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Abstract. Based on practical observations on rule-based inference on
RDF data, we study the problem of redundancy elimination on RDF
graphs in the presence of rules (in the form of Datalog rules) and con-
straints (in the form of so-called tuple-generating dependencies), as well
as with respect to queries (ranging from conjunctive queries up to more
complex ones, particularly covering features of SPARQL, such as union,
negation, or filters). To this end, we investigate the influence of several
problem parameters (like restrictions on the size of the rules, the con-
straints, and/or the queries) on the complexity of detecting redundancy.
The main result of this paper is a fine-grained complexity analysis of
both graph and rule minimisation in various settings.

1 Introduction

The Semantic Web promises to enable computers to gather machine readable
meta-data in the form of RDF statements published on the Web and make in-
ferences about these statements by means of accompanying standards such as
RDFS and OWL2. While complete OWL2 reasoning is hard – and in many cases
even inappropriate for Web data [1] – (incomplete) rule-based inference is be-
coming quite popular and supported by many RDF Stores and query engines:
frameworks like GiaBATA [2], Jena, Sesame, OWLIM,1 etc. allow for custom in-
ference on top of RDF Stores, supporting different rule-based fragments of RDFS
and OWL. Several such fragments have been defined in the literature, such as
ρDF [3], DLP [4], OWL− [5], ter Horst’s pD* [6], or SAOR [7], and – more
recently – the W3C standardised OWL2RL, a fragment of OWL implementable
purely in terms of rule-based inference [8]. All these fragments have in common
that they are implementable by simple Datalog-like rules over RDF. As an exam-
ple, let us take (1) the sub-property rule from RDFS [9, Section 7.3, rule rdfs7],
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rules (2)–(5) from OWL2RL [9, Section 4.3, rules prp-inv1,prp-symp,prp-spo2]
representing inverse properties, symmetric properties, and property chains:2

(1) { S P O . P subPropertyOf Q . uri(Q) } ⇒ { S Q O }
(2) { S P O . P inverseOf Q . uri(O) ∧ uri(Q) } ⇒ { O Q S }
(3) { S P O . P inverseOf Q . blank(O) ∧ uri(Q) } ⇒ { O Q S }
(4) { S P O . P type SymmetricProperty . uri(O) } ⇒ { O P S }
(5) { S P O . P type SymmetricProperty . blank(O) }⇒ { O P S }
(6) { S P0 O1. ... On Pn O. P propertyChainAxiom (P0 ...Pn) } ⇒ { S P O }
Let GD be an RDF graph talking about authors and their publications:

(7) GD = { <http://semanticweb.org/wiki/Pat Hayes> made
<http://www.w3.org/TR/rdf-mt/>.

(8) <http://semanticweb.org/wiki/Pat Hayes> name "Patrick J. Hayes".

(9) <http://www.w3.org/TR/rdf-mt/> creator "Patrick J. Hayes".}
Moreover, let graph GO be part of the ontology defining the terms used in GD:

(10) GO = { name subPropertyOf label.
(11) inverseOf type SymmetricProperty.
(12) made inverseOf maker.
(13) maker inverseOf made.
(14) creator propertyChainAxiom (maker label). }

When storing the graph G = GD∪GO in an RDF Store that supports inference
over rules (1)–(6), different questions of redundancy arise like if some statements
may be deleted since they can be inferred by the rules. In our example, e.g.
statement (9) as well as statement (13) may be deleted, since they could be
reproduced by inference. Similarly, suppose that we transfer the graph G = GD∪
GO to a “weaker” RDF Store that only supports rules (1)–(3). Then the question
is if we thus loose any inferences. In fact, the answer is no. Interestingly enough,
standard rule sets, such as OWL2RL are even known to be non-minimal [8,
Section 4.3].

We thus want to be able to answer the general question about redundancy of
both triples and rules. However, it is often important to limit the minimisation of
RDF graphs in such a way that certain consistency conditions must be preserved.
These consistency conditions can be expressed by means of constraints [10]. We
shall restrict ourselves here to constraints in the form of so-called tuple-generating
dependency (tgd) constraints, which are a generalisation of the familiar foreign-
key dependencies in the relational database world. Roughly speaking, a tgd may
be viewed as a generalised rule “read” as constraint. So, for instance, if we
read rules (4)-(5) as constraints, we could say that graph G alone without rules
satisfies these constraints, and likewise the closure of G with respect to rules (1)-
(3) does. Tgd constraints can be more general than (Horn) rules in that they also
2 We disregard full URIs for common RDF terms, i.e., we just write e.g. inverseOf ,

for <http://www.w3.org/2002/07/owl#inverseOf>, name for
<http://xmlns.com/foaf/0.1/name>, or creator for
<http://purl.org/dc/elements/1.1/>, etc. Further, (P1 . . . Pn) in RDF is short for
a fresh variable X plus additional triples X first P1 . X1 rest X2. ...Xn first
Pn . Xn rest nil . using reserved terms first , rest , nil .

http://www.w3.org/2002/07/owl#inverseOf
http://xmlns.com/foaf/0.1/name
http://purl.org/dc/elements/1.1/
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allow otherwise unbound, existential variables in the head, possibly occurring in
a larger conjunct. That is, tgds are – rather than rules – constraining queries (in
the head) “triggered” by bindings coming from a query in the body; for instance,
a constraint

(15) { A made D } ⇒ { A label N . D creator N}

would hold only on graphs where everybody who made something also has a
declared label and that label is also used to denote the creator. Note that con-
straint (15) holds on the closure of G with respect to rule (1) but – as opposed
to the constraint reading of (4)-(5) – not on G alone.

