REDUCTIVE COMPACTIFICATIONS OF SEMITOPOLOGICAL SEMIGROUPS

ABDOLMAJID FATTAHI, MOHAMAD ALI POURABDOLLAH, and ABBAS SAHLEH

Received 10 February 2002

Abstract

We consider the enveloping semigroup of a flow generated by the action of a semitopological semigroup on any of its semigroup compactifications and explore the possibility of its being one of the known semigroup compactifications again. In this way, we introduce the notion of E-algebra, and show that this notion is closely related to the reductivity of the semigroup compactification involved. Moreover, the structure of the universal $E \mathscr{F}$-compactification is also given.

2000 Mathematics Subject Classification: 22A20, 43A60.

1. Introduction. A semigroup S is called right reductive if $a=b$ for each $a, b \in S$, since $a t=b t$ for every $t \in S$. For example, all right cancellative semigroups and semigroups with a right identity are right reductive.

From now on, S will be a semitopological semigroup, unless otherwise is stipulated. By a semigroup compactification of S we mean a pair (ψ, X), where X is a compact Hausdorff right topological semigroup, and $\psi: S \rightarrow X$ is a continuous homomorphism with dense image such that, for each $s \in S$, the mapping $x \rightarrow \psi(s) x: X \rightarrow X$ is continuous. The C^{*}-algebra of all bounded complex-valued continuous functions on S will be denoted by $\mathscr{C}(S)$. For $\mathscr{C}(S)$, the left and right translations, L_{s} and R_{t}, are defined for each $s, t \in S$ by $\left(L_{s} f\right)(t)=f(s t)=$ $\left(R_{t} f\right)(s), f \in \mathscr{C}(S)$. The subset \mathscr{F} of $\mathscr{C}(S)$ is said to be left translation invariant if for all $s \in S, L_{s} \mathscr{F} \subseteq \mathscr{F}$. A left translation invariant unital C^{*}-subalgebra \mathscr{F} of $\mathscr{C}(S)$ is called m-admissible if the function $s \rightarrow T_{\mu} f(s)=\mu\left(L_{s} f\right)$ is in \mathscr{F} for all $f \in \mathscr{F}$ and $\mu \in S^{\mathscr{F}}$ (where $S^{\mathscr{F}}$ is the spectrum of \mathscr{F}). Then the product of $\mu, \nu \in S^{\mathscr{F}}$ can be defined by $\mu \nu=\mu \circ T_{v}$ and the Gelfand topology on $S^{\mathscr{F}}$ makes ($\epsilon, S^{\mathscr{F}}$) a semigroup compactification (called the \mathscr{F}-compactification) of S, where $\epsilon: S \rightarrow S^{\mathscr{F}}$ is the evaluation mapping.

Some m-admissible subalgebras of $\mathscr{C}(S)$, that we will need, are left multiplicatively continuous functions $\mathscr{L} \mathcal{M} \mathscr{C}$, distal functions \mathscr{D}, minimal distal functions $\mathcal{M} \mathscr{D}$, and strongly distal functions $\mathscr{C D}$. We also write $\mathscr{G} \mathscr{P}$ for $\mathcal{M D} \cap \mathscr{O D}$; and we define $\mathscr{L} \mathscr{E}:=\{f \in \mathscr{C}(S) ; f(s t)=f(s)$ for all $s, t \in S\}$. For a discussion of the universal property of the corresponding compactifications of these function algebras see [1, 2].
2. Reductive compactifications and E-algebras. Let (ψ, X) be a compactification of S, then the mapping $\sigma: S \times X \rightarrow X$, defined by $\sigma(s, x)=\psi(s) x$, is separately continuous and so (S, X, σ) is a flow. If Σ_{X} denotes the enveloping semigroup of the flow (S, X, σ) (i.e., the pointwise closure of semigroup $\{\sigma(s, \cdot): s \in S\}$ in X^{X}) and the mapping $\sigma_{X}: S \rightarrow \Sigma_{X}$ is defined by $\sigma_{X}(s)=\sigma(s, \cdot)$ for all $s \in S$, then (σ_{X}, Σ_{X}) is a compactification of S (see [1, Proposition 1.6.5]).

