
Redundancy + Reconfigurability = Recoverability

Simon Monkman1, and Igor Schagaev2
1 ITACS Ltd, 157 Shephall View, Stevenage, SG1 1RR, England

2Faculty of Computing, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB,
England

Abstract - An approach to consider computers and connected
computer systems using structural, time and information
redundancies is proposed. An application of redundancy for
reconfigurability and recoverability of computer and
connected computer systems is discussed, gaining
performance, reliability and power-saving in operation. A
paradigm of recoverability is introduced and, if followed,
shifts connected computer systems toward real-time
applications. Use of redundancy for connected computers is
analysed in terms of recoverability, where two supportive
algorithms of forward and backward tracing are proposed
and explained. As an example, growth of mission reliability is
formulated.

Keywords: redundancy; reconfigurability; recoverability;
performance-reliability-energy-wise systems

1 Why Recoverability: Instead of
Introduction

 The human world evolves and progresses by applying
knowledge derived from observations of and familiarity with
repeatable aspects of nature. Our perceptions, understanding,
and ability to model reality enables us to develop the policies,
processes, and products required, in order to attempt to
control the behaviour of natural phenomena, or human-made
objects.

 Nature tends to achieve stable and reliable progress
(sustainable growth) and avoid regression and degradation.
Sustainable growth can be considered as a fundamental
descriptor of living matter, while regression and degradation
are descriptors of dead matter. A clear differentiation between
live and dead is required, but, so far, there has been no
substantial research, or projects, on it.

 The authors of this paper believe that the fundamental
distinction and difference between living processes and dead
matter is recoverability.

 Essentially, recoverability in the system is based on the
ability to use available redundancy to recover from
environmental, or internal impacts and shocks. Two things
are worth mentioning here: first—redundancy is necessary for
recoverability, and second—redundancy must be deliberately

introduced into systems, policies, and processes to make them
resilient and efficient.

 The recoverability approach and its analysis,
application, and conceptual development in the domain of
computers is one of the aims of this paper. The second aim is
the analysis of the phases required for the implementation of
recoverability for stand-alone and connected computers.

 Usually, connected computer systems display
fluctuations due to changes in the underlying systems.
Reasons for this may include, for instance, workload,
software completeness, consistency, and size of applications,
or changes and shocks emanating from their environment. So
far, networks sporadically and inconsistently exploit
recoverability phenomena to tolerate these various
fluctuations.

 Connected computer (further CC) systems can be
considered in terms of time, i.e., as a process of operation.
Recoverability can then be applied to keep this process within
a restricted set of properties, “smoothing” the process. We
can apply and investigate various recovery algorithms
implicit in such systems and tune the underlying parameters,
reducing the extent of fluctuations and hence, reducing the
cost they impose in structure, information, or performance.

 Natural recoverability phenomena exist in almost any
natural system, but we do not understand them. Hence, we
cannot specify how the algorithm works and therefore, use it
properly. This is exactly the purpose of the methodology
proposed in this paper. In a practical sense, an understanding
of recoverability enables us to advocate for the re-design of
the whole world of CC systems, making them resilient to
internal and external fluctuations.

1.1 Why Reconfigurability: An Example
 Let us consider a case: an element is deformed by
environmental impact. Destructive deformation of the
element could cause the loss of its properties.

 Let’s assume an element has internal structural
resources (redundancy). Redundancy of the element structure
might enable the element to return to its previous state, or
condition, after impact. The external impact does not change
the element, if redundancy is applied and sufficient. A second

impact might occur and be tolerated in exactly the same way.
Let us now consider a situation where the element has
properties of being alive, such as amoeba.

 If an amoeba has sufficient resources available to it to
use and to protect itself from the destructive energy of the
environment or an impact, it will recover and continue to
live—the amoeba exhibits redundancy in order to survive.

 If the external event is repeated, the amoeba can self-
tune and be able to react to the impact faster, tolerate the
event for longer, and as a consequence, suffer less long-term
damage. The external event itself might be periodic heat from
the sun, cold water, fire or gas, electric discharge, etc.