Next, we are interested in redundancy with respect to queries. This might
be particularly relevant for RDF stores that expose a narrow SPARQL query
interface. For instance, suppose that, in our example, we are interested only in
completeness with respect to the query “SELECT ?D ?L { ?D maker ?M . ?M label

?L }” which is the SPARQL way of writing a conjunctive query:

(16) { D maker M . M label L } → ans(D ,L)

In such setting, both rules (3)–(6) as well as triples (9), (11), (13), and (14) can
be dropped. Such redundancy elimination is not unique; for instance, keeping
triples (11), (13), and rule (4) we could drop (12), still preserving completeness.

The primary goal of our work is a systematic complexity analysis of both
graph and rule minimisation under constraints, as well as with respect to queries.
To this end, we investigate the influence of several problem parameters (like
restrictions on the size of the rules, constraints, and queries) on the complexity
of detecting redundancy. A first important step in this investigation has been
recently made by Meier [11]. He studied the following problem: Given a graph
G, a set R of rules and a set C of tgds, can G be reduced to a proper subgraph
G′ ⊂ G, such that G′ still satisfies C and the closure of G′ under R coincides with
the closure of G under R? For the special case that both the rules in R and the
constraints in C have bounded size (referred to as b-boundedness), this problem
was shown to be NP-complete in [11]. In this paper, we want to extend the work
initiated in [11] and provide a much more fine-grained analysis of the complexity,
e.g., by weakening or strengthening restrictions such as b-boundedness and by
considering redundancy elimination that only preserves RDF entailment (rather
than keeping the closure of the original graph under the original rules unchanged)
and additionally considering redundancy with respect to queries.

We shall come up with a collection of complexity results, ranging from tractabil-
ity to ΣP

3 -completeness. Additionally, we address the orthogonal problems of rule
minimisation and the problem of reducing rules or triples without preserving com-
pleteness of the entire closure, but only ensuring that the answers to certain queries
are preserved.

We shall also discuss further variations of the graph and rule minimisation
problem. For instance, the rules and tgds in [11] do not allow variables in predi-
cate positions, which is a severe restriction in the sense that many of the common
RDF inferences rules are not covered (e.g., all except rules (4) and (5) above).
We will not make this restriction, since it can be dropped without significant
change of the complexity results.
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Organisation of the paper and summary of results. In Section 2, we recall
some basic notions and results. A conclusion and an outlook to future work are
given in Section 7. Sections 3–6 contain the main results of the paper, namely:
• Graph Minimisation. In Section 3, we provide a comprehensive complexity
analysis of the RDF graph minimisation problem, both when full reconstruction
of the graph or only RDF entailment is required. We study various settings which
result from different restrictions on the rules and/or tgds like restricting their
size, considering them as fixed, omitting them, or imposing no restrictions at all.
Our complexity results range from tractability to ΣP

3 -completeness.
• Rule Minimisation. In Section 4, we consider the problem of minimising the
set of rules. We show that the problem of finding redundant rules with respect to
a given RDF graph is NP-complete for b-bounded rules and not harder than ΔP

2

for arbitrary rules. Note that rule minimisation is closely related to the field of
Datalog equivalence and optimisation. We therefore discuss how the large body
of results in this area can be fruitfully applied to the problems studied here.
• Graph Minimisation w.r.t. Queries. In Section 5, we study how guarantee-
ing completeness only w.r.t. a given set of conjunctive queries (CQs) or unions
of conjunctive queries (UCQs) influences the complexity for each of the above
settings. Considering different restrictions on the size of the queries, hardness
never exeeds ΣP

3 , but for some settings raises by two levels in the polynomial
hierarchy compared to Section 3. Finally we extend our findings to the problem
of rule minimisation. We shall also briefly touch on full SPARQL queries beyond
unions of conjunctive queries.
• Problem Variations. In Section 6, we analyse the complexity of further prob-
lems which are either variations of or strongly related to the graph and rule
minimisation problems mentioned above. For instance, rather than asking if an
RDF graph contains redundant tuples, we consider the problem whether an
RDF graph can be reduced below a certain size. We show that this problem
is NP-complete also in those settings where the graph minimisation problem is
tractable. We also discuss the effect of allowing blank nodes in predicate positions
in the Datalog rules.
Due to lack of space, proofs are only sketched. While for most of the hardness
proofs we only describe the idea of the reduction, membership proofs are either
also informal or even omitted. All proofs are worked out in detail in [12].

2 Preliminaries

Let U , B, and L denote pairwise disjoint alphabets for URI references, Blank
nodes (or variables) and Literals, respectively. We denote unions of these sets
simply by concatenating their names.3 An RDF statement (or triple) is a state-
ment of the form (s, p, o) ∈ UB ×U ×UBL, and an RDF graph is a set of triples.
In this paper, we do not distinguish between variables and blank nodes, but just
note that blank nodes/variables appearing in the data are understood to be ex-
istentially quantified within the scope of the whole RDF graph they appear in.
3 In this paper, we use a slightly simplified notion of RDF compared to [9], e.g. not

considering typed literals separately.
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We write elements from B (U) as alphanumeric strings starting with an upper
case letter (lower case letter or number), elements from L as quoted strings, and
– inspired by the common Turtle [13] syntax – RDF statements as white-space
separated triples and RDF graphs as ’.’ separated lists of triples in curly braces.