One can easily verify that $\Sigma_{X}=\left\{\lambda_{x}: x \in X\right\}$, where $\lambda_{x}(y)=x y$ for each $y \in X$. If we define the mapping $\theta: X \rightarrow \Sigma_{X}$ by $\theta(x)=\lambda_{x}$, then θ is a continuous homomorphism with the property that $\theta \circ \psi=\sigma_{X}$. So (σ_{X}, Σ_{X}) is a factor of (ψ, X), that is $(\psi, X) \geq\left(\sigma_{X}, \Sigma_{X}\right)$. By definition, θ is one-to-one if and only if X is right reductive. So we get the next proposition, which is an extension of the Lawson's result [3, Lemma 2.4(ii)].

Proposition 2.1. Let (ψ, X) be a compactification of S. Then $\left(\sigma_{X}, \Sigma_{X}\right) \cong$ (ψ, X) if and only if X is right reductive.

A compactification (ψ, X) is called reductive if X is right reductive. For example, the \mathscr{M}-, $\mathscr{G P}$-, and $\mathscr{L} \mathscr{L}$-compactifications are reductive.

An m-admissible subalgebra \mathscr{F} of $\mathscr{C}(S)$ is called an E-algebra if there is a compactification (ψ, X) such that $\left(\sigma_{X}, \Sigma_{X}\right) \cong\left(\epsilon, S^{\mathscr{F}}\right)$. In this setting (ψ, X) is called an EFF-compactification of S. Trivially for every reductive compactification $(\psi, X), \psi^{*}(\mathscr{C}(X))$ is an E-algebra. But the converse is not, in general, true. For instance, for any compactification $(\psi, X), \sigma_{X}^{*}\left(\mathscr{C}\left(\Sigma_{X}\right)\right)$ is an E-algebra; however, it is possible that Σ_{X} would be nonreductive, as the next example shows.

Example 2.2. Let $S=\{a, b, c, d\}$ be the semigroup with the following multiplication table:

	a	b	c	d
a	a	a	a	a
b	a	a	a	c
c	a	a	a	a
d	a	c	a	b

Then for the identity compactification (i, X) of S, Σ_{X} is not right reductive; in fact, $\lambda_{a} \neq \lambda_{b}$, however, $\lambda_{a t}=\lambda_{b t}$ for every $t \in S$.

Lemma 2.3. If (ψ, X) is a compactification satisfying $X^{2}=X$, then the compactification (σ_{X}, Σ_{X}) is reductive.

Proof. Since $X^{2}=X$, for each $x_{1}, x_{2} \in X$, from $\lambda_{x_{1}} \lambda_{y}=\lambda_{x_{2}} \lambda_{y}$ for every $\lambda_{y} \in \Sigma_{X}$, it follows that $\lambda_{x_{1}}=\lambda_{x_{2}}$. So Σ_{X} is right reductive.

Corollary 2.4. Let sS (or $S s$) be dense in S, for some $s \in S$, then for every compactification (ψ, X) of S, it follows that $X^{2}=X$ and so $\left(\sigma_{X}, \Sigma_{X}\right)$ is reductive.

Now, we are going to construct the universal $E \mathscr{F}$-compactification of S. For this end we need the following lemma.

Lemma 2.5. Let \mathscr{F} be an m-admissible subalgebra of $\mathscr{C}(S)$. Then $T_{v} f \in$ $\sigma_{S^{\mathscr{F}}}^{*}\left(\mathscr{C}\left(\Sigma_{S^{\mathfrak{F}}}\right)\right)$ for all $f \in \mathscr{F}$ and $v \in S^{\mathscr{L} \mathcal{M} \varepsilon}$.