 Having sufficient internal redundancy to tolerate
repeated external impacts caused by various events makes
recovery possible. Live matter differs from man-made
systems in terms of the time required for recovery and the use
of available redundancy. The speed of recovery increases
when the impact is the same. Here, “recovery training” takes
place and either the level of redundancy, or speed of recovery,
or both increase. A sequence of impacts and element recovery
is presented in Figure 1.

Figure 1. Periodic impacts, element’s time to recover

 The circles show the state of an element over time,
where green indicates an element in a good, or acceptable
steady state and red indicates an element under recovery.
Figure 1 indicates an element that adapts to the periodic
external stimulus, can decrease the time for its recovery.

 Where the element may be considered alive, such as in
the case of the amoeba, using redundancy for recovery can
reduce the time it takes to react to the same event, provided
the event is periodic. Thus, life might be defined as the
following:

An element is called alive, if in repeatable conditions, it is
able to recover progressively, using internal redundancy
actively.

 The adaptability of the live element has its limits. Figure
2 shows, for example, an element approaching the limit of its
adaptability and the role of its ability to recover. Whilst
wildlife evolution may be seen as similar to the lower curve,

the evolution of “smart” species should be smoother and
faster to reach the same, or higher, limit of adaptability—the
shortened curve in the diagram.

 Thus, our design of information processing systems,
computers, especially complex systems such as connected
computers, can be measured in terms of efficiency of
recovery/resilience in comparison with wildlife phenomena,
where available redundancy is used and adaptability grows. In
other words, how good we are at designing our systems to be
adaptable can be checked against living objects.

 What is the point of this? Without external repeatability
of events, evolution is hardly possible; having internal
redundancy to recover is not enough. Evolution depends on
the repetition of the same external events—i.e., no repetition,
no evolution.

Figure 2. The adaptability of a live element to a repeated
external stimulus has its own limits

 It means, for example, that the merit of sending a NASA
probe searching for advanced forms of life on asteroids is
worth questioning. An asteroid does not have the repeatability
of environmental events during its flight. Even if life forms
were there initially, their redundancy was spent for nothing in
attempting to tolerate sporadic impacts.

1.2 Organization of the paper
 How is this two-part introduction about recoverability
and reconfigurability related to CC systems? At first, nature-
made living systems are much more reliable and resilient than
human-made ones. Therefore, some of the key principles of
“mother nature designs” are good to adapt for CCs. Secondly,
an analysis of existing technologies and applications, even if
it is brief one, might highlight what is required to make our
designs smarter.

 Further, commercially and technologically speaking, we
will address recoverability and other properties that might be
required for connected computer systems. Why do we need to
make this clear? Market segmentation in computer and CC
systems might be reduced, or eliminated, enabling unified and
modernized technologies to be applied.

S
pe

ed
 o

f a
da

pt
ab

ili
ty

Limit of adaptability

Number of repetitions

Periodic impacts

Recovery Recovery Recovery

 We will discuss properties such as reliability and some
ways to achieve it, using deliberate redundancy and
recoverability when required. We extend redundancy from
fault tolerance to PRE-smart system design. PRE here stands
for Performance-, Reliability-, and Energy-smart systems.
Later, we will be able to estimate the efficiency of
redundancy use for reconfigurability and recoverability for
CC systems, balancing the trade-off between PRE properties.

2 Connected computers: technologies
and applications

CC technologies in general are divided into two almost
independent clusters: Communication and Computer, as
Figure 3 shows.

Figure 3. Connected computers - technologies and
applications

CC
Technologies

Ether- / inter-
net

CC
Applications

Distributed
computing

Computer
(zones)

Communication

Active
systems:

ACT, military,
medical,
control

Grid,
cloud, ...

RISC,
SIMD, MIMD,

CISC, ...

SRAM,
DRAM,

Flash, ...

Active

Interfacing Passive

Wireless

Wired

FiberMetal

Digital
Power

Local cell

Satellite

 The Communication cluster deals with various media
(wired, wireless) using different signal carriers (copper, fibre,
air). The cluster faces problems of complexity and the
volume of data that needs to be transferred, together with
requirements of timely data delivery over complex
interconnected networks.

