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ABSTRACT
In gene expression microarray data analysis, selecting a small
number of discriminative genes from thousands of genes is an
important problem for accurate classification of diseases or
phenotypes. The problem becomes particularly challenging
due to the large number of features (genes) and small sam-
ple size. Traditional gene selection methods often select the
top-ranked genes according to their individual discrimina-
tive power without handling the high degree of redundancy
among the genes. Latest research shows that removing re-
dundant genes among selected ones can achieve a better
representation of the characteristics of the targeted pheno-
types and lead to improved classification accuracy. Hence,
we study in this paper the relationship between feature rele-
vance and redundancy and propose an efficient method that
can effectively remove redundant genes. The efficiency and
effectiveness of our method in comparison with representa-
tive methods has been demonstrated through an empirical
study using public microarray data sets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – data mining; I.2.6
[Artificial Intelligence]: Learning; I.5.2 [Pattern Recogni-
tion]: Design Methodology – feature evaluation and selec-
tion

General Terms: Algorithms, Experimentation

Keywords: feature redundancy, gene selection, microarray
data

1. INTRODUCTION
The rapid advances in gene expression microarray tech-

nology enable simultaneously measuring the expression lev-
els for thousands or tens of thousands of genes in a single
experiment [19]. Analysis of microarray data presents un-
precedented opportunities and challenges for data mining
in areas such as gene clustering [2, 10], sample clustering
and class discovery [2, 7, 20], sample classification [1, 7],
and gene selection [20, 22]. In sample classification, a mi-
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croarray data set is provided as a training set of labeled
samples. The task is to build a classifier that accurately
predicts the classes (diseases or phenotypes) of novel unla-
beled samples. A typical data set may contain thousands of
genes but only a small number of samples (often less than a
hundred). The number of samples is likely to remain small
at least for the near future due to the expense of collecting
microarray samples [6]. The nature of relatively high dimen-
sionality but small sample size in microarray data can cause
the known problem of “curse of dimensionality” and over-
fitting of the training data [6]. Therefore, selecting a small
number of discriminative genes from thousands of genes is
essential for successful sample classification [5, 7, 22]. Re-
search on feature selection is receiving increasing attention
in gene selection for sample classification.

Feature selection, a process of choosing a subset of fea-
tures from the original ones, is frequently used as a prepro-
cessing technique in data mining [4, 15]. It has proven effec-
tive in reducing dimensionality, improving mining efficiency,
increasing mining accuracy, and enhancing result compre-
hensibility [3, 12]. Feature selection methods can broadly
fall into the wrapper model and the filter model [12]. The
wrapper model uses the predictive accuracy of a predeter-
mined mining algorithm to determine the goodness of a se-
lected subset. It is computationally expensive for data with
a large number of features [3, 12]. The filter model sepa-
rates feature selection from classifier learning and relies on
general characteristics of the training data to select feature
subsets that are independent of any mining algorithms. In
gene selection, the filter model is often adopted due to its
computational efficiency [7, 22].

Among existing gene selection methods, earlier methods
often evaluate genes in isolation without considering gene-
to-gene correlation. They rank genes according to their in-
dividual relevance or discriminative power to the targeted
classes and select top-ranked genes. Some methods based
on statistical tests or information gain have been shown in
[7, 16]. These methods are computationally efficient due
to linear time complexity O(N) in terms of dimensionality
N . However, they share two shortcomings: (1) certain do-
main knowledge or trial-and-error is required to determine
the threshold for the number of genes selected (e.g., a to-
tal of 50 genes were selected in Golub et al’ work [7]); and
(2) they cannot remove redundant genes. The issue of “re-
dundancy” among genes is recently raised in gene selection
literature. It is pointed out in a number of studies [5, 23]
that simply combining a highly ranked gene with another
highly ranked gene often does not form a better gene set be-
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cause these two genes could be highly correlated. The effects
of redundancy among selected genes are two-fold. On one
hand, the selected gene set can have a less comprehensive
representation of the targeted classes than one of the same
size but without redundant genes; on the other hand, in or-
der to include all representative genes in the selected gene
set, redundant genes will unnecessarily increase the dimen-
sionality of the selected gene set, which will in turn affect
the mining performance on the small sample [6]. Some latest
methods [5, 22] take into account the gene-to-gene correla-
tion and remove redundant genes through pair-wise correla-
tion analysis among genes. They can handle redundancy to
certain extent but require time complexity of O(N2). In ad-
dition, they still need to decide the threshold for the number
of selected genes.