Proof. Since $\Sigma_{S^{\mathscr{F}}}=\left\{\lambda_{\mu}: \mu \in S^{\mathscr{F}}\right\}$, we can define $g: \Sigma_{S^{\mathscr{F}}} \rightarrow \mathbb{C}$ by $g\left(\lambda_{\mu}\right)=$ $\mu\left(T_{\nu} f\right)$, where \mathbb{C} denotes the complex numbers. Since the mapping $\lambda_{\mu} \rightarrow \mu v$: $\Sigma_{S^{\mathscr{F}}} \rightarrow S^{\mathscr{F}}$ is p-weak* continuous, g is a bounded continuous function and it is easy to see that $\sigma_{S^{\mathscr{F}}}^{*}(g)=T_{v}(f)$. Therefore, $T_{v} f \in \sigma_{S^{\mathscr{F}}}^{*}\left(\mathscr{C}\left(\Sigma_{S^{\mathfrak{F}}}\right)\right)$ for all $v \in S^{\mathscr{F}}$. If $\tilde{v} \in S^{\mathscr{M} \mathcal{M \varepsilon}}$ and v is the restriction of \tilde{v} to \mathscr{F}, then $T_{\tilde{v}} f=T_{v} f$ for all $f \in \mathscr{F}$. So the conclusion follows.

Proposition 2.6. Let \mathscr{F} be an E-algebra. Then

$$
\begin{equation*}
G_{\mathscr{F}}:=\left\{f \in \mathscr{L} \mathcal{M C}: T_{v} f \in \mathscr{F} \quad \forall v \in S^{\mathscr{M} \mathscr{C}}\right\} \tag{2.1}
\end{equation*}
$$

is an m-admissible subalgebra of $\mathscr{C}(S)$ and $\left(\epsilon, S^{G \mathscr{F}}\right)$ is the universal EF-compactification of S.

Proof. It is easy to verify that $G_{\mathscr{F}}$ is an m-admissible subalgebra of $\mathscr{C}(S)$ containing \mathscr{F}. By definition of $G_{\mathscr{F}}$ we can define the mapping $\theta: S^{\mathscr{F}} \rightarrow \Sigma_{S^{G}}$ by $\theta(\mu)=\lambda_{\tilde{\mu}}$, where $\tilde{\mu}$ is an extension of μ to $S^{G_{F}}$. Clearly, θ is continuous and $\theta \circ \epsilon=\sigma_{S^{G \mathscr{F}}}$. Thus $\left(\epsilon, S^{\mathscr{F}}\right) \geq\left(\sigma_{S^{G \mathscr{F}}}, \Sigma_{S_{\mathscr{F}}}\right)$. On the other hand, since \mathscr{F} is an E-algebra, there exists a compactification (ϕ, Y) of S such that (σ_{Y}, Σ_{Y}) \cong $\left(\epsilon, S^{\mathscr{F}}\right)$ and $\mathscr{F}=\sigma_{Y}^{*}\left(\mathscr{C}\left(\Sigma_{Y}\right)\right)$. By Lemma 2.5, we have $T_{v} f \in \sigma_{Y}^{*}\left(\mathscr{C}\left(\Sigma_{Y}\right)\right)$, for each $v \in S^{\mathscr{L}, \mathbb{C}}$ and each $f \in \phi^{*}(\mathscr{C}(Y))$. This means that $\phi^{*}(\mathscr{C}(Y)) \subset G_{\mathscr{F}}$ and so, by [1, Propositiion 1.6.7], $\left(\sigma_{Y}, \Sigma_{Y}\right) \leq\left(\sigma_{S^{G \mathscr{F}}}, \Sigma_{S_{G \mathscr{F}}}\right)$. Therefore, $\left(\epsilon, S^{\mathscr{F}}\right) \cong$ $\left(\sigma_{S^{G}}, \Sigma_{S^{G}}\right)$ and ($\epsilon, S^{G_{\mathscr{F}}}$) is an $E \mathscr{F}$-compactification of S. Finally, if (ψ, X) is an $E \mathscr{F}$-compactification of S and $f \in \psi^{*}(\mathscr{C}(X))$, then by Lemma $2.5, T_{\mu} f \in$ $\sigma_{X}^{*}\left(\mathscr{C}\left(\Sigma_{X}\right)\right)=\mathscr{F}$ for all $\mu \in S^{\mathscr{L} M \mathscr{M}}$. So $\psi^{*}(\mathscr{C}(X)) \subset G_{\mathscr{F}}$ and $(\psi, X) \leq\left(\epsilon, S^{G_{\mathscr{F}}}\right)$.

