

 1

Redundancy Allocation for Series-Parallel Systems
Using Integer Linear Programming

Alain Billionnet

ENSIIE, 18 allée Jean Rostand, F-91025, Evry cedex

{billionnet@ensiie.fr}

Abstract. We consider the problem of maximizing the reliability of a series-parallel system given

cost and weight constraints on the system. The number of components in each subsystem and the

choice of components are the decision variables. In this paper, we propose an integer linear

programming approach that gives an approximate feasible solution, close to the optimal solution,

together with an upper bound on the optimal reliability. We show that integer linear programming is

an interesting approach for solving this reliability problem: the mathematical programming model is

relatively simple; its implementation is immediate by using a mathematical programming language

and an integer linear programming software, and the computational experiments show that the

performance of this approach is excellent based on comparison with previous results.

Keywords: system reliability; redundancy allocation; multiple component choices; integer linear

programming; computational experiments

1. Introduction

A system is a collection of components arranged to a specific design in order to achieve

desired functions with acceptable performance and reliability. The types of components, their

quantities, their qualities and the manner in which they are arranged within the system have a direct

effect on the system's reliability. In a series configuration, a failure of any component results in

failure for the entire system. In a parallel configuration at least one of the units must succeed for the

system to succeed. Units in parallel are also referred to as redundant units. Redundancy is an

important aspect of system design and reliability in that adding redundancy is one of several

methods of improving system reliability. Another method consists in improving component

reliability. Note that both methods result in an increase in system cost. While many systems can be

represented by either a simple series or parallel configuration, other systems involve both series and

parallel configurations.

 2

Here we consider the redundancy allocation problem (RAP) in a system which is composed of a

specific number of subsystems in series. Figure 1 presents an example of such a system. For each

subsystem several functionally equivalent components are available. Each subsystem includes one

or several components arranged in parallel. RAP consists in determining the number of components

of each type which must compose the subsystem so that the reliability of the complete system is

maximized, considering certain constraints such as the cost and the weight of the system.

The RAP is a well-known system reliability optimization problem which can be formulated as a

difficult nonlinear integer program. It has been extensively studied and solved using many different

mathematical programming and heuristic approaches.

 1 1 1

 2 2 2

 m1 m2 mS

 Subsystem 1 Subsystem 2 Subsystem s

Figure 1. Example of series-parallel system

In this paper we show that integer linear programming is an interesting alternative for solving RAP.

The integer linear programming formulation is easy to understand and to implement if one has a

mathematical programming language together with an integer linear programming software. In

Section 2 we formulate the problem and give notations. In Section 3 we review some works on

RAP. In Section 4 we describe the integer linear programming approach we propose for RAP.

Section 4 is devoted to computational experiments and Section 5 presents conclusions.

2. Formulation and notations

The problem objective is to maximize system reliability,)(xR , given constraints on the

system cost and weight. The system is configured as a series-parallel system. The number of

components in each parallel configuration, i.e. subsystem, and the choice of components are the

decision variables. For each subsystem, there are im functionally equivalent components types

available, each with different reliability, cost and weight. In this work, the components will be

assumed to be statistically independent. That implies that failure of one component does not affect

other components in the system.

 3

Notations

s : number of subsystems in the system;

im : number of available component choices for subsystem i;

ijijij wcr ,, : reliability, cost and weight of component j available for subsystem i, respectively;

ijx : number of component type j used in subsystem i (decision variables);

maxC , maxW : system cost, weight constraints limits;

)(xR ,)(xC ,)(xW : reliability, cost and weight of the system, respectively;

)(xRi : reliability of subsystem i;

N : set of natural numbers.

It is well-known that RAP can be formulated as the following nonlinear integer program P1:

(P1)

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

==∈

≤

≤

−−

∑ ∑
∑ ∑

∏ ∏

= =

= =

= =

(1.3),...,1;,...,1
(1.2)

(1.1)

 s.t.

])1(1[max

1 max1

1 max1

1 1

iij

s
i

m
j ijij

s
i

m
j ijij

s

i

m

j

x
ij

mjsiNx
Wxw

Cxc

r

i

i

i
ij

∏
=

−−
i

ij
m

j

x
ijr

1
)1(1 is the reliability of subsystem i and ∏ ∏

= =
−−

s

i

m

j

x
ij

i
ijr

1 1
])1(1[is the reliability of the

complete system. Constraints (1.1) and (1.2) express the cost and weight limits, respectively

3. Literature review

Most of the mathematical approaches used to solve the problem consider a restricted solution

domain by only allowing one component choice for each subsystem, or allowing multiple

component choices, but allowing no mixing within a subsystem once a component has been

selected. Unfortunately, to prohibit component mixing within a subsystem is not realistic in

practice. The reader can consult [Kuo and Wan, 2007] for a state-of-the-art of RAP. We give below

some precisions on two references which study problem P1 or a problem close to P1. In [Ramirez-

Marquez et al., 2004] the authors consider the series-parallel structure presented in the introduction

of this paper but their objective is to maximize the minimum subsystem reliability. In this new

 4

formulation the objective function ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−− ∏

=

i
ij

m

j

x
ij

ix
r

1
)1(1minmax is much easier to handle than the

classical objective function and the problem can be exactly formulated by an integer linear program.

