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Abstract - An approach to consider computers and connected 
computer systems using structural, time and information 
redundancies is proposed. An application of redundancy for 
reconfigurability and recoverability of computer and 
connected computer systems is discussed, gaining 
performance, reliability and power-saving in operation. A 
paradigm of recoverability is introduced and, if followed, 
shifts connected computer systems toward real-time 
applications. Use of redundancy for connected computers is 
analysed in terms of recoverability, where two supportive 
algorithms of forward and backward tracing are proposed 
and explained. As an example, growth of mission reliability is 
formulated. 
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performance-reliability-energy-wise systems 

 

1 Why Recoverability: Instead of 
Introduction 

  The human world evolves and progresses by applying 
knowledge derived from observations of and familiarity with 
repeatable aspects of nature. Our perceptions, understanding, 
and ability to model reality enables us to develop the policies, 
processes, and products required, in order to attempt to 
control the behaviour of natural phenomena, or human-made 
objects. 

 Nature tends to achieve stable and reliable progress 
(sustainable growth) and avoid regression and degradation. 
Sustainable growth can be considered as a fundamental 
descriptor of living matter, while regression and degradation 
are descriptors of dead matter. A clear differentiation between 
live and dead is required, but, so far, there has been no 
substantial research, or projects, on it. 

 The authors of this paper believe that the fundamental 
distinction and difference between living processes and dead 
matter is recoverability. 

 Essentially, recoverability in the system is based on the 
ability to use available redundancy to recover from 
environmental, or internal impacts and shocks. Two things 
are worth mentioning here: first—redundancy is necessary for 
recoverability, and second—redundancy must be deliberately 

introduced into systems, policies, and processes to make them 
resilient and efficient. 

 The recoverability approach and its analysis, 
application, and conceptual development in the domain of 
computers is one of the aims of this paper. The second aim is 
the analysis of the phases required for the implementation of 
recoverability for stand-alone and connected computers. 

 Usually, connected computer systems display 
fluctuations due to changes in the underlying systems. 
Reasons for this may include, for instance, workload, 
software completeness, consistency, and size of applications, 
or changes and shocks emanating from their environment. So 
far, networks sporadically and inconsistently exploit 
recoverability phenomena to tolerate these various 
fluctuations. 

 Connected computer (further CC) systems can be 
considered in terms of time, i.e., as a process of operation. 
Recoverability can then be applied to keep this process within 
a restricted set of properties, “smoothing” the process. We 
can apply and investigate various recovery algorithms 
implicit in such systems and tune the underlying parameters, 
reducing the extent of fluctuations and hence, reducing the 
cost they impose in structure, information, or performance. 

 Natural recoverability phenomena exist in almost any 
natural system, but we do not understand them. Hence, we 
cannot specify how the algorithm works and therefore, use it 
properly. This is exactly the purpose of the methodology 
proposed in this paper. In a practical sense, an understanding 
of recoverability enables us to advocate for the re-design of 
the whole world of CC systems, making them resilient to 
internal and external fluctuations. 

1.1 Why Reconfigurability: An Example 
 Let us consider a case: an element is deformed by 
environmental impact. Destructive deformation of the 
element could cause the loss of its properties. 

 Let’s assume an element has internal structural 
resources (redundancy). Redundancy of the element structure 
might enable the element to return to its previous state, or 
condition, after impact. The external impact does not change 
the element, if redundancy is applied and sufficient. A second 



impact might occur and be tolerated in exactly the same way. 
Let us now consider a situation where the element has 
properties of being alive, such as amoeba. 

 If an amoeba has sufficient resources available to it to 
use and to protect itself from the destructive energy of the 
environment or an impact, it will recover and continue to 
live—the amoeba exhibits redundancy in order to survive. 

 If the external event is repeated, the amoeba can self-
tune and be able to react to the impact faster, tolerate the 
event for longer, and as a consequence, suffer less long-term 
damage. The external event itself might be periodic heat from 
the sun, cold water, fire or gas, electric discharge, etc. 