 The Computer cluster addresses all three zones of
information processing to make them faster and
technologically feasible. The zones differ semantically. The
Active zone is the one where information is transformed and
is currently known: in the form of complex instruction set
computers (CISC), reduced instruction set computers (RISC),
single instruction multiple data (SIMD) architecture and
multiple instructions multiple data (MIMD) architectures.
Flynn’s [1] classification was used to reference these
architectures. The Passive zone is known in the form of static
and dynamic memories, flash memory, disks, etc. The

Interfacing zone deals with data transfer between zones and
getting them in and out from environment.

 Historically, computer systems were not really fit for
purpose for working within CC systems, which reduces our
expectations when addressing the aspect of distributed
computing by design. Attempts, such as a transputer, also
prove that introducing distributiveness into CC is challenging
and not an easy task. CC systems such as the Internet and
Ethernet are expanding enormously in terms of data transfer,
video, audio and e-mails and are moving in a strange
direction, allowing home-makers, young people, financial
sector operatives and bureaucrats communicate and “deliver
their messages and instructions”.

 All of the aforementioned applications are not critical in
terms of real-time operation; VOIP requires some traffic
shaping to deliver packages with time and other constraints,
known as Quality of Service. This is what the vast majority of
CC systems are using. At the moment, according to various
sources, around two billion IP addresses are allocated
permanently. This prodigious amount of data requires
handling procedures that need to be much more effective, as
everyday life becomes dependent on the “health” of CC
systems. There is a visible shift in the distributed computing
paradigm (using distributed, connected computers to solve
large-scale tasks), toward distributed databases, financial
services such as ATM, and so-called “cloud computing”.
Putting scepticism aside and leaving other papers and
researchers to discuss what is the real technological progress
of cloud computing, we note here only that the efficiency of
large-scale applications, including cloud computing, depends
on the algorithmic skeleton—graphs of data, control and
address dependencies [4] and their use, in order to prepare
flexible, reconfigurable and resource-efficient algorithms for
distributed computing.

 To be effective, distributed computing requires a
periodic “tuning” of the CC topology and computers as the
elements in that topology. These tunings of application
software, system software, topology, and internal structure of
the computers should be handled statically, before execution
and supported dynamically, during execution.

 So far, there has been no visible progress in this
direction, in spite of substantial investment under the flag of
cloud computing. At the same time, there is a segment of
human life that really requires attention and the involvement
of CC: safety-critical, real-time active control systems,
military applications, health monitoring, etc. All these
applications should benefit from CC, but they require the
integrity of a CC system, in terms of hardware, system and
application software, user and system data, and the billions of
connected computers to be applied much more efficiently,
following the maxima:

Remark 1. Technology must help people to become better, not
to be more comfortable.

 Therefore, safety critical applications (military, health
monitoring, emergency management, air-traffic control,
traffic control at large) should emerge and exploit existing
connected computers. Two approaches to making CC useful
are becoming obvious: the application of existing CC to wider
and more challenging areas and the use of specially-built,
safety-critical systems for “common” applications, as a part
of the family of CC.

 Ignoring any of theses approaches will lead to bigger
market clustering and industry segmentation, resulting in the
communication between entities becoming less efficient and
which contributes to increased energy and ecological
overheads - an unforgivable waste of resources for human
race.

2.1 Problems and properties
 To avoid this segmentation in technology and market
clustering a CC system should be redesigned to have new
properties. In addition to the requirement for trustworthy CCs
(security of hardware, system and application software and
user data), widening CC adoption in terms of application use
requires the development of recoverability. Recoverability
requires an implementation of a generalized algorithm of fault
tolerance (GAFT). Note also that recoverability is practical,
if it is invisible for the application software. GAFT assumes
the execution of several sequential steps related to hardware
(HW) and software (SW), in terms of proving the integrity of
the system, (step A), detection of a fault and determination of
its type (step B), defining the “level of damages” Permanent
of malfunction (step C), location of faulty element (step D)
and reconfiguration of the hardware (step E) and proof of
correctness of integrity of software (step F) and determination
of correct state (step G) and software to correct in order to
continue operation. GAFT has two main phases - one for
hardware (steps A-E), another for software (steps F and G).
GAFT is initiated if a fault of CC, or any other deviation, has
been detected. During the first step, it recognizes fault type in
order to gauge location and tolerance.

