATTRA ) = £ (2. A7K)).
Using the definition of the metric, we get
€ (A7) = £(1R) - (A~TK) = ¢(ATT) -k = ¢m5,

where w = AII is the spatial angular momentum. Thus, J, (A, A) = 13, the third compo-
nent of the spatial angular momentum. The mechanical connection 21(A) : Ta SO(3) — R
is given, using the general formula A(vy) = J3(q) "' I L (vy), by A(A, A) = w3/ (ATA7'k) - k.
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Underwater Vehicle. The underwater vehicle is modeled as a rigid body moving in ideal
potential flow according to Kirchhoff’s equations. The vehicle is assumed to be neutrally
buoyant (often ellipsoidal), but not necessarily with coincident centers of gravity and buoy-
ancy. The vehicle is free to both rotate and translate in space.

Fix an orthonormal coordinate frame to the body with origin located at the center of
buoyancy and axes aligned with the principal axes of the displaced fluid (Figure [[.2].

mg (buoyant force)
center of gravity

body fixed frame

center of buoyancy

inertial frame

Figure 1.2: Schematic of a neutrally buoyant ellipsoidal underwater vehicle.

When these axes are also the principal axes of the body and the vehicle is ellipsoidal,
the inertia and mass matrices are simultaneously diagonalized. Let the inertia matrix of
the body-fluid system be denoted by I = diag(ly, I, I3) and the mass matrix by M =
diag(my, ma, m3); these matrices include the “added” inertias and masses due to the fluid.
The total mass of the body is denoted m and the acceleration of gravity is g.

The current position of the body is given by a vector b (the vector from the spatially
fixed origin to the center of buoyancy) and its attitude is given by a rotation matrix A (the
center of rotation is the spatial origin). The body fixed vector from the center of buoyancy
to the center of gravity is denoted [x, where [ is the distance between these centers.

We shall now formulate the structure of the problem in a form relevant for the present
needs, omitting t i i how o the Lagrangian. We
refer the reader to and to for additional details.
In particular, these references study the formulation of the equations as Euler—Poincaré and
Lie—Poisson equations on a double semidirect product and do a stability analysis.

In this problem, @ = SE(3), the group of Euclidean motions in space, the symmetry
group is G = SE(2) x R, and G acts on @ on the left as a subgroup; the symmetries corre-
spond to translation and rotation in a horizontal plane together with vertical translations.
Because the centers of gravity and buoyancy are different, rotations around non vertical
axes are not symmetries, as with the heavy top.

The shape space is Q/G = S2, as in the case of the heavy top because the quotient
operation removes the translational variables. The bundle 7g ¢ : SO(3) — S? is again given
by A € SO(3) — I' = A~ 'k, where T has the same interpretation as it did in the case of
the heavy top.

Elements of SE(3) are pairs (A, b) where A € SO(3) and b € R3. If the pair (A,b) is

identified with the matrix [ A

0 1| then, as is well-known, group multiplication in SE(3)

is given by matrix multiplication. The Lie algebra of SE(3) is se(3) = R? x R? with the
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bracket [(Q,u),(Z,v)]= (2 x X, Q2 xv - xu).
As shown in the cited references, the underwater vehicle kinetic energy is that of the left
invariant metric on SE(3) given at the identity as follows.

<<(Ql,V1), (QQ,V2)>> = Ql . IQQ + Ql . DV2 + vy - DTQQ + vy ]\/[VQ7 (112)

where D = m. The kinetic energy is thus the SE(3) invariant function on T SE(3) whose
value at the identity is given by

1 1
K(Q,v)= §Q~IQ+Q~DV+§V~MV.
The potential energy is given by V(A,b) = mglA~'k-x and L = K — V.

The momenta conjugate to 2 and v are given by

oL oL T
H_a_Q_IQ+DV and P_a—V_MV+D Q

the “angular momentum” and the “linear momentum”. Equivalently, Q = AITl + B’P and
v = CP + BII, where

A=(I-DM D" B=-CD'I''=-M"'DTA, C=(M-DT1'D)~.
The equations of motion are computed to be
MM=TIxQ+P xv—mgil x x,
P=PxQ, TI=IxQ (1.13)
which is the Lie-Poisson (or Euler—Poincaré) form in a double semidirect product.
The Lie algebra of G is se(2) x R, identified with the set of pairs (£, v) where £ € R and

v € R? and this is identified with the subalgebra of se(3) of elements of the form (£k, v).
The infinitesimal generators for the action of G are given by

(&,V)sk(s) (A, b) = (EkA, &k x b +v) € T(ap) SE(3).

The locked inertia tensor is, for each (A, b) € SE(3), a linear map J(A,b) : 50(2) xR —
(s0(2) x R)*. We identify, as above, the Lie algebra g with pairs (£, v) and identify the dual
space with the algebra itself using ordinary multiplication and the Euclidean dot product.

According to the definitions, J is given by

<j(A’ b) (57 V)a (777 W)> = <<(£7 V)SE(3) (Aa b)v (77» W)SE(S) (Aa b) >>(A,b)

- <<(§RA,£k xb+v),(nkA,nk x b+ W)>>(A,b) .

The tangent of left translation on the group SE(3) is given by TL(a 1) (U, w) = (AU, Aw).
Using the fact that the metric is left SE(3) invariant and formula for the inner product,
we arrive at

J(A,b)- (&, v) = (&(ATAT'k) -k + £(ADA'k) - k
+ [ADA ' (¢k x b+ V)] -k+ [AMA™ ' (¢k x b+ V)] - (k x b),
ADTA 'k + AMA ' ((k x b +V)). (1.14)

The momentum map Jz, : T SE(3) — se(2)* x R for the action of G is readily computed
using the general definition, namely, (J1,(vq),&) = (vq,€o(q))); one gets

J.(A,b,A b) = ((AIL+b x AP) -k, AP),
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where, recall, II = JL/0Q = I + Dv and P = OL/0v = Mv + DTQ.
The mechanical connection 2A(A,b) : Tia p)SE(3) — se(2)* x R is therefore given,
according to the general formula A(v,) = J(q) " J1(v,), by

2A(A,b,A,b) =J(A,b)"! - ((AIL+b x AP) -k, AP)

where J(A,b) is given by (L.14]. We do not attempt to invert the locked inertia tensor
explicitly in this case.

2 The Bundle Picture in Mechanics

2.1 Cotangent Bundle Reduction

Cotangent bundle reduction theory lies at the heart of the bundle picture. We will describe
it from this point of view in this section.

Some History. We continue the history given in the introduction concerning cotangent
bundle reduction. From the symplectic Viewpoint a principal result is that the symplectic
reduction of a cotangent bundle T*Q at pn € g* is a bundle over T*(Q/G) with fiber the
coadjqint orbit through p. Thi rehmlnar form, to[Sternberg

[1977], andn elnbteln Veinstein [1977] o Marsden and

Marsden [1981] and Marsden [1992]l It was shown inlAbraham and Marqden H 978] that the
symplectically reduced cotangent bundle can be symplectically embedded in T*(Q/ Gu)—
this is the injective version of the cotangent bundle reduction theorem. From the Poisson
viewpoint, in which one simply takes quotients by group actions, this reads: (7*Q)/G is a
g*-bundle over T*(Q/G), or a Lie—Poisson bundle over the cotangent bundle of shape space.
We shall return to this bundle point of view shortly and sharpen some of these statements.

The Bundle Point of View. We choose a principal connection 4 on the shape space
bundle®™ Define g = (Q x g)/G, the associated bundle to g, where the quotient uses
the given action on @ and the coadjoint action on g. The connection A defines a bundle
isomorphism a4 : TQ/G — T(Q/G) & g given by aa ([v4]a) = Trg.a(ve) @ [g, A(vg)]a-
Here, the sum is a Whitney sum of vector bundles over Q/G (the fiberwise direct sum)
and the symbol (¢, A(vq)]¢ means the equivalence class of (¢, A(vq)) € @ x g under the
G-action. The map a4 is a well-defined vector bundle isomorphism with inverse given by
oy (uy g, €le) = [(uz)h + €0(q)]a, where (ug)! denotes the horizontal lift of ug to the
point q.

Poisson Cotangent Bundle Reduction. The bundle view of Poisson cotangent bundle
reduction considers the inverse of the fiberwise dual of a4, which defines a bundle isomor-
phism (a')* : T*Q/G — T*(Q/G) ® §*, where §* = (Q x g*)/G is the vector bundle over
Q/G assomated to the coadjoint action of G on g*. This isomorphism makes explicit the
sense in which (T*Q)/G is a bundle over T*(Q/G) with fiber g*. The Poisson structure
on this bundle is a synthesw of the canonlcal bracket, the Lle Poisson bracket, and curva-
ture. The inherited n this space was d in IMontgomery, Marsden
i i i and was put into the present

context in|Cendra, Marsden and Ratin f20003

J

5The general theory, in principle, does not require one to choose a connection. However, there are many
good reasons to do so, such as applications to stability theory and geometric phases.
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Symplectic Cotangent Bundle Reduction. ?] show that each symplectic reduced
space of 7@, which are the symplectic leaves in (1*Q)/G = T*(Q/G) & g*, are given by
a fiber product T*(Q/G) X q/a (9 where O is the associated coadjoint orbit bundle. This
makes precise the sense in which the symplectic reduced spaces are bundles over T*(Q/G)
with fiber a coadjoint orbit. They also give an intrinsic expression for the reduced symplectic
form, which involves the canonical symplectic structure on 7%(Q/G), the curvature of the
connection, the coadjoint orbit symplectic form, and interaction terms that pair tangent
vectors to the orbit with the vertical projections of tangent vectors to the configuration
space; see also Zaalani [1999]]

As we shall show in the next section, the reduced space P, for P = T*Q is globally
diffeomorphic to the bundle T*(Q/G) xq,c Q/G,, where Q/G,, is regarded as a bundle
over Q/G. In fact, these results simplify the study of these symplectic leaves. In particular,
this makes the injective version of cotangent bundle reduction transparent. Indeed, there
is a natural inclusion map 7%(Q/G) xq/q Q/G, — T*(Q/G ), induced by the dual of the
tangent of the projection map p, : Q/G, — Q/G. This inclusion map then realizes the
reduced spaces P, as symplectic subbundles of T*(Q/G ).

2.2 Lagrange-Poincaré Reduction

In a local trivialization, write Q@ = S x G where S = Q/G, and TQ/G as T'S x g. Coor-
dinates on @ are written z%, s* and those for (T'Q)/G are denoted (x®,z%,£%). Locally,
the connection one form on () is written ds® + A%dz® and we let Q¢ = &% + A22*. The
components of the curvature of A are

0Ah  9Ab
b _ B _ a _ b gc 7d
o (8900‘ Ox’ Cch“AB> ’

where C}; are the structure constants of the Lie algebra g. Later, in the text, we review the
intrinsic definition of curvature.

Let, as explained earlier, L : TQ) — R be a G-invariant Lagrangian and let [ : (TQ)/G —
R be the corresponding function induced on (T'Q)/G. The Euler-Lagrange equations on @
induce equations on this quotient space. The connection is used to write these equations in-
trinsically as a coupled set of Euler—Lagrange type equations and Euler—Poincaré equations.
These reduced EuleT—Lagrangg Qquangns, also cal Qd th ngrange -Poincaré equa-
tions (implicitly co nd Mars xplicitly in|Marsden
and Scheurle [1993b]) are, in coordinates,

d 0l ol ol

o Ba -6 a Ab Qd
dt i Oz aﬂa( ClipAa82)
d ol ol W i
TP o0 (CHQ! — CqALE™)

Using the geometry of the bundle TQ/G = T(Q
intrinsically in terms of covariant derivatives (see
Namely, they take the form

oo, .. Do, . _ Jo,6, . .
%(x,x,v)fﬁg( x,0) = <av(x,x,v),1xCurvA(x)>
Dol,6 . L Ol
E%(x,m v) = ad;, 5 55 —(x,2,0).

The first of these equations is the horizontal Lagrange—Poincaré equation while the
second is the wertical Lagrange—Poincaré equation. The notation here is as follows.
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Points in T(Q/G) @ g are denoted (z,%,7) and I(x,,7) denotes the Lagrangian induced
on the quotient space from L. The bundles T(Q/G) @ g naturally inherit vector bundle
connections and D/Dt denotes the associated covariant derivatives. Also, Curv 4 denotes
the curvature of the connection A4 thought of as an adjoint bundle valued two form on
QQ/G—Dbasic definitions and properties of curvature will be reviewed shortly.

