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Abstract. We consider the problem of maximizing the reliability of a series-parallel system given 

cost and weight constraints on the system. The number of components in each subsystem and the 

choice of components are the decision variables. In this paper, we propose an integer linear 

programming approach that gives an approximate feasible solution, close to the optimal solution, 

together with an upper bound on the optimal reliability. We show that integer linear programming is 

an interesting approach for solving this reliability problem: the mathematical programming model is 

relatively simple; its implementation is immediate by using a mathematical programming language 

and an integer linear programming software, and the computational experiments show that the 

performance of this approach is excellent based on comparison with previous results.  
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1. Introduction 

A system is a collection of components arranged to a specific design in order to achieve 

desired functions with acceptable performance and reliability. The types of components, their 

quantities, their qualities and the manner in which they are arranged within the system have a direct 

effect on the system's reliability. In a series configuration, a failure of any component results in 

failure for the entire system. In a parallel configuration at least one of the units must succeed for the 

system to succeed. Units in parallel are also referred to as redundant units. Redundancy is an 

important aspect of system design and reliability in that adding redundancy is one of several 

methods of improving system reliability. Another method consists in improving component 

reliability. Note that both methods result in an increase in system cost. While many systems can be 

represented by either a simple series or parallel configuration, other systems involve both series and 

parallel configurations. 
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Here we consider the redundancy allocation problem (RAP) in a system which is composed of a 

specific number of subsystems in series. Figure 1 presents an example of such a system. For each 

subsystem several functionally equivalent components are available. Each subsystem includes one 

or several components arranged in parallel. RAP consists in determining the number of components 

of each type which must compose the subsystem so that the reliability of the complete system is 

maximized, considering certain constraints such as the cost and the weight of the system.  

 

The RAP is a well-known system reliability optimization problem which can be formulated as a 

difficult nonlinear integer program. It has been extensively studied and solved using many different 

mathematical programming and heuristic approaches.  

 

  1    1        1   
                 
                 
  2    2        2   
                 
                 
                 
                 
                 
  m1    m2        mS   
                 
  Subsystem 1    Subsystem 2        Subsystem s   

Figure 1. Example of series-parallel system 
 

In this paper we show that integer linear programming is an interesting alternative for solving RAP. 

The integer linear programming formulation is easy to understand and to implement if one has a 

mathematical programming language together with an integer linear programming software. In 

Section 2 we formulate the problem and give notations. In Section 3 we review some works on 

RAP. In Section 4 we describe the integer linear programming approach we propose for RAP. 

Section 4 is devoted to computational experiments and Section 5 presents conclusions. 

 
2. Formulation and notations 

The problem objective is to maximize system reliability, )(xR , given constraints on the 

system cost and weight. The system is configured as a series-parallel system. The number of 

components in each parallel configuration, i.e. subsystem, and the choice of components are the 

decision variables. For each subsystem, there are im  functionally equivalent components types 

available, each with different reliability, cost and weight. In this work, the components will be 

assumed to be statistically independent. That implies that failure of one component does not affect 

other components in the system. 



 

 3

Notations 

s : number of subsystems in the system; 

im  : number of available component choices for subsystem i; 

ijijij wcr ,, : reliability, cost and weight of component j available for subsystem i, respectively; 

ijx : number of component type j used in subsystem i (decision variables); 

maxC , maxW : system cost, weight constraints limits; 

)(xR , )(xC , )(xW : reliability, cost and weight of the system, respectively; 

)(xRi : reliability of subsystem i; 

N : set of natural numbers. 

 

It is well-known that RAP can be formulated as the following nonlinear integer program P1: 
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])1(1[  is the reliability of the 

complete system. Constraints (1.1) and (1.2) express the cost and weight limits, respectively 

 

3. Literature review 

Most of the mathematical approaches used to solve the problem consider a restricted solution 

domain by only allowing one component choice for each subsystem, or allowing multiple 

component choices, but allowing no mixing within a subsystem once a component has been 

selected. Unfortunately, to prohibit component mixing within a subsystem is not realistic in 

practice. The reader can consult [Kuo and Wan, 2007] for a state-of-the-art of RAP. We give below 

some precisions on two references which study problem P1 or a problem close to P1. In [Ramirez-

Marquez et al., 2004] the authors consider the series-parallel structure presented in the introduction 

of this paper but their objective is to maximize the minimum subsystem reliability. In this new 
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formulation the objective function ⎟
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Hsieh [Hsieh, 2002] considers the classical redundancy allocation problem and propose a simple 

linear programming approach to approximate the integer non linear objective function. In order to 

construct this approximation, he uses the two following inequalities: 
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His method consists to solve a continuous linear program and then to construct an integer solution 

by solving a linear 0-1 knapsack problem. The method is particularly fast but the obtained reliability 

may be slightly far from the optimal reliability. We can add to the works mentioned in [Kuo and 