Hsieh [Hsieh, 2002] considers the classical redundancy allocation problem and propose a simple

linear programming approach to approximate the integer non linear objective function. In order to

construct this approximation, he uses the two following inequalities:
n

s
i

m

j

x
ij

s

i

m

j

x
ij

m

j

x
ij

i
ij

i
ij

i
ij r

n
rr

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−≤−−≤−− ∑ ∏∏ ∏∏ =

== ==
1

11 11
)1(11])1(1[)1(1

His method consists to solve a continuous linear program and then to construct an integer solution

by solving a linear 0-1 knapsack problem. The method is particularly fast but the obtained reliability

may be slightly far from the optimal reliability. We can add to the works mentioned in [Kuo and

Wan, 2007] three references. In [Levitin et al., 1997] the authors consider the series-parallel

structure presented in the introduction of this paper to describe an electric power system. The

objective function they consider is different from the classical objective function of (P1) since the

system reliability is defined as the ability to satisfy consumer demand which is represented as a

piecewise cumulative load curve. A genetic algorithm is used to solve the problem. The solution

method described in [Zia and Coit, 2005] for P1 is based on the decomposition approach of column

generation. In this approach a linear master problem and multiple nonlinear subproblems are

iteratively solved. Computational experiments on 33 well-known problems [Nakagawa and

Miyazaki, 1981] show that the column generation approach matches or surpasses three existing

methods ([Coit and Smith, 1996], [Kultural-Konak et al., 2003] and [Liang and Smith, 2004]) in 25

of 33 cases. In [Onishi et al., 2007] an exact solution method is developed, based on the improved

surrogate constraint method proposed by Nakagawa [Nakagawa, 2003]. This method is used to find

optimal solutions to the 33 problems devised by [Nakagawa and Miyazaki, 1981]. The idea of the

surrogate constraint method is to translate a multidimensional problem into a surrogate dual

problem with a single dimension, by an optimal aggregation of the primal constraints. The approach

is particularly efficient if there is no duality gap or if the duality gap is small.

The new method presented in this paper is essentially based on two ideas which, to the best of

our knowledge, have not been used in previously published methods. The first idea is a

discretization of the reliability)(xRi of each subsystem which allows to write)(xRi as a linear

expression subject to a linear constraint. This expression is a function of a single real variable and

of several Boolean variables. The second idea is a precise upper approximation of the natural

 5

logarithm of (C+t) where C is a positive constant and t is a real variable belonging to a small

interval],0[ε . This upper approximation is quadratic because it contains products of a real variable

by a Boolean variable. So we propose to linearize it by a classical technique in order to obtain a

mixed 0-1 linear program. The optimal solution of this program provides a near-optimal solution of

the redundancy allocation problem and a precise upper bound of its optimal value.

4. Solution method

4.1 Rewriting P1 by discretizing the reliability of each subsystem

Consider)(xRi , the reliability of subsystem i :

∏
=

−−=
i

ij
m

j

x
iji rxR

1
)1(1)(),...,1(si =

and suppose, without loss of generality, that in an optimal solution *x of P1, 1*)(≤≤ xRL i for all

subsystems. We can therefore write:

i
p
k iki tzkLxR ++= ∑ =0)(ε),...,1(si =

where ε is a real coefficient between 0 and 1, ikz),...,1;,...,1(pksi == are Boolean variables such

that 10 =∑ =
p
k ikz),...,1(si = , it is a real variable such that ε≤≤ it0 and ⎣ ⎦ε/)1(Lp −= . It is

easy to verify that for all values)~(xRi between L and 1, there exists { }1,0~ ∈ikz),...,0(pk = and

ε≤≤ it
~0 such that i

p
k iki tzkLxR ~~)~(0 ++= ∑ =

ε . Conversely, for all values { }1,0~ ∈ikz and

ε≤≤ it
~0 , i

p
k iki tzkLxR ~~)~(0 ++= ∑ =

ε is a value between L and 1. P1 is therefore equivalent to

ε,2P L which depends on two parameters: a precision ε and a lower bound L on the reliability of

each subsystem.

 6

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤

==∈

==∈

≤

≤

=−−≤++

==

++

∑ ∑
∑ ∑

∏∑

∑

∏ ∑

= =

= =

=
=

=

=
=

)2.7(,...,10

)2.6(,...,0,...,11,0

)2.5(,...,1,...,1

)2.4(

)2.3(

)2.2(,...,1)1(1

)2.1(,...,11

 s.t.

)(max

)2P(

1 max1

1 max1

1
0

0

1
0

,

sit

pksiz

mjsiNx

Wxw

Cxc

sirtzkL

siz

tzkL

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

m

j

x
iji

p
k ik

p
k ik

s

i
i

p
k ik

L

i

i

i
ij

ε

ε

ε

ε

Remark that constraint (2.2) can be considered as an inequality because of the objective function to

maximize. In fact, at the optimum of ε,2P L , both sides of this inequality are equal.

Consider the natural logarithm of the objective function of ε,2P L and the natural logarithm of both

sides of constraint (2.2) rewritten as i
p
k ik

m

j

x
ij tzkLr

i
ij −−−≤− ∑∏ =

=
0

1
1)1(ε . Taking into account

constraint (2.1) we get program ε,P3L equivalent to ε,P2L :

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤

==∈

==∈

≤

≤

=−−−≤−

==

++

∑ ∑
∑ ∑

∑∑
∑

∑ ∑

= =

= =

==

=

= =

)3.7(,...,10

)3.6(,...,0,...,11,0

)3.5(,...,1,...,1

)3.4(

)3.3(

)3.2(,...,1)]1[ln()]1([ln

)3.1(,...,11

 s.t.

)][ln(max

)3P(

1 max1

1 max1

01

0

1 0

,

sit

pksiz

mjsiNx

Wxw

Cxc

siztkLxr

siz

ztkL

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

ik
p
k iijij

m
j

p
k ik

s
i iki

p
k

L
i

i

i

ε

ε

ε

ε

Remark. If we fix, in ε,P3L , 0=it for all i, we obtain an integer linear program. Solving this

program amounts to search for an optimal system reliability by measuring the reliability of each

stage by values belonging to { }εεε pLLLL +++ ,...,2,, . Moreover if we replace εk by ε)1(+k in

the objective function, the optimal value of the obtained program is an upper bound of the optimal

 7

reliability. Indeed ∑ ∑ ∑∑= = ==
++≥++s

i
s
i iki

p
kik

p
k ztkLzkL1 1 00)][ln()])1([ln(εε for all possible

values of it and the constraint ik
p
kijij

m
j zkLxri)]1[ln()]1([ln 01 ∑∑ ==

−−≤− ε is a relaxation of

constraint (3.2). In the following, we propose a tighter overestimation of the objective function and

a tighter relaxation of constraint (3.2).