Examples 2.7. (a) We have $G_{\text {мף }}=\mathscr{D}$. To see this, if $f \in G_{\mathcal{M}}$, then for all $\mu, \nu, \eta \in S^{\text {s.ME }}$ with $\eta^{2}=\eta$, we have $\mu \eta \nu(f)=\mu \eta\left(T_{v} f\right)=\mu\left(T_{v} f\right)=\mu \nu(f)$. So $f \in \mathscr{D}$. Also if $f \in \mathscr{D}$, then for all $\mu, v, \eta \in S^{\mathscr{L} \mathcal{M E}}$ with $\eta^{2}=\eta$, we have $\mu \eta\left(T_{v} f\right)=$ $\mu \eta v(f)=\mu \nu(f)=\mu\left(T_{v} f\right)$. That is, $T_{v} f \in \mathcal{M D}$ for all $v \in S^{\mathscr{L} M 6}$ and so $f \in G_{\text {.ル® }}$ (see also [4, Lemma 2.2]).
(b) By a similar proof, we can show that $G_{\mathscr{G P}}=\mathscr{\mathscr { D }}$ (see [4, Lemma 2.2 and Theorem 2.6]).
(c) Let $\mathscr{R}:=\{f \in \mathscr{L} \mathcal{M} \mathscr{C}(S): f(r s t)=f(r t)$ for $r, s, t \in S\}$. Clearly, \mathscr{R} is an m-admissible subalgebra of $\mathscr{C}(S)$. If $f \in \mathscr{R}$ and $v \in S^{\mathscr{q} M \mathscr{C}}$, then for each $r, s, t \in S$ we have $L_{r t} f(s)=f(r t s)=f(r s)=L_{r} f(s)$. So $T_{v} f(r t)=$ $v\left(L_{r t} f\right)=v\left(L_{r} f\right)=T_{v} f(r)$. That is, $T_{v} f \in \mathscr{L} \mathscr{L}$. On the other hand, if $f \in G_{\mathscr{Y} \text {, }}$, then $f(r s t)=\left(T_{\epsilon(t)} f\right)(r s)=\left(T_{\epsilon(t)} f\right)(r)=f(r t)$ and so $f \in \mathscr{R}$. Therefore, $G_{£ \mathscr{}}=\mathscr{R}$.

Acknowledgment. In the end, we would like to thank Dr H. R. EbrahimiVishki for his valuable comments.

References

[1] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on Semigroups, Function Spaces, Compactifications, Representations, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley \& Sons, New York, 1989.
[2] H. D. Junghenn, Distal compactifications of semigroups, Trans. Amer. Math. Soc. 274 (1982), no. 1, 379-397.
[3] J. D. Lawson, Flows and compactifications, J. London Math. Soc. (2) 46 (1992), no. 2, 349-363.
[4] M. A. Pourabdollah and A. Sahleh, Flows and universal compactifications, J. Sci. Islam. Repub. Iran 8 (1997), no. 4, 269-273.

Abdolmajid Fattahi: Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

E-mail address: abfattahi@yahoo.ca
Mohamad Ali Pourabdollah: Faculty of Mathematics, Ferdowsi University of Mashhad, P.O. Box 91775-1159, Mashhad, Iran

E-mail address: pourabd@math.um.ac.ir
Abbas Sahleh: Department of Mathematics, Guilan University, Rasht, Iran
E-mail address: sahlehj@kd.gu.ac.ir