It is convenient to define the notion of entailment between two RDF graphs
via the interpolation lemma from [9, Section 2] rather than in a model-theoretic
way: an RDF graph G1 entails G2, written G1 |= G2 if a subgraph of G1 is an
instance of G2, that is, if there exists a graph homomorphism, i.e., a blank node
mapping μ : B → UBL such that μ(G2) ⊆ G1, where μ(G) denotes the graph
obtained by replacing every variable B ∈ B with μ(B). A homomorphism h′ is an
extension of a homomorphism h if h′(B) = h(B) for all B on which h is defined.
Given G1, G2, deciding whether there exists a homomorphism G2 → G1 (thus
also G1 |= G2) is well known to be NP-complete.

We define a basic graph pattern (BGP) as a set of generalised triples (s′, p′, o′)
∈ UBL × UBL × UBL, a filter condition as a conjunct of the unary predicates
uri(·), blank(·), literal(·) (denoting the unary relations U , B, and L, respec-
tively). A filtered basic graph pattern (FBGP) is a BGP conjoined with a filter
condition, the latter containing only variables already appearing in the BGP.
Given an FBGP P , we write BGP (P ) and F (P ) to denote its components, i.e.
its BGP and its filter condition, respectively.

We define an RDF tuple-generating dependency (tgd) constraint (or simply
constraint) r as Ante ⇒ Con, where the antecedent Ante is an FBGP and the
consequent Con is a BGP. A constraint Ante ⇒ Con is a short-hand notation
for the first-order formula ∀x

(Ante(x) → (∃y)Con(x, y)
)

(where y denotes the
blank nodes occurring in Con only, while x are the remaining blank nodes)
Hence, a constraint Ante ⇒ Con is satisfied over an RDF graph G if for each
homomorphism on x mapping BGP(Ante) to G, there exists an extension h′ of
h to y s.t. h′(Con) ⊆ G. To increase the readability, we will sometimes explicitly
write out the quantifiers and variable vectors. RDF rules (or simply rules), are
syntactically restricted constraints, where all variables appearing in Con also
appear in Ante (akin to the common notion of safety [14] in Datalog). In the
following, we will call RDF rules with an empty filter condition Datalog rules.4
We define the closure of a graph G with respect to a set R of rules, written
ClR(G) as usual by the least fix-point of the immediate consequence operator.
For a given graph G or a given set R of rules, we use XG,XR (X ∈ {U, B, L})
to denote the subset of U (resp. B, L) used in G, or R, respectively.

A conjunctive query (CQ) over an RDF graph G is of the form Gq → ans(X),
where Gq is an FBGP, ans is a distinguished predicate, and X is a vector of
blank nodes. We refer to Gq as the body of q (body(q)), and to ans(X) as the head
of q (head(q)). A union of conjunctive queries (UCQs) is a set of CQs, all having
the same head. The result of a CQ q over some RDF graph G is defined as the set
q(G) = {(x) | for all xi ∈ x : xi ∈ UGBGLGUqLq, there exists a homomorphism
τ : Bq → UGBGLG s.t. τ(body(q)) ⊆ G and x = τ(X)}. The result of a UCQ
is the union of the results of its CQs.

4 In fact, we will for most parts of the paper only consider Datalog rules, but will
revisit the extension to arbitrary RDF rules in the end of Section 6, concluding that
this extension does not change any of our results.
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We say that a rule or constraint is b-bounded if both antecedent and conse-
quent contain at most b triples. We say a conjunctive query q is body-b-bounded
if body(q) is b-bounded, and we denote q as head-b-bounded if |X| ≤ b for some
constant b (however, body(q) may be arbitrary). A set Q of (U)CQs is body-b-
bounded (resp. head-b-bounded) if every q ∈ Q is body-b-bounded (resp. head
b-bounded). Finally, we write [n] to denote the set {1, . . . , n}.

3 RDF Graph Minimisation

In this section, we study the complexity of RDF graph minimisation. For different
restrictions on the input parameters, the complexity varies between tractability
and ΣP

3 -completeness. Formally, we consider the following two basic problems:

Definition 1. Let MINI-RDF|=(G,R, C) be the following decision problem:
INPUT: RDF graph G, set R of RDF rules, set C of tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G′) |= ClR(G) and G′ satisfies C?

Definition 2. Let MINI-RDF⊆(G,R, C) be the following decision problem [11]:
INPUT: RDF graph G, set R of RDF rules, set C of tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G) = ClR(G′) and G′ satisfies C?

The MINI-RDF⊆ problem and the minimisation of RDF graphs via entailment
aim at two kinds of redundancy elimination: In MINI-RDF⊆, triples which can
be restored via the rules are considered as redundant while minimisation via
entailment allows us to replace a graph G by Ḡ ⊂ G if Ḡ |= G holds, i.e. checks
if G is lean (see [15]). The MINI-RDF|=(G,R, C) problem combines these two
approaches and thus yields the strongest redundancy criterion. Nevertheless, in
most cases, its complexity is not higher than for MINI-RDF⊆ (see Theorem 1).

Table 1. The complexity of MINI-RDF|= and MINI-RDF⊆ w.r.t. input parameters
(“bb” indicates the set to be b-bounded, and “arb.” allows for arbitrary sets.)

MINI-RDF|= MINI-RDF⊆

(1) R arb., C arb. ΣP
3 -complete ΣP

3 -complete

(2) R arb., C bb NP-complete NP-complete

(3) R arb., C fixed NP-complete NP-complete

(4) R arb., C = ∅ NP-complete NP-complete

(5) R bb., C arb. ΣP
3 -complete ΣP

3 -complete

(6) R bb, C bb NP-complete NP-complete [11]

(7) R bb, C fixed NP-complete NP-complete

(8) R bb, C = ∅ NP-complete in P

(9) R fixed, C arb. ΣP
3 -complete ΣP

3 -complete

(10) R fixed, C bb NP-complete NP-complete

(11) R fixed, C fixed NP-complete NP-complete

(12) R fixed, C = ∅ NP-complete in P
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1 5 9 2 3 4 6 7 8 10 11 12

Fig. 1. Dependency graph: Numbers refer to lines in Table 1. An arrow from A to B
means that B is a special case of A.