Figure 4. Redundancy application for GAFT

 As Figure 4 shows the redundancy types application for
fault tolerance are based on the categories of structure “s”,
information “i” and time “t”. The white boxes show a possible
application of fault tolerance, using the described
redundancies.

 While we are capable of using redundancy for checking,
reconfiguration and recovery within a CC system, we should
ask ourselves:

 Could we use this redundancy for other purposes?

 Introducing system redundancy might allow us to
achieve recoverability. We need all the ingredients -
redundancy, reconfigurability and fault modelling - in order
to understand and analyse existing mutual dependencies at
every stage of the design and development process.

 At the same time, redundancy can be used for
reconfiguration of the CC system for other purposes such as
performance improvement, or power efficiency. Figure 5
illustrates how properties may be inherited for PRE-wise
systems. Thus, PRE-wise systems might be designed
rigorously, using reconfigurability and recoverability as
system features, if they are introduced at conceptual level.
The success of PRE designs for CC systems depends on the
careful balancing, or “trading-off”, of redundancy against the
desired PRE property.

Figure 5. Redundancy and reconfiguration application for
PRE systems

!

P

Performance

E

Energy

R

Reliability

PRE-smart CC

Recoverability?

P, R, E Trading?

FAULT TOLERANCE

Redundancy Reconfigurability Fault model

2.2 Trading P, R, E
 Structure, Information and Time, as the various types of
redundancy, might be weighted, say, in units or values, with
or without reference to the steps of GAFT, or any other
algorithm where redundancy has been applied to achieve
performance-, reliability- or energy-wise features. The
relative importance (and cost) of the redundancy type chosen
for the steps in the algorithms shown might be introduced as a
coefficient αi, related to the cell i (Figure 4). Similar
“valuations” of redundancy types might be applied for any
other algorithms designed for the implementation of PRE
properties.

 While time and information is understandable in units -
seconds and bits, the structure, especially structural
redundancy requires some extra effort. Note also that time,
information and structure are considered as independent
variables. Structural redundancy for our purposes might be
measured using the graph-related notation:

 dS : < dV , dE >

where dS denotes introduced structural redundancy, while dV
and dE denote extra vertices and edges added into the
structure in order to implement the steps of GAFT, or any
other algorithm.

 Then, our efforts toward the goal of PRE can be
measured quantitatively, as a vector of redundancy use:

 dR = < dT , dS, dI >

 In determining the cost of each type of redundancy used
and describing the steps of an algorithm to achieve
performance-, reliability- or energy-wise improvement, we
can quantify each solution, according to the redundancy types
applied.

 This approach explains and quantifies, for example, the
limitations of system software-based developments using
Java - it will always consume more time, hardware, software
and energy to store and process. In other words, we always
will waste much more energy than really required.

 Furthermore, the over-use of flash-based memory will
also add to the energy wastage, as the activation of one
memory cell in flash requires the application of power to the
bulk of a 64K, or 64M memory segment.

 The principles of PRE- design should be applied to the
CC system as a whole, using the redundancy- and
reconfigurability-wise approach for each of the goals. That
being the case, tables similar to those proposed above have to
be crafted individually for various purposes.

 A PRE-wise system design paradigm is the future.
When a computer, or CC system is designed with redundancy
and reconfigurability in mind, with possible smart
configurations and reconfigurations for PRE purposes, the
market segmentation of information computer technologies
(ICT) will be reduced dramatically. The combination of steps
in the sequence described above implementing the declared
properties is a simplification, as design of a system is not, in
fact, sequential. It most likely follows a pattern as illustrated
by Figure 6, where the various steps are dependent on and
have feedback loops with other steps.

 One approach to cope with these forms of dependencies
in the algorithm (or project) phases assumes the application of
a semi-Markov model to analyse the impact of these
feedbacks on design efficiency [2,5].