Lagrangian Reduction by Stages. The perspective developed in|Cendra, Marsden and
Ratiu [2000a] is motivated by reduction by stages. In fact, that work develops a context (of
Lagrange—Poincaré bundles) in which Lagrangian reduction can be repeated. In particular,
this theory treats successive reduction for group extensions. Reduction for group extensions,
in turn, builds on semidirect product reduction theory, to which we turn next.

2.3 Hamiltonian Semidirect Product Theory

Lie—Poisson Systems on Semidirect Products. The study of Lie-Poisson equations

for systems on the _dual of a semidirect product Lie algebra grew out of the work of man
authors including Sudarshan apd Mukunda [1974] [Vinoeradoy and Kuperschmidt [1977]'

Ratiu [1980a|[[OST][T082 _Guillemin and Sternberg [1980 arsden [1982].|Marsden, Wein-
stein, IRatin and hmid [198 Holm and Kupe hmid OR Kuperschmidt and Ratiu

[1983], mes and Marsden [19831 IMarsden, Ratiu and Weinstein [1984a bll |Guillemin and
Sternberg [1984 IHolm . Marsden, Ratin and Weinstein [1985] | Abarbanel, Holm, Marsden
and Ratiu [1986 eonard and Marsden Marsden Misiolek, Perlmutter and
Ratiu [1998]. As these and related references show, the Lie—Poisson equations apply to
a surprisingly wide variety of systems such as the heavy top, compressible flow, stratified
incompressible flow, MHD (magnetohydrodynamics), and underwater vehicle dynamics.

In each of the above examples as well as in the general theory, one can view the given
Hamiltonian in the material representation as a function depending on a parameter; this
parameter becomes a dynamic variable when reduction is performed. For example, in the
heavy top, the direction and magnitude of gravity, the mass and location of the center of
mass may be regarded as parameters, but the direction of gravity becomes the dynamic
variable I' when reduction is performed.

We first recall how the Hamiltonian theory proceeds for systems defined on semidirect
products. We present the abstract theory, but of course historically this grew out of the
examples, especially the heavy top and compressible flow. When working with various
models of continuum mechanics and plasmas one has to keep in mind that many of the
actions are right actions, has wreful when employing general theorems involving
left actions. We refer to [Ho sd ] ] for a statement of some of the
results explicitly for right actions.

Generalities on Semidirect Products. Let V be a vector space and assume that the
Lie group G acts on the left by linear maps on V' (and hence G also acts on on the left on
its dual space V*). The semidirect product S = G®V is the set S = G x V with group
multiplication given by (g1,v1)(g2,v2) = (g192,v1 + g1v2), where the action of g € G on
v € V is denoted gv. The identity element is (e,0) where e is the identity in G and the
inverse of (g,v) is (g,v) " = (¢~ !, —¢g~v). The Lie algebra of S is the semidirect product
Lie algebra, s = g@® V', whose bracket is [(£1,v1), (€2,v2)] = ([€1,&2], &1v2 — av1) , where we
denote the induced action of g on V' by & vs.
The adjoint and coadjoint actions are given by

(9,v)(&,u) = (g€, 9u — (g§)v) and (g,v)(p,a) = (gu + py(9a), ga),
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where (g,v) € S = GXV, (§u) € 5 = gxV, (u,a) € s* = g*xV*, g6 = Ady€, gu = Ady - pu,
ga denotes the induced left action of g on a (the left action of G on V induces a left action
of G on V* — the inverse of the transpose of the action on V), p, : g — V is the linear map
given by p,(§) = &v, and p} : V* — g* is its dual. For a € V*, we write pla =voa € g*,
which is a bilinear operation in v and a. Equivalently, we can write (na,v) = —(voa,n).
Using this notation, the coadjoint action reads (g,v)(u, a) = (gu + v o (ga), ga).

Lie—Poisson Brackets and Hamiltonian Vector Fields. For a left representation of
G on V the + Lie-Poisson bracket of two functions f, k : s — R is given by

{ka}:t(ﬂaa) = Zl:<H, {%,g—fb}>i <a,ﬁ6—k — 5—kg>

where §f/6p € g, and §f/da € V are the functional derivatives of f. The Hamiltonian
vector field of i : s* — R has the expression

. Sh Sh
Xn(psa) =F <ad5h/5p/~" T 35.%% o a) :

Thus, Hamilton’s equations on the dual of a semidirect product are given by

. X oh
M= ad(;h/(;uuigoa,

Symplectic Actions by Semidirect Products. Consider a left symplectic action of .S
on a symplectic manifold P that has an equivariant momentum map Jg : P — s*. Since
V is a (normal) subgroup of S, it also acts on P and has a momentum map Jy : P — V*
given by Jy =i}, o Jg, where iy : V — s is the inclusion v — (0,v) and i}, : * — V* is
its dual. We think of Jy as the second component of Jg. We can regard G as a subgroup
of S by g — (g,0). Thus, G also has a momentum map that is the first component of Jg
but this will play a secondary role in what follows. Equivariance of Jg under GG implies that
Jv(gz) = gJv(2). To prove this relation, one uses the fact that for the coadjoint action of
S on s* the second component is the dual of the given action of G on V.

The Classical Semidirect Product Reduction Theorem. In a number of interesting
applications such as compressible fluids, the heavy top, MHD, etc., one has two symmetry
groups that do not commute and thus the commuting reduction by stages theorem oflMarsden
and Weinstein [1974] does not apply. In this more general situation, it matters in what order
one performs the reduction, which occurs, in particular for semidirect products. The main
result covering the case of semidirect products has a complicated history, with important
early contributions by many authors, as we have listed above. The final version of the
theorem as we shall use it, is due to i i i

Theorem 2.1 (Semidirect Product Reduction Theorem). Let S=G®V, choose
o= (p,a) € g xV*, and reduce T*S by the action of S at o giving the coadjoint orbit O,
through o € s*. There is a symplectic diffeomorphism between O, and the reduced space
obtained by reducing T*G by the subgroup G, (the isotropy of G for its action on V* at the
point a € V*) at the point p|g, where g, is the Lie algebra of G,.

This theorem is a consequence of a more general result given in the next section.
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2.4 Semidirect Product Reduction by Stages

A theorem on 1cti v sta for semidirect products acting on a symplectic manifold is
where the motivation was the application to underwater

vehicle dynamics) and [Ma

Consider a symplectic action of S on a symplectic manifold P that has an equivariant
momentum map Jg : P — s*. As we have explained, the momentum map for the action of
V is the map Jy : P — V* given by Jy =i}, oJg

We carry out the reduction of P by S at a regular value o = (u,a) of the momentum
map Jg for S in two stages. First, reduce P by V at the value a (assume it to be a regular
value) to get the reduced space P, = J‘_/l(a) /V. Second, form the isotropy group G, of
a € V*. One shows (this step is not trivial) that the group G, acts on P, and has an
induced equivariant momentum map J, : P, — g, where g, is the Lie algebra of G, so one
can reduce P, at the point p, 1= /g, to get the reduced space (Py),, = I3 (1a)/(Ga) e -

Theorem 2.2 (Reduction by Stages for Semidirect Products.). The reduced space
(Pa)p, is symplectically diffeomorphic to the reduced space P, obtained by reducing P by S
at the point 0 = (u, a).

Combined with the cotangent bundle reduction theorem, the semidirect product reduc-
tion theorem is a useful tool. For example, this shows that the generic coadjoint orbits for
the Euclidean group are cotangent bundles of spheres with the associated coadjoint orbit
symplectic structure given by the canonical structure plus a magnetic term.

Semidirect Product Reduction of Dynamics. There is a technique for reducing dy-
namics that is associated with the geometry of the semidirect product reduction theorem.
One proceeds as follows.

We start with a Hamiltonian H,, on 7T*G that depends parametrically on a variable
ag € V*. The Hamiltonian, regarded as a map H : T*G x V* — R is assumed to be
invariant on T*G x V* under the action of G on T*G x V*. One shows that this condition
is equivalent to the invariance of the function H defined on T*S = T*G x V x V* ex-
tended to be constant in the variable V under the action of the semidirect product. By the
semidirect product reduction theorem, the dynamics of H,, reduced by G,,, the isotropy
group of ag, is symplectically equivalent to Lie-Poisson dynamics on s* = g* x V*. The
Lie-Poisson structure determines the reduced dynamics (given explicitly above) using the

function h(u,a) = H(ay,g ' a) where p = g 'ay,.

2.5 Lagrangian Semidirect Product Theory

Lagrangian semidirect product reduction is modeled after the reduction theorem for the basic
Euler—Poincaré equations, although they are not literally special cases of it. To distinguish
these, we use phrases like basic Euler—Poincaré equations for the equations (m and simply
the Euler—Poincaré equations or the Euler—Poincaré equations with advection or the Euler—
Poincaré equations with advected parameters, for the equations that follow.

The main difference between the invariant Lagrangians considered in the Euler—Poincaré
reduction theorem earlier and the ones we work with now is that L and [ depend on an
additional parameter a € V*, where V is a representation space for the Lie group G and L
has an invariance property relative to both arguments.

The parameter a € V* acquires dynamical meaning under Lagrangian reduction as it
did for the Hamiltonian case: ¢ = %+ (dh/éu)a. For the heavy top, the parameter is the
unit vector T' in the (negative) direction of gravity, which becomes a dynamical variable in
body representation. For compressible fluids, a becomes the density of the fluid in spatial
representation, which becomes a dynamical variable (satisfying the continuity equation).
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The basic ingredients are as follows. There is a left representation of the Lie group G
on the vector space V and G acts in the natural way on the left on TG x V*: h(vy,a) =
(hvg, ha). Assume that the function L : TG x V* — R is left G-invariant. In particular,
if ag € V*, define the Lagrangian L., : TG — R by Lg,(vgy) = L(vg,a0). Then L,
is left invariant under the lift to TG of the left action of G,, on G, where G,, is the
isotropy group of ag. Left G—invariance of L permits us to define [ : g x V* — R by
1(97 vy, g7 ag) = L(vg, ap). Conversely, this relation defines for any [ : g x V* — R a left
G-invariant function L : TG x V* — R. For a curve g(t) € G, let £(t) := g(t)~1¢(t) and
define the curve a(t) as the unique solution of the following linear differential equation with
time dependent coefficients a(t) = —&(¢)a(t), with initial condition a(0) = ag. The solution

can be written as a(t) = g(t)tao.

Theorem 2.3. With the preceding notation, the following are equivalent:
(i) With ag held fized, Hamilton’s variational principle
to
§ [ Lao(g(t),9(t))dt =0 (2.1)
t1
holds, for variations dg(t) of g(t) vanishing at the endpoints;
(ii) g(t) satisfies the Euler—Lagrange equations for Lq, on G;
(iii) The constrained variational principle;
) 1(&(t),a(t)dt=0 (2.2)
t1

holds on g x V*, using variations of & and a of the form 6& = n+[£,n] and da = —na,
where n(t) € g vanishes at the endpoints;

(iv) The Euler—Poincaré equations hold on g x V*

d ol Lol al

Remarks:

1. As with the basic Euler—Poincaré equations, this is not strictly a variational principle
in the same sense as the standard Hamilton’s principle. It is more of a Lagrange—d’Al-
embert principle, because we impose the stated constraints on the variations allowed;

2. Note that equations (2:3) are not the basic Euler—Poincaré equations because we are
not regarding g x V* as a Lie algebra. Rather, these equations are thought of as
a generalization of the classical Euler—Poisson equations for a heavy top, written in
body angular velocity variables, as we shall see in the examples. Some authors may
prefer the term Euler—Poisson—Poincaré equations for these equations.

We refer to MMM for the proof. It is noteworthy that

these Euler-Poincaré equations are not the (pure) Euler—Poincaré equations for the
semidirect product Lie algebra g@® V™
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The Legendre Transformation. Start with a Lagrangian on g x V* and perform a
partial Legendre transformation in the variable ¢ only, by writing

H= %7 h(,u,a) = <:u‘7£> - l(§7a)

oh 0& ol &

< = g + Wy — )=\ ¢ 5 = 57

o o 687 o
and 6h/da = —dl/da, we see that (R.3) and a(t) = —&(t)a(t) imply the Lie-Poisson dynamics
on a semidirect product for the minus Lie—Poisson bracket. If this Legendre transformation

is invertible, then we can also pass from the the minus Lie-Poisson equations to the Euler—
Poincaré equations (2.3] together with the equations a(t) = —£(t)a(t).