It is easy to see that the condition ClR(G) = ClR(G′) in Definition 2 is
equivalent to G ⊆ ClR(G′). The following lemma shows that similarly, for MINI-
RDF|=, it is enough to show ClR(G′) |= G rather than ClR(G′) |= ClR(G).

Lemma 1. Let G1, G2 be RDF graphs and R a set of rules. Then the following
equivalence holds: ClR(G2) |= ClR(G1) ⇔ ClR(G2) |= G1.

Theorem 1. For MINI-RDF|= and MINI-RDF⊆, the complexity w.r.t. different
assumptions on the input (arbitrary, b-bounded, or fixed rule set; arbitrary, b-
bounded, fixed, or no constraints) is as depicted in Table 1.

The following lemma justifies that we do not have to give an explicit completeness
proof for each entry in Table 1, and points out a proof plan for Theorem 1.

Lemma 2. The graph in Figure 1 correctly describes the dependencies between
the problems (identified by their line number) in Table 1, i.e.: If there is an arrow
from A to B, then B is a special case of A.

Hence an arrow from A to B means that membership results for A hold also
for B, and that hardness results for B apply also to A. Therefore, to prove
Theorem 1, it suffices to show the membership for (1),(2),(8) and the hardness
for (4),(9),(11),(12). Due to lack of space, we only work out the hardness results
for (9) and (11) (the latter only for MINI-RDF⊆). Before, we shortly discuss the
membership results and give an intuition of why they are correct. All proofs are
worked out in detail in the full paper [12].

The most general case, (1), can be solved by a guess and check algorithm
that is allowed to use a ΠP

2 oracle for the checks. One has to guess: a subgraph
G′ of G, a sequence of rule applications on G′, and for each rule application
a homomorphism justifying that the rule is applicable. Note that ClR(G′) ⊆
AD3 (with AD = UGURBGBRLGLR). Hence if considering all possible rule
applications of length |AD|3, one of them has to return ClR(G′). The most
expensive check is to test if G′ satisfies C. However, it obviously fits into ΠP

2 .
The following properties lead to the cases of lower complexity: If R is a b-

bounded set, then ClR(G′) can be computed in polynomial time [11, Proposi-
tion 9] and if C is a b-bounded set, then testing if G′ satisfies C is in PTIME [11,
Proposition 3]. For the tractable cases, note that if C = ∅, then not all subgraphs
of G have to be checked, but only those missing exactly one triple from G.

Lemma 3. The problems MINI-RDF|=(G,R, C) and MINI-RDF⊆(G,R, C),
for fixed R and arbitrary C, are ΣP

3 -hard.
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Proof. ΣP
3 -hardness is shown by reduction from the well-known ΣP

3 -complete
problem QSAT3, of which we only give an informal description here. Let an
instance of QSAT3 be given by F = ∃x1∀y1∃x2

∧n
i=1 Ci, with Ci = (li,1 ∨

li,2 ∨ li,3) (clearly, the restriction to 3-CNF is w.l.o.g.). The graph G created
contains on the one hand triples encoding truth assignments on clauses (e.g.
{0 h1 a001 . 0 h2 a001 . 1 h3 a001} for the assignment (false , false, true)), and on
the other hand triples encoding the two possible truth assignments for variables
(e.g. {vi q1 a01 . vi q1 a10} for xi ∈ x1 where vi is a new URI for each xi and the
URI a01 (resp. a10) denotes that xi evaluates to false, hence ¬xi evaluates to
true (resp. xi to true and ¬xi to false), together with further triples that allow
us to actually refer to the truth value of xi (resp. ¬xi)) under a selected truth
assignment. The rules and constraints are chosen in such a way that (1) the
triples encoding the truth assignment (false , false, false) for clauses must not be
present in any valid subgraph G′ ⊂ G, (2) for every xi ∈ x1 exactly one of the two
triples encoding a truth assignment must be present in G′ and (3) for all other
variables, both triples have to remain in G′. The restrictions imposed by

∧n
i=1 Ci

are encoded in one big tgd, where every homomorphism from its antecedent to
G′ defines a truth assignment for x1 and y1. Thereby for every valid G′ all such
homomorphisms define the same truth assignment on x1, hence the values for
x1 are determined by the selection of G′. But every homomorphism defines a
different truth assignment on y1, and there exists exactly one homomorphism
for each of the 2|y1| truth assignments on y1. The consequent of the tgd contains
a representation of the literals in each clause Ci and has the following property:
for every homomorphism h from the antecedent to G′, there exists an extension
of h to a homomorphism h′ from the consequent to G′ iff this extension defines
a truth assignment on x2 such that the assignment on x1, y1 and x2 maps the
representations of the clauses onto the possible truth assignments for clauses
present in G′. As all triples encoding these truth assignments must be in G′,
except the ones for (false , false, false) which must not, such an extension for
every homomorphism from the antecedent to G′ implies that F is valid. ��
Lemma 4. The problems MINI-RDF⊆(G,R, C) and MINI-RDF|=(G,R, C),
where both R and C are considered to be fixed, are NP-hard.