Figure 6. Dependencies of project phases

1 2 3 4 F

2.3 Recoverability in connected computer
systems

 Applying the same approach to CC systems to suit real-
time and safety-critical applications highlight differences
between stand-alone and CC structures:

• Redundancy in CC systems already exists (each
computer “deals” with neighbour);

• Latency of threat impact for CC systems is
unavoidable;

• Propagation of threat impact for CC systems is
similar to flooding.

 Let us look at a notional segment of a CC topology with
incoming and internal connections as Figure 7 presents.
Incoming and out-going edges are shown with arrows.
Threats here mean physical faults (permanent, or as a
malfunction) of hardware, incomplete or deliberately
damaged software, viruses, worms, etc. Thus, the
recoverability of a CC system might require more effort and
extend GAFT actions, namely:

• Find where threat propagates;

• Estimate damages;

• Stop propagation;

• Find source of the threat (internal, or external);

• Exclude, or block the source;

• Restore best-fit configuration of hardware;

• Restore best-fit configuration of system software;

• Restore best-fit configuration of applications.

 To make a system of CC for real-time applications,
GAFT must be performed, together with an estimation of the
potential consequences for the topology of the CC, as well as
its elements. The speed of propagation of a threat through the
topology has to be addressed as a factor of performance for
recovery.

 The potential damages caused as a result of the threat
may differ in severity - sometimes substantial and
exponentially dangerous (gateway routers), if we do not react
accordingly.

Figure 7. Connected computers topology (fragment)

1 2

4

5

8

11

10

6

7

3

9

Existing solutions with local restarts and segmental switching
do not comply with the requirements of real-time, or safety-
critical applications. A CC system can be presented in the
form of probabilities of the propagation of a threat (or
symptom of a fault) through the topology, where thickness of
the edges defines the strength of dependency between
vertices. The dependencies between vertices are not
symmetrical: vertex 9 might have, say, a much higher impact
on vertex 6, than vertex 6 might have on vertex 9.

A propagation of a threat along the CC system might be
described as a vector P of predicates {pi} that define the
condition for each vertex:

P = p1 m1 v1 d1 t()()()(), p2 m2 v2 d2 t()()()(), ..., pk mk vk dk t()()()(){ } (1)

where m1,...,mk stand for models of vertices in terms of
vulnerability to threat; v1,...,vk are vertices, d1, ...,dk are
data available about each vertex condition.

 Data about each vertex might be accumulated using
checking (testing, or online checking, including historic
knowledge and their combination), as well as processed in
real time.

 Note that for a CC system, we assume flood-like threat
propagation; i.e. all adjacent vertices to the initial point,
namely for vertex 1, one has to consider adjacency with the
2nd, 6th and 9th vertices, vertex 11’s adjacency to vertex 3 and
10, etc. The role of the initial point that starts off the process
of recovery requires further discussion.

2.4 How this works
 The recoverability of CC systems assumes the
involvement of two algorithms: Forward Tracing and
Backward Tracing. When the symptoms of a threat are
manifested through the detection of a change in behaviour at
an element, the Tracing algorithm searches through a
Dependency Matrix for the subsequent propagation of that
threat along the system. The potential consequences to the
system can be hereby identified, starting from the vertex from
where the threat presence was first detected.

 Performing the Forward Tracing algorithm, a
cumulative probability is calculated along each possible path
(of edges) until a termination threshold ε is reached.
Threshold ε is defined empirically using engineering expertise
and considered as constant for a particular configuration of a
CC.

 Another termination condition for searching the path of
threat propagation is obvious - checking all dependent
vertices. When all elements have been traced, one can fully
guarantee 100% threat checking coverage. Unfortunately, this
termination condition becomes scale-dependent on CC
system size.

 Note here that the probabilistic matrix for a system from
Figure 7 is not Markovian, because the sum of probabilities
on the edges at each node may not be equal to 1; in contrast,
several edges of a single node may have significant
probabilities.