4.2 A relaxation of ε,P3L

It is known that)/()ln(εε kLtkL i +++ is an upper approximation of)ln(itkL ++ ε , if

0>+ εkL . Now consider a more precise upper approximation of)ln(itkL ++ ε . For all values of

u such that 10 ≤≤ u the following inequality holds :

)/()()ln()ln()ln(εεεεεεεεε ukLutukLutukLtkL iii ++−+++≤−+++=++ (1)

Let { }
1

,..., 21 quuuU = be a set of q real numbers such that 1...0
121 ≤<<<≤ quuu . Using (1),

{ })/()()ln(min
1,...,1

εεεεε llil
ql

ukLutukL ++−+++
=

 is an upper approximation of)ln(itkL ++ ε .

Obviously, if 01 =u , this minimum is less than or equal to)()ln(εε kLtkL i +++ .

Let us see a numerical example of this approximation. Let 7.0=L , 26=k , 01.0=ε ,

0085.0=it and { }1,8.0,6.0,4.0,2.0,0=U . We get

-0.0320068)ln(≈++ itkL ε ,

-0.0319678)ln(≈
+

++
ε

ε
kL

t
kL i

and { })/()()ln(min
1,...,1

εεεεε llil
ql

ukLutukL ++−+++
=

 -0.0320067≈ .

In the same way, if { }
2

,..., 21 qvvvV = is a set of q real numbers such that 1...0
221 ≤<<<= qvvv

and 01
2

>−−− εε qvkL , an upper approximation of)1ln(itkL −−− ε is given by

{ })1/()()1ln(min
2,...,1

εεεεε iiii
ql

vkLvtvkL −−−−−−−−
=

.

We can now construct VUL ,,,4P ε , the relaxation of ε,3P L .

Notation : let),,,,(il tUkLf ε =)/()()ln(εεεεε llil ukLutukL ++−+++ and),,,,(il tVkLg ε =

)1/()()1ln(εεεεε llil vkLvtvkL −−−−−−−− .

 8

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤
==∈
==∈

≤

≤

=≤−

==

∑ ∑
∑ ∑

∑∑
∑

∑ ∑

= =

= =

===

=

= ==

)7.4(,...,10
)6.4(,...,0,...,11,0
)5.4(,...,1,...,1
)4.4(

)3.4(

)2.4(,...,1),,,,(min)]1[ln(

)1.4(,...,11

 s.t.

),,,,(minmax

)4P(

1 max1

1 max1

0,...,11

0

1 0,...,1

,,,
2

1

sit
pksiz

mjsiNx
Wxw

Cxc

siztVkLgxr

siz

ztUkLf

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

p
k ikil

ql

m
j ijij

p
k ik

s
i

p
k ikil

ql

VUL

i

i

i

ε

ε

ε

ε

4.3. Linearization of VUL ,,,4P ε

Program VUL ,,,4P ε is not linear. Indeed it contains the nonlinear expressions

∑ ==

p
k ikil

ql
ztUkLf0,...,1

),,,,(min
1

ε in the objective function and ∑ ==

p
k ikil

ql
ztVkLg0,...,1

),,,,(min
2

ε in

constraints (4.2). Classically, VUL ,,,4P ε is equivalent to VUL ,,,5P ε :

{ }
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤

==∈

==∈

≤

≤

=≤−

==≤

==≤

==

∑ ∑
∑ ∑
∑

∑
∑

∑

∑

= =

= =

=

=

=

=

=

)9.5(,...,10

)8.5(,...,0,...,11,0

)7.5(,...,1,...,1

)6.5(

)5.5(

)4.5(,...,1)]1[ln(

)3.5(,...,1,...,1),,,,(

)2.5(,...,1,...,1),,,,(

)1.5(,...,11

 s.t.

max

)5P(

1 max1

1 max1

1

20

10

0

1

,,,

sit

pksiz

mjsiNx

Wxw

Cxc

sixr

qlsiztVkLg

qlsiztUkLf

siz

i

ik

iij

s
i

m
j ijij

s
i

m
j ijij

i
m
j ijij

p
k ikili

p
k ikili

p
k ik

s
i i

VUL

i

i

i

ε

β

εβ

εα

α

ε

)5P(,,, VUL ε is not yet linear since constraints (5.2) and (5.3) contain the quadratic terms iki zt

),...,10;,...,1(psi == . Recall that it is a real variable such that ε≤≤ it0 and ikz , a Boolean

variable. In order to linearize the product iki zt we substitute iky for this product and add the four

following linearization constraints : εikik zy ≤ , iik ty ≤ ,)1(ikiik zty −−≥ ε and 0≥iky . By

examining successively the two possible values of ikz we immediately see that ikiik zty = if and

 9

only if these four constraints are satisfied. By using this linearization technique we obtain the mixed

integer linear program)6P(,,, VUL ε equivalent to)5P(,,, VUL ε .