In this paper, we tackle gene selection by developing a
novel redundancy based approach that overcomes the above
two shortcomings in an efficient way. The remainder of this
paper is organized as follows. In Section 2, we introduce
gene and feature selection, review notions of feature rele-
vance, and identify the need for feature redundancy analy-
sis. In Section 3, we provide formal definitions on feature
redundancy, and reveal the relationship between feature rel-
evance and feature redundancy. In Section 4, we describe
correlation measures and present our redundancy based fil-
ter method. Section 5 contains experimental evaluation and
discussions. Section 6 concludes this work.

2. GENE, FEATURE, AND FEATURE
RELEVANCE

In sample classification and gene selection, the microar-
ray data for analysis is in the form of a gene expression ma-
trix (shown in Figure 1), in which each column represents
a gene and each row represents a sample with label ci. For
each sample the expression levels of all the genes in study
are measured, so fij is the measurement of the expression
level of the jth gene for the ith sample where j = 1, ..., N
and i = 1, ..., M . The format of a microarray data set con-
forms to the normal data format of machine learning and
data mining, where a gene can be regarded as a feature or
attribute and a sample as an instance or a data point.

Gene 1 Gene 2 . . . Gene N
f11 f12 . . . f1N c1

f21 f22 . . . f2N c2

. . . . .

. . . . .

. . . . .
fM1 fM2 . . . fMN cM

Figure 1: An example of gene expression matrix.

Let F be a full set of features and G ⊆ F . In general,
the goal of feature selection can be formalized as selecting a
minimum subset G such that P(C | G) is equal or as close
as possible to P(C | F ), where P(C | G) is the probability
distribution of different classes given the feature values in G
and P(C | F ) is the original distribution given the feature
values in F [13]. We call such a minimum subset an optimal
subset, illustrated by the example below.

Example 1. (Optimal subset) Let features F1, ..., F5

be Boolean. The target concept is C = g(F1, F2) where g is

a Boolean function. With F2 = F3 and F4 = F5, there are
only eight possible instances. In order to determine the tar-
get concept, F1 is indispensable; one of F2 and F3 can be dis-
posed of (note that C can also be determined by g(F1, F3)),
but we must have one of them; both F4 and F5 can be dis-
carded. Either {F1, F2} or {F1, F3} is an optimal subset.
The goal of feature selection is to find either of them.

In the presence of hundreds or thousands of features, re-
searchers notice that it is common that a large number of
features are not informative because they are either irrel-
evant or redundant with respect to the class concept [22].
Traditionally, feature selection research has focused on search-
ing for relevant features. Although empirical evidence shows
that along with irrelevant features, redundant features also
affect the speed and accuracy of mining algorithms [8, 12,
13], there is little work on explicit treatment of feature re-
dundancy. We next present a classic notion of feature rele-
vance and employ the same example above to illustrate why
it alone cannot handle feature redundancy.

Based on a review of previous definitions of feature rel-
evance, John, Kohavi, and Pfleger classified features into
three disjoint categories, namely, strongly relevant, weakly
relevant, and irrelevant features [11]. Let Fi ∈ F and Si =
F − {Fi}. These categories of relevance can be formalized
as follows.

Definition 1. (Strong relevance) A feature Fi is strongly
relevant iff

P(C | Fi, Si) 6= P(C | Si) .

Definition 2. (Weak relevance) A feature Fi is weakly
relevant iff

P(C | Fi, Si) = P(C | Si), and

∃ S′i ⊂ Si, such that P(C | Fi, S′i) 6= P(C | S′i) .

Corollary 1. (Irrelevance) A feature Fi is irrelevant
iff

∀ S′i ⊆ Si, P(C | Fi, S′i) = P(C | S′i) .