Figure 8. Forward tracing of possible consequences

 98

!"#$%&'()*Tracing*+,-*.+/0-.,-*1�+2,-30-*3 .,*4*0*

55* 6728'9* .:2:7;:7<=*)>'%&3* D(N)* ?&'(* N* :":):7',* $@* >* ?:&#(':;*

#%>2(*G=<V, E>*

55*6728'9*A(:*,'>%'*7$;:*,*>7;*'(:*%:><(&7#*7$;:*B*

55*C8'28'9**A(:*,:'*$@*7$;:,*Ds*?(:%:*x Ds*>7;*�(ps,x)> �***

55*C8'28'9**A(:*(&#(:,'*2%$D>D&"&'=*�(ps,j)*$@*7$;:*j*%:><(:;*D=*

7$;:*s*

E**55*>*2%&$%&'=*F8:8:*D>,:;*$7*'(:*(&#(:%*2%$D>D&"&'=*$@*7$;:,*

%:><(:;*D=*s*

G* * 55* '(:* ,:'* $@* 7$;:,* >"%:>;=* H&,&':;-* 8,:;* '$* >H$&;* '%><&7#*

"$$2,*

67&'&>"&I:+E0**55*&7&'&>"&I:*7$;:,*2%&$%&'=*F8:8:*'$*:)2'=*

J*K$%*:><(*7$;:*H*&7*L*;$*

M***2,-H*��N*55*,:'*;:@>8"'*2%$D>D&"&'=*'$*�*
O***67,:%'*+E-H-2,-H0*55&7&'&>"&I:*'(:*2%&$%&'=*F8:8:*

P***2,-,*�JN*67<%:>,:+E-,-2,-,0**5582;>':*2%&$%&'=*$@*,*?&'(*2,-,*
Q***.,�R)2'=*55*2%:,8):*>""*:":):7',*>%:*,>@:*
S***G�R)2'=**
T*@$%*&�U*'$*/VJ*;$*
W****>X�.:":':Y>3+E0**55;:":':*'(:*)>3&)8)*2%&$%&'=*:":):7'*

Z****?(&":*2&->X[�*

JU*****;$**

JJ*****.,�., 1*>X4NG�G 1*>X4N*�+2,->X0\2&->X**

JM*****@$%*:H:%=*7$;:*>*&7*LV*.,V*G*'(>'*&,*>;B><:7'*'$*>X*;$*

JO********&@*2,->X*X*.>X->[*2,->*'(:7**

JP********2,->**2,->X*X*.>X->N*

JQ********67<%:>,:+E->-2,->0*

JS******:7;*@$%*

JS****:7;*?(&":*

JT*:7;*@$%*

JW*A:%)&7>':**

Figure: 7.9: Tracing of possible consequences

<&!/U%1:9/!(&!.(=!2./!-#%7$&5!<95(#$2.1!=(#,*!$*!$990*2#%2/3!$&![$50#/!_OSF!=.$7.!*.(=*!

%!5#%:.!4(#!N!/9/1/&2*!%&3!%!*/2!(4!2#%&*2(&*!)/2=//&!2./1!#/:#/*/&2$&5!2./!:#()%)$9$2;!

(4! 4%092! :#(:%5%2$(&!)/2=//&! 2./! #/9%2/3! /9/1/&2*O! ! -./! 9(=/#! :%#2! *.(=*! 2./! *%1/!

$&4(#1%2$(&! $&!1%2#$U! 4(#1O! ![$50#/!_OSS!*.(=*!.(=!2./! 2#%7$&5!:#(5#/**/*!*2/:!);!*2/:!

0*$&5!2./!*%1/!/U%1:9/O!!>/2!0*!%**01/!2.%2!&(3/!d1!1%&$4/*2*!2./!4%092C!$1:%72!(4!2.$*!$*!

/A%90%2/3!);!*/%#7.$&5! 4#(1!d1! 2(!%99! 3$#/729;!(#! $&3$#/729;! 7(&&/72/3!&(3/*! P/9/1/&2*QO!

2.5 Probability along the path
 In the tracing algorithm, the cumulative probability of
threat propagation from one element (vertex) to another along
the edges from the suspected node i to node j (possibly via a
series of other nodes), is defined as Π(pi,j).

 When several paths lead from node di to node dj, all
possible Π(pi,j) are ranked and nodes along the paths are
included into the set of suspected nodes. Starting from the
vertex, i, that manifests the threat, its impact is evaluated by
searching from d1 to all directly, or indirectly connected
nodes (elements). The result of this search is a ranked list of
the nodes most likely to be affected - the “consequence” of
threat propagation. As the threat paths from each node are
evaluated, only the edge with the highest probability is
followed at each node. At most, each node is only ever
included once in any path to ensure termination in a graph
which contains loops.