{ }

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=≤≤
==∈
==∈≥
==−−≥≤≤

≤

≤

=≤−

==−−−−−
−−−≤

==++−+
++≤

==

∑ ∑
∑ ∑
∑

∑

∑
∑
∑

= =

= =

=

=

=

=

=

(6.12),...,10
(6.11),...,1,...,1
(6.10),...,0,...,11,0,0
(6.9),...,0,...,1)1(,,
(6.8)

(6.7)

(6.6),...,1)1ln(
(6.5),...,1,...,1)]1/()(
(6.4))1[ln(
(6.3),...,1,...,1)]/()(
(6.2))[ln(

(6.1),...,11

 s.t.

max

)6P(

1 max1

1 max1

1

2

0

1

0

0

1

,,,

sit
mjsiNx
pksizy
pksiztytyzy

Wxw

Cxc

sixr
qlsivkLzvy

zvkL
qlsiukLzuy

zukL

siz

i

iij

ikik

ikiikiikikik

s
i

m
j ijij

s
i

m
j ijij

m
j iijij

liklik

p
k ikli

liklik

p
k ikli

p
k ik

s
i i

VUL

i

i

i

ε

εε

β
εεε

εεβ
εεε

εεα

α

ε

Let *)*,*,*,*,*,(βαtzyx be an optimal solution of VUL ,,,P6 ε . Its value ∑ =
s
i i1

*α is an upper bound

of the optimal value of the initial problem and *
ijx is a feasible solution of the initial problem. The

corresponding reliability of the system is equal to ∏ ∏
= =

−−
s

i

m

j

x
ij

i
ijr

1 1
])1(1[

*
. In other words, an optimal

solution of the mixed integer linear program VUL ,,,P6 ε defines a configuration of the system)(*
ijx ;

this system has a certain reliability, ∏ ∏
= =

−−
s

i

m

j

x
ij

i
ijr

1 1
])1(1[

*
, and the reliability of the best possible

system is less than or equal to the optimal value of VUL ,,,P6 ε . If ε is sufficiently small and the

cardinal of U and V sufficiently large the optimal solution of VUL ,,,P6 ε will be close to the optimal

solution of P1. However, the smaller is ε, the larger is the number of variables ikz , and the larger

are the cardinals of U and V, the larger is the number of constraints.

4.4. Solution of RAP by iterative solution of VUL ,,,P6 ε

We propose a solution method for RAP based on iterative solutions of the mixed integer

linear program VUL ,,,P6 ε . At each iteration, we try to increase the value of L and we decrease the

value of ε . By this iterative method we try to maintain the number of variables ikz in VUL ,,,P6 ε at

 10

an acceptable level. Note that if the optimal system reliability is greater than or equal to R, then,

obviously, the reliability of all subsystems in an optimal solution is also greater than or equal to R.

One can also remark that the reliability of all subsystems is greater than or equal to

{ }iij mjsirr ,...,1;,...,1:minmin === . 0ε is the chosen initial precision and at each step of the

while loop the precision is multiplied by ρ , a real parameter such that 10 << ρ . Let 1≥D be an

integer number. At each iteration, for a given value of ε we define U and V as follows :

Dlul /)1(ε−= and Dlvl /)1(ε−=),...,1(Dl = .

Algorithm),,,,(min0 DL ερε

Let 0R be a feasible reliability of the system
Let 0ε be an initial precision

{ }min0 ,max rRL ← ; 0εε ←

While minεε ≥ do
Solve VUL ,,,P6 ε

Let *R be the corresponding system reliability
{ }min*,max rRL ←

ρεε ←
end do

The near-optimal solution is given by the solution of VUL ,,,P6 ε at the last iteration of the algorithm

(by the values of the variables x); the upper bound on an optimal reliability is given by the value of

this solution. The parameters min0 ,,, ερεL and D will be chosen empirically, taking into account the

difficulty of the problem and after some experiments. Note that an initial feasible reliability of the

complete system can be determined, for example, by solving VUL ,,,P6 ε with minrL = , 1.0=ε or

0.01, { }0=U and { }0=V .

5. Computational experiments

The different instances of VUL ,,,P6 ε have been solved using the solver CPLEX 8 [CPLEX,

2002] and the modeling language AMPL [Fourer et al., 1993]. The experiments have been carried

out on a PC Pentium 4 with a 1.8 GHz processor.

5.1 First computational tests: a gearbox reliability optimization problem [Zhao et al., 2005]

The first test problem used here to demonstrate the efficiency of Algorithm),,,,(min0 DL ερε

for solving RAP is a gearbox reliability optimization problem presented in [Zhao et al., 2005]. In

this reference, in order to apply their method, the authors assumed, for all stages, that the minimal

 11

number of components is equal to 2 and that the maximal number of components is equal to 5. We

have noticed that, with our approach, identical solutions are obtained with or without this

restriction. Results using an ant colony system (ACS) meta-heuristic [Zhao et al., 2005] and our

integer linear programming approach (ILP) are presented in Tables 1a and 1b. In the experiments

we choose the following values of the parameters in Algorithm),,,,(min0 DL ερε : 7.0min == rL ,

1.00 =ε , 1.0=ρ , 001.0min =ε , and 51=D . As results indicate, ILP outperforms ACS. In 16

problem cases, ILP obtained better system reliability and in 3 problem cases ILP and ACS obtained

identical system reliability. Let us note that ILP is also efficient from the computational time point

of view since a total of about 5 seconds were necessary to solve the 19 problems.