Wan, 2007] three references. In [Levitin et al., 1997] the authors consider the series-parallel 

structure presented in the introduction of this paper to describe an electric power system. The 

objective function they consider is different from the classical objective function of (P1) since the 

system reliability is defined as the ability to satisfy consumer demand which is represented as a 

piecewise cumulative load curve. A genetic algorithm is used to solve the problem. The solution 

method described in [Zia and Coit, 2005] for P1 is based on the decomposition approach of column 

generation. In this approach a linear master problem and multiple nonlinear subproblems are 

iteratively solved. Computational experiments on 33 well-known problems [Nakagawa and 

Miyazaki, 1981] show that the column generation approach matches or surpasses three existing 

methods ([Coit and Smith, 1996], [Kultural-Konak et al., 2003] and [Liang and Smith, 2004]) in 25 

of 33 cases. In [Onishi et al., 2007] an exact solution method is developed, based on the improved 

surrogate constraint method proposed by Nakagawa [Nakagawa, 2003]. This method is used to find 

optimal solutions to the 33 problems devised by [Nakagawa and Miyazaki, 1981]. The idea of the 

surrogate constraint method is to translate a multidimensional problem into a surrogate dual 

problem with a single dimension, by an optimal aggregation of the primal constraints. The approach 

is particularly efficient if there is no duality gap or if the duality gap is small. 

 

The new method presented in this paper is essentially based on two ideas which, to the best of 

our knowledge, have not been used in previously published methods. The first idea is a 

discretization of the reliability )(xRi  of each subsystem which allows to write )(xRi  as a linear 

expression subject to a linear constraint. This expression is a function of a single real variable and 

of several Boolean variables. The second idea is a precise upper approximation of the natural 



 

 5

logarithm of (C+t) where C is a positive constant and t is a real variable belonging to a small 

interval ],0[ ε . This upper approximation is quadratic because it contains products of a real variable 

by a Boolean variable. So we propose to linearize it by a classical technique in order to obtain a 

mixed 0-1 linear program. The optimal solution of this program provides a near-optimal solution of 

the redundancy allocation problem and a precise upper bound of its optimal value. 

 

4. Solution method 

4.1 Rewriting P1 by discretizing the reliability of each subsystem 

Consider )(xRi , the reliability of subsystem i : 

∏
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)1(1)(     ),...,1( si =  

and suppose, without loss of generality, that in an optimal solution *x  of P1,  1*)( ≤≤ xRL i  for all 

subsystems. We can therefore write: 

i
p
k iki tzkLxR ++= ∑ =0)( ε      ),...,1( si =  

where ε  is a real coefficient between 0 and 1, ikz  ),...,1;,...,1( pksi ==  are Boolean variables such 

that 10 =∑ =
p
k ikz  ),...,1( si = , it  is a real variable such that  ε≤≤ it0  and ⎣ ⎦ε/)1( Lp −= . It is 

easy to verify that for all values )~(xRi  between L and 1, there exists { }1,0~ ∈ikz  ),...,0( pk =  and 

ε≤≤ it
~0  such that i

p
k iki tzkLxR ~~)~( 0 ++= ∑ =

ε . Conversely, for all values { }1,0~ ∈ikz  and 

ε≤≤ it
~0 , i

p
k iki tzkLxR ~~)~( 0 ++= ∑ =

ε  is a value between L and 1. P1 is therefore equivalent to 

ε,2P L  which depends on two parameters: a precision ε  and a lower bound L on the reliability of 

each subsystem. 

 



 

 6

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤

==∈

==∈

≤

≤

=−−≤++

==

++

∑ ∑
∑ ∑

∏∑

∑

∏ ∑

= =

= =

=
=

=

=
=

)2.7(,...,10

)2.6(,...,0,...,11,0

)2.5(,...,1,...,1

)2.4(

)2.3(

)2.2(,...,1)1(1

)2.1(,...,11

 s.t.

)(max

)2P(

1 max1

1 max1

1
0

0

1
0

,

sit

pksiz

mjsiNx

Wxw

Cxc

sirtzkL

siz

tzkL

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

m

j

x
iji

p
k ik

p
k ik

s

i
i

p
k ik

L

i

i

i
ij

ε

ε

ε

ε  

 

Remark that constraint (2.2) can be considered as an inequality because of the objective function to 

maximize. In fact, at the optimum of ε,2P L , both sides of this inequality are equal.  