Strong relevance of a feature indicates that the feature is
always necessary for an optimal subset; it cannot be removed
without affecting the original conditional class distribution.
Weak relevance suggests that the feature is not always neces-
sary but may become necessary for an optimal subset at cer-
tain conditions. Irrelevance (following Definitions 1 and 2)
indicates that the feature is not necessary at all. Accord-
ing to these definitions, it is clear that in previous Exam-
ple 1, feature F1 is strongly relevant, F2, F3 weakly relevant,
and F4, F5 irrelevant. An optimal subset should include all
strongly relevant features, none of irrelevant features, and a
subset of weakly relevant features. However, it is not given
in the definitions which of weakly relevant features should
be selected and which of them removed. Therefore, we can
conclude that feature relevance alone cannot effectively help
remove redundant features and there is also a need for fea-
ture redundancy analysis.
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3. DEFINING FEATURE REDUNDANCY
Notions of feature redundancy are normally in terms of

feature correlation. It is widely accepted that two features
are redundant to each other if their values are completely
correlated (for example, features F2 and F3 in Example 1).
In reality, it may not be so straightforward to determine
feature redundancy when a feature is correlated (perhaps
partially) with a set of features. We now formally define
feature redundancy in order to devise an approach to ex-
plicitly identify and eliminate redundant features. Before
we proceed, we first introduce the definition of a feature’s
Markov blanket given by Koller and Sahami (1996).

Definition 3. (Markov blanket) Given a feature Fi,
let Mi ⊂ F (Fi /∈ Mi), Mi is said to be a Markov blanket
for Fi iff

P(F−Mi−{Fi}, C | Fi, Mi) = P(F−Mi−{Fi}, C | Mi) .

The Markov blanket condition requires that Mi subsume
not only the information that Fi has about C, but also about
all of the other features. It is pointed out in Koller and
Sahami (1996) that an optimal subset can be obtained by a
backward elimination procedure, known as Markov blanket
filtering: let G be the current set of features (G = F in the
beginning), at any phase, if there exists a Markov blanket for
Fi within the current G, Fi is removed from G. It is proved
that this process guarantees a feature removed in an earlier
phase will still find a Markov blanket in any later phase,
that is, removing a feature in a later phase will not render
the previously removed features necessary to be included
in the optimal subset. According to previous definitions of
feature relevance, we can also prove that strongly relevant
features cannot find any Markov blanket. Since irrelevant
features should be removed anyway, we exclude them from
our definition of redundant features. Hence, our definition
of redundant feature is given as follows.

Definition 4. (Redundant cover) A Markov blanket
Mi of a weakly relevant feature Fi is called a redundant cover
of Fi .

Definition 5. (Redundant feature) Let G be the cur-
rent set of features, a feature is redundant and hence should
be removed from G iff it has a redundant cover within G .

From the property of Markov blanket, it is easy to see
that a redundant feature removed earlier remains redundant
when more features are removed. Figure 1 depicts the re-
lationships between definitions of feature relevance and re-
dundancy introduced so far. It shows that an entire feature
set can be conceptually divided into four basic disjoint parts:
irrelevant features (I), redundant features (II, part of weakly
relevant features), weakly relevant but non-redundant fea-
tures (III), and strongly relevant features (IV). An optimal
subset essentially contains all the features in parts III and
IV. It is worthy to point out that although parts II and III
are disjoint, different partitions of them can result from the
process of Markov blanket filtering. In previous Example 1,
either of F2 or F3, but not both, should be removed as a
redundant feature.

In determining relevant features and redundant features,
it is advisable to use efficient approximation methods for

III IV

I: Irrelevant features

IV: Strongly relevant features

II: Weakly relevant and 

III + IV: Optimal subset

redundant features

non−redundant features
III: Weakly relevant but

I II

Figure 2: A view of feature relevance and redun-
dancy.

two reasons. First, searching for an optimal subset based
on the definitions of feature relevance and redundancy is
combinatorial in nature. It is obvious that exhaustive or
complete search is prohibitive with a large number of fea-
tures. Second, an optimal subset is defined based on the
full population where the true data distribution is known.
It is generally assumed that a training data set is only a
small portion of the full population, especially in a high-
dimensional space. Therefore, it is not proper to search for
an optimal subset from the training data as over-searching
the training data can cause over-fitting [9]. We next present
our method.

4. AN APPROXIMATION METHOD
In this section, we first introduce our choice of correlation

measure for gene selection, and then describe our approxi-
mation method based on the previous definitions.