 Having sufficient internal redundancy to tolerate 
repeated external impacts caused by various events makes 
recovery possible. Live matter differs from man-made 
systems in terms of the time required for recovery and the use 
of available redundancy. The speed of recovery increases 
when the impact is the same. Here, “recovery training” takes 
place and either the level of redundancy, or speed of recovery, 
or both increase. A sequence of impacts and element recovery 
is presented in Figure 1. 

Figure 1. Periodic impacts, element’s time to recover 

 

 

 

 

 The circles show the state of an element over time, 
where green indicates an element in a good, or acceptable 
steady state and red indicates an element under recovery. 
Figure 1 indicates an element that adapts to the periodic 
external stimulus, can decrease the time for its recovery. 

 Where the element may be considered alive, such as in 
the case of the amoeba, using redundancy for recovery can 
reduce the time it takes to react to the same event, provided 
the event is periodic. Thus, life might be defined as the 
following: 

An element is called alive, if in repeatable conditions, it is 
able to recover progressively, using internal redundancy 
actively. 

 The adaptability of the live element has its limits. Figure 
2 shows, for example, an element approaching the limit of its 
adaptability and the role of its ability to recover. Whilst 
wildlife evolution may be seen as similar to the lower curve, 

the evolution of “smart” species should be smoother and 
faster to reach the same, or higher, limit of adaptability—the 
shortened curve in the diagram. 

 Thus, our design of information processing systems, 
computers, especially complex systems such as connected 
computers, can be measured in terms of efficiency of 
recovery/resilience in comparison with wildlife phenomena, 
where available redundancy is used and adaptability grows. In 
other words, how good we are at designing our systems to be 
adaptable can be checked against living objects.  

 What is the point of this? Without external repeatability 
of events, evolution is hardly possible; having internal 
redundancy to recover is not enough. Evolution depends on 
the repetition of the same external events—i.e., no repetition, 
no evolution. 

Figure 2. The adaptability of a live element to a repeated 
external stimulus has its own limits 

 

 It means, for example, that the merit of sending a NASA 
probe searching for advanced forms of life on asteroids is 
worth questioning. An asteroid does not have the repeatability 
of environmental events during its flight. Even if life forms 
were there initially, their redundancy was spent for nothing in 
attempting to tolerate sporadic impacts. 

1.2 Organization of the paper 
 How is this two-part introduction about recoverability 
and reconfigurability related to CC systems? At first, nature-
made living systems are much more reliable and resilient than 
human-made ones. Therefore, some of the key principles of 
“mother nature designs” are good to adapt for CCs. Secondly, 
an analysis of existing technologies and applications, even if 
it is brief one, might highlight what is required to make our 
designs smarter. 

 Further, commercially and technologically speaking, we 
will address recoverability and other properties that might be 
required for connected computer systems. Why do we need to 
make this clear? Market segmentation in computer and CC 
systems might be reduced, or eliminated, enabling unified and 
modernized technologies to be applied.  
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 We will discuss properties such as reliability and some 
ways to achieve it, using deliberate redundancy and 
recoverability when required. We extend redundancy from 
fault tolerance to PRE-smart system design. PRE here stands 
for Performance-, Reliability-, and Energy-smart systems. 
Later, we will be able to estimate the efficiency of 
redundancy use for reconfigurability and recoverability for 
CC systems, balancing the trade-off between PRE properties. 

2 Connected computers: technologies 
and applications 

CC technologies in general are divided into two almost 
independent clusters: Communication and Computer, as 
Figure 3 shows. 

Figure 3. Connected computers - technologies and 
applications 
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 The Communication cluster deals with various media 
(wired, wireless) using different signal carriers (copper, fibre, 
air).  The cluster faces problems of complexity and the 
volume of data that needs to be transferred, together with 
requirements of timely data delivery over complex 
interconnected networks. 