 

Consider the natural logarithm of the objective function of ε,2P L  and the natural logarithm of both 

sides of constraint (2.2) rewritten as i
p
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constraint (2.1) we get program ε,P3L  equivalent to ε,P2L : 
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Remark. If we fix, in ε,P3L , 0=it  for all i, we obtain an integer linear program. Solving this 

program amounts to search for an optimal system reliability by measuring the reliability of each 

stage by values belonging to { }εεε pLLLL +++ ,...,2,, . Moreover if we replace εk  by ε)1( +k  in 

the objective function, the optimal value of the obtained program is an upper bound of the optimal 
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constraint  (3.2). In the following, we propose a tighter overestimation of the objective function and 

a tighter relaxation of constraint (3.2).  

 

4.2 A relaxation of ε,P3L  

It is known that )/()ln( εε kLtkL i +++  is an upper approximation of )ln( itkL ++ ε , if 

0>+ εkL . Now consider a more precise upper approximation of )ln( itkL ++ ε . For all values of  

u such that 10 ≤≤ u  the following inequality holds :  
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We can now construct VUL ,,,4P ε , the relaxation  of ε,3P L .  

 

Notation : let ),,,,( il tUkLf ε  = )/()()ln( εεεεε llil ukLutukL ++−+++  and ),,,,( il tVkLg ε  = 

)1/()()1ln( εεεεε llil vkLvtvkL −−−−−−−− .  

 



 

 8

 

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤
==∈
==∈

≤

≤

=≤−

==

∑ ∑
∑ ∑

∑∑
∑

∑ ∑

= =

= =

===

=

= ==

)7.4(,...,10
)6.4(,...,0,...,11,0
)5.4(,...,1,...,1
)4.4(

)3.4(

)2.4(,...,1),,,,(min)]1[ln(

)1.4(,...,11

 s.t.

),,,,(minmax

)4P(

1 max1

1 max1

0,...,11

0

1 0,...,1

,,,
2

1

sit
pksiz

mjsiNx
Wxw

Cxc

siztVkLgxr

siz

ztUkLf

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

p
k ikil

ql

m
j ijij

p
k ik

s
i

p
k ikil

ql

VUL

i

i

i

ε

ε

ε

ε  

 

4.3. Linearization of VUL ,,,4P ε  

Program VUL ,,,4P ε  is not linear. Indeed it contains the nonlinear expressions 
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)5P( ,,, VUL ε  is not yet linear since constraints (5.2) and (5.3) contain the quadratic terms iki zt  

),...,10;,...,1( psi == . Recall that it  is a real variable such that ε≤≤ it0  and ikz , a Boolean 

variable. In order to linearize the product iki zt  we substitute iky  for this product and add the four 

following linearization constraints : εikik zy ≤ , iik ty ≤ , )1( ikiik zty −−≥ ε  and 0≥iky . By 

examining successively the two possible values of ikz  we immediately see that ikiik zty =  if and 
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only if these four constraints are satisfied. By using this linearization technique we obtain the mixed 

integer linear program )6P( ,,, VUL ε  equivalent to )5P( ,,, VUL ε .  
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Let *)*,*,*,*,*,( βαtzyx  be an optimal solution of VUL ,,,P6 ε . Its value ∑ =
s
i i1

*α  is an upper bound 

of the optimal value of the initial problem and *
ijx  is a feasible solution of the initial problem. The 

corresponding reliability of the system is equal to ∏ ∏
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*
.  In other words, an optimal 

solution of the mixed integer linear program VUL ,,,P6 ε  defines a configuration of the system )( *
ijx ; 

this system has a certain reliability, ∏ ∏
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*
, and the reliability of the best possible 

system is less than or equal to the optimal value of VUL ,,,P6 ε . If ε  is sufficiently small and the 

cardinal of U and V sufficiently large the optimal solution of VUL ,,,P6 ε  will be close to the optimal 

solution of P1. However, the smaller is ε,  the larger is the number of variables ikz , and the larger 

are the cardinals of U and V, the larger is the number of constraints. 

 

4.4. Solution of RAP by iterative solution of VUL ,,,P6 ε  

We propose a solution method for RAP based on iterative solutions of the mixed integer 

linear program VUL ,,,P6 ε . At each iteration, we try to increase the value of L and we decrease the 

value of ε . By this iterative method we try to maintain the number of variables ikz  in VUL ,,,P6 ε  at 
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an acceptable level. Note that if the optimal system reliability is greater than or equal to R, then, 

obviously, the reliability of all subsystems in an optimal solution is also greater than or equal to R. 

One can also remark that the reliability of all subsystems is greater than or equal to 

{ }iij mjsirr ,...,1;,...,1:minmin === . 0ε  is the chosen initial precision and at each step of the 

while loop the precision is multiplied by ρ , a real parameter such that 10 << ρ . Let 1≥D  be an 

integer number. At each iteration, for a given value of ε  we define U and V as follows : 

Dlul /)1( ε−=  and Dlvl /)1( ε−=  ),...,1( Dl = . 