Proof. As NP-hardness of MINI-RDF|= follows easily from the co-NP-hardness
of testing if G is lean [15], we concentrate on MINI-RDF⊆ and prove its NP-
hardness by reduction from the 3-SAT problem. We fix the rules and tgds as

R =
{ {X ′ in I . X active I} ⇒ {X ′ active I}}

C =
{ {X active I . X in J} ⇒ {X active J}
{X clash X ′ . X active I . X ′ active I ′ . Y in J} ⇒ {Y active J}}.

Now let an instance of 3-SAT be given by the formula F = C1 ∧ · · · ∧Cn, where
Ci = (li,1 ∨ li,2 ∨ li,3) and the li,j are literals. W.l.o.g., we assume that every
variable appears negated and unnegated in F . Then we construct an RDF graph
G = {l∗i,j in ci | i ∈ [n], j ∈ [3]} ∪ {l∗i,j active ci | i ∈ [n], j ∈ [3]} ∪ {xj clash x̄j |
xj in F}, where we introduce new URIs ci (for every clause Ci) and xj , x̄j (for
every variable xj in F ), and l∗i,j = xj (resp. x̄j) if li,j = xj (resp. ¬xj).
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Intuitively, the triples in G with predicate in encode the literals in F . If a triple
with predicate active remains in the selected subgraph G′ then the corresponding
literal in F is set to true. The triples with clash keep track of dual literals. ��

4 Rule Minimisation

In this section, we study the rule minimisation problem of RDF graphs. Al-
though there is a huge amount of literature in the Datalog world addressing
related problems (as query containment), the particular nature of the prob-
lems we study requires a distinguished complexity analysis. Note that rules for
RDF, when written as Datalog rules, have a fixed predicate arity of three, which
makes problems computationally easier than in the general Datalog setting (see,
e.g. [16]). Depending on whether we consider the Datalog rules as b-bounded
or not, we obtain complexity results from NP-completeness to ΔP

2 -membership.
The rule minimisation problem is formally defined as follows. As the RDF graph
remains unchanged, constraints are irrelevant here.

Definition 3. Let RDF-RULEMIN|=(G,R) be the following decision problem:
INPUT: An RDF graph G and a set R of RDF rules.
QUESTION: Does there exist R′ ⊂ R s.t. ClR′(G) |= ClR(G)?

Definition 4. Let RDF-RULEMIN⊆(G,R) be the following decision problem:
INPUT: An RDF graph G and a set R of RDF rules.
QUESTION: Does there exist R′ ⊂ R s.t. ClR′(G) = ClR(G)?

For the case that the set of rules is b-bounded, we can pinpoint the complexity
of the problem to NP.

Theorem 2. For a set R of b-bounded rules (for fixed b), the problem RDF-
RULEMIN|=(G,R) is NP-complete while RDF-RULEMIN⊆(G,R) is in PTIME.

Proof. The hardness is shown by reduction from the 3-Colorability problem.
The RDF graph G is built over the URIs U = {0, 1, 2} in subject and object
positions. G contains triples of the form i e j for all value combinations i, j ∈ U
with i �= j. R contains a single rule which generates an encoding Xα e Xβ (with
blank nodes Xα, Xβ) for each edge (vα, vβ) of the graph to be 3-colored. This
rule is redundant iff a valid 3-coloring exists, i.e., iff the triples Xα e Xβ can be
mapped into {i e j | i �= j}.

For the membership, note that it suffices to compare the closure of G under
R with the closure of G under every subset of R missing exactly one rule. In the
b-bounded case, the closure can be computed efficiently. Hence, we get PTIME-
membership for RDF-RULEMIN⊆ and NP-membership for RDF-RULEMIN|=
(the NP-computation is needed only for the entailment check). ��
Theorem 3. For arbitrary rules, RDF-RULEMIN⊆(G,R) is co-NP-hard and
in ΔP

2 while RDF-RULEMIN|=(G,R) is NP-hard, co-NP-hard, and in ΔP
2 .



142 R. Pichler et al.

Proof. The ΔP
2 upper bound is due to the fact that computing the closure under

a set of arbitrary rules requires an NP-oracle (to check if a rule is applicable).
The NP-hardness of RDF-RULEMIN|=(G,R) carries over from Theorem 2. The
co-NP-hardness of both problems is shown by a straightforward reduction from
the co-problem of 3-Colorability: R contains a single rule whose body encodes
the graph to be 3-colored. This rule is redundant iff no 3-coloring exists. �

In order to reduce the complexity of the problems RDF-RULEMIN⊆(G,R) and
RDF-RULEMIN|=(G,R), one could seek for approximations of those problems.
In fact, one option is to check for redundant rules in the set R of given Datalog
rules; or whether some rule is subsumed by another rule from R. The first
problem is known to be tractable while the test for rule subsumption is NP-
complete (see [17]). The latter result can be shown to hold also for rules of
bounded arity (which we deal with here); but becomes tractable in the case of
b-bounded rules. Further methods (e.g., folding and unfolding of rules) are well
understood for logic programs (see [18]), and could also apply to our domain. An
in-depth analysis how to use those results in our setting is left for future work.

5 Minimisation w.r.t. Queries

Another variant of the RDF graph and rule minimisation problems is to guar-
antee completeness only w.r.t. a given set of queries. We restrict ourselves here
to (unions of) conjunctive queries (CQs resp. UCQs). Such a minimisation is
of high interest, e.g. when importing data into an RDF Store that provides a
narrow query interface only. Formally, we get the following problems:

Definition 5. MINI-RDF⊆,CQ (G,R, C,Q) is the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, a set C of tgds (G satisfies
C), and a set Q of CQs.
QUESTION: Is there a G′ ⊂ G s.t. (1) for every q ∈ Q, the answers to q over
ClR(G) coincide with the answers to q over ClR(G′) and (2) G′ satisfies C?