4.1 Correlation Measures
In gene selection, there exist broadly two types of mea-

sures for correlation between genes or between a gene and
the target class: linear and non-linear. Since linear correla-
tion measures may not be able to capture correlations that
are not linear in nature, in our approach we adopt non-linear
correlation measures based on the information-theoretical
concept of entropy, a measure of the uncertainty of a ran-
dom variable. The entropy of a variable X is defined as

H(X) = −
∑

i

P (xi) log2(P (xi)) ,

and the entropy of X after observing values of another vari-
able Y is defined as

H(X|Y ) = −
∑

j

P (yj)
∑

i

P (xi | yj) log2(P (xi | yj)) ,

where P (xi) is the prior probabilities for all values of X, and
P (xi | yi) is the posterior probabilities of X given the values
of Y . The amount by which the entropy of X decreases
reflects additional information about X provided by Y and
is called information gain, given by

IG(X | Y ) = H(X)−H(X | Y ) .

Information gain tends to favor variables with more values
and can be normalized by their corresponding entropy. In
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this work, we use symmetrical uncertainty (SU), defined as

SU(X, Y ) = 2

[
IG(X | Y )

H(X) + H(Y )

]
,

which compensates for information gain’s bias toward fea-
tures with more values and restricts its values to the range
[0, 1]. A value of 1 indicates that knowing the values of either
feature completely predicts the values of the other; a value of
0 indicates that X and Y are independent. Entropy-based
measures handle nominal or discrete values, and therefore
continuous values in gene expression data need to be dis-
cretized [14] in order to use entropy-based measures.

4.2 Methodology and Analysis
In developing an approximation method for both rele-

vance and redundancy analysis, our goal is to efficiently find
a feature subset that approximates the optimal subset (parts
III and IV in Figure 2). We first differentiate two types of
correlation between features and the class.

Definition 6. (Individual C-correlation) The corre-
lation between any feature Fi and the class C is called indi-
vidual C-correlation, denoted by ISUi .

Definition 7. (Combined C-correlation) The corre-
lation between any pair of features Fi and Fj (i 6= j) and
the class C is called combined C-correlation, denoted by
CSUi,j .

For combined C-correlation, we treat features Fi and Fj

as one single feature Fi,j and the cartesian product of the
domains of Fi and Fj as the domain of Fi,j .

In relevance analysis, the individual C-correlation for each
feature is measured and ranked. Without choosing any
threshold, we heuristically treat all features as relevant fea-
tures which are subject to redundancy analysis. In Sec-
tion 2, we apply the concept of redundant cover to exactly
determine feature redundancy. When it comes to approx-
imately determine feature redundancy, the key is to de-
fine approximate redundant cover. In our method, we ap-
proximately determine the redundancy between two features
based on both their individual C-correlations and combined
C-correlation. We assume that a feature with a larger indi-
vidual C-correlation value contains by itself more informa-
tion about the class than a feature with a smaller individ-
ual C-correlation value. For two features Fi and Fj with
ISUi ≥ ISUj , we choose to evaluate whether feature Fi can
form an approximate redundant cover for feature Fj (instead
of Fj for Fi) in order to maintain more information about
the class. In addition, if combining Fj with Fi does not
provide more predictive power in determining the class than
Fi alone, we heuristically decide that Fi forms an approx-
imate redundant cover for Fj . Therefore, an approximate
redundant cover is defined as follows.

Definition 8. (Approximate redundant cover) For
two features Fi and Fj, Fi forms an approximate redundant
cover for Fj iff ISUi ≥ ISUj and ISUi ≥ CSUi,j .

Recall that Markov blanket filtering, a backward elimina-
tion procedure based on a feature’s Markov blanket in the
current set, guarantees that a redundant feature removed in
an earlier phase will still find a Markov blanket (redundant
cover) in any later phase when another redundant feature
is removed. It is easy to verify that this is not the case for

backward elimination based on a feature’s approximate re-
dundant cover in the current set. For instance, if Fj is the
only feature that forms an approximate redundant cover for
Fk, and Fi forms an approximate redundant cover for Fj ,
after removing Fk based on Fj , further removing Fj based
on Fi will result in no approximate redundant cover for Fk

in the current set. However, we can avoid this situation by
removing a feature only when it can find an approximate
redundant cover formed by a predominant feature, defined
as follows.