 The Computer cluster addresses all three zones of 
information processing to make them faster and 
technologically feasible. The zones differ semantically. The 
Active zone is the one where information is transformed and 
is currently known: in the form of complex instruction set 
computers (CISC), reduced instruction set computers (RISC), 
single instruction multiple data (SIMD) architecture and 
multiple instructions multiple data (MIMD) architectures. 
Flynn’s [1] classification was used to reference these 
architectures. The Passive zone is known in the form of static 
and dynamic memories, flash memory, disks, etc. The 

Interfacing zone deals with data transfer between zones and 
getting them in and out from environment.  

 Historically, computer systems were not really fit for 
purpose for working within CC systems, which reduces our 
expectations when addressing the aspect of distributed 
computing by design. Attempts, such as a transputer, also 
prove that introducing distributiveness into CC is challenging 
and not an easy task. CC systems such as the Internet and 
Ethernet are expanding enormously in terms of data transfer, 
video, audio and e-mails and are moving in a strange 
direction, allowing home-makers, young people, financial 
sector operatives and bureaucrats communicate and “deliver 
their messages and instructions”.  

 All of the aforementioned applications are not critical in 
terms of real-time operation; VOIP requires some traffic 
shaping to deliver packages with time and other constraints, 
known as Quality of Service. This is what the vast majority of 
CC systems are using. At the moment, according to various 
sources, around two billion IP addresses are allocated 
permanently. This prodigious amount of data requires 
handling procedures that need to be much more effective, as 
everyday life becomes dependent on the “health” of CC 
systems. There is a visible shift in the distributed computing 
paradigm (using distributed, connected computers to solve 
large-scale tasks), toward distributed databases, financial 
services such as ATM, and so-called “cloud computing”. 
Putting scepticism aside and leaving other papers and 
researchers to discuss what is the real technological progress 
of cloud computing, we note here only that the efficiency of 
large-scale applications, including cloud computing, depends 
on the algorithmic skeleton—graphs of data, control and 
address dependencies [4] and their use, in order to prepare 
flexible, reconfigurable and resource-efficient algorithms for 
distributed computing.  

 To be effective, distributed computing requires a 
periodic “tuning” of the CC topology and computers as the 
elements in that topology. These tunings of application 
software, system software, topology, and internal structure of 
the computers should be handled statically, before execution 
and supported dynamically, during execution.  

 So far, there has been no visible progress in this 
direction, in spite of substantial investment under the flag of 
cloud computing. At the same time, there is a segment of 
human life that really requires attention and the involvement 
of CC: safety-critical, real-time active control systems, 
military applications, health monitoring, etc. All these 
applications should benefit from CC, but they require the 
integrity of a CC system, in terms of hardware, system and 
application software, user and system data, and the billions of 
connected computers to be applied much more efficiently, 
following the maxima: 

Remark 1. Technology must help people to become better, not 
to be more comfortable. 



 Therefore, safety critical applications (military, health 
monitoring, emergency management, air-traffic control, 
traffic control at large) should emerge and exploit existing 
connected computers. Two approaches to making CC useful 
are becoming obvious: the application of existing CC to wider 
and more challenging areas and the use of specially-built, 
safety-critical systems for “common” applications, as a part 
of the family of CC.  

 Ignoring any of theses approaches will lead to bigger 
market clustering and industry segmentation, resulting in the 
communication between entities becoming less efficient and 
which contributes to increased energy and ecological 
overheads - an unforgivable waste of resources for human 
race. 

2.1 Problems and properties 
 To avoid this segmentation in technology and market 
clustering a CC system should be redesigned to have new 
properties. In addition to the requirement for trustworthy CCs 
(security of hardware, system and application software and 
user data), widening CC adoption in terms of application use 
requires the development of recoverability. Recoverability 
requires an implementation of a generalized algorithm of fault 
tolerance (GAFT).  Note also that recoverability is practical, 
if it is invisible for the application software. GAFT assumes 
the execution of several sequential steps related to hardware 
(HW) and software (SW), in terms of proving the integrity of 
the system, (step A), detection of a fault and determination of 
its type (step B), defining the “level of damages” Permanent 
of malfunction (step C), location of faulty element (step D) 
and reconfiguration of the hardware (step E) and proof of 
correctness of integrity of software (step F) and determination 
of correct state (step G) and software to correct in order to 
continue operation. GAFT has two main phases - one for 
hardware (steps A-E), another for software (steps F and G).  
GAFT is initiated if a fault of CC, or any other deviation, has 
been detected. During the first step, it recognizes fault type in 
order to gauge location and tolerance.  