Definition 6. RDF-RULEMIN⊆,CQ (G,R,Q) is the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, and a set Q of CQs.
QUESTION: Is there a R′ ⊂ R s.t. for every q ∈ Q, the answers to q over
ClR(G) coincide with the answers to q over ClR′(G)?

Note that, in the above problem definitions, Q is some set of CQs. If we choose Q
to be the set of all CQs, then MINI-RDF⊆,CQ coincides with MINI-RDF⊆ and
MINI-RDF⊆,CQ coincides with RDF-RULEMIN⊆. Actually, this is the case for
any set Q containing the CQ {S P O} → ans(S ,P ,O). It follows immediately
that all hardness results from Sections 3 and 4 carry over to the CQ-variants.

Analogously to the settings studied in the previous sections resulting from
different restrictions on C and R, we also study three settings of the CQ-variants
of these problems by considering Q to be body-b-bounded, head-b-bounded, or
unrestricted, respectively. We thus get the following complexity results.

Theorem 4. For MINI-RDF⊆,CQ , the complexity w.r.t. different assumptions
on the input (arbitrary, b-bounded or fixed rule set; arbitrary, b-bounded, fixed, or
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Table 2. The complexity of MINI-RDF⊆,CQ (1-12) and RDF-RULEMIN⊆,CQ (I. - II.)
w.r.t. input parameters (“bb” stands for “b-bounded”, and “arb.” for “arbitrary”)

Q body-bb (a) Q head-bb (b) Q arb. (c)

(1) R arb., C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete

(2) R arb., C bb NP/ ΔP
2 NP/ ΔP

2 ΣP
3 -complete

(3) R arb., C fixed NP/ ΔP
2 NP/ ΔP

2 ΣP
3 -complete

(4) R arb., C = ∅ NP/ ΔP
2 NP/ ΔP

2 ΠP
2 -complete

(5) R bb., C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete

(6) R bb, C bb NP-complete NP/ ΔP
2 ΣP

3 -complete

(7) R bb, C fixed NP-complete NP/ ΔP
2 ΣP

3 -complete

(8) R bb, C = ∅ in P NP/ ΔP
2 ΠP

2 -complete

(9) R fixed, C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete

(10) R fixed, C bb NP-complete NP/ ΔP
2 ΣP

3 -complete

(11) R fixed, C fixed NP-complete NP/ ΔP
2 ΣP

3 -complete

(12) R fixed, C = ∅ in P NP/ ΔP
2 ΠP

2 -complete

(I.) R arb. co-NP/ ΔP
2 co-NP+ NP/ ΔP

2 ΠP
2 -complete

(II.) R bb. in P NP/ ΔP
2 ΠP

2 -complete

no constraints; body-b-bounded, head b-bounded, or arbitrary CQs) is as depicted
in Table 2, rows (1) – (12). Likewise, the complexity of RDF-RULEMIN⊆,CQ is
depicted in Table 2, rows (I) – (II).

Thereby (co-)NP / ΔP
2 denotes the lower bound / upper bound for the com-

plexity. We write co-NP+ NP/ ΔP
2 if both, co-NP- and NP- hardness hold. All

lower bounds hold even if Q consists of a single CQ. Likewise, all upper bounds
hold even if Q is a set of UCQs.

Obviously, body-b-bounded (U)CQs are a special case of head-b-bounded (U)CQs,
which in turn are a special case of arbitrary (U)CQs. By combining this observa-
tion with Lemma 2, to prove Theorem 4, it suffices to show membership for the
entries (6a), (8a), (2b), (1c), (4c) as well as (Ia), (IIb), and (IIc) in Table 2, and
hardness for (11a), (12b), (11c), (12c) as well as (IIa), (Ib), and (Ic). Due to space
restrictions, we only give a rough sketch of the intuition of these results. All proofs
are worked out in detail in the full version [12].

Membership of the most general case (1c) is shown by considering the following
algorithm: guess a subset G′ ⊂ G and check with ΠP

2 -oracles if G′ satisfies C
and if q(Ĝ) = q(Ĝ′), where Ĝ = ClR(G), resp. Ĝ′ = ClR(G′). Moreover, the
closures Ĝ and Ĝ′ can be computed in ΔP

2 , since they are subsets of AD3.
The other columns contain potentially easier settings because of the restric-

tions on the queries, while the other rows are potentially easier because of restric-
tions on R and C. In particular, if no constraints are present, it suffices to check
the “direct” subsets G′ = G \ {t} for each t ∈ G. Thus the non-deterministic
guess of G′ ⊂ G is no longer needed. By the same token, rule minimisation is not
harder than ΠP

2 , since we only need to check the direct subsets R′ = R \ {r}.
If the queries are head-b-bounded, then there are at most polynomially many
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candidates for answer-tuples. Hence, to answer a query q over two different RDF
graphs is feasible in ΔP