Algorithm ),,,,( min0 DL ερε  

Let 0R  be a feasible reliability of the system 
Let 0ε  be an initial precision 

{ }min0 ,max rRL ←  ; 0εε ←  

While  minεε ≥  do 
Solve VUL ,,,P6 ε  

Let *R  be the corresponding system reliability 
{ }min*,max rRL ←  

ρεε ←  
end do 

 

The near-optimal solution is given by the solution of VUL ,,,P6 ε  at the last iteration of the algorithm 

(by the values of the variables x); the upper bound on an optimal reliability is given by the value of 

this solution. The parameters min0 ,,, ερεL and D will be chosen empirically, taking into account the 

difficulty of the problem and after some experiments. Note that an initial feasible reliability of the 

complete system can be determined, for example, by solving VUL ,,,P6 ε  with minrL = , 1.0=ε  or 

0.01, { }0=U  and { }0=V . 

 

5. Computational experiments 

The different instances of VUL ,,,P6 ε  have been solved using the solver CPLEX 8 [CPLEX, 

2002] and the modeling language AMPL [Fourer et al., 1993]. The experiments have been carried 

out on a PC Pentium 4 with a 1.8 GHz processor. 

 

5.1 First computational tests: a gearbox reliability optimization problem [Zhao et al., 2005]  

The first test problem used here to demonstrate the efficiency of Algorithm ),,,,( min0 DL ερε  

for solving RAP is a gearbox reliability optimization problem presented in [Zhao et al., 2005]. In 

this reference, in order to apply their method, the authors assumed, for all stages, that the minimal 
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number of components is equal to 2 and that the maximal number of components is equal to 5. We 

have noticed that, with our approach, identical solutions are obtained with or without this 

restriction. Results using an ant colony system (ACS) meta-heuristic [Zhao et al., 2005] and our 

integer linear programming approach (ILP) are presented in Tables 1a and 1b. In the experiments 

we choose the following values of the parameters in Algorithm ),,,,( min0 DL ερε : 7.0min == rL , 

1.00 =ε , 1.0=ρ , 001.0min =ε , and 51=D . As results indicate, ILP outperforms ACS. In 16 

problem cases, ILP obtained better system reliability and in 3 problem cases ILP and ACS obtained 

identical system reliability. Let us note that ILP is also efficient from the computational time point 

of view since a total of  about 5 seconds were necessary to solve the 19 problems. 

 

Table 1a. Results obtained for a gearbox reliability optimization  
problem devised by [Zhao et al., 2005] ; comparison of  two approaches :  

ACS [Zhao et al., 2005]  and our ILP approach 
No. Maximal 

cost 
Maximal 
weight 

Reliability  
[Zhao et al., 2005] 

RZLD 

Reliability  
Our approach 

RILP 
1 40 115 0.9861 0.98629 
2 55 125 0.9973 0.99758 
3 65 130 0.9977 0.99857 
4 60 120 0.9968 0.99699 
5 60 130 0.9977 0.99794 
6 60 140 0.9985 0.99855 
7 60 150 0.9987 0.99878 
8 65 120 0.9968 0.99744 
9 65 130 0.9977 0.99857 

10 65 140 0.9988 0.99905 
11 65 150 0.9990 0.99905 
12 70 120 0.9968 0.99792 
13 70 130 0.9988 0.99881 
14 70 140 0.9990 0.99905 
15 70 150 0.9992 0.99949 
16 75 120 0.9968 0.99792 
17 75 130 0.9988 0.99881 
18 75 140 0.9992 0.99925 
19 75 150 0.9995 0.99949 

 

Table 1b. Summarized results of the experiments concerning  
the 19 instances devised by  [Zhao et al., 2005] 

  
improvement 

 
gap 

CPU 
Time 

(seconds) 

     

min 0.0000 4.1 10-7 0.09   #  RILP  > RZLD #  RILP  = RZLD #  RILP < RZLD 

Av. 3.5 10-4 9.3 10-7 0.27   16 3 0 

max 0.0011 1.8 10-6 1.08      
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In Table 1b improvement is equal to the difference ZLDILP RR − , gap is equal to the optimal value 

provided by Algorithm ),,,,( min0 DL ερε  minus ILPR . For example, on the average, the gap 

between the optimal reliability and the reliability obtained by our method is less than or equal to 9.3 

10-7 . ZLPILP RR >#  (reps. ZLPILP RR =# , ZLPILP RR <# ) gives the number of problems for which 

ZLPILP RR >  (reps. ZLPILP RR = , ZLPILP RR < ). 
 

Results presented in Table 1 show that the ILP approach allows to obtain the optimal reliability for 

the 19 problems with a precision of at least 1.8 10-6 since for all these problems the value of gap is 

less than or equal to 1.8 10-6. 