Table 1a. Results obtained for a gearbox reliability optimization
problem devised by [Zhao et al., 2005] ; comparison of two approaches :

ACS [Zhao et al., 2005] and our ILP approach
No. Maximal

cost
Maximal
weight

Reliability
[Zhao et al., 2005]

RZLD

Reliability
Our approach

RILP
1 40 115 0.9861 0.98629
2 55 125 0.9973 0.99758
3 65 130 0.9977 0.99857
4 60 120 0.9968 0.99699
5 60 130 0.9977 0.99794
6 60 140 0.9985 0.99855
7 60 150 0.9987 0.99878
8 65 120 0.9968 0.99744
9 65 130 0.9977 0.99857

10 65 140 0.9988 0.99905
11 65 150 0.9990 0.99905
12 70 120 0.9968 0.99792
13 70 130 0.9988 0.99881
14 70 140 0.9990 0.99905
15 70 150 0.9992 0.99949
16 75 120 0.9968 0.99792
17 75 130 0.9988 0.99881
18 75 140 0.9992 0.99925
19 75 150 0.9995 0.99949

Table 1b. Summarized results of the experiments concerning
the 19 instances devised by [Zhao et al., 2005]

improvement

gap

CPU
Time

(seconds)

min 0.0000 4.1 10-7 0.09 # RILP > RZLD # RILP = RZLD # RILP < RZLD

Av. 3.5 10-4 9.3 10-7 0.27 16 3 0

max 0.0011 1.8 10-6 1.08

 12

In Table 1b improvement is equal to the difference ZLDILP RR − , gap is equal to the optimal value

provided by Algorithm),,,,(min0 DL ερε minus ILPR . For example, on the average, the gap

between the optimal reliability and the reliability obtained by our method is less than or equal to 9.3

10-7 . ZLPILP RR ># (reps. ZLPILP RR =# , ZLPILP RR <#) gives the number of problems for which

ZLPILP RR > (reps. ZLPILP RR = , ZLPILP RR <).

Results presented in Table 1 show that the ILP approach allows to obtain the optimal reliability for

the 19 problems with a precision of at least 1.8 10-6 since for all these problems the value of gap is

less than or equal to 1.8 10-6.

5.2 Second computational tests : instances proposed in [Nakagawa and Miyazaki, 1981]

The second test problem used to demonstrate the efficiency of Algorithm),,,,(min0 DL ερε

was originally proposed by [Fyffe et al., 1968]. They specified 130 units of system cost, 170 units

of system weight and minimum redundancy level 1=ip),...,1(si = . Nakagawa and Miyazaki

[Nakagawa and Miyazaki, 1981] devised 33 variations of the original problem. They fixed the cost

constraint 130max =C and the weight constraint maxW varies from 159 to 191. Only identical

components are used in both papers. Many authors considered this problem without restricting the

component mixing. Table 2 presents the optimal reliability for the 33 problems in this latter case,

the references that permitted to obtain this reliability and the solution obtained by ILP approach.

Note that for the 33 problems the reliability is proved to be optimal only in [Onishi et al., 2007]. We

also give the CPU time required to determine this reliability and the corresponding upper bound, i.e.

the optimal value of VUL ,,,6P ε at the end of the execution of Algorithm),,,,(min0 DL ερε . For

example, for problem no.18, the optimal reliability is 0.9749. It has been obtained in the following

references : [Liang and Chen, 2007], [Liang and Smith, 2004], [Onishi et al., 2007], [You and Chen,

2005], and [Zia and Coit, 2005]. By our approach we obtained the same system reliability within

2.5 seconds of CPU time. Table 3 gives the references we considered for the solution of this

problem. It also presents the abbreviations used in Table 2 and the kind of method used in each

reference. In the experiments we choose the following values of the parameters in Algorithm

),,,,(min0 DL ερε : 7.0min == rL , 1.00 =ε , 1.0=ρ , 001.0min =ε , and 6=D .

 13

Table 2a. Comparison of ILP results with best available ones
for the 33 instances devised by [Nakagawa and Miyazaki, 1981]

No. Maximal
weight

optimal
reliability

R*

References ILP
Approach

RILP

CPU time
(seconds)

1 191 0.9868 CY KSC LC LS OKJN YC ZC ZLD 0.9868 35.80
2 190 0.9864 CY KSC LC OKJN YC ZC ZLD 0.9864 27.69
3 189 0.9859 CY KSC LC OKJN YC ZLD 0.9859 8.63
4 188 0.9854 KSC OKJN YC ZLD 0.9854 14.86
5 187 0.9847 KSC LC LS OKJN YC ZC ZLD 0.9847 19.41
6 186 0.9842 CY KSC LC OKJN YC ZC ZLD 0.9842 1.11
7 185 0.9835 CK KSC LC LS OKJN YC ZLD 0.9835 5.04
8 184 0.9830 KSC LC LS OKJN YC ZC 0.9830 6.69
9 183 0.9823 KSC LC OKJN YC 0.9823 17.43

10 182 0.9815 CY KSC LC LS OKJN YC 0.9815 8.12
11 181 0.9810 CY KSC LC OKJN YC ZC ZLD 0.9810 9.13
12 180 0.9803 CY KSC LC LS OKJN YC ZC ZLD 0.9803 7.71
13 179 0.9795 CY KSC LC LS OKJN YC ZC ZLD 0.9795 4.99
14 178 0.9784 KSC LC LS OKJN YC ZC ZLD 0.9784 7.93
15 177 0.9776 LC LS OKJN YC ZC ZLD 0.9776 6.43
16 176 0.9767 CY KSC LC OKJN YC ZLD 0.9767 12.93
17 175 0.9757 CY KSC LC LS OKJN YC 0.9757 4.20
18 174 0.9749 LC LS OKJN YC ZC 0.9749 2.50
19 173 0.9738 CY KSC LC LS OKJN YC ZC 0.9738 2.62
20 172 0.9730 CY KSC LC LS OKJN YC ZC 0.9730 3.78
21 171 0.9719 CS CY KSC LC LS OKJN YC ZC 0.9719 9.52
22 170 0.9708 CS CY KSC LC LS OKJN YC ZC 0.9708 7.45
23 169 0.9693 CY KSC LC LS OKJN YC ZC 0.9693 13.11
24 168 0.9681 CS CY KSC LC LS OKJN YC ZC 0.9681 15.77
25 167 0.9663 CK CS CY KSC LC LS OKJN YC ZC ZLD 0.9663 22.35
26 166 0.9650 CS CY KSC LC LS OKJN YC ZC 0.9650 15.49
27 165 0.9637 CS CY KSC LC LS OKJN YC ZC 0.9637 26.22
28 164 0.9624 CS CY KSC LC LS OKJN YC ZC ZLD 0.9624 27.32
29 163 0.9606 CK CS CY LC LS OKJN YC ZC ZLD 0.9606 13.61
30 162 0.9592 CY LC LS OKJN YC ZC ZLD 0.9592 15.61
31 161 0.9580 CS CY LC LS OKJN YC ZC ZLD 0.9580 12.06
32 160 0.9557 CS CY LC LS OKJN YC ZC ZLD 0.9557 35.47
33 159 0.9546 CY LC LS OKJN YC ZC ZLD 0.9546 17.23