Definition 9. (Predominant feature) A feature is pre-
dominant iff it does not have any approximate redundant
cover in the current set.

Predominant features will not be removed at any stage. If
a feature Fj is removed based on a predominant feature Fi

in an earlier phase, it is guaranteed that it will still find
an approximate redundant cover (the same Fi) in any later
phase when another feature is removed. Since the feature
with the highest ISU value does not have any approximate
redundant cover, it must be one of the predominant fea-
tures and can be used as the starting point to determine the
redundancy between the rest features. In summary, our ap-
proximation method of relevance and redundancy analysis
is to find all predominant features and eliminate the rest. It
can be summarized by an algorithm shown in Table 1.

Algorithm RBF:
Relevance analysis

1 Order features based on decreasing ISU values
Redundancy analysis

2 Initialize Fi with the first feature in the list
3 Find and remove all features for which Fi forms

an approximate redundant cover
4 Set Fi as the next remaining feature in the list

and repeat step 3 until the end of the list

Table 1: A two-step Redundancy Based Filter
(RBF) algorithm.

We now analyze the efficiency of RBF before conducting
an empirical study. Major computation of the algorithm
involves ISU and CSU values, which has linear time com-
plexity in terms of the number of instances in a data set.
Given dimensionality N , the algorithm has linear time com-
plexity O(N) in relevance analysis. To determine predomi-
nant features in redundancy analysis, it has a best-case time
complexity O(N) when only one feature is selected and all
of the rest features are removed in the first round, and a
worse-case time complexity O(N2) when all features are se-
lected. In general cases when k (1 < k < N) features are
selected, based on the predominant feature identified in the
previous round, RBF typically removes a large number of
features in the current round. This makes RBF substan-
tially faster than algorithms of subset evaluation based on
traditional greedy sequential search, as will be demonstrated
by the running time comparisons reported in Section 5. As
to space complexity, the algorithm only requires space lin-
ear to dimensionality N to compute and store ISU values
in relevance analysis, as CSU values can be dynamically
computed in redundancy analysis.
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Our method is suboptimal due to the way individual and
combined C-correlations are used for relevance and redun-
dancy analysis. It is fairly straightforward to improve the
optimality of the results by considering more complex combi-
nations of features in evaluating feature relevance and redun-
dancy, which in turn increases time complexity. To improve
result optimality without increasing time complexity, fur-
ther effort is needed to design and compare different heuris-
tics in determining a feature’s approximate redundant cover.
In our previous work [24], the redundancy between a pair of
features is approximately determined based on their individ-
ual C-correlations to the class and the correlation between
themselves which is measured by their symmetrical uncer-
tainty value. The method has similar complexity to RBF,
but it does not directly consider the overall predictive power
of two features when determining feature redundancy, while
RBF does based on their combined C-correlation.

5. EMPIRICAL STUDY
In this section, we empirically evaluate the efficiency and

effectiveness of our method on gene expression microarray
data. The efficiency of a feature selection algorithm can
be directly measured by its running time over various data
sets. As to effectiveness, since we often do not have prior
knowledge about which genes are irrelevant or redundant in
microarray data, we adopt two indirect criteria: (a) num-
ber of selected genes and (b) predictive accuracy on selected
genes. For gene selection in sample classification, it is desir-
able to select the smallest number of genes which can achieve
the highest predictive accuracy on new samples.

5.1 Experimental Setup
In our experiments, we select four microarray data sets

which are frequently used in previous studies: colon cancer,
leukemia, breast cancer, and lung cancer 1. Note that except
for colon data, each original data set comes with training
and test samples that were drawn from different conditions.
Here we combine them together for the purpose of cross
validation. The details of these data sets are summarized in
Table 2.

Table 2: Summary of microarray data sets.