2 (rather than ΠP
2 ). For body-b-bounded queries, the

answers to a query q over an RDF graph can even be computed in PTIME.
Turning to the lower bounds, the NP-hardness for (11a) follows immediately

from the above remark that the hardness results of MINI-RDF⊆ carry over.
(12b) differs from the previous setting by allowing more expressive queries, but
no constraints (which, for MINI-RDF⊆, leads to tractability). However, the NP-
hardness of this case follows immediately from the co-NP-hardness of checking
if an RDF graph is lean [15] and defining Q = {G → ans()}. The hardness for
(11c) is shown by reduction from QSAT3. Its main idea is, given a formula F =
∃x1∀y1∃x2φ, to define a CQ q and a graph G such that every homomorphism
τ : body(q) → G defines a truth assignment on the variables in F . (The proof
allows even R = ∅.) Thereby q outputs the values of this truth assignment on
y1. G is further chosen in such a way that q(G) contains an encoding of all
possible truth assignments on y1. The constraints in C are such that over every
proper subgraph G′ ⊂ G that satisfies C, every homomorphism from body(q) to
G′ now encodes truth assignments that actually satisfy φ. At the same time,
the assignment on x1 is already defined by the choice of G′. Hence, if q(G′) also
contains encodings for all possible truth assignments on y1, this means that F
is indeed satisfied. For C = ∅, we only get ΠP

2 -hardness since we can no longer
express that valid choices for G′ encode a truth assignment on x1.

For the rule minimisation, the ΠP
2 -hardness is shown similarly to the ΠP

2 -
hardness in case (12c). In case of (head-/body-)b-bounded queries, the answers
to the queries can no longer produce all possible truth assignments on y1. Hence,
we can only prove NP- and co-NP-hardness, respectively, in cases (Ia) and (IIa).

5.1 Beyond Conjunctive Queries – SPARQL

RDF minimisation w.r.t. (unions of) conjunctive queries could be extended to
more expressive query languages. Actually, it can be checked that all upper
bounds proved in this Section are still valid if the CQs are allowed to contain
negation in the body. In particular, the complexity of the problems considered
here does not go beyond ΣP

3 for this kind of extension, cf. [12]. In contrast, if we
allow arbitrary non-recursive datalog queries with negation (a query language
which – as well known – covers all of SPARQL [19]), then the complexity of
the problems considered here will be dominated by the complexity of query
evaluation, which is PSPACE-complete in this case, see [20]. We leave a more
fine-grained analysis of different fragments of SPARQL to future work.

6 Problem Variations

In this section, we discuss some further problems which are variations of or
strongly related to the problems studied in the previous sections. We start by
a variation of the graph minimisation problem. But now we ask if G can be
replaced by a subgraph G′ whose size is bounded by some given bound k (rather
than an arbitrary subgraph G′ ⊂ G). Formally, we study the following problem.
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Definition 7. Let MINI-RDFcard(G,R, C, k) be the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, a set C of tgds and integer k.
QUESTION: Does there exist a subgraph G′ ⊂ G with |G′| ≤ k, s.t. G′ satisfies
C and G ⊆ ClR(G′)?

It can be easily verified that for all cases in Table 1 that are at least NP-hard,
the complexity for MINI-RDFcard does not change. Intuitively, this is because
the nondeterministic algorithms for solving these problems all start with “guess
a subgraph G′ ⊂ G”, which can be easily changed to “guess a subgraph with at
most k triples”. Therefore, the only two interesting cases are MINI-RDF⊆ with a
b-bounded or fixed set R and no constraints, as they can be decided in PTIME.
We show that for MINI-RDFcard, the complexity goes up to NP-completeness.

Theorem 5. The problem MINI-RDFcard(G,R, C, k) is NP-complete if C = ∅
and R is either considered as fixed or a set of b-bounded rules (for fixed b).

Proof. The hardness proof is by reduction from the Vertex Cover problem. We
give the basic ideas of this reduction. Given some graph G = (V, E), the RDF
graph Grdf contains one distinct triple for every v ∈ V . The intuition is that
the subset of those triples contained in a valid subgraph G′ ⊂ Grdf describes
a vertex cover. We further have three rules, one that (given G′ ⊂ G) adds all
edges covered by the remaining vertices in G′, one that (by repeated application)
checks whether all edges are covered, and finally one rule that, if indeed all
edges are covered, allows to restore the vertices from Grdf \ G′. To allow to
express according rules, Grdf contains triples encoding further information (like
e.g. neighbourhood of vertices and edges). But as they cannot be derived by any
rule, they must remain unchanged in any valid G′ ⊂ Grdf . Further, their number
(say K) only depends on G, such that there exists a vertex cover of size k iff
there exists a valid G′ ⊂ Grdf of size K + k. ��
Next we want to identify the sources of the complexity of MINI-RDF|= and MINI-
RDF⊆ for the cases where C is allowed to contain arbitrary tgds. We show that
the complexity is independent of the rules, but arises mainly from the question
whether there exists some non-empty subgraph that satisfies all constraints.

Theorem 6. Let G be a RDF graph and C a set of tgds. Deciding whether there
exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is ΣP

3 -complete.

Proof. Membership follows from Theorem 1. Hardness is shown by a modification
of the reduction given in the proof of Lemma 3. We give the intuition of these
modifications. In the aforementioned proof, the intuitive meaning of the rules,
together with the requirement G ⊆ ClR(G′), was that for each vi ∈ x1, either
{vi q1 a01} or {vi q1 a10} has to remain in the subgraph G′. However, this can
be also formulated as a constraint. By introducing an additional triple for every
vi ∈ x1 (e.g. {vi opt vi}) that is enforced to be contained in any non-empty
subgraph, the tgd {V opt V } ⇒ {V q1 A} does the job. �

From the (full) proof of Lemma 4, it follows that for MINI-RDF|=, one source of
the NP-hardness is just to decide the entailment. However, similarly to the last
theorem, we can show that for b-bounded tgds, just testing for the existence of
a valid subgraph already contains the full hardness too.
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Theorem 7. Let G be an RDF graph and C a set of b-bounded tgds. Deciding
whether there exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is NP-complete.