Table 2.b. Summarized results of the experiments concerning
The 33 instances devised by [Nakagawa and Miyazaki, 1981]

improvement

gap

CPU
Time

(seconds)

min - 4.4 10-5 1.11 # RILP > R* # RILP = R* # RILP < R*

Av. - 6.0 10-5 13.28 - 33 0

max - 8.2 10-5 35.80

 14

Table 2 shows that by our ILP approach we obtained the optimal reliability for all the problems. For

the 33 problems the mean CPU time is equal to 1.11 seconds and the gap between the obtained

reliability and the corresponding upper bound is always less than 8.2 10-5.

Table 3. Some references and type of methods considering the 33 instances

of the redundancy allocation problem devised by [Nakagawa and Miyazaki, 1981]

Abbreviation Reference Type of method

CK [Coit and Konak, 2006] heuristic based on solving a sequence of linear
programming problems

CS [Coit and Smith, 1996] genetic algorithm

CY [Chen and You, 2005] Immune algorithms-based approach

H [Hsieh, 2002] approximation by linear programming

KSC [Kulturel-Konak et al., 2003] tabu search meta-heuristic
LC [Liang and Chen, 2007] variable neighborhood search algorithm

LS [Liang and Smith, 2004] ant colony optimization

OKJN [Onishi et al., 2007] exact solution method, based on the improved
surrogate constraint (ISC) method

YC [You and Chen, 2005] greedy method and genetic algorithm

ZC [Zia and Coit, 2005] decomposition approach of column generation

ZLD [Zhao et al., 2005] ant colony system meta-heuristic

5.3 Third computational tests : instances proposed in [Coit and Konak, 2006]

The previous problem devised by [Nakagawa and Miyazaki, 1981] is a well-known test

problem and it has been extensively used in the literature to evaluate alternative approaches for

RAP. However, as mentioned in [Coit and Konak, 2006] it has some drawbacks as a test problem

because some of component options clearly dominate others, i.e. they have lower cost and weight,

but higher reliability than others. These authors claim that many component options can be

eliminated if the problem data are carefully analyzed and propose three new problems with difficult

tradeoffs between components. Each problem has 20 subsystems with four available component

options and the maximum number of components allowed in each subsystem is 8. For these three

problems 36 different combinations of cost and weight constraint limits are defined. The results

obtained by our approach on these three problems are presented in Table 4 together with the result

obtained by Coit and Konak by their multiple weighted objective heuristic. We have noticed in our

experiments that as expected these 3 problems are much more difficult than the problem devised by

[Nakagawa and Miyazaki, 1981] and that, as for Coit and Konak, Problem 3 is the most challenging

problem among them.

 15

Taking into account the difficulty of these three problems we choose in the experiments the

following values of the parameters in Algorithm),,,,(min0 DL ερε which correspond to a unique

iteration of the while loop.:

Problem 2 : 7.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D .

Problem 3: 9.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D .

Problem 4: 8.0min == rL , 05.00 =ε , 1.0=ρ , 05.0min =ε , and 21=D .

 16

Table 4. Computational experiments for the 3x36 instances presented in [Coit and Konak, 2006];
comparison of two approaches : the MWO heuristic [Coit and Konak, 2006] and our ILP approach

For each problem the CPU time is limited to 300 seconds
* An optimal solution of VUL ,,,6P ε has not been found within 300 seconds

 [Coit and Konak, 2006] Problem 2 [Coit and Konak, 2006] Problem 3 [Coit and Konak, 2006] Problem 4
 C W RCK RILP Upper bound