 

5.2 Second computational tests : instances proposed in [Nakagawa and Miyazaki, 1981] 

The second test problem used to demonstrate the efficiency of  Algorithm ),,,,( min0 DL ερε  

was originally proposed by [Fyffe et al., 1968]. They specified 130 units of system cost, 170 units 

of system weight and minimum redundancy level 1=ip  ),...,1( si = . Nakagawa and Miyazaki 

[Nakagawa and Miyazaki, 1981] devised 33 variations of the original problem. They fixed the cost 

constraint 130max =C  and the weight constraint maxW  varies from 159 to 191. Only identical 

components are used in both papers. Many authors considered this problem without restricting the 

component mixing. Table 2 presents the optimal reliability for the 33 problems in this latter case, 

the references that permitted to obtain this reliability and the solution obtained by ILP approach. 

Note that for the 33 problems the reliability is proved to be optimal only in [Onishi et al., 2007]. We 

also give the CPU time required to determine this reliability and the corresponding upper bound, i.e. 

the optimal value of VUL ,,,6P ε  at the end of the execution of Algorithm ),,,,( min0 DL ερε . For 

example, for problem no.18, the optimal reliability is 0.9749. It has been obtained in the following 

references : [Liang and Chen, 2007], [Liang and Smith, 2004], [Onishi et al., 2007], [You and Chen, 

2005], and [Zia and Coit, 2005]. By our approach we obtained the same system reliability within 

2.5 seconds of CPU time. Table 3 gives the references we considered for the solution of this 

problem. It also presents the abbreviations used in Table 2 and the kind of method used in each 

reference. In the experiments we choose the following values of the parameters in Algorithm 

),,,,( min0 DL ερε : 7.0min == rL , 1.00 =ε , 1.0=ρ , 001.0min =ε , and 6=D . 
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Table 2a. Comparison of ILP results with best available ones  
for the 33 instances devised by [Nakagawa and Miyazaki, 1981] 

No. Maximal 
weight 

optimal  
reliability 

R* 

References ILP  
Approach 

RILP 

CPU time 
(seconds) 

1 191 0.9868 CY KSC LC LS  OKJN YC ZC ZLD  0.9868 35.80 
2 190 0.9864 CY KSC LC OKJN YC ZC ZLD  0.9864 27.69 
3 189 0.9859 CY KSC LC OKJN YC ZLD  0.9859 8.63 
4 188 0.9854 KSC OKJN YC ZLD  0.9854 14.86 
5 187 0.9847 KSC LC LS OKJN YC ZC ZLD  0.9847 19.41 
6 186 0.9842 CY KSC LC OKJN YC ZC ZLD  0.9842 1.11 
7 185 0.9835 CK KSC LC LS OKJN YC ZLD  0.9835 5.04 
8 184 0.9830 KSC LC LS OKJN YC ZC  0.9830 6.69 
9 183 0.9823 KSC LC OKJN YC 0.9823 17.43 

10 182 0.9815 CY KSC LC LS OKJN YC 0.9815 8.12 
11 181 0.9810 CY KSC LC OKJN YC ZC ZLD  0.9810 9.13 
12 180 0.9803 CY KSC LC LS OKJN YC ZC ZLD  0.9803 7.71 
13 179 0.9795 CY KSC LC LS OKJN YC ZC ZLD  0.9795 4.99 
14 178 0.9784 KSC LC LS OKJN YC ZC ZLD  0.9784 7.93 
15 177 0.9776 LC LS OKJN YC ZC ZLD  0.9776 6.43 
16 176 0.9767 CY KSC LC OKJN YC ZLD  0.9767 12.93 
17 175 0.9757 CY KSC LC LS OKJN YC 0.9757 4.20 
18 174 0.9749 LC LS OKJN YC ZC  0.9749 2.50 
19 173 0.9738 CY KSC LC LS OKJN YC ZC  0.9738 2.62 
20 172 0.9730 CY KSC LC LS OKJN YC ZC  0.9730 3.78 
21 171 0.9719 CS CY KSC LC LS OKJN YC ZC  0.9719 9.52 
22 170 0.9708 CS CY KSC LC LS OKJN YC ZC  0.9708 7.45 
23 169 0.9693 CY KSC LC LS OKJN YC ZC  0.9693 13.11 
24 168 0.9681 CS CY KSC LC LS OKJN YC ZC  0.9681 15.77 
25 167 0.9663 CK CS CY KSC LC LS OKJN YC ZC ZLD 0.9663 22.35 
26 166 0.9650 CS CY KSC LC LS OKJN YC ZC  0.9650 15.49 
27 165 0.9637 CS CY KSC LC LS OKJN YC ZC  0.9637 26.22 
28 164 0.9624 CS CY KSC LC LS OKJN YC ZC ZLD  0.9624 27.32 
29 163 0.9606 CK CS CY LC LS OKJN YC ZC ZLD  0.9606 13.61 
30 162 0.9592 CY LC LS OKJN YC ZC ZLD  0.9592 15.61 
31 161 0.9580 CS CY LC LS OKJN YC ZC ZLD  0.9580 12.06 
32 160 0.9557 CS CY LC LS OKJN YC ZC ZLD  0.9557 35.47 
33 159 0.9546 CY LC LS OKJN YC ZC  ZLD  0.9546 17.23 