 The proposed Forward Tracing algorithm does not solve
the problem of threat elimination from CC systems and, at its
best, can only be part of the solution. The reason is explained
in Figure 9. The time gap between the appearance of a threat
at one vertex and the detection of it impact at another has
arbitrary duration. Above all, while the consequences are
being detected, threat propagation continues. Thus, the
Forward Tracing algorithm helps to localize damages, and
assist when possible, in order to block propagation, but does
not solve the whole problem.

 To locate the first damaged node and discover the real
reason for its changed behaviour, we need another algorithm
called Backward Tracing, Figure 10. This algorithm discovers
the source(s), or reason(s) from the sequences of exhibited
threat symptoms and defines areas where each element
(vertex) was involved. Thus, we search for the reason, not just
the symptoms.

 When the elements that are likely to be the cause of the
manifest discrepancies are detected, the recovery is initiated
from the vertex where the threat first appeared dealing with
the damaged area only, reducing the need for the brute force
of a restart, saving real-time mode for the whole CC system.
The results of the recovery process also need to be saved for
security improvement, monitoring of reliability and
maintenance efficiency.

Figure 9. Threat propagation timing along a CC system

Forward and backward tracing algorithms
are initiated

Threat
detected

Vertexes of CC system

Start

Threat
appeared

Threat
manifested

 The threat checking procedure over a CC system might
be activated, either by a signal indicating that there is a
discrepancy in behaviour of one or more elements (vertices),
or by a predefined sequence of maintenance, if necessary. For
the purpose of maintaining CC system integrity, the
procedures for condition checking might be initiated by
choosing any vertex of the CC system at random, or even in a
loop, covering all vertices, when it is convenient.

Figure 10. Backward threat tracing for a CC system

2.6 How much recoverability costs
 As shown above, recoverability requires the introduction
of several new processes into CC system management,
including online checking of CC conditions and the
implementation of two mentioned above algorithms. The
gradient of this change is a function of the quality of checking
(coverage), success of recovery (algorithms of tracing) and
quality of maintenance shifting it to the “light” mode with
preventive actions against threats.

 The gain from introduced and implemented
recoverability was recently measured using a comparison of a
standard CC system with a system that implements real-time
maintenance was analysed in details in recent book [3].

3 Conclusions and future work
• Recoverability supported by redundancy and

reconfigurability is introduced and analysed for
connected computer systems.

• A design concept of PRE-wise (Performance-,
Reliability- and Energy-wise) systems is proposed
as a unified approach.

• Shown that recoverability using Forward and
Backward Tracing algorithms makes connected
computer systems closer to real-time and safety-
critical applications.

• As a future development, it is suggested that the
development of a PRE framework, assuming
mutual dependencies of phases of design,
development and run time use using a semi-
Markov model.

4 References
[1] Flynn M. “Some Computer Organizations and Their
Effectiveness”; IEEE Trans. Comput., Vol. C-21, 948, 1972.

[2] Birolini A. “Reliability Engineering Theory and
Practice.” 6th ed., Springer-Verlag: Berlin, Heidelberg,
Germany, 2010.

[3] Carbone J., Schagaev I. "Active Conditional Control:
Analysis." Applied Cyber-Physical Systems, Springer, ISBN
978-1-4614-7335-0, 2013.

[4] Gutkneht J., Kaegi T., Schagaev I. “ERA: Evolving
Reconfigurable Architecture”; SNPD, 11th ACIS International
Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, London,
UK, 9–11 June 2010.

[5] Plyaskota S., Schagaev I. “Economic Effectiveness Of
Fault Tolerance”; Automatic and Remote Control, No. 7, 131-
143, 1995.

[6] Schagaev, I.; Kirk, B.; Schagaev, A. “Method and
Apparatus for Active Safety Systems”; UK Patent GB
2448351, INT CL: G05 9/02 (2006.01), Granted 21.09.2011.