Since

Relation with Lagrangian Reduction. The Euler—Poincaré equations are shown to

be a special MmﬂmT&meM@n, Marsden and
Ratiu [1998]. We also refer to |Cendra, Holm, Marsden and Ratiu [1998] who study the

13

Euler—Poincaré formulation of the Maxwell-Vlasov equations for plasma physics.

The Kelvin—Noether Theorem. There is a version of the Noether theorem that holds
for solutions of the Euler—Poincaré equations. Our formulation is motivated by and designed
for ideal continuum theories (and hence the name Kelvin—Noether), but it may be also of
interest for finite dimensional mechanical systems. Of course it is well known (going back at
least to ) that the Kelvin circulation theorem for ideal flow is closely related
to the Noether theorem applied to continua using the particle relabeling symmetry group.

Start with a Lagrangian L,, depending on a parameter ag € V* as above and introduce
a manifold C on which G acts (we assume this is also a left action) and suppose we have
an equivariant map K : C x V* — g**. In the case of continuum theories, the space C is
usually a loop space and (K(c,a), u) for ¢ € C and p € g* will be a circulation. This class
of examples also shows why we do not want to identify the double dual g** with g.

Define the Kelvin—Noether quantity [ :C x g x V* — R by

I(c,€,a) = </C(c, a), %> . (2.4)

Theorem 2.4 (Kelvin—Noether). Fizing co € C, let £(t), a(t) satisfy the Euler—Poincaré
equations and define g(t) to be the solution of g(t) = g(t)&(t) and, say, g(0) = e. Let
c(t) = g(t)"teg and I(t) = I(c(t),£(t),a(t)). Then

%I(t) - <IC(c(t), a(t)), % o a> . (2.5)

Again, we refer to |Hglm,_Ma.nsdgu_a.nd_B_a.1;m_[l9%_aj for the proof.

Corollary 2.5. For the basic FEuler—Poincaré equations, the Kelvin quantity I(t), defined
the same way as above but with I : C x g — R, is conserved.

The Heavy Top. As we explained earlier, the heavy top kinetic energy is given by the left
invariant metric on SO(3) whose value at the identity is (€21, Q2) = I£21-Q9, where 21, Q5 €
R3 are thought of as elements of so(3), the Lie algebra of SO(3), via the isomorphism
QeR—Qeso(3), v :=Qxv
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This kinetic energy is thus left invariant under SO(3). The potential energy is given by
MglA—'k - x. This potential energy breaks the full SO(3) symmetry and is invariant only
under the rotations S' about the k-axis.

For the application of Theorem [2.3] we think of the Lagrangian of the heavy top as a
function on TSO(3) x R® — R. Define U(ua,v) = Mgl A~'v - x which is verified to
be SO(3)-invariant, so the hypotheses of Theorem 2:3]are satisfied. Thus, the heavy top
equations of motion in the body representation are given by the Fuler—Poincaré equations
(23] for the Lagrangian [ : s0(3) x R® — R defined by

1 1
1(Q,T) = LA 'ua, A7) = G- Q- UA  ua, A7) = ST Q= MglT - x.

It is then straightforward to compute the Euler—Poincaré equations for this reduced La-
grangian and to verify that one gets the usual heavy top equations.

Let C=gandlet £:C x V* — g** = g be the map (W,T') — W. Then the Kelvin—
Noether theorem gives the statement

%<W7H> = Mgt (W,T x x),

where W (¢) = A(t)~'w; in other words, W (t) is the body representation of a space fixed
vector. This statement is easily verified directly. Also, note that (W, II) = (w, ), with
7 = A(t)II, so the Kelvin—Noether theorem may be viewed as a statement about the rate
of change of the momentum map of the system (the spatial angular momentum) relative to
the full group of rotations, not just those about the vertical axis.

2.6 Reduction by Stages

Poisson Reduction by Stages. Suppose that a Lie group M acts symplectically on a
symplectic manifold P. Let N be a normal subgroup of M (so M is an extension of N).
The problem is to carry out a reduction of P by M in two steps, first a reduction of P by N
followed by, roughly speaking, a reduction by the quotient group M/N. On a Poisson level,
this is elementary: P/M is Poisson diffeomorphic to (P/N)/(M/N). However, symplectic
reduction is a much deeper question.

Symplectic Reduction by Stages. We now state the theorem on symplectic reduction
by stages regarded as a generalization of the semidirect product reduction theorem. We
refer tolMarsden, Misiolek, Perlmutter and Ratiu [1998[[2000] and|TLeonard and Marsden
[1997] for details and applications.

Start with a symplectic manifold (P,2) and a Lie group M that acts on P and has an
Ad*-equivariant momentum map Jps : P — m*, where m is the Lie algebra of M. We shall
denote this action by ® : M x P — P and the mapping associated with a group element
mée M by &, : P— P.

Assume that N is a normal subgroup of M and denote its Lie algebra by n. Leti: n — m
denote the inclusion and let ¢* : m* — n* be its dual, which is the natural projection given
by restriction of linear functionals. The equivariant momentum map for the action of the
group N on P is given by Jny(z) = i*(Jap(2)). Let v € n* be a regular value of Jy and
let IV, be the isotropy subgroup of v for the coadjoint action of IV on its Lie algebra. We
suppose that the action of NV, (and in fact that of M) is free and proper and form the first
symplectic reduced space: P, = J'(v)/N,.

Since N is a normal subgroup, the adjoint action of M on its Lie algebra m leaves the
subalgebra n invariant, and so it induces a dual action of M on n*. Thus, we can consider
M,,, the isotropy subgroup of v € n* for the action of M on n*. One checks that the subgroup
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N, C M is normal in M,, so we can form the quotient group M, /N,. In the context of
semidirect products, with the second factor being a vector space V', M, /N, reduces to G,
where v = a in our semidirect product notation.

Now one shows that there is a well defined symplectic action of M, /N, on the reduced
space P,. In fact, there is a natural sense in which the momentum map Jp; : P — m*
induces a momentum map J, : P, — (m,/n,)* for this action. However, this momentum
map in general need not be equivariant.

However, nonequivariant reduction is a well-defined process and so P, can be further
reduced by the action of M, /N, at a regular value p € (m, /n,)*. Let this second reduced
space be denoted by P, , = JM1 Ny (p)/(M,/N,), where, as usual, (M, /N,), is the isotropy
subgroup for the action of the group M, /N, on the dual of its Lie algebra.

Assume that 0 € m* is a given regular element of Jys so that we can form the reduced
space P, = J ];[1 (0)/M, where M, is the isotropy subgroup of o for the action of M on m*.
We also require that the relation (1/,)"(p) = ko — © holds where 7/, : m, — m, /n, is the
quotient map, k, : m, — m is the inclusion and v is some extension of v to m,. We assume
that the following condition holds:

Stages Hypothesis: For all 01,09 € m* such that o1|m, = oalm, and o1|n = og|n, there
exists n € N, such that oo = Ad}_1 07.

Theorem 2.6 (Symplectic Reduction by Stages.). Under the above hypotheses, there
is a symplectic diffeomorphism between P, and P, ,.

Lagrangian Stages. We will just make some comments on the Lagrangian counterpart
to Hamiltonian reduction by stages. First of all, it should be viewed as a Lagrangian coun-
terpart to Poisson reduction by stages, which, as we have remarked, is relatively straight-
forward. What makes the Lagrangian counterpart more difficult is the a priori lack of a
convenient category, like that of Poisson manifolds, which is stable under reduction. Such
a category, which may be viewed as t] ini isfyi i operty and con-
taining tangent bundles, is given in [Cendra, Marsden and Ratiu [2000a]. This category
must, as we have seen, contain bundles of the form T(Q/G) @ g. This gives a clue as to
the structure of the general element of this Lagrange—Poincaré category, namely direct
sums of tangent bundles with vector bundles with fiberwise Lie algebra structure and certain
other (curvature-like) structures. In particular, this theory can handle the case of general
group extensions and includes Lagrangian semidirect product reduction as a special case.

The Lagrangian analogue of symplectic reduction is nonabelian Routh reduction to which
we turn next. Developing Routh reduction by stages is an interesting and challenging open
problem.

3 Routh Reduction

Routh reduction differs from Lagrange-Poincaré reduction in that the momentum map
constraint J;, = p is imposed. Routh dealt with systems having cyclic variables. The heavy
top has an abelian group of symmetries, with a free and proper action, yet it does not have
global cyclic variables in the sense that the bundle Q — @Q/G is not trivial; that is, @ is not
globally a product S x G. For almgdﬂu_mmwu_ﬂgﬁ' 1th reduction in the case when
Q = S x G and (Gis Abelian, seelMarsden and Ratin [1999], §8.9 _andlArnold, Kozlov and
Neishtadt [1988].

We shall now embark on a global mtrmsm presentation of nonabehan Routh reduction.

Preliminary versionslo inMarsden
and Scheurle [1993a] and
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3.1 The Global Realization Theorem for the Reduced Phase Space

Let G, denote the isotropy subgroup of u for the coadjoint action of G on g*. Because
G acts freely and properly on @) and assuming that p is a regular value of the momentum
map J, the space J 21 (1)/G is a smooth symplectic manifold (by the symplectic reduction
theorem). The symplectic structure is not of immediate concern to us.

Fiber Products. Given two fiber bundles f : M — B and g : N — B, the fiber product
is M xgN = {(m,n) € MxN | f(m) = g(n)}. Using the fact that M x g N = (f x g)"1(A)
where A is the diagonal in B x B, one sees that M x g N is a smooth submanifold of M x N
and a smooth fiber bundle over B with the projection map (m,n) — f(m) = g(n).

Statement of the Global Realization Theorem. Consider the two fiber bundles 7¢ /¢ :
T(Q/G) — Q/G and p, : Q/G,, — Q/G. The first is the tangent bundle of shape space,
while the second is the map taking an equivalence class with respect to the G, group action
and mapping it to the larger class (orbit) for the G action on (). We write the map p,, as
[dlc, +— ldlg- The map p, is smooth being the quotient map induced by the identity. We
form the fiber product bundle p, : T(Q/G) xq,6 Q/G, — Q/G.

A couple of remarks about the bundle structures are in order. The fibers of the bundle
pu: Q/G, — Q/G are diffeomorphic to the coadjoint orbit O, through u for the G action
on g*, that is, to the homogeneous quotient space G/G,,. Also, the space .]Zl(u)/GH is a
bundle over both /G, and Q/G. Namely, we have the smooth maps

o I N w)/Gy — Q/Gus  [vga, — lde,, and
0, I W)/Gy — Q/Gs [vla, — ldle-

Theorem 3.1. The bundle o, : J;'(1)/G, — Q/G is bundle isomorphic (over the iden-
tity) to the bundle p, : T(Q/G) xg,a Q/G, — Q/G.

The maps involved in this theorem and defined in the proof are shown in Figure B.1]

Proof. We first define a bundle map and then check it is a bundle isomorphism by pro-
ducing an inverse bundle map. We already have defined a map o* that will give the second
component of our desired map. To define the first component, we start with the map
Trgeld7 (1) : I (1) — T(Q/G). This map is readily checked to be G,-invariant and so
it defines a map of the quotient space r, : J;'(u)/G, — T(Q/G), a bundle map over the
base Q/G. The map r, is smooth as it is induced by the smooth map TWQ’G|J21(/J,).

The map we claim is a bundle isomorphism is the fiber product ¢,, = r, Xq,c . This
map is smooth as it is the fiber product of smooth maps. Concretely, this bundle map is
given as follows. Let v, € J;'(1). Then ¢, ([vgle,) = (Tymq.a(vq); lda,.) -

We now construct the inverse bundle map. From the theory of quotient manifolds, recall
that one identifies the tangent space T,,(Q/G) at a point x = [g]¢ with the quotient space
T,Q/8 - q, where ¢ is a representative of the class x and where g- ¢ = {£g(q) | £ € g} is the
tangent space to the group orbit through ¢q. The isomorphism in question is induced by the
tangent map T,mg,¢ : T4Q — T»(Q/G), whose kernel is exactly g - g.