 
 

Table 2.b. Summarized results of the experiments concerning  
The 33 instances devised by [Nakagawa and Miyazaki, 1981] 

  
improvement 

 
gap 

CPU 
Time 

(seconds) 

     

min - 4.4 10-5 1.11   #  RILP  > R* #  RILP  = R* #  RILP < R* 

Av. - 6.0 10-5 13.28   - 33 0 

max - 8.2 10-5 35.80      
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Table 2 shows that by our ILP approach we obtained the optimal reliability for all the problems. For 

the 33 problems the mean CPU time is equal to 1.11 seconds and the gap between the obtained 

reliability and the corresponding upper bound is always less than 8.2 10-5. 

 
Table 3. Some references and type of methods considering the 33 instances 

of the redundancy allocation problem devised by [Nakagawa and Miyazaki, 1981] 

Abbreviation Reference Type of method 

CK [Coit and Konak, 2006] heuristic based on solving a sequence of linear 
programming problems 

CS  [Coit and Smith, 1996] genetic algorithm 

CY [Chen and You, 2005] Immune algorithms-based approach 

H   [Hsieh, 2002] approximation by linear programming  

KSC   [Kulturel-Konak et al., 2003]  tabu search meta-heuristic  
LC [Liang and Chen, 2007] variable neighborhood search algorithm 

LS [Liang and Smith, 2004]  ant colony optimization 

OKJN  [Onishi et al., 2007] exact solution method, based on the improved 
surrogate constraint (ISC) method 

YC [You and Chen, 2005] greedy method and genetic algorithm 

ZC  [Zia and Coit, 2005]  decomposition approach of column generation 

ZLD [Zhao et al., 2005] ant colony system meta-heuristic 

 
 
5.3 Third computational tests : instances proposed in [Coit and Konak, 2006] 
 

The previous problem devised by [Nakagawa and Miyazaki, 1981] is a well-known test 

problem and it has been extensively used in the literature to evaluate alternative approaches for 

RAP. However, as mentioned in [Coit and Konak, 2006] it has some drawbacks as a test problem 

because some of component options clearly dominate others, i.e. they have lower cost and weight, 

but higher reliability than others. These authors claim that many component options can be 

eliminated if the problem data are carefully analyzed and propose three new problems with difficult 

tradeoffs between components. Each problem has 20 subsystems with four available component 

options and the maximum number of components allowed in each subsystem is 8. For these three 

problems 36 different combinations of cost and weight constraint limits are defined. The results 

obtained by our approach on these three problems are presented in Table 4 together with the result 

obtained by Coit and Konak by their multiple weighted objective heuristic. We have noticed in our 

experiments that as expected these 3 problems are much more difficult than the problem devised by 

[Nakagawa and Miyazaki, 1981] and that, as for Coit and Konak, Problem 3 is the most challenging 

problem among them. 



 

 15

Taking into account the difficulty of these three problems we choose in the experiments the 

following values of the parameters in Algorithm ),,,,( min0 DL ερε  which correspond to a unique 

iteration of the while loop.:  

 
Problem 2 : 7.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D . 

Problem 3: 9.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D . 

Problem 4: 8.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D . 
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Table 4. Computational experiments for the 3x36 instances presented in [Coit and Konak, 2006]; 
comparison of two approaches : the MWO heuristic [Coit and Konak, 2006] and our ILP approach 

For each problem the CPU time is limited to 300 seconds 
* An optimal solution of VUL ,,,6P ε  has not been found within 300 seconds 

   [Coit and Konak, 2006]  Problem 2 [Coit and Konak, 2006]  Problem 3 [Coit and Konak, 2006]  Problem 4 
 C W RCK RILP Upper bound 