Title # Genes # Samples # Samples per class
tumor normal

Colon cancer 2000 62
40 22

ALL AMLLeukemia 7129 72
47 25

MPM ADCALung cancer 12533 181
31 150

relapse non-relapseBreast cancer 24481 97
46 51

Two representative filter algorithms are chosen in com-
parison with RBF in terms of the evaluation criteria iden-
tified before. One algorithm representing feature ranking
methods is ReliefF, which searches for nearest neighbors of
instances of different classes and ranks features according
to their importance in differentiating instances of different
classes. A subset of features is selected from top of the
ranking list [18]. The other algorithm is a variation of the

1http://sdmc.lit.org.sg/GEDatasets/Datasets.html

CFS algorithm, denoted by CFS-SF (Sequential Forward).
CFS uses symmetrical uncertainty to measure the correla-
tion between each feature and the class and between two
features, and exploits best-first search in searching for a fea-
ture subset of maximum overall correlation to the class and
minimum correlation among selected features [8]. Sequential
forward selection is used in CFS-SF as previous experiments
show CFS-SF runs much faster to produce similar results
than CFS. A widely used classification algorithm C4.5 [17]
is adopted to evaluate the predictive accuracy of the selected
features. We use programs for ReliefF, CFS-SF, and C4.5
from Weka’s collection [21]. RBF is also implemented in the
Weka environment.

For each data set, we first apply all the feature selection
algorithms in comparison, and obtain the running time and
the selected genes for each algorithm. Note that in apply-
ing ReliefF, the number of nearest neighbors is set to 5 and
all instances are used in weighting genes. We then apply
C4.5 on the original data set and each of the three newly
obtained data sets (with only the selected genes), and ob-
tain overall classification accuracy by leave-one-out cross-
validation, a performance validation procedure adopted by
many researchers due to the small sample size of microarray
data [5, 22]. The experiments were conducted on a Pentium
III PC with 256 KB RAM.

5.2 Results and Discussions
Table 3 reports the running time, number of selected genes,

and the leave-one-out accuracy for each feature selection al-
gorithm. As shown in the table, RBF produced selected
genes in seconds for each data set. ReliefF took from 4 sec-
onds (on colon data) to 6 minutes (on lunge cancer data) to
produce the results. CFS-SF produced its result on colon
data in 5 seconds, but it failed on the other three data sets
as the program ran out of memory after a period of time
(> 10 minutes) due to its O(N2) space complexity in terms
of the number of genes N . These observations clearly show
the superior efficiency of RBF for gene selection in high-
dimensional microarray data.

We now examine the effectiveness of these three algo-
rithms based on the number of genes selected and the leave-
one-out accuracy reported in Table 3. We pick the colon
data to explain the difference in gene selection results. As
we can see from Table 3, based on the original colon data
(2000 genes), 12 out of 62 samples were incorrectly classified,
resulting an overall accuracy of 80.65%. RBF selected only
4 genes and helped to reduce the number of misclassified
samples to 4 (increasing the overall accuracy to 93.55%).
ReliefF also selected 4 genes but only reduced the number
of errors to 9 (85.48% on accuracy) since it cannot handle
feature redundancy. CFS-SF resulted in 7 errors (88.71% on
accuracy), but it selected more genes than RBF. Across the
four data sets, we can observe that RBF selected less num-
ber of genes than ReliefF and CFS-SF. At the same time,
the genes selected by RBF led to the highest accuracy by
leave-one-out.

In summary, the above results suggest that RBF is an effi-
cient and effective method for gene selection and is practical
for use in sample classification. It is worthy to emphasize
that genes selected by RBF are independent of classification
algorithms, in other words, RBF does not directly aim to
increase the accuracy of C4.5.
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Table 3: Comparison of gene selection results: Acc records leave-one-out cross-validation accuracy rate (%)
Full Set RBF ReliefF CFS-SF

# Genes Acc Time (s) # Genes Acc Time (s) # Genes Acc Time (s) # Genes Acc
Colon cancer 2000 80.65 0.47 4 93.55 4.3 4 85.48 4.6 26 88.71
Leukemia 7129 73.61 1.74 4 87.50 22.91 60 81.94 N/A N/A N/A
Lung cancer 12533 96.13 4.26 6 98.34 339.39 64 98.34 N/A N/A N/A
Breast cancer 24481 57.73 9.65 67 79.38 211.06 70 59.79 N/A N/A N/A

6. CONCLUSIONS
In this work, we have introduced the importance of re-

moving redundant genes in sample classification and pointed
out the necessity of studying feature redundancy. We have
provided formal definitions on feature redundancy and pro-
posed a redundancy based filter method with two desirable
properties: (1) it does not require the selection of any thresh-
old in determining feature relevance or redundancy; and (2)
it combines sequential forward selection with elimination,
which substantially reduces the number of feature pairs to be
evaluated in redundancy analysis. Experiments on microar-
ray data have demonstrated the efficiency and effectiveness
of our method in selecting discriminative genes that improve
classification accuracy.