Lemma 3.2. Let u, = [wy] € T,Q/g-q. There exists a unique & € g such that v, =
wg +Eq(a) € I (). In fact, € =3(q) " (1 — Ir(w,))-

Proof. The condition that Jy(v,) = p is equivalent to the following condition for all n € g:

(1, m) = (Ir(wg),n) + (J(€q(q),n)
= (Jr(wg),n) + (€a(@),10(@)) = (Ir(wy),m) + (3(q)€,m)
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Figure 3.1: The maps involved in the proof of the global realization theorem.

Thus, this condition is equivalent to u = Jr(wq) + JI(g)§. Solving for £ gives the result. v

As a consequence, note that for each u, € T,(Q/G), and each ¢ € Q with [¢]¢ = =,
there is a v, € J7 ' (1) such that u, = [v,].

We claim that an inverse for ¢, is the map ¢, : T(Q/G) xq/c Q/G, — I7 (n)/G,
defined by ¥, (us, [dc,) = [vglG,, where z = [ and u, = [vy], with v, € J7' (1) given by
the above lemma. To show that 9, is well-defined, we must show that if we represent the
pair (ug, [q]c, ), * = [q]g, in a different way, the value of 9, is unchanged.

Let u, = [vg], with [¢]c, = [q]q, and v € J ! (n). Then we must show that [vgla, =
[Ugla, - Since [qle, = [@a, , we can write ¢ = h-q for some h € G,. Consider h™' -7 € T,Q.
By equivariance of J,, and the fact that h € G, we have h™1 - v € le(,u). However,

u, = Tymq.c(vy) = Tamq.c(V7) = TqﬂQG(hil - g)

and therefore, v, — h™! - U7 € g+ ¢. In other words, v, — h™1 - U7 = £g(q) for some & € g.
Applying J, to each side gives 0 = J1(£o(q)) = F(¢)€ and so & = 0. Thus, v, = h~! - 75
and so [vg]a, = [Ugla,. Thus, ¢, is a well defined map.

To show that 1), is smooth, we show that it has a smooth local representative. If we
write, locally, @ = S x G where the action is on the second factor alone, then we identify
Q/Gy = 8x0, and T(Q/G)xg,cQ/G, = TSx0,. We identify J; ' () with T'S x G since
the level set of the momentum map in local representation is given by the product of T'S
with the graph of the right invariant vector field on G whose value at e is the vector ¢ € g
such that (¢, n) = (u,n). In this representation, J;'(x)/G,, is identified with T'S x G/G,
and the map 1, is given by (us, [g]g,) € TS x G/G |, — (uz,g-p) € TS x Op,. This map is
smooth by the construction of the manifold structure on the orbit. Thus, 1, is smooth.

It remains to show that ¢, and ¢, are inverses. To do this, note that

(Y0 ¢u)([”q]Gu) = Yu(Tymq a(vg), [Q]G#) = [vq}Gu
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since vq is, by assumption, in le(u). [ ]

Associated Bundles. We now show that the bundle p, : Q/G, — Q/G is globally
diffeomorphic to an associated coadjoint orbit bundle. Let O, C g* denote the coadjoint
orbit through p. The associated coadjoint bundle is the bundle (5# = (@ x 0,)/G,
where the action of G on @ is the given (left) action, the action of G on O, is the left
coadjoint action, and the action of G on @ x O, is the diagonal action. This coadjoint
bundle is regarded as a bundle over /G with the projection map given by 5, : (5# —

Q/G; [(¢,9 - mla — ldla-

Theorem 3.3. There is a global bundle isomorphism ®,, : 6u — Q/G,, covering the iden-
tity on the base Q/G.

Proof. Asin the preceding theorem, we construct the map ®,, and show it is an isomorphism
by constructing an inverse. Define ®,, by [q, g0 - t]c — [go_1 -qlg,,- To show that @, is well

defined, suppose that go - = g-p and g € G. We have to show that [go_1 “qlg, =
[((gg)’l) (g - q)](;M ie., [go_1 . q]GH =[g7! -q}GM, which is true because go_1§ € G,. Define
v, :Q/G, — O, by [dla, — lg,p1lg. It is clear that ¥, is well defined and is the inverse

of ®,. Smoothness of each of these maps follows from general theorems on smoothness of
quotient maps (see, e.g., [Abraham, Marsden and Ratiu [1988]). |

A consequence of these two theorems is that there are global bundle isomorphisms be-
tween the three bundles J;'(1)/G ., T(Q/G) xq/a Q/Gu, and T(Q/G) xq/a Op-

The second space is convenient for analyzing the Routhian and the reduced variational
principles, while the third is convenient for making links with the Hamiltonian side.

3.2 The Routhian.

We again consider Lagrangians of the form kinetic minus potential using our earlier notation.
Given a fixed p € g*, the associated Routhian R" : T(Q) — R is defined by

Rf(vq) = L(vg) — (1, A(vy)) -
Letting 2, (vq) = (1, A(vg)), we can write this simply as R* = L — 2,,.
Proposition 3.4. For v, € J;'(u), we have R*(v,) = HHor(vq)H2 V.(q), where the

I
amended potential V,, is given by V,(q) = V(q) + C, ( ) and C,, = 2 {p,3(q) " p) is
called the amendment.

Proof. Because the horizontal and vertical components in the mechanical connection are
metrically orthogonal, we have

R (0g) = &gl ~ Via) — (. A(uy))
= S Hor(ug) | + 3 | Ver(u) I ~ V() ~ (1. 2(v,)

For v, € J;* (1), we have

[ Ver(ug)2 = @) g @) = (3@)2(w,). 2y))
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Using this, one now verifies the following:

Proposition 3.5. The function R! is G -invariant and so it induces, by restriction and
quotienting, a function on le(ﬂ)/G# and hence, by the global realization theorem, a func-
tion R : T(Q/G) xg/a (Q/G,) — R called the reduced Routhian; it is given by

R (e alg,) = 5 el — Bllalc,).

where x = [q|g, the metric on S = Q/G is naturally induced from the metric on Q (that
is, if uy = Tymg,c(vg) then ||ug|ls = ||Hor(vg)|l), and U, : Q/G, — R is the reduced
amended potential given by U, ([dla,) = V.(q).

Additional notation will prove useful. Let U be the function on /G induced by the
function V on @ and let €, be the reduced amendment, the function on Q/G,, induced
by the amendment C),. Thus, U, = Yo p, + €,. Let the Lagrangian on /G be denoted
£ =8 — U, where &(u;) = ||uy||%/2 is the kinetic energy on the shape space Q/G.

3.3 Examples

Rigid Body. Here the shape space is a point since @ = G, u = 7, the spatial angular
momentum, so T(Q/G) xg/c Q/Gr = S}, the sphere of radius ||7||, a coadjoint orbit for

[l

the rotation group. The reduced Routhian R™ : SﬁW” — R is the negative of the reduced

amendment, namely —%H - I7'II. This is of course the negative of the reduced energy.

Heavy Top. In this case Q = SO(3) and G = S! is the subgroup of rotations about the
vertical axis. Shape space is Q/G = S%, the sphere of radius 1. As with any Abelian group,
G =G, 50 T(Q/G) xg/c Q/G, = T(Q/G). In the case of the heavy top, we get T'SF.

The isomorphism from J;*(1)/G,, — TS? is induced by the map that takes (A, A) to
(T,T =T x Q). One checks that the horizontal lift of (T',T') to the point A is the vector
(A,Ah) satisfying A~1A, = Q,,, where

(I'xT)-IT

Q=T x T~ =

In doing this computation, it may be helpful to keep in mind that the condition of horizon-
tality is the same as zero momentum. Thus, the reduced Routhian is given by

2

. 1 1
(D, 1) = 5 (@, I%) — Mgll - x — 5= —.

Underwater Vehicle. As we have seen, @ = SE(3), G = SE(2) x R and so again Q/G =
S?%. However, because G is nonabelian, for p # 0, the bundle Q/G,, — @Q/G has nontrivial
fibers. These fibers are coadjoint orbits for SE(2), namely cylinders. A computation shows
that Q/G,, = SO(3) x R, regarded as a bundle over S? by sending (A, ) to A~'k. Thus,
T(Q/G)xqcQ/G, =T(57) X 5250(3) xR, a 6-dimensional space, a nontrivial bundle over
the two sphere with fiber the product of the tangent space to the sphere with a cylinder. The
reduced Routhian may be computed as in the previous example, but we omit the details.

3.4 Hamilton’s Variational Principle and the Routhian

Now we shall recast Hamilton’s principle for the Lagrangian L in terms of the Routhian.
To do so, we shall first work out the expression for dGgu.
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Recalling that R" =L-2A, and that on the space of curves parametrized on a fixed
interval [a,b], & f L(q (t)) dt, we see that Gru = &1 — &g, and hence that

dSgu - 0g(t) = dSy, - dq(t) — dGQ{M - 6q(t). (3.1)

We know from the formula for d&;, given in Proposition [L1]that

a6y, (q(t /55 ( >5th+&<2§>-<§1

To work out the term d&sg, - dg(t) we shall proceed in a more geometric way.

b
(3.2)

a

Variations of Integrals of Forms. We shall pause for a moment to consider the general
question of variations of the integrals of differential forms. Consider a manifold M, a k-
dimensional compact oriented submanifold S (with boundary) and a k-form w defined on
M. By a variation of S we shall mean a vector field §s defined along S in the following
way. Let ¢ : M — M be a family of diffeomorphisms of M with g the identity. Set

0 0 /
w.
(9)

ds(m) =

— . d ¢ =
e ezogo (m) an /Sw (‘36

Proposition 3.6. The above variation is given by

5/w:/i55dw+/ issw,
s s as

where issw denotes the interior product of the vector field ds with the k-form w.

Proof. We use the definition, the change of variables formula, the Lie derivative and Stokes’

fOI‘Inula as fOllO WS
= / 66 = / ‘
e=0 v Ye (S) e=0JS ‘

5/w: 9
s 86
:/.fgsw:/igsder/di(;sw:/igsder/ issw. [ |

S S S S oS

Application to the Mechanical Connection. In particular, we can apply the preceding
proposition to the variations of the integral of the one form 2, over curves. We get

b b
5 / 2, — / i50B,, + 2, (9g(b)) — 2, (99(a)),

where %B,, = d2,,, the exterior derivative of the one form .

The Computation of Boundary Terms. Summing up what we have proved so far, we
write

dSru(q(t),q(t)) - 6g = d&L(q(t),4(t)) - 6¢ — dGx, (q(t),4(t)) - dq
b
/ EL(L ( ) Sqdt + O (Zf) -5q

_ / 15,8, — [, (5¢(b)) — A (Sg(a)))] -
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We now compute the boundary terms in this expression. Recalling the formula for the
boundary terms in the variational formula for L, splitting the variation into horizontal and
vertical parts, we get

dq -~
@L (dt) 5(]

b

= (FL(q(t), d(t)),6q)|"

= (FL(q(t),4(t)), Hor )|, + (FL(q(t). q(t)), Ver q)|,
= ((4(t), Hor 6g)|" + (d(t), Ver 5g)|" .

Assuming the curve (g(t), ¢(t)) lies in the level set of the momentum map, we have

(a(t), Ver dq) = ((a(t), A(5a)], (a) )
= (I1a(t), 4(), A(09)) = (1, A(30)) = A, (3)

Therefore, we get

dq ~|°
o (5) 4]

Noticing that the terms involving 2l,, cancel, we can say, in summary, that

dSre(q(t),4(t)) - 0g = A& (q(t),4(t)) - 6 — dSa, (q(t),4(t)) - 0q

/55 (dt2) Sqdt — /:i(;q%u—i—((q(t),Hor6q>)|Z.

We can conclude the following.

= (q(t), Hor 6q))|" + A,,(3q)|" .

Theorem 3.7. A solution of the Fuler—Lagrange equations which lies in the level set J;, =
u, satisfies the following variational principle

5 [ R ale)ate) dt = = [ (a0).0) i+ (d(0), Horsa)l..

It is very important to notice that in this formulation, there are no boundary conditions
or constraints whatsoever imposed on the variations. However, we can choose vanishing
boundary conditions for §¢ and derive:

Corollary 3.8. Any solution of the FEuler—Lagrange equations which lies in the level set
Jr = p, also satisfies the equations

Conwversely, any solution of these equations that lies in the level set Jp = pu of the momentum
map is a solution to the Fuler—Lagrange equations for L.