ILP 
CPU 
ILP 

RCK RILP Upper bound 
ILP 

CPU 
ILP 

RCK RILP Upper bound 
ILP 

CPU 
ILP 

1 100 100 0.05268 0.06269 0.06270 101.89 0.17265 0.17265 0.17265 0.12 0.14722   0.15085*   0.20454* 300.00*
2 100 130 0.07702 0.08592 0.08592 119.33 0.25035 0.25287 0.25290 3.58 0.32840   0.32607*   0.39673* 300.00*
3 100 160 0.07702 0.08592 0.08592 26.80 0.31659   0.31848*   0.32328* 300.00* 0.55503 0.56460 0.56474 11.33 
4 100 190 0.07702 0.08592 0.08592 26.92 0.39429   0.39833*   0.40270* 300.00* 0.64773 0.65377 0.65509 1.23 
5 100 220 0.07702 0.08592 0.08592 26.83 0.48209   0.48156*   0.49803* 300.00* 0.72987 0.73348 0.73377 1.54 
6 100 250 0.07702 0.08592 0.08592 26.81 0.58655   0.58875*   0.60130* 300.00* 0.76426 0.78414 0.78452 0.49 
7 130 100 0.08091 0.08091 0.08091 15.17 0.24129 0.24388 0.24389 8.04 0.31355   0.31311*   0.36822* 300.00*
8 130 130 0.26884 0.27280 0.27282 12.77 0.31593 0.32242 0.32247 14.33 0.56078 0.56627 0.56641 12.20 
9 130 160 0.31506 0.33524 0.33526 2.53 0.39476 0.40543 0.40551 17.18 0.66594 0.67087 0.67112 0.68 
10 130 190 0.31061 0.33524 0.33526 1.84 0.48277 0.50330 0.50342 24.64 0.74961 0.75992 0.76031 0.30 
11 130 220 0.31470 0.33524 0.33526 1.84 0.59041 0.61452 0.61471 33.62 0.83421 0.83836 0.83876 8.44 
12 130 250 0.31061 0.33524 0.33526 1.84 0.71971  0.71863*   0.76459* 300.00* 0.89123 0.89274 0.89408 0.43 
13 160 100 0.08091 0.08091 0.08091 15.21 0.30389 0.30954 0.30959 43.24 0.53033 0.53498 0.53505 1.88 
14 160 130 0.28595 0.28824 0.28826 6.32 0.38961 0.40612 0.40624 2.95 0.64802 0.65427 0.65452 4.52 
15 160 160 0.52941  0.55183*   0.58938* 300.00* 0.48297 0.50632 0.50646 13.64 0.74884 0.75725 0.75751 4.41 
16 160 190 0.65762 0.65762 0.65766 0.56 0.59047   0.61553*   0.65847* 300.00* 0.82922 0.84001 0.84035 77.22 
17 160 220 0.65762 0.65762 0.65766 0.35 0.75473   0.75740*   0.76242* 300.00* 0.89751 0.89970 0.90085 1.24 
18 160 250 0.65762 0.65762 0.65766 0.36 0.88177 0.88302 0.88345 0.86 0.92416 0.92612 0.92963 3.00 
19 190 100 0.08091 0.08091 0.08091 15.18 0.38067 0.38217 0.38230 130.95 0.60364 0.61204 0.61216 2.83 
20 190 130 0.28595 0.28824 0.28826 6.33 0.48074 0.50168 0.50191 1.94 0.72425 0.73550 0.73574 3.41 
21 190 160 0.60371 0.61592 0.61596 14.03 0.61995 0.62126 0.62155 10.49 0.82697 0.83434 0.83474 1.00 
22 190 190 0.75874 0.76866 0.76893 1.31 0.75809   0.76046*   0.77413* 300.00* 0.89718 0.89833 0.89945 1.06 
23 190 220 0.79847 0.82049 0.82084 0.31 0.88293 0.88400 0.88453 0.84 0.92675 0.92686 0.93119 5.00 
24 190 250 0.80097 0.82049 0.82084 0.27 0.90783 0.90847 0.91111 0.75 0.94725 0.94981 0.95730 1.10 
25 220 100 0.08091 0.08091 0.08091 15.13 0.46579 0.46989 0.47016 28.85 0.63909 0.66592 0.66610 0.31 
26 220 130 0.28595 0.28824 0.28826 6.32 0.58585 0.60726 0.60749 3.17 0.79882 0.80449 0.80479 3.02 
27 220 160 0.60371 0.61592 0.61596 19.96 0.72885   0.75474*   0.78328* 300.00* 0.88788 0.89026 0.89118 0.46 
28 220 190 0.79824 0.80807 0.80853 0.58 0.88214 0.88214 0.88275 1.06 0.92239 0.92301 0.92705 0.31 
29 220 220 0.87281 0.87583 0.87643 1.16 0.90616 0.90653 0.90910 10.26 0.94678 0.94790 0.95542 21.31 
30 220 250 0.89454 0.90006 0.90064 0.32 0.92302   0.92525*   0.93095* 300.00* 0.96779 0.96805 0.97857 2.09 
31 250 100 0.08091 0.08091 0.08091 15.15 0.54857 0.57507 0.57546 1.04 0.63909 0.66592 0.66610 0.31 
32 250 130 0.28595 0.28824 0.28826 6.32 0.71172   0.71129*   0.73832* 300.00* 0.84744 0.85793 0.85845 0.96 
33 250 160 0.60371 0.61592 0.61596 19.89 0.87444 0.87629 0.87691 0.34 0.91345 0.91481 0.91743 0.96 
34 250 190 0.79824 0.80807 0.80853 0.58 0.90171 0.90389 0.90648 4.21 0.94285 0.94406 0.95006 0.52 
35 250 220 0.88581 0.89061 0.89142 0.98 0.92388 0.92364 0.92896 64.31 0.96401 0.96585 0.97613 1.90 
36 250 250 0.92957 0.93069 0.93225 0.6 0.94080 0.94097 0.94791 277.33 0.98031 0.98007 0.99421 3.18 
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In Table 4 "*" means that the optimal solution of VUL ,,,6P ε  has not been found within 300 