ILP
CPU
ILP

RCK RILP Upper bound
ILP

CPU
ILP

RCK RILP Upper bound
ILP

CPU
ILP

1 100 100 0.05268 0.06269 0.06270 101.89 0.17265 0.17265 0.17265 0.12 0.14722 0.15085* 0.20454* 300.00*
2 100 130 0.07702 0.08592 0.08592 119.33 0.25035 0.25287 0.25290 3.58 0.32840 0.32607* 0.39673* 300.00*
3 100 160 0.07702 0.08592 0.08592 26.80 0.31659 0.31848* 0.32328* 300.00* 0.55503 0.56460 0.56474 11.33
4 100 190 0.07702 0.08592 0.08592 26.92 0.39429 0.39833* 0.40270* 300.00* 0.64773 0.65377 0.65509 1.23
5 100 220 0.07702 0.08592 0.08592 26.83 0.48209 0.48156* 0.49803* 300.00* 0.72987 0.73348 0.73377 1.54
6 100 250 0.07702 0.08592 0.08592 26.81 0.58655 0.58875* 0.60130* 300.00* 0.76426 0.78414 0.78452 0.49
7 130 100 0.08091 0.08091 0.08091 15.17 0.24129 0.24388 0.24389 8.04 0.31355 0.31311* 0.36822* 300.00*
8 130 130 0.26884 0.27280 0.27282 12.77 0.31593 0.32242 0.32247 14.33 0.56078 0.56627 0.56641 12.20
9 130 160 0.31506 0.33524 0.33526 2.53 0.39476 0.40543 0.40551 17.18 0.66594 0.67087 0.67112 0.68
10 130 190 0.31061 0.33524 0.33526 1.84 0.48277 0.50330 0.50342 24.64 0.74961 0.75992 0.76031 0.30
11 130 220 0.31470 0.33524 0.33526 1.84 0.59041 0.61452 0.61471 33.62 0.83421 0.83836 0.83876 8.44
12 130 250 0.31061 0.33524 0.33526 1.84 0.71971 0.71863* 0.76459* 300.00* 0.89123 0.89274 0.89408 0.43
13 160 100 0.08091 0.08091 0.08091 15.21 0.30389 0.30954 0.30959 43.24 0.53033 0.53498 0.53505 1.88
14 160 130 0.28595 0.28824 0.28826 6.32 0.38961 0.40612 0.40624 2.95 0.64802 0.65427 0.65452 4.52
15 160 160 0.52941 0.55183* 0.58938* 300.00* 0.48297 0.50632 0.50646 13.64 0.74884 0.75725 0.75751 4.41
16 160 190 0.65762 0.65762 0.65766 0.56 0.59047 0.61553* 0.65847* 300.00* 0.82922 0.84001 0.84035 77.22
17 160 220 0.65762 0.65762 0.65766 0.35 0.75473 0.75740* 0.76242* 300.00* 0.89751 0.89970 0.90085 1.24
18 160 250 0.65762 0.65762 0.65766 0.36 0.88177 0.88302 0.88345 0.86 0.92416 0.92612 0.92963 3.00
19 190 100 0.08091 0.08091 0.08091 15.18 0.38067 0.38217 0.38230 130.95 0.60364 0.61204 0.61216 2.83
20 190 130 0.28595 0.28824 0.28826 6.33 0.48074 0.50168 0.50191 1.94 0.72425 0.73550 0.73574 3.41
21 190 160 0.60371 0.61592 0.61596 14.03 0.61995 0.62126 0.62155 10.49 0.82697 0.83434 0.83474 1.00
22 190 190 0.75874 0.76866 0.76893 1.31 0.75809 0.76046* 0.77413* 300.00* 0.89718 0.89833 0.89945 1.06
23 190 220 0.79847 0.82049 0.82084 0.31 0.88293 0.88400 0.88453 0.84 0.92675 0.92686 0.93119 5.00
24 190 250 0.80097 0.82049 0.82084 0.27 0.90783 0.90847 0.91111 0.75 0.94725 0.94981 0.95730 1.10
25 220 100 0.08091 0.08091 0.08091 15.13 0.46579 0.46989 0.47016 28.85 0.63909 0.66592 0.66610 0.31
26 220 130 0.28595 0.28824 0.28826 6.32 0.58585 0.60726 0.60749 3.17 0.79882 0.80449 0.80479 3.02
27 220 160 0.60371 0.61592 0.61596 19.96 0.72885 0.75474* 0.78328* 300.00* 0.88788 0.89026 0.89118 0.46
28 220 190 0.79824 0.80807 0.80853 0.58 0.88214 0.88214 0.88275 1.06 0.92239 0.92301 0.92705 0.31
29 220 220 0.87281 0.87583 0.87643 1.16 0.90616 0.90653 0.90910 10.26 0.94678 0.94790 0.95542 21.31
30 220 250 0.89454 0.90006 0.90064 0.32 0.92302 0.92525* 0.93095* 300.00* 0.96779 0.96805 0.97857 2.09
31 250 100 0.08091 0.08091 0.08091 15.15 0.54857 0.57507 0.57546 1.04 0.63909 0.66592 0.66610 0.31
32 250 130 0.28595 0.28824 0.28826 6.32 0.71172 0.71129* 0.73832* 300.00* 0.84744 0.85793 0.85845 0.96
33 250 160 0.60371 0.61592 0.61596 19.89 0.87444 0.87629 0.87691 0.34 0.91345 0.91481 0.91743 0.96
34 250 190 0.79824 0.80807 0.80853 0.58 0.90171 0.90389 0.90648 4.21 0.94285 0.94406 0.95006 0.52
35 250 220 0.88581 0.89061 0.89142 0.98 0.92388 0.92364 0.92896 64.31 0.96401 0.96585 0.97613 1.90
36 250 250 0.92957 0.93069 0.93225 0.6 0.94080 0.94097 0.94791 277.33 0.98031 0.98007 0.99421 3.18

 17

In Table 4 "*" means that the optimal solution of VUL ,,,6P ε has not been found within 300

seconds of CPU time. However, a feasible solution has always been found within this time

and the corresponding reliability is indicated in the table. We also indicate the upper bound

provided by CPLEX after 300 seconds of computation.

Table 4b. Summarized results of the experiments concerning
the 36 instances of Problem 2 devised by [Coit and Konak, 2006]

improvement

gap

CPU
Time

(seconds)

min 0.00000 0.00000 0.27 # RILP > RZLD # RILP = RZLD # RILP < RZLD

Av. 0.00840 0.00121 22.55 28 8 0

max 0.02463 0.03755 300.00

Table 4c. Summarized results of the experiments concerning

the 36 instances of Problem 3 devised by [Coit and Konak, 2006]

improvement

gap
CPU
Time

(seconds)

min -0.00108 0.00000 0.12 # RILP > RZLD # RILP = RZLD # RILP < RZLD

Av. 0.02650 0.00643 111.05 30 2 4

max 0.02463 0.04596 300.00

Table 4d. Summarized results of the experiments concerning

the 36 instances of Problem 4 devised by [Coit and Konak, 2006]

improvement

gap
CPU
Time

(seconds)

min -0.00233 0.00007 0.30 # RILP > RZLD # RILP = RZLD # RILP < RZLD

Av. 0.00583 0.00724 29.96 34 0 2

max 0.02683 0.07066 300.00

The results presented in Tables 4a, 4b, 4c and 4d show that the three problem devised by