In deriving these equations, we have interchanged the contractions with d¢ and ¢ using

skew symmetry of the two form B,.. Omne can also check this result with a coordinate
computation, as was done in [Marsden and Scheurle [1993blt see also|Marsden and Ratiu

[1999] for this calculation in the case of Abelian groups.
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3.5 The Routh Variational Principle on Quotients

We now show how to drop the variational principle given in the preceding subsection to
the reduced space T(Q/G) Xg/¢ Q/G,. An important point is whether or not one imposes
constraints on the variations in the varlatlonal principle. One of our main points is that such
constraints are not needed; for a corresponding de i i strained
to lie in the level set of the momentum map, seem

Later in this section we illustrate the procedure with the rigid body, which already
contains the key to how one relaxes the constraints. Some readers may find it convenient
to study that example simultaneously with the general theory.

Our first goal is to show that the variation of the Routhian evaluated at a solution

depends only on the quotient variations. Following this, we shall show that the gyroscopic
terms i ;)®B, also depend only on the quotient variations.

Analysis of the Variation of the Routhian. We begin by writing the Routhian as
follows:

R¥(ug) = 5 | Box(wg) [ + 3| Vex(oq) I ~ V(a) — {1 2(u,)) (33)

We next analyze the variation of two of the terms in this expression, namely

Sl Ver(og) |7 — {1, ) = 5 ((@)A(0), Awy) — (1, A(wy)

We choose a family of curves ¢(¢, €) with the property that ¢(t,0) is a solution of the Euler—
Lagrange equations with a momentum value p and let v, be the time derivative of ¢(¢,0).
As usual, we also let dq be the e derivative evaluated at € = 0. Then, the desired variation

is given by
Gl (E) 2 (E)) -2 (5))

= 5 {0,360 A0 A0) + (30)B(wr) ~ s 5,

| (%)) e

9
Oe

Here, T, denotes the tangent map at the point ¢. Since the curve ¢(t,0) is assumed to be
a solution with momentum value p and since J(¢)2(vy) = J1(vq), the second term in the
preceding display vanishes. Thus, we conclude that

7, (o (5) = (5)) - (-2(5)))
= S (T 60) Ao,), Alwy) (3.5)
Next, we observe that
d (% (1, 3((1)1M>) -0q = f% (1,3(q) " (1,3 - 6¢) 3(q) ') - (3.6)

On a solution with momentum value p, we have p = Jr.(vqy) = J(¢)A(vq). Substituting this
into the preceding expression, we get

a (3 (300 0)) -6 = 3 (@A) ) (B3 50)3(0)(0)Ae))
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Therefore, on a solution with momentum value p, we have

LGEos@a@)-Ga (@) e
=—d (% <u,:f<q>1u>) X (3:9)

We conclude that when evaluated on a solution with momentum value p,

dq d 1 g\ ||? |  —u(dq
() = =2 ~|[Hor [ 22 )] — = = 1
e=0 R (8t> 66 e=0 (2 H o <at> VH(q)) 86 e=0 R (8t) ' (3 0)

where R" (v,) = || Hor(vg)[|?> = Viu(q). Proposition B4lshows that R" agrees with R* on

le(u) and, more importantly, B = R o (TWQG XQ/a WQ,GM) , where, recall, 7 ¢ : Q —

9
Oe

Q/G and 1, : Q@ — Q/G, are the projection maps. Thus, R" drops to the quotient
with no restriction to the level set of the momentum map. Differentiating this relation with
respect to e, it follows that the variation of R" drops to the variation of R*.

Analysis of the Variation of the Gyroscopic Terms. Now we shall show how the
exterior derivative of the one form 2, drops to the quotient space. Precisely, this means the
following. We consider the one form 2(,, on the space ) and its exterior derivative B,, = d2,,.
We claim that there is a unique two form (3, on Q/G,, such that B, = Wé’G“ﬁM, where,
recall, 7g.¢, : @ — Q/G, is the natural projection. To prove this, one must show that for
any u,v € T,@Q, the following identity holds:

dA,(¢)(u,v) =dA,.(g-q) (9-u+Eqlg-9),9-v+no(9-q), (3.11)

for any g € G, and &,7n € g,. To prove this, one first shows that
d,.(g-9) (9-u+8alg-9),9-v+nqlg-q)
= d%,(q) (u+ (Adyr &), (@),0+ (Ady-1 1) 4 (0))

using the identities {g(g - ¢) = (Adg—l S)Q (q) and @A, = 2, where ®,4(q) = g - ¢ is the
group action. Second, one shows that d2l,,(q) (v + (o (q),v) = d¥U,(q) (u,v) for any ¢ € g,.
This holds because i¢,d?, = 0. Indeed, from P72, = A, we get £, = 0 and hence
ic,dA, +dig, A, = 0. However, i¢, 2, = (1, (), a constant, so we get the desired result.

Now we can apply Theorem B.Zlto obtain the following result.

Theorem 3.9. If q(t),a < t < b is a solution of the Fuler—Lagrange equations with mo-
mentum value p, y(t) = 7q.a,(q(t)), and x(t) = 7q,c(q(t)), then y(t) satisfies the reduced
variational principle

b b b
5/ 9Ci"(fﬂ(lf),ﬂb(%‘)»y(lf))dt=/ iy Bu(y(t)) - oy dt + (& (t), 0x(t))gl, -

Conversely, if q(t) is a curve such that ¢(t) € J; (1) and if its projection to y(t) satisfies
this reduced variational principle, then q(t) is a solution of the Euler-Lagrange equations.

It is already clear from the case of the Euler—Poincaré equations that dropping the varia-
tional principle to the quotient can often be easier than dropping the equations themselves.
Notice also that there is a slight abuse of notation, similar to that when one writes a tangent
vector as a pair (g, ). The notation (z,y) is redundant since z can be recovered from y by
projection from Q/G, to Q/G. Consistent with this convenient notational abuse, we use
the notation (z, ) is an alternative to u,.
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3.6 Curvature

We pause briefly to recall some key facts about curvatures of connections, and establish our
conventions. Then we shall relate 3, to curvature.

Review of the Curvature of a Principal Connection. Consider a principal connection
A on a principal G bundle 79 ¢ : @ — Q/G. The curvature B is the Lie algebra-valued
two-form on @ defined by B(ug,v,) = dA(Hor,(ug), Horg(v,)), where d is the exterior
derivative.

Using the fact that B depends only on the horizontal part of the vectors and equivariance,
one shows that it defines an adjoint bundle (that is, g)-valued two-form on the base Q/G
by Curva(z)(uz,ve) = g, dA(ug,vq)] s, Where [¢lc = z € Q/G, uq and v, are horizontal,
Trg,c - Ug = Uy and Tmg ¢ - Vg = V.

Curvature measures the lack of integrability of the horizontal distribution in the sense
that on two vector fields u, v on @ one has

B(u,v) = —A([Hor(u), Hor(v)]).

The proof uses the Cartan formula relating the exterior derivative and the Jacobi-Lie
bracket:

B(u,v) = Hor(u)[A(Hor(v))] — Hor(v)[A(Hor(u))] — A([Hor(u), Hor(v)]).

The first two terms vanish since A vanishes on horizontal vectors.

An important formula for the curvature of a principal connection is given by the Cartan
structure equations: for any vector fields u,v on @) one has

B(u,v) = dA(u,v) — [A(u), A(v)],

where the bracket on the right hand side is the Lie bracket in g. One writes this equation for
short as B = dA — [A, A]. An important consequence of these equations that we will need
below is the following identity (often this is a lemma used to prove the structure equations):

dA(q) (Hor ug, Vervg) =0 (3.12)

for any ugq,vq € T4Q.

Recall also that when applied to the left trivializing connection on a Lie group, the
structure equations reduce to the Mauer—Cartan Equations. We also remark, although we
shall not need it, that one has the Bianchi Identities: for any vector fields u,v,w on @,
we have

dB(Hor(u), Hor(v), Hor(w)) = 0.

The Connection on the Bundle p,. The bundle p, : Q/G,, — Q/G has an Ehresmann
connection induced from the principal connections on the two bundles Q@ — Q/G, and
@ — Q/G. However, we can also determine this connection directly by giving its horizontal
space at each point y = [¢]g, € Q/G),. This horizontal space is taken to be the orthogonal
complement within 7,,(Q/G,) = T,Q/[g, - g to the vertical space [g-¢]/[g, - ¢]. This latter
space inherits its metric from that on 7, by taking the quotient metric. As before, since
the action is by isometries, this metric is independent of the representatives chosen.

This horizontal space is denoted by Hor,, and the operation of taking the horizontal part
of a vector is denoted by the same symbol. The vertical space is of course the fiber of this

bundle. This vertical space at a point y = [q]g, is given by ker T),p,, which is isomorphic
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to the quotient space [g - q]/[g, - ¢]. This vertical bundle will be denoted by Ver(Q/G,,) C
T(Q/G,,) and the fiber at the point y € Q/G,, is denoted Ver,(Q/G,) = kerT,p,. The
projection onto the vertical part defines the analogue of the connection form, which we
denote A, ,. Thus, A, : T(Q/G,) — Ver(Q/G,), which we think of as a vertical valued

one form.

Compatibility of the Three Connections. We shall now work towards the computa-
tion of 3, on various combinations of horizontal and vertical vectors relative to the connec-
tion 2, . To do this, keep in mind that p, o mg ¢, = 7g,c by construction. We shall need
the following.

Lemma 3.10. Let uq € T,Q and u, = Ty7q.q, - uq, where y =nq.a,(q). Then
1. uy is py-vertical if and only if uq is T q-vertical.

2. The identity Trq,q, - Horu, = Hor,, (uy) holds, where Hor denotes the horizontal
projection for the mechanical connection 2.

3. The following identity holds: Trq q, - Verug = Ver,, (uy) .
Proof. 1. Because p, o mg,c, = m@,c, the chain rule gives
Typu - uy = Typu - TymQ.G, - ug = T4TQ,G + Ug;
50 Typy - uy = 0 if and only if Tymg ¢ - uq = 0, which is the statement of part 1.
2. Let v, € kerTyyp, C T,(Q/G,) and write v, = Tymq,G, - vq- By the definition of the
metric (-, '>>Q/G“ on /G, we have
0 = ((Horug, vg)), = {(Tymq,q, -Horug, Tymg.c, - Uq>>Q/G“,
= <<Tq7rQ,GM -Horuq,vy»Q/Gu .

Hence, since v, is an arbitrary p,-vertical vector, we conclude that Tymg g, - Horu, is
( en
pu-horizontal. Next, write

Hor,, (TWQ’G# ~uq) = Hor,, (Tﬂ'Q’GH - Hor uq) + Hor,, (Tﬂ'Q’Gu ~Veruq)
=Trq,q, -Horu,
by assertion 1 of this lemma.
3. Asin 1, Tymq g, - Verug is p,-vertical. Therefore,
Ver,, u, = Ver,, (Tqﬂ'Q’G“ - uq)
= Ver,, (Ty7q.c, - Verug) + Ver,, (I;mq.q, - Horu,)
=Tymq,q, - Verug,

since Ty ¢, - Horug is p,-horizontal by part 2. |

The Pairing Between g and g*. We shall need to define a natural pairing between the
adjoint and coadjoint bundles. Recall that, by definition, g = (Q@xg)/G and g* = (@xg*)/G,
where G acts by the given action on @) and by the adjoint action on g and the coadjoint
action on g*. For [¢,u]q € §* and [q,&]¢ € §, the pairing is ([¢, pla, [¢,€]a) = (1,€) . One
shows that this pairing is independent of the representatives chosen.