Figure 4. Redundancy application for GAFT 

 

 As Figure 4 shows the redundancy types application for 
fault tolerance are based on the categories of structure “s”, 
information “i” and time “t”. The white boxes show a possible 
application of fault tolerance, using the described 
redundancies. 

 While we are capable of using redundancy for checking, 
reconfiguration and recovery within a CC system, we should 
ask ourselves: 

  Could we use this redundancy for other purposes? 

 Introducing system redundancy might allow us to 
achieve recoverability. We need all the ingredients - 
redundancy, reconfigurability and fault modelling - in order 
to understand and analyse existing mutual dependencies at 
every stage of the design and development process. 

 At the same time, redundancy can be used for 
reconfiguration of the CC system for other purposes such as 
performance improvement, or power efficiency. Figure 5 
illustrates how properties may be inherited for PRE-wise 
systems. Thus, PRE-wise systems might be designed 
rigorously, using reconfigurability and recoverability as 
system features, if they are introduced at conceptual level.  
The success of PRE designs for CC systems depends on the 
careful balancing, or “trading-off”, of redundancy against the 
desired PRE property. 

Figure 5. Redundancy and reconfiguration application for 
PRE systems 
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2.2 Trading P, R, E 
 Structure, Information and Time, as the various types of 
redundancy, might be weighted, say, in units or values, with 
or without reference to the steps of GAFT, or any other 
algorithm where redundancy has been applied to achieve 
performance-, reliability- or energy-wise features. The 
relative importance (and cost) of the redundancy type chosen 
for the steps in the algorithms shown might be introduced as a 
coefficient αi, related to the cell i (Figure 4). Similar 
“valuations” of redundancy types might be applied for any 
other algorithms designed for the implementation of PRE 
properties.  

 While time and information is understandable in units - 
seconds and bits, the structure, especially structural 
redundancy requires some extra effort. Note also that time, 
information and structure are considered as independent 
variables. Structural redundancy for our purposes might be 
measured using the graph-related notation: 

 dS :  <  dV ,  dE  >  

where dS denotes introduced structural redundancy, while dV 
and dE denote extra vertices and edges added into the 
structure in order to implement the steps of GAFT, or any 
other algorithm. 

 Then, our efforts toward the goal of PRE can be 
measured quantitatively, as a vector of redundancy use: 

 dR =  <  dT ,  dS,  dI  >  

 In determining the cost of each type of redundancy used 
and describing the steps of an algorithm to achieve 
performance-, reliability- or energy-wise improvement, we 
can quantify each solution, according to the redundancy types 
applied.  

 This approach explains and quantifies, for example, the 
limitations of system software-based developments using 
Java - it will always consume more time, hardware, software 
and energy to store and process. In other words, we always 
will waste much more energy than really required.  

 Furthermore, the over-use of flash-based memory will 
also add to the energy wastage, as the activation of one 
memory cell in flash requires the application of power to the 
bulk of a 64K, or 64M memory segment.  

 The principles of PRE- design should be applied to the 
CC system as a whole, using the redundancy- and 
reconfigurability-wise approach for each of the goals. That 
being the case, tables similar to those proposed above have to 
be crafted individually for various purposes. 

 

 A PRE-wise system design paradigm is the future. 
When a computer, or CC system is designed with redundancy 
and reconfigurability in mind, with possible smart 
configurations and reconfigurations for PRE purposes, the 
market segmentation of information computer technologies 
(ICT) will be reduced dramatically. The combination of steps 
in the sequence described above implementing the declared 
properties is a simplification, as design of a system is not, in 
fact, sequential. It most likely follows a pattern as illustrated 
by Figure 6, where the various steps are dependent on and 
have feedback loops with other steps. 