Proof. Membership follows from Theorem 1. Hardness is shown by reduction
from the SAT problem. The reduction is very similar to the one of Lemma 4,
only that all the implicit information about which triples must not be removed
from G (expressed by not providing rules to derive them) now have to be made
explicit as tgds. This however no longer allows for a fixed set of tgds, but makes
the number of tgds dependent on F . ��
Recall that tgds generalise (safe) datalog rules by allowing existential quantifica-
tion and conjunctions in the head. In other words, datalog rules are an important
special case of tgds – referred to as full tgds in the information integration lit-
erature. Below, we show that restricting the constraints to full tgds pushes the
ΣP

3 -completeness results from Theorems 1 and 6 down to ΣP
2 .

Theorem 8. The problems MINI-RDF|=(G,R, C) and MINI-RDF⊆(G,R, C) are
ΣP

2 -complete if C is a set of full tgds. ΣP
2 -completeness even holds for fixed R.

Likewise, let G be an RDF graph and C a set of full tgds. Deciding whether there
exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is ΣP

2 -complete.

Proof. The ΣP
2 -membership is established by the same algorithm as the ΣP

3 -
membership in case of unrestricted tgds according to Theorem 1. However, by
the restriction to full tgds, we now only need a co-NP-oracle (rather than ΠP

2 )
for checking that the tgds are satisfied. The ΣP

2 -hardness is shown via reduction
from QSAT2 by using similar ideas as in the ΣP

3 -hardness proof in Lemma 3. ��
So far, we have not commented on the impact of allowing general RDF rules as
defined in Section 2, i.e., rules containing additional predicates uri(.), blank (.),
lit(.) in the bodies. In the full version of this paper [12], we give a very simple
argument that a polynomial time preprocessing suffices to support these predi-
cates naturally in RDF. The same argument allows us to overcome the problem
that the closure w.r.t. a rule set R may contain invalid RDF triples (e.g. due to a
blank node in a predicate position). This result holds independently of whether
intermediate results are allowed to contain invalid triples or not.

7 Conclusion

We proved a collection of complexity results for minimisation problems over
RDF graphs where we considered various restrictions on the rules and tgds.
One such restriction was b-boundedness [11]. We note that this restriction can
be relaxed by bounding not necessarily the size of the rules (or tgds) but only
the maximal number of blank nodes occurring in the rules (or tgds) — in the
Datalog world, Vardi [21] showed that such a restriction decreases complexity.
We further discussed how the complexity of the problem increases if one requires
completeness only with respect to a given set of conjunctive queries (CQs).
Notably, if the CQs are restricted to have bounded head arity, while providing
additional minimisation potential, the problem becomes only mildly harder.
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The minimisation problems considered here are driven by practical needs to
represent RDF data compactly or tailor them to engines supporting different
rule sets. Our results also provide a basis for eliminating redundancies in existing
practically relevant rule sets, such as OWL2RL [8]. We believe that our results
will gain even more relevance with the advent of novel standards such as the
W3C rule interchange format (RIF) which will allow one to enrich RDFS and
OWL with Web-publishable custom rule sets [22].

As future work, our investigations should be further extended in several
directions such as a more fine-grained analysis of SPARQL fragments when
redundancy w.r.t. queries is considered, for instance well-designed SPARQL
queries [20]. Moreover, we plan to cast the obtained results into practical al-
gorithms to “compress” RDF graphs and rule sets, investigate related relevant
problems such as “trading” triples for rules, or vice versa, and experimentally
evaluating effects of such transformations on query answering with dynamic in-
ference such as sketched in [2].

Finally, the high complexities identified in this paper call for a systematic
search for fragments with lower complexity. One step in this direction has already
been the restriction to b-boundedness studied in this paper. It is motivated by the
assumption that rules, constraints, and queries are usually significantly smaller
than the size of the RDF data. Further restrictions (like restrictions on graph
parameters like treewidth) and their effect on the complexity of our minimisation
problems are left for future work.
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3. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for RDF. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67.
Springer, Heidelberg (2007)

4. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. In: Proc. WWW’03, pp. 48–57
(2003)

5. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL−. WSML D20.1v0.2 (2005)
6. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF

Schema and a semantic extension involving the OWL vocabulary. J. Web Sem.
3(2-3), 79–115 (2005)

7. Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the
web. International Journal on Semantic Web and Information Systems 5(2) (2009)

8. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
ontology language profiles. W3C Recommendation (October 2009)

9. Hayes, P.: RDF semantics. Technical report, W3C. W3C Recommendation (Febru-
ary 2004)

10. Lausen, G., Meier, M., Schmidt, M.: SPARQLing constraints for RDF. In: Proc.
EDBT’08. ACM Press, New York (2008)



148 R. Pichler et al.

11. Meier, M.: Towards Rule-Based Minimization of RDF Graphs under Constraints.
In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 89–103.
Springer, Heidelberg (2008)

12. Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Minimizing RDF graphs under
rules and constraints revisited. Technical report, DERI (April 2010),
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-04-23.pdf

13. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language, W3C Team
Submission (January 2008),
http://www.w3.org/TeamSubmission/turtle/

14. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer
Science Press, New York (1989)

15. Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of semantic web databases.
In: Proc. PODS’04, pp. 95–106. ACM, New York (2004)

16. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2-4), 123–165 (2007)

17. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-
ground answer-set programming. In: Proc. KR’06, pp. 340–351. AAAI Press, Menlo
Park (2006)

18. Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 5, pp. 697–787. Oxford University Press, Oxford (1998)

19. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)
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