We define, for y = [q]g, € Q/G, the (y, u)-component of Curv4 by

Curvff(’”)(x)(uwvw) = {[q, u]c, Curv 4(x) (ug, vz )) (3.13)

where [¢]¢ = 2. One shows that this is independent of the representative g chosen for y.
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Hor-Hor Components of 3,. Now we compute the horizontal-horizontal components
of 3, as follows. Let uq,v, € T4Q, and

uy = TqWQ’G” . uq, Uy = TqTerGu . ’Uq.
Using Lemma B.10] the definition of curvature, and (m, we have

Bu(y)(Hor,, u,, Hor,, vy) = Bu(nq.c, () (Tqmq.q, - Horug, Tymg,q, - Horv,)
= (WZQ,Guﬁu)(q) (Hor ug, Hor vy)
=B ,(q) (Hor ugy, Hor v)
— {41, d%(q) (Hor u,, Hor v,)
= (lg, ulc, [g, dA(q) (Hor ug, Hor vg)] )
= (la. Wla, Carva(@)(ug, vs))
= Curvé‘f””)(z) (Ug, V)

where = 79.¢(q) = pu(V), vz = Tymq,¢ - Uq = Typ, - vy, and similarly for v,.
We summarize what we have proved in the following lemma.

Lemma 3.11. The two form B3,, on horizontal vectors is given by
Bu(y)(Hor,, u,,Hor,, v,) = Curvgf’“)(a:) (Ug, V) - (3.14)

Hor-Ver Components of 3,. Now we compute the horizontal-vertical components of
B, as follows. Let ug,v, € T,Q, and u, = Tymg g, - ug, vy = TymQ,G, * vq- Using Lemma
E_ﬁ] we have
,Blt(y)(Hor,,uy uy, Ver,, vy) = ﬁu(”QGu (Q))(Tq”Q,GM -Horug, Tymq,q, - Ver vg)
= (’/T57G“ ﬂ#) (q) (Hor ug, Ver vg)
= B,(¢q) (Hor uq, Ver vy)
= (i, dA(q) (Hor ug, Vervg)) =0,

by (m We summarize what we have proved in the following lemma.

Lemma 3.12. The two form 3, on pairs of horizontal and vertical vectors vanishes:

Bu(y)(Hor,, uy, Ver,, v,) = 0. (3.15)

Ver-Ver Components of §3,. Now we compute the vertical-vertical components of 3,
as follows. As above, let ug,v, € T,Q, and u, = Tymqc, - Ug, vy = TymQ.G, - vq- Using
Lemma B.10] we have
Bu(y)(Ver,, uy, Ver, vy,) = B.(1q,q,(0)(Tymq.c, - Verug, Tymq,c, - Vervg)

= (Waﬁguﬁu)(q) (Ver ug, Ver vy)

= B,(q) (Verug, Ver vy)

= (u, dA(q) (Ver uq, Vervy))

= (1, [A(q) Ver ug, A(q) Ver v,])

by the Cartan structure equations. We now write

Verug =€g(q) and Verv, =ng(q),
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so that the preceding equation becomes:

Buly)(Ver,, uy, Very, vy) = (u, [§,7]) (3.16)

Now given Ver,, u, € kerTyp,, we can represent it as a class [£g(q)] € g-¢/g, - ¢- The map
& — £q(q) induces an isomorphism of g/g,, with the p,-vertical space. Note that the above
formula depends only on the class of £ and of 7.

We summarize what we have proved in the following lemma.

Lemma 3.13. The two form 3, on pairs of vertical vectors is given by the following formula

ﬂu(y) (Verpu Uy, Verpu Uy) = (, [ga 77]> ) (3.17)

where Ver,, u, = [£q(q)] and Ver,, v, = [ng(q)]-

3.7 Splitting the Reduced Variational Principle

Now we want to take the reduced variational principle, namely

b b b
5/ S)“?”(96(15%ib(t%y(t))dt=/ i) Bu(y(t)) - by dt + (&(t), 52(t))],

and relate it intrinsically to two sets of differential equations corresponding to the horizontal
and vertical components of the bundle p, : Q/G, — Q/G.

Recall that in this principle, we are considering all curves y(t) € Q/G, and z(t) =
pu(y(t)) € Q/G. For purposes of deriving the equations, we can restrict to variations such
that dx vanishes at the endpoints, so that the boundary term disappears.

Now the strategy is to split the variations dy(t) of y(¢) into horizontal and vertical
components relative to the induced connection on the bundle p, : Q/G, — Q/G.

Breaking Up the Variational Principle. Now we can break up the variational principle
by decomposing variations into their horizontal and vertical pieces, which we shall write

0y = Hor,, dy + Ver,, 0y, where 2, dy = Ver,, dy.
We also note that, by construction, the map T'p,, takes dy to dx. Since this map has kernel

given by the set of vertical vectors, it defines an isomorphism on the horizontal space to the
tangent space to shape space. Thus, we can identify Hor,, dy with dx.

Horizontal Variations. Now we take variations that are purely horizontal and vanish at
the endpoints; that is, 0y = Hor,, dy. In this case, the variational principle,

b
5 / R (2 (), (1), (1)) dt = / 008 (0(8)) - Sy dt + (), 6(t))]" (3.18)

becomes

b b
5 / (£(2(t), (1)) — €, (y(1))] dt - Hor,, 5y(t) = / (130Bu(y())) - Hor,, dy(t) dt. (3.19)

Since, by our general variational formula, for variations vanishing at the endpoints,

(/ (s dt) 6:10—/ EL(2)(x(8), (1), #(1)) - a(t) dt
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B19) is equivalent to
EL(L)(&) = Horp, [d€,(y) + iy Bu(y(t))] (3.20)
where, for a point v € T,/(Q/G ), we define
Hory, v € T;(Q/G) by (Hory, ) (Typy - dy) = (Hor,, dy).

This is well defined because the kernel of T),p,, consists of vertical vectors and these are
annihilated by the map Hor,, .

Vertical Variations. Now we consider vertical variations; that is, we take variations
Sy(t) = Ver,, 6y(t). The left hand side of the variational principle (3.18] now becomes

b

b b
5 [ 9 alt),a(0),u(0) dt =5 [ (-, w®)] dt = [ [~de, (u() - Ver,, sy(0] de
As before, the right hand side is f: (iy()Bu(y(t))) - Ver,, 6y(t) dt. Hence, the variational
principle m gives

Ver,, [d@u(y) + iy(t)ﬁu(y(t))] =0 (3.21)

where, for a point v € T,/(Q/G ), we define

Ver,,, v € VerZ(Q/G#) by (Verp“ 7) = 7| Very (Q/G,.).

We can rewrite ([B.2T] to isolate Ver,, ¢ as follows
Verpu (chrp” yﬂu(y)> = *Verp“ [d@u(y) + iHorpu y(t)ﬂu(y(t)) . (3.22)

3.8 The Lagrange—Routh Equations
We now put together the information on the structure of the two form 3, with the reduced

equations in the previous section.

The Horizontal Equation. We begin with the horizontal reduced equation:

EL(L) (&) = Hor,, [d€,(y) + iyw Bu(y(t))] (3.23)
We now compute the term Hor,, iy B.(y(t)). To do this, let éz € T,(Q/G) and write
0x = T,p, - 0y. By definition,
(Hor,, g8 (y(1)), 0x) (3.24)
= (iy(0)Bu(y (1)), Hor,, dy) = Bu(y (1)) (§(t), Horp, dy)
= Bu (y(t)) (Horp“ y(t), HOI"pu 6y) + ﬁu(y(t)) (Verpu y(t), HOI“p“ 5y)

Using Lemmas B.11land B.12] this becomes

<Horp” i) Bu(y(t)), 5x> (3.25)
= Curvy " (a(1)) (Tyypu - (Hor,, (1)), Tywypu - (Hor,, dy))
= Curvy " (@ () (Tywypu - (Horp, §(1)), Ty o - 39) - (3.26)
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since Ty (;)p,, annihilates the vertical component of dy. Next, we claim that

Tyypp - (Hor,, 9(t)) = @(t) (3.27)

To see this, we start with the definition of z(t) = p,(y(t)) and use the chain rule to get
i(t) = Tywypp - 9(t) = Tywypu - (Hor,, 4(t)) since Ty p,, vanishes on p,-vertical vectors. This

proves the claim. Substituting into and using éx = Typ, - oy, we get
(Hor,, iy Bu(y(t)),62) = Curvy D (2(1)) (d(t), o) (3.28)
Therefore,
Hor,, iy 8 (y(t)) = iage Curvy ™ (x(1)). (3.29)

Thus, (@ becomes

EL(L)(F) = iz Curvy DM (2(t)) + Hor,, A€, (y). (3.30)

The Vertical Equation. Now we analyze in a similar manner, the vertical equation. We
start with

Ver,, (i\,erpu yﬁﬂ(y)) = —Ver,, [d@u(y) + iHor,, y(t)ﬁu(y(t))} . (3.31)

We pair the left hand side with a vertical vector, Ver,, 6y and use the definitions to get

<Vefpu, (ivCrpH en (y)) , Very, 5y> = Bu(y) (Ver,, 4, Ver,, oy)
= (1, [&,m]) = (adg p, m) (3.32)

by Lemma [3.13] where Ver,, § = [€0(q)] and Ver,, 6y = [ng(q)]-
We can interpret this result by saying that the vertical-vertical component of B, is given
by the negative of the fiberwise coadjoint orbit symplectic form.

The second term on the right hand side of (B.31) is zero by Lemma B12] The first term
on the right hand side of (3.31] paired with Ver, dy is

<Ve1“p# d@u(y), Verp“ 5y> = <d€u (¥), Verpu 5y> = <d€u (v), [nQ(Q)D (3.33)

Now define, by analogy with the definition of the momentum map for a cotangent bundle
action, a map J : T*(Q/G,) — (g9/g8,)* by

(3ay), [€]) = (o, [0 (9)])
where y = [qlg, = 7., (2), ay € T,;(Q/G), and where [{] € g/g,,. Therefore,

<Verp“ deu (y)a Verpu 5y> = <3(d€u (y))a 77> (334)
From (Im and (Im, the vertical equation m is equivalent to
adg (1) = —J(d€,(y)). (3.35)

Thus, the reduced variational principle is equivalent to the following system of Lagrange—
Routh equations

EL(L)(F) = () Curvy D) (2(t)) + Hor,, A€, (y) (3.36)
—adg(p) = J(d<,u(y)), (3.37)
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where Ver, 3 = o(q)]-

The first equation may be regarded as a second order equation for z € @Q/G and the
second equation is an equation determining the p,-vertical component of . This can also be
thought of as an equation for [£] € g/g, which in turn determines the vertical component of

1. We also think of these equations as the two components of the equations for the evolution
in the fiber product T(Q/G) xg/c Q/G .

We can also describe the second equation by saying that the equation for Ver,, y is
Hamiltonian on the fiber relative to the fiberwise symplectic form and with Hamiltonian
given by €, restricted to that fiber. This can be formalized as follows. Fix a point z € Q/G
and consider the fiber p;l(:zc)7 which is, as we have seen, diffeomorphic to a coadjoint orbit.
Consider the vector field X, on p;l(x) given by X, (y) = Ver,, y. Let w, denote the pull-
back of —f, to the fiber p;,*(x). Then we have ix,w; = d(C,|p;,'(x)), which just says that
X, is the Hamiltonian vector field on the fiber with Hamiltonian given by the restriction of
the amendment function to the fiber.

We summarize what we have proved with the following.

Theorem 3.14. The reduced variational principle is equivalent to the following system of
Lagrange—Routh equations

EL(L)(F) = ip(p) Curvy D) (2(t)) + Hor,, A€, (y) (3.38)
Wer,, ywo = d(€ulp, " (2))- (3.39)

For Abelian groups (the traditional case of Routh) the second of the Lagrange-Routh
equations disappears and the first of these equations can be rewritten as follows. Recall
that the reduced Routhian is given by R* = £ — €, and in this case, the spaces /G and
Q/G,, are identical and the horizontal projection is the identity. Thus, in this case we get

ELRM)(E) = Lp(p) Curvid ) (2(1)). (3.40)

reduction dis-

68.9 and in [Marsden and Scheurle [1993a], namely we

Note that_this form of the equations agrees with_the Abelian case of Routh
cussed in

start with a Lagrangian of the form
: 1 . 1 .
L(z,z,0) = igag(x)x'a:t’@ + Gaa ()20 + anb(x)eaﬂb —V(a),

where there is a sum over «, § from 1 to m and over a, b from 1 to k. Here, the 6 are
cyclic variables and the momentum map constraint reads pq = gaat® + gabéb. In this case,
the components of the mechanical connection are A% = g%°g,,,, the locked inertia tensor is
I = gap, and the Routhian is R* = % (gag — gmg“bgbg) FegP — V,.(z), where the amended
potential is V,,(z) = V(z) + %g“buaub. The Lagrange-Routh equations are

d OR*  OR*
dt 0z~ Oz~
(with the second equation being trivial; it simply expresses the conservation of u,), where,
in this case, the components of the curvature are given by
a

_ 045 oAq
BT e 9xh

— Bl gpai”, (3.41)

3.9 Examples

The Rigid Body. In this case, the Lagrange-Routh equations reduce to a coadjoint orbit
equation and simply state that the equations are Hamiltonian on the coadjoint orbit. This
same statement is true of course for any system with Q = G.
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The Heavy Top. In this case, the coadjoint orbit equation is trivial and so the Lagrange—
Routh equations reduce to second order equations for I' on S2. These equations are com-
puted to be as follows:

I'=—|T’r+Irxx,
where

S =l — vl 4 17! {(I(rxr)Jr(u—b)Ir) X ((rxr)+(u—b)r)+Mgzrxx ,

b= [(['xI)-IT]/(T-IT), and v = p/(D-IT). Notice that one can write ¥ = Xq+p3+422s,
which represent the three terms in the Lagrange Routh equations that are independent of
1, linear in u, and quadratic in p. In particular, the term linear in p is the magnetic term:

$, = (- IT)! [—1’“+r1 (1(1'“ x T) x T + IT x (I x r))} .