Acknowledgements
We gratefully thank anonymous reviewers and Area Chair
for their constructive comments. This work is in part sup-
ported by grants from NSF (No. 0127815, 0231448), Prop
301 (No. ECR A601), and CEINT 2004 at ASU.

7. REFERENCES
[1] A. Alizadeh and etal. Distinct types of diffuse large

B-cell lymphoma identified by gene expression
profiling. Nature, 403:503–511, 2000.

[2] U. Alon and et al. Broad patterns of gene expression
revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proc.
Natl Acad. Sci. USA, 96:6745–6750, 1999.

[3] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial
Intelligence, 97:245–271, 1997.

[4] M. Dash and H. Liu. Feature selection for
classification. Intelligent Data Analysis: An
International Journal, 1(3):131–156, 1997.

[5] C. Ding and H. Peng. Minimum redundancy feature
selection from microarray gene expression data. In
Proceedings of the Computational Systems
Bioinformatics Conference, pages 523–529, 2003.

[6] E. R. Dougherty. Small sample issue for
microarray-based classification. Comparative and
Functional Genomics, 2:28–34, 2001.

[7] T. R. Golub and et al. Molecular classification of
cancer: class discovery and class prediction by gene
expression monitoring. Science, 286:531–537, 1999.

[8] M. Hall. Correlation-based feature selection for
discrete and numeric class machine learning. In
Proceedings of the 17th International Conference on
Machine Learning, pages 359–366, 2000.

[9] D. D. Jensen and P. R. Cohen. Multiple comparisions
in induction algorithms. Machine Learning,
38(3):309–338, 2000.

[10] D. Jiang, J. Pei, and A. Zhang. Interactive exploration
of coherent patterns in time-series gene expression
data. In Proceedings of the 9th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pages 565–570, 2003.

[11] G. John, R. Kohavi, and K. Pfleger. Irrelevant feature
and the subset selection problem. In Proceedings of the
11th International Conference on Machine Learning,
pages 121–129, 1994.

[12] R. Kohavi and G. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[13] D. Koller and M. Sahami. Toward optimal feature
selection. In Proceedings of the 13th International
Conference on Machine Learning, pages 284–292,
1996.

[14] H. Liu, F. Hussain, C. Tan, and M. Dash.
Discretization: An enabling technique. Data Mining
and Knowledge Discovery, 6(4):393–423, 2002.

[15] H. Liu and H. Motoda. Feature Selection for
Knowledge Discovery and Data Mining. Boston:
Kluwer Academic Publishers, 1998.

[16] F. Model, P. Adorjan, A. Olek, and C. Piepenbrock.
Feature selection for DNA methylation based cancer
classification. Bioinformatics, 17:157–164, 2001.

[17] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[18] M. Robnik-Sikonja and I. Kononenko. Theoretical and
empirical analysis of Relief and ReliefF. Machine
Learning, 53:23–69, 2003.

[19] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown.
Quantitative monitoring of gene expression patterns
with a complementary DNA microarray. Science,
270:467–470, 1995.

[20] C. Tang, A. Zhang, and J. Pei. Mining phenotypes
and informative genes from gene expression data. In
Proceedings of the 9th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages
655–660, 2003.

[21] I. Witten and E. Frank. Data Mining - Pracitcal
Machine Learning Tools and Techniques with JAVA
Implementations. Morgan Kaufmann Publishers, 2000.

[22] E. Xing, M. Jordan, and R. Karp. Feature selection
for high-dimensional genomic microarray data. In
Proceedings of the 18th International Conference on
Machine Learning, pages 601–608, 2001.

[23] M. Xiong, Z. Fang, and J. Zhao. Biomarker
identification by feature wrappers. Genome Research,
11:1878–1887, 2001.

[24] L. Yu and H. Liu. Feature selection for
high-dimensional data: a fast correlation-based filter
solution. In Proc. of the 20th International Conference
on Machine Learning, pages 856–863, 2003.

742

Research Track Poster