[Coit and Konak, 2006] are much more difficult - at least for our approach - than the problem

devised by [Nakagawa and Miyazaki, 1981] (see Table 2a and 2b). However, our integer

linear programming approach allows obtaining a reliability better than that obtained by [Coit

and Konak, 2006] in 92 cases over 108. The computation times remain relatively small except

 18

in 15 cases where CPLEX cannot find the optimal solution of VUL ,,,6P ε within 300 seconds

of CPU time. As suggested by [Coit and Konak, 2006] the three problems are difficult

because of the combination of the three types of data : cost, weight and reliability. In order to

illustrate that the difficulty comes mainly from this point, we have considered problem 3

without weight constraint. In this case the problem becomes very easy to solve. We give in

Table 5 the computational results obtained by Algorithm),,,,(min0 DL ερε with the

following parameters : 9.0min == rL , 01.00 =ε , 1.0=ρ , 001.0min =ε , and 51=D .

Table 5. Computational results for 6 instances of problem 3 of

[Coit and Konak, 2006] but without constraint weight
 C RILP Upper

bound ILP
CPU
ILP

seconds
1 100 0.993274 0.993278 1.62
2 130 0.999406 0.999434 1.12
3 160 0.999946 0.999971 1.52
4 190 0.999995 0.999998 1.12
5 220 0.999998 1 1.63
6 250 0.999997 1 1.61

The results presented in Table 5 show that the problem 3 of [Coit and Konak, 2006] is not

difficult for our approach when we only keep the cost constraint: the mean CPU time required

to solve the six problems of Table 5 is equal to 1.44 seconds and the mean gap is equal to 1.1

10-5.

6. Conclusions

We have proposed in this paper to solve the redundant allocation problem by using an

integer linear programming software. The experimental results show the effectiveness of the

approach compared to previous results published in the literature. Compared to former ones,

our work is of three principal interests: first of all the approach is relatively easy to

understand and above all uses exclusively a standard, commercially available software. An

important asset of the method is its simplicity of implementation in one has an integer

programming software. The task becomes really easy if one has, in addition, the use of a tool

of modeling like AMPL [Fourer et al., 1993]. Secondly we obtain tight approximate solutions

together with a very good performance guarantee. Lastly, as it is well-known with an integer

linear programming formulation of the problem, it is possible to add new constraints easily –

if they are linear – which is not always the case when a specific algorithm was worked out.

 19

References

T.C. Chen and P.S. You, "Immune algorithms-based approach for redundant reliability
problems with multiple component choices", Computers in Industry, 56 (2), 195-205, 2005.

D.W. Coit and A. Konak, "Multiple weighted objectives heuristic for the redundancy
allocation problem", IEEE Transactions on Reliability, 55 (3), 551-558, 2006.

D.W. Coit and A.E. Smith, "Reliability optimization of series-parallel systems using a genetic
algorithm", IEEE Transactions on Reliability, 45 (2), 254-260, 1996.

CPLEX, ILOG CPLEX 8.0 Reference Manual. ILOG CPLEX Division, Gentilly, France,
2002.

R. Fourer, D.M. Gay and B.W. Kernighan, "AMPL a modeling language for mathematical
programming", The Scientific Press Series,1993.

D.E. Fyffe, W.W. Hines and N.K. Lee, "System reliability allocation and a computational
algorithm", IEEE Transactions on Reliability, 17 (2), 64-69, 1968

Y.-C. Hsieh, "A linear approximation for redundant reliability problems with multiple
component choices", Computer and Industrial Engineering, 44, 91-103, 2002.

S. Kulturel-Konak, A.E. Smith and D.W. Coit, "Efficiently solving the redundancy allocation
problem using tabu search", IIE Transactions, 35 (6), 515-526, 2003.

W. Kuo and R. Wan, "Recent advances in optimal reliability allocation", Computational
Intelligence in Reliability Engineering (SCI), 39, 1-36, 2007.

G. Levitin, A. Lisnianski, and D. Elmakis, “Structure optimization of power system with
different redundant elements”, Electric Power Systems Research, 43, 19–27, 1997.

Y.-C. Liang and Yi-Ching Chen, "Redundancy allocation of series-parallel systems using a
variable neighborhood search algorithm", Reliability Engineering and System Safety, 92 (3),
323-331, 2007.

Y.-C. Liang and A.E. Smith, "An ant colony optimization algorithm for the redundancy
allocation problem (RAP)", IEEE Transactions on Reliability, 53(3), 417-423, 2004.

Y. Nakagawa and S. Miyazaki, "Surrogate constraints algorithm for reliability optimization
problems with two constraints", IEEE Transactions on Reliability, 30 (2), 175-180, 1981.

J. Onishi, S. Kimura, R. J. W. James and Y. Nakagawa, "Solving the redundancy allocation
problem with a mix of components using the improved surrogate constraint method", IEEE
Transactions on Reliability, 56 (1), 94-101, 2007.

J. E. Ramirez-Marquez, D. W. Coit and A. Konak, "Redundancy Allocation for Series-
Parallel Systems Using a Max-Min Approach", IIE Transactions, 42 (21), 891-898, 2004.

 20

P.-S. You and T.-C. Chen, "An efficient heuristic for series-parallel redundant reliability
problems", Computer and Operations Research, 32 (8), 2117-2127, 2005.

J-H. Zhao, Z. Liu and T.-M. Dao, "Reliability optimization using multiobjective ant colony
system approaches", Reliability Engineering and System Safety, 92 (1), 109-120, 2007.

L. Zia and D.W. Coit, "Redundancy allocation for series-parallel systems using a column
generation approach", Working Paper 05-027, Industrial and Systems Engineering, Rutgers
University, 26 p., 2005.