This of course is the “curvature term” in the Lagrange-Routh equations. Notice that it is,
according to the general theory, linear in the “velocity” I'. The remaining terms are the
FEuler-Lagrange expression of the reduced Routhian with those quadratic in the velocity
being the differential of the amendment.

4 Reconstruction

4.1 First Reconstruction Equation

The Local Formula. For a curve with known constant value of momentum, the evolution
of the group variable can be determined from the shape space trajectory. This reconstruc-
tion equation is usually written in a local trivialization S x G of the bundle Q@ — Q/G
in the following way. Given a shape space trajectory z(t), the curve ¢(t) = (x(t), g(t)) has
momentum g (i.e. Jr(q(t),q(t)) = p) if and only if g(t) solves the differential equation

9 =9 [Toe(x) ™" Adj p1 — Ao ()] (4.1)

Here, Jjoc is the local representative of the locked inertia tensor and . is the local rep-
resentative of the mechanical connection. This equation is one of the central objects in

fb&s{rwwmmmu_md has an analogue for nonholonomic systems (see
Marsden, Montgomery and Ratin [1990 andlBloch, Krishnaprasad, Marsden and Murray

[1996]). L

The Intrinsic Equation. We will now write this equation in an intrinsic way without
choosing a local trivialization.

Let z(t) € S = Q/G be a given curve and let  be a given value of the momentum map.
We want to find a curve ¢(t) € @ that projects to z(t) and such that its tangent ¢(t) lies in
the level set J; ' (). We first choose any curve ¢(t) € Q that projects to x(t). For example,
in a local trivialization, it could be the curve t — (x(t),e) or it could be the horizontal lift
of the base curve. Now we write ¢(t) = g(t) - G(¢t).

We shall now make use of the following formula for the derivatives of curves that was

given in equation (2]

q(t) = (Ady( €(1)) o, (1)) + 9 (1) - 4(2),
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where £(t) = g(t)~! - §(t). Applying the mechanical connection 2 to both sides, using the
identity A(vy) = I(q) "1+ I (vy), the fact that A(ng(q)) = 1, equivariance of the mechanical
connection, and assuming that ¢(t) € J;' (1) gives

3(q) = Adyg E(t) + Adg A(G(L)).-
Solving this equation for £(t) gives
E(t) = Ady(y-1 I(a(t) ' — A(G(1)).-
Using equivariance of J leads to the first reconstruction equation:
g(t) "' g(t) = 3(q(1) " Adyy p— A(q(t)). (4.2)

Notice that this reproduces the local equation ([HIJ.

Example: The Rigid Body. In this example, there is no second term in the preceding
equation since the bundle has a trivial base, so we choose §(t) to be the identity element.

Thus, this reconstruction process amounts to the following equation for the attitude matrix
A(t):

Aty =AW TA®) .

This is the method that Mhmm_[_l_%ﬁ]] used to integrate for the attitude matrix.

4.2 Second Reconstruction Equation

In symplectic reconstruction, one needs only solve a differential equation on the subgroup
G, instead of on G since the reductiop bundle J='(y) — P, = J'(4)/G, is one that
quotients only by the subgroup G,,. See i for details.
This suggests that one can do something similar from the Lagrangian point of view.

Second Reconstruction Equation. Given a curve y(t) € Q/G,,, we find a curve g(t) €
@ that projects to y(t). We now write ¢(t) = g(t) - g(t) where g(¢) € G, and require that
qt) eJ Zl(,u). Now we use the same formula for derivatives of curves as above and again
apply the mechanical connection for the G-action to derive the second reconstruction
equation

g()~'g(t) = 3(q(t) " u— AG(t)). (4.3)

Notice that we have Adg ) pu = p since g(t) € G,..

This second reconstruction equation (3] is now a differential equation on G, which
normally would be simpler to integrate than its counterpart equation on G. The reason we
are able to get an equation on a smaller group is because we are using more information,
namely that of y(¢) as opposed to z(t).

The Abelian Case. For generic 1 € g*, the subgroup G, is Abelian by a theorem of
Duflo and Vergne. In this Abelian case, the second reconstruction equation reduces to a
quadrature. One has, in fact,

9(t) = g(0) exp [ / (O@(s)) " — A(i(s)) ds] - (4.4)
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Example: The Rigid Body. In the case of the free rigid body, G = SO(3) and thus
if # # 0, we have G, = S!, the rotations about the axis w. The above formula leads
to an expression for the attitude matrix that depends only on a quadrature as opposed
to nonlinear differential equations to be integrated. The curve y(t) is the body angular
momentum II(¢) and the momentum is the spatial angular momentum 7. The curve g(t)
is the choice of a curve A(t) in SO(3) such that it rotates the vector IT(t) to the vector .
For example, one can choose this rotation to be about the axis II(¢) x 7 through the angle
given by the angle between the vectors II(¢) and . Explicitly,

H(/t)-?ﬁ
ITL(E) < =]l |

A(t) = exp [w(t) (4.5)
where cos p(t) = I(t) - w/||m|]?.

The group element g(¢) now is an angle «(t) that represents a rotation about the axis 7
through the angle a(t). Then 4] becomes

)=o)+ | [ t i (&) - A ) ) as
— a0+ [ [ T (R A [AAE) ] ) ds]

Some remarks are in order concerning this formula. We have used the hat map and its
inverse, the check map, to identify R3 with so(3). In this case, the group elements in S*
are identified with real numbers, namely, the angles of rotations about the axis . Thus,
the product in the general formula (£Z] becomes a sum and the integral over the curve in
g, becomes an ordinary integral. The integrand at first glance, is an element of g, but, of
course, it actually belongs to g,. For the example of the rigid body, we make this explicitl
by taking the inner product with a unit vector along 7.

4.3 Third Reconstruction Equation

The second reconstruction equation used the information on a curve y(¢) in Q/G,, as opposed
to a curve z(t) in Q/G in order to enable one to integrate on the smaller, often Abelian, group
G,,. However, it still used the mechanical connection associated with the G-action. We can
derive yet a third reconstruction equation by using the mechanical connection associated
with the G -action.

The momentum map for the G,-action on T'Q) is given by Jf" =yody wherev, 1 g, — @
is the inclusion and where ¢, : g* — g}, is its dual (the projection, or restriction map). We
can also define the locked inertia tensor and mechanical connection for the G -action, in
the same way as was done for the G-action. We denote these by

3% (q) = t,03(q)oty gy — g, and A% . TQ — g,

In the third reconstruction equation we organize the logic a little differently and in effect,
take dynamics into account. Namely, we assume we have a curve ¢(t) € J; ' (u), for example,
a solution of the Euler—Lagrange equations with initial conditions in J El(u). We now let
y(t) € Q/G, be the projection of q(t). We also let & = ;1 = plg,. We first choose any
curve g(t) € @ that projects to y(t). For example, as before, in a local trivialization, it could
be the curve t — (y(t),e) or it could be the horizontal lift of y(t) relative to the connection
A%, Now we write q(t) = g(t) - g(t), where g(t) € G,,.

As before, we use the following formula for the derivatives of curves:

q(t) = (Adg §())  (a(t)) + g(t) - (1),



4.4 The Vertical Killing Metric 45

where £(t) = g(t)~! - g(t) € g,. Applying the mechanical connection A% to both sides,
using the identity 2%+ (v,) = 3% (¢)~* -Jg“ (vq), the fact that 2%+ (ng(q)) = 7, equivariance
of the mechanical connection gives

I (q) 7 = Ady() £(t) + Ad gy A9 (7(1)).

Solving this equation for &(t) gives £(t) = Ady(y-1 I (q(t)) 11 — A% (g(t)). Using equiv-
ariance of J% leads to g(t)~1g(t) = J% (g(t))~* Adyy o — A% (g(t)), where in the last
equation, Ad;(t) is the coadjoint action for G,. One checks that Ad;(t) o = [, using the
fact that g(t) € G, so this equation becomes

g(t)~tg(t) = 3% (a(t) ~'m — A% (q(1)). (4.6)

The same remarks as before apply concerning the generic Abelian nature of G, applied to
this equation. In particular, when G, is Abelian, we have the formula

4(t) = 9(0) exp [ | @€ @) - 1 i) as (47)

Example: The Rigid Body. Here we start with a solution of the Euler—Lagrange equa-
tions A(t) and we let 7 be the spatial angular momentum and II(¢) be the body angular
momentum. We choose the curve A(t) using formula (L5). We now want to calculate the
angle a(t) of rotation around the axis 7 such that A(t) = R, ~A(t), where R, » denotes
the rotation about the axis 7 through the angle a. In this case, we get

a(t) = a(0) + { /0 t (JG“ (A(s)) " — A (K(s)) ds} (4.8)

Now we identify g, with R by the isomorphism a + am/||7||. Then, for B € SO(3)

7 (BIB )&

’JG“(B) = Hﬂ-”?

Taking B = A(s), and using the fact that A(s) maps II(s) to m, we get

jG“(K(S))il — ”7‘-”2 — ||7T||2
- (A(s)IA(s)"Y)mw  TI(s)- ITI(s)

The element 7 is represented, according to our identifications, by the number |||, so
39 (A(s)) ' =

Thus, [{S) becomes

a(t) = a(0) + [ /0 t (%1;(5) — G (X(s))) ds] . (4.9)

4.4 The Vertical Killing Metric

For some calculations as well as a deeper insight into geometric phases studied in the next
section, it is convenient to introduce a modified metric.
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Definition of the Vertical Killing Metric. First, we assume that the Lie algebra g
has an inner product which we shall denote (-,-)°, with the property that Ad, : g — g is
orthogonal for every g. For example, if G is compact, the negative of the Killing form is such
a metric. For SO(3), we shall use the standard dot product as this metric. For convenience,
we shall refer to the inner product (-,-)° as the Killing metric.

Now we use the Killing metric on g to define a new metric on () by using the same
horizontal and vertical decomposition given by the mechanical connection of the original
(kinetic energy) metric. On the horizontal space we use the given inner product while on
the vertical space, we take the inner product of two vertical vectors, say £o(g) and ngo(q)
to be (¢£,7n)°. Finally, in the new metric we declare the horizontal and vertical spaces to
be orthogonal. These properties define the new metric, which we shall call the vertical
Killing metric.

The metric (-,-)° is easily checked to be G-invariant, so we can repeat the previous
constructions for it. In particular, since the horizontal spaces are unchanged, the mechanical
connection on the bundle @ — Q/G is identical to what it was before. However, for our
purposes, we are more interested in the connection on the bundle @ — Q/G,; here the
connections need not be the same.

The Mechanical Connection in terms of the Vertical Killing Metric. We now
compute the momentum map J, and the locked inertia tensor J, for the metric {-,-)°
associated with the G-action on ). Notice that by construction, the mechanical connection
associated with this metric is identical to that for the kinetic energy metric.

First of all, the locked inertia tensor J,(q) : g — g* is given by

(To(@)&,m) = (@) ne(@))° = (&m)°

In other words, the locked inertia tensor for the vertical Killing metric is simply the map
associated with the Killing metric on the Lie algebra.