seconds of CPU time. However, a feasible solution has always been found within this time 

and the corresponding reliability is indicated in the table. We also indicate the upper bound 

provided by CPLEX after 300 seconds of computation.  

  

Table 4b. Summarized results of the experiments concerning  
the 36 instances of Problem 2 devised by [Coit and Konak, 2006] 

  
improvement 

 
gap 

CPU 
Time 

(seconds) 

     

min 0.00000 0.00000 0.27   #  RILP  > RZLD #  RILP  = RZLD #  RILP < RZLD 

Av. 0.00840 0.00121 22.55   28 8 0 

max 0.02463 0.03755 300.00      

 
Table 4c. Summarized results of the experiments concerning  

the 36 instances of Problem 3 devised by [Coit and Konak, 2006] 
  

improvement 
 

gap 
CPU 
Time 

(seconds) 

     

min -0.00108 0.00000 0.12   #  RILP  > RZLD #  RILP  = RZLD #  RILP < RZLD 

Av. 0.02650 0.00643 111.05   30 2 4 

max 0.02463 0.04596 300.00      

 
Table 4d. Summarized results of the experiments concerning 

the 36 instances of Problem 4 devised by [Coit and Konak, 2006] 
  

improvement 
 

gap 
CPU 
Time 

(seconds) 

     

min -0.00233 0.00007 0.30   #  RILP  > RZLD #  RILP  = RZLD #  RILP < RZLD 

Av. 0.00583 0.00724 29.96   34 0 2 

max 0.02683 0.07066 300.00      

 
 
 
The results presented in Tables 4a, 4b, 4c and 4d show that the three problem devised by 

[Coit and Konak, 2006] are much more difficult - at least for our approach - than the problem 

devised by [Nakagawa and Miyazaki, 1981] (see Table 2a and 2b). However, our integer 

linear programming approach allows obtaining a reliability better than that obtained by [Coit 

and Konak, 2006] in 92 cases over 108. The computation times remain relatively small except 
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in 15 cases where CPLEX cannot find the optimal solution of VUL ,,,6P ε  within 300 seconds 

of CPU time. As suggested by [Coit and Konak, 2006] the three problems are difficult 

because of the combination of the three types of data : cost, weight and reliability. In order to 

illustrate that the difficulty comes mainly from this point, we have considered problem 3 

without weight constraint. In this case the problem becomes very easy to solve. We give in 

Table 5 the computational results obtained by Algorithm ),,,,( min0 DL ερε  with the 

following parameters : 9.0min == rL , 01.00 =ε , 1.0=ρ , 001.0min =ε , and 51=D . 

 
Table 5. Computational results for 6 instances of problem 3 of 

[Coit and Konak, 2006] but without constraint weight 
 C RILP Upper 

bound ILP 
CPU 
ILP 

seconds
1 100 0.993274 0.993278 1.62 
2 130 0.999406 0.999434 1.12 
3 160 0.999946 0.999971 1.52 
4 190 0.999995 0.999998 1.12 
5 220 0.999998 1 1.63 
6 250 0.999997 1 1.61 

 
 
The results presented in Table 5 show that the problem 3 of [Coit and Konak, 2006] is not 

difficult for our approach when we only keep the cost constraint: the mean CPU time required 

to solve the six problems of Table 5 is equal to 1.44 seconds and the mean gap is equal to 1.1 

10-5. 
 
 
6. Conclusions 

We have proposed in this paper to solve the redundant allocation problem by using an 

integer linear programming software. The experimental results show the effectiveness of the 

approach compared to previous results published in the literature. Compared to former ones, 

our work is of three principal interests:  first of all the approach is relatively easy to 

understand and above all uses exclusively a standard, commercially available software. An 

important asset of the method is its simplicity of implementation in one has an integer 

programming software. The task becomes really easy if one has, in addition, the use of a tool 

of modeling like AMPL [Fourer et al., 1993].  Secondly we obtain tight approximate solutions 

together with a very good performance guarantee. Lastly, as it is well-known with an integer 

linear programming formulation of the problem, it is possible to add new constraints easily – 

if they are linear  –  which is not always the case when a specific algorithm was worked out.  
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