 One approach to cope with these forms of dependencies 
in the algorithm (or project) phases assumes the application of 
a semi-Markov model to analyse the impact of these 
feedbacks on design efficiency [2,5].  

Figure 6. Dependencies of project phases 
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2.3 Recoverability in connected computer 
systems 

 Applying the same approach to CC systems to suit real-
time and safety-critical applications highlight differences 
between stand-alone and CC structures: 

• Redundancy in CC systems already exists (each 
computer  “deals” with neighbour); 

• Latency of threat impact for CC systems is 
unavoidable; 

• Propagation of threat impact for CC systems is 
similar to flooding. 

 

 

 

 



 Let us look at a notional segment of a CC topology with 
incoming and internal connections as Figure 7 presents. 
Incoming and out-going edges are shown with arrows. 
Threats here mean physical faults (permanent, or as a 
malfunction) of hardware, incomplete or deliberately 
damaged software, viruses, worms, etc. Thus, the 
recoverability of a CC system might require more effort and 
extend GAFT actions, namely: 

• Find where threat propagates; 

• Estimate damages; 

• Stop propagation; 

• Find source of the threat (internal, or external); 

• Exclude, or block the source; 

• Restore best-fit configuration of hardware; 

• Restore best-fit configuration of system software; 

• Restore best-fit configuration of applications. 

 To make a system of CC for real-time applications, 
GAFT must be performed, together with an estimation of the 
potential consequences for the topology of the CC, as well as 
its elements. The speed of propagation of a threat through the 
topology has to be addressed as a factor of performance for 
recovery.  

  The potential damages caused as a result of the threat 
may differ in severity - sometimes substantial and 
exponentially dangerous (gateway routers), if we do not react 
accordingly. 

Figure 7. Connected computers topology (fragment) 
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Existing solutions with local restarts and segmental switching 
do not comply with the requirements of real-time, or safety-
critical applications. A CC system can be presented in the 
form of probabilities of the propagation of a threat (or 
symptom of a fault) through the topology, where thickness of 
the edges defines the strength of dependency between 
vertices. The dependencies between vertices are not 
symmetrical: vertex 9 might have, say, a much higher impact 
on vertex 6, than vertex 6 might have on vertex 9.  

A propagation of a threat along the CC system might be 
described as a vector P of predicates {pi} that define the 
condition for each vertex: 

P =  p1 m1 v1 d1 t( )( )( )( ),  p2 m2 v2 d2 t( )( )( )( ),  ...,  pk mk vk dk t( )( )( )( ){ }      (1) 

where m1,...,mk stand for models of vertices in terms of 
vulnerability to threat;  v1,...,vk  are vertices,  d1, ...,dk are 
data available about each vertex condition. 

 Data about each vertex might be accumulated using 
checking (testing, or online checking, including historic 
knowledge and their combination), as well as processed in 
real time. 

 Note that for a CC system, we assume flood-like threat 
propagation; i.e. all adjacent vertices to the initial point, 
namely for vertex 1, one has to consider adjacency with the 
2nd, 6th and 9th vertices, vertex 11’s adjacency to vertex 3 and 
10, etc.  The role of the initial point that starts off the process 
of recovery requires further discussion.  

2.4 How this works 
 The recoverability of CC systems assumes the 
involvement of two algorithms: Forward Tracing and 
Backward Tracing. When the symptoms of a threat are 
manifested through the detection of a change in behaviour at 
an element, the Tracing algorithm searches through a 
Dependency Matrix for the subsequent propagation of that 
threat along the system.  The potential consequences to the 
system can be hereby identified, starting from the vertex from 
where the threat presence was first detected.  

 Performing the Forward Tracing algorithm, a 
cumulative probability is calculated along each possible path 
(of edges) until a termination threshold ε is reached. 
Threshold ε is defined empirically using engineering expertise 
and considered as constant for a particular configuration of a 
CC. 