Next, we compute the momentum map J, : T'QQ — g* associated with the vertical Killing
metric. For n € g,,, we have, by definition,

(To(vg),m) = {(vg, nq(@))* = (Hor(vg) + Ver(vg), no(@))” = (A(vg),m)°

where 2l is the mechanical connection for the G-action.
Notice that these quantities are related by

Wvg) = jo(q)flJo(vq). (4.10)

It is interesting to compare this with the similar formula (LI] for 2 using the kinetic energy
metric.

The G,-connection in the Vertical Killing Metric. We now compute the momentum

map JS*, the locked inertia tensor 35* and the mechanical connection A5 for the metric
{(-,-)° and the G-action on Q.

First of all, the locked inertia tensor 35w (@) : 9 — @}, is given by

(3 (@) = (Eala)ne(@)° = (€m)°

6This metric has been used by a variety of a
tions of the kinetic energy metric are used by [Bloch ]
of relative equilibria of mechanical control systems. and shall denote it {(-,-)°.
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Next, we compute Jf“ :TQ — g,,; for n € g,,, we have

(38 a)im) = (00 10(@))° = (Hor(vy) + Ver(v,),mg(a))°
= (A(vg),m)° = <pru Ql(vq),n>°7

where 2 is the mechanical connection for the G-action (for either the original or the modified
metric) and where pr, : g — g, is the orthogonal projection with respect to the metric
{-,-)° onto g,,.

As before, these quantities are related by A5* (vg) = 35 (q)_lJoG“ (vq), and so from the
preceding two relations, it follows that A" (vg) = pr,, A(vy).

The Connection on the Bundle p,. We just computed the mechanical connection on
the bundle 7g g, : @ — Q/G, associated with the vertical Killing metric. There is a similar
formula for that associated with the kinetic energy metric. In particular, it follows that in
general, these two connections are different. This difference is important in the next section
on geometric phases.

Despite this difference, it is interesting to note that each of them induces the same
Ehresmann connection on the bundle p, : Q/G, — Q/G. Thus, in splitting the Lagrange—
Routh equations into horizontal and vertical parts, there is no difference between using the
kinetic energy metric and the vertical Killing metric.

4.5 Fourth Reconstruction Equation

There is yet a fourth reconstruction equation that is based on a different connection. The
new connection will be that associated with the vertical Killing metric.

As before, we first choose any curve g(t) € @ that projects to y(t). For example, in a
local trivialization, it could be the curve ¢t — (y(¢), €) or it could be the horizontal lift of ()

relative to the connection 2AS*. Now we write q(t) = g(t)-q(t), where g(t) € G,,. Again, we
use the following formula for the derivatives of curves:

q(t) = (Adyer) £(1)) , (at)) + g(t) - a(2), (4.11)

where £(t) = g(t) - §(t) € g,
Now we assume that ¢(t) € J;' (1) and apply the connection AS* to both sides. The
left hand side of then becomes

AT (4(1)) = pr, A(G(t)) = pr,, Iq(t)) " IL(d(1)) = pr, I(a(t) 1.

The right hand side of (II] becomes Ad,) &(t) + Adg A5 (G(t)). Thus, we have proved
that

pr, 3(a(8) " = Adyge (£0) + 25 @(1)))

Solving this equation for £(t) and using the fact that Adyq is orthogonal in the Killing
inner product on g gives

§(t) = Adgqy-r [pr, 3(a(t)) ' p] -2
= pr,, [Adgy-1 3(g(t) " Tp] -2
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Using equivariance of J leads to the fourth reconstruction equation for q(t) = g(t)-q(t) €
J7 (w) given y(t) € Q/Gy:

g(t)"1g(t) = pr, [3(@(t) " u] — AT (@), (4.12)

where, recall, g(t) is any curve in @ such that [g(t)]c, = y(t).
When G, is Abelian, we have, as with the other reconstruction equations,

o0 =90 o [ [ (or, )] - 2965 o] (1.13

4.6 Geometric Phases

Once one has formulas for the reconstruction equation, one gets formulas for geometrlc
phases as special cases. Recall that geometric phases are j i
phe control and locomotion generation (see [Marsden and Ostrowski [1998
andw for accounts and further literature).

The way one proceeds in each case is similar. We consider a closed curve y(t) in Q/G,,
with, say, 0 < ¢ < T and lift it to a curve ¢(t) according to one of the reconstruction equations
in the preceding sections. Then we can write the final point ¢(T") as ¢(T") = gtotq(0), which
defines the total phase, gior. The group element gio¢ will be in G or in G, according to

which reconstruction formula is used.
For example, suppose that one uses equation (£12) with g(t) chosen to be the horizontal

lift of y(¢) with respect to the connection A5 with initial conditions go covering y(0). Then
G(T) = ggeogo, Where ggeo is the holonomy of the base curve y(t). This group element is
called the geometric phase. Then we get ¢(T) = gayngseoq(0) where gayn = g(T'), and g(t)
is the solution of g(t)~*g(t) = J(q(t)) ~'p in the group G, with g(0) the identity. The group
element g4y, is often called the dynamic phase. Thus, we have giot = gdynggeo. Of course
in case G, is Abelian, this group multiplication is given by addition and the dynamic phase
is given by the explicit integral

T
Jdyn :A pr, [3(6(8))71/14] ds.

Example: The Rigid Body In the case of the rigid body, the holonomy is simply given
by the symplectic area on the coadjoint orbit S? since the curvature as we have seen, is,
in this case, the symplectic form and since the holonomy i

AWe
We now compute the dynamlc phase Write the horizontal lift as A so that we have as

before, A()II(t) = m, A(_) (t) =7 and A(t) = Ro = (t)A(t).
Now J(A(t)) = A(t)IA(t)~!. Therefore,

IA®R) 'w =AW A

But then
b, [33(5)) 4] = v [D(K(s) ] = 3(ALs) -
s s)'mw
:X(S)Q( ) ||7T|| - A(||7)"||
Q-1I 2F
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where FE is the energy of the trajectory. Thus, the dynamic phase is given by

_ 2ET
= ]

which is the rigid_body phase formula of IMontgomery [1991b] and|Marsden, Montgomery

and Ratiu [1990].

5 Future Directions and Open Questions

The Hamiltonian Bundle Picture. As we have described earlier, on the Lagrangian
side, we choose a connection on the bundle 7g ¢ : @ — Q/G and realize TQ/G as the
Whitney sum bundle T(Q/G) & g over Q/G. Correspondingly, on the Hamiltonian side we
realize T*Q/G as the Whltney sum bundle T* (Q/G) 69 g over Q/G The reduced Poisson
structure on this space, as
Marsden and Ratiu [1984
. See also 3
The results of the present paper on Routh reductlon show that on the Lagrangian 51de7
the reduced space J; ' (1)/G, is T(Q/G) X /G @/G . This is consistent (by taking the dual
of our isomorphism of bundles) with the fact that the symplectic leaves of (T*Q)/G can be
identified with T*(Q/ . The symplectic structure on these leaves has been
investigated by ?] andm‘. It would be interesting to see if the techniques of the
present paper shed any further light on these constructions.
In the way we have set things up, we conjecture that the symplectic structure on
T*(Q/G) xg/a Q/G, is the canonical cotangent symplectic form on 7*(Q/G) plus 3, (that

is, the canonical cotangent symplectic form plus Curvéf o ), the (z, p)-component of the
curvature of the mechanical connection, z € Q/G, pulled up from Q/G to T*(Q/G)) plus
the coadjoint orbit symplectic form on the fibers.

It would also be of interest to see to what extend one can derive the symplectic (and
Poisson) structures dlrectlylfrgmmimnm@gmlmmm]&aﬁmmmmwﬂMarsden
Patrick and Shkoller [1998].

ntgomery,

Mont gomer 198 . endra Marsden and Ratlu 200()a7 and

Singular Reduction and Bifurcation. We mentioned the importance of singular reduc-
tion in the introduction. However, almost all of the theory of singular reduction is confined
to the general symplectic category, with little attention paid to the tangent and cotangent
bundle structure. However, explicit exhpmples, as simple as the spherical pendulum (see|Ler-
man, Montgomery and Sjamaar [1993]) show that this cotangent bundle structure together
with a “stitching construction” is important.

As was mentioned already in [Marsden and Schenrle [ QQ’%al in connection with the dou-
ble spherical pendulum, it would be interesting to develop the general theory of singular
Lagrangian reduction using, amongst other tools, the techniques of blow up. In addition,
this should be dual to a similar effort for the general theory of symplectic reduction of cotan-
gent bundles. We believe that the general bundle structures in thls paper W111 be useful for
this endeavor. The link: ;

sky and Schae fer [1985],]

Stewart [1987], and [Ortega and Ra‘rm [1997]

for instance.

Grou an appro n rcductlon using groupoids and algebroids
due to (see also . It would of course be of interest to make

additional links between these approaches and the present ones.
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Quantum Systems. The bundle picture in mechanics is clearly important in understand-
ing quantum mechanical systems, and the quantum-—classical relationship. For example, the
mechanical connection has already proved useful in understanding the relation between vi-
bratory and rotational modes of molecules This effort reall started with|Gui
and M See also . |Littlejohn an inch [1 (and other
recent]_references 11) h n this rk in ry_interestin . |Landsman
[1995, also uses reduction theory in an interesting way.

Multisymplectic Geometry and Variational Integrators. There have been signifi-

cant developﬁnﬁmwwmmhit haTL]ﬂd.tQ.LﬂlﬂLﬁim.g_mI&gLaId.])n algo-
rithms, as in [Marsden, Patrick and Shkoller [1998] and [Marsden and Shkoller [1999]. There

is also all duction for discrete mechamcs which also takes a Varlatlonal view,
following . These variatignal integrators have been important jn numerical

integration of mech Wendlandt
and Marsden . eferences therein. Discrete analogues of rednction theory have
begun in IGé¢ and Ma 088 P 999], andlBobenko and
Suris [1998]. We expect that one can generahze this theory from the Euler-Poincaré and
semidirect product context to the context of general configuration spaces using the ideas of
Lagrange-Routh reduction in the present work.

Geometric Phases. In thls paper we have begun the de eory of geo-
metri i ding on work of [[O8R][M993]

and [Ma I . In fact, the Lagrangian setting also provides
a natural settlng for averaglng Wthh is one of the basic ingredients in geometric phases.
We expect that our approach will be useful in a variety of problems involving control and
locomotion.

Nonholonomic Mechanics. Lagrangian reduction has had a significant impact on the
theory_of nonholonomic systems, as in
fﬂmﬁy@&mm The almost symplectic analogue was given in
Bates and Sniatycki [1993]. These references also develop Lagrangian reduction methods
in the context of nonholonomic mechanics with symmetry (such as systems with rolling
constraints). These methoF.s_ha;La_\sQ_b_ae_u_q.‘m_uTseful in many control problems and in
robotics; see, for example, [Bloch and Crouch [1999]. One of the main ingredients in these
applications is the fact that one no longer gets conservation laws, but rather one replaces the
momentum map constraint with a momentum equation. It would be of considerable interest
to extend the reduction ideas of the present paper to that context. A Lagrange—d’Alembert—

Poincaré red ersion of Lagrange-Poincaré reduction, is
considered in

Stability and Block Diagonalization. Further connections and development of stability
and bifurcation theory on the Lagrangian side (also i i case) would also be of
interest. Already a start on this program is done bym Especially interesting
would be to reformulate Lagrangian block diagonalization in the current framework. We
conjecture that the structure of the Lagrange-Routh equations given in the present paper
is in a form for which block diagonalization is automatically and naturally achieved.

Fluid Theories. The techiques of Lagrangian reduction have been very useful in the study
of interesting fluid theories. as in [Holm Marsden and Ratiu [1986 mm and plasma

theories, as in [Cendra. Holm, Hoyvle and Marsden [1998] including interesting analytical
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tools (as in'Qa.n.wJ.‘_U&ZiI and [Nirenberg and

g averaged
Euler equations are especially interesting; see

Routh by Stages In the text we discussed the current state of affairs in the theory of
reduction by stages, both Lagrangian and Hamiltonian. The Lagrangian counterpart of
symplectic reduction is of course what we have developed here, namely Lagrange—Routh
reduction. Naturally then, the development of this theory for reduction by stages for group
extensions would be very interesting.
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