 Another termination condition for searching the path of 
threat propagation is obvious - checking all dependent 
vertices.  When all elements have been traced, one can fully 
guarantee 100% threat checking coverage. Unfortunately, this 
termination condition becomes scale-dependent on CC 
system size.  



 Note here that the probabilistic matrix for a system from 
Figure 7 is not Markovian, because the sum of probabilities 
on the edges at each node may not be equal to 1; in contrast, 
several edges of a single node may have significant 
probabilities. 

Figure 8. Forward tracing of possible consequences 
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2.5 Probability along the path 
 In the tracing algorithm, the cumulative probability of 
threat propagation from one element (vertex) to another along 
the edges from the suspected node i to node j (possibly via a 
series of other nodes), is defined as Π(pi,j).  

  When several paths lead from node di to node dj, all 
possible Π(pi,j) are ranked and nodes along the paths are 
included into the set of suspected nodes. Starting from the 
vertex, i, that manifests the threat, its impact is evaluated by 
searching from d1 to all directly, or indirectly connected 
nodes (elements). The result of this search is a ranked list of 
the nodes most likely to be affected - the “consequence” of 
threat propagation. As the threat paths from each node are 
evaluated, only the edge with the highest probability is 
followed at each node. At most, each node is only ever 
included once in any path to ensure termination in a graph 
which contains loops. 

 The proposed Forward Tracing algorithm does not solve 
the problem of threat elimination from CC systems and, at its 
best, can only be part of the solution. The reason is explained 
in Figure 9. The time gap between the appearance of a threat 
at one vertex and the detection of it impact at another has 
arbitrary duration. Above all, while the consequences are 
being detected, threat propagation continues.  Thus, the 
Forward Tracing algorithm helps to localize damages, and 
assist when possible, in order to block propagation, but does 
not solve the whole problem.  

 To locate the first damaged node and discover the real 
reason for its changed behaviour, we need another algorithm 
called Backward Tracing, Figure 10. This algorithm discovers 
the source(s), or reason(s) from the sequences of exhibited 
threat symptoms and defines areas where each element 
(vertex) was involved. Thus, we search for the reason, not just 
the symptoms. 

 When the elements that are likely to be the cause of the 
manifest discrepancies are detected, the recovery is initiated 
from the vertex where the threat first appeared dealing with 
the damaged area only, reducing the need for the brute force 
of a restart, saving real-time mode for the whole CC system. 
The results of the recovery process also need to be saved for 
security improvement, monitoring of reliability and 
maintenance efficiency. 

Figure 9. Threat propagation timing along a CC system 
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 The threat checking procedure over a CC system might 
be activated, either by a signal indicating that there is a 
discrepancy in behaviour of one or more elements (vertices), 
or by a predefined sequence of maintenance, if necessary. For 
the purpose of maintaining CC system integrity, the 
procedures for condition checking might be initiated by 
choosing any vertex of the CC system at random, or even in a 
loop, covering all vertices, when it is convenient. 

 

 

 



Figure 10. Backward threat tracing for a CC system 

 

2.6 How much recoverability costs 
 As shown above, recoverability requires the introduction 
of several new processes into CC system management, 
including online checking of CC conditions and the 
implementation of two mentioned above algorithms. The 
gradient of this change is a function of the quality of checking 
(coverage), success of recovery (algorithms of tracing) and 
quality of maintenance shifting it to the “light” mode with 
preventive actions against threats. 

 The gain from introduced and implemented 
recoverability was recently measured using a comparison of a 
standard CC system with a system that implements real-time 
maintenance was analysed in details in recent book [3]. 

3 Conclusions and future work 
• Recoverability supported by redundancy and 

reconfigurability is introduced and analysed for 
connected computer systems. 

• A design concept of PRE-wise (Performance-, 
Reliability- and Energy-wise) systems is proposed 
as a unified approach.  

• Shown that recoverability using Forward and 
Backward Tracing algorithms makes connected 
computer systems closer to real-time and safety-
critical applications.  

• As a future development, it is suggested that the 
development of a PRE framework, assuming 
mutual dependencies of phases of design, 
development and run time use using a semi-
Markov model. 
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