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The ruminal microbial community is remarkably diverse, containing 100s of different
bacterial and archaeal species, plus many species of fungi and protozoa. Molecular
studies have identified a “core microbiome” dominated by phyla Firmicutes and
Bacteroidetes, but also containing many other taxa. The rumen provides an ideal
laboratory for studies on microbial ecology and the demonstration of ecological
principles. In particular, the microbial community demonstrates both redundancy
(overlap of function among multiple species) and resilience (resistance to, and capacity
to recover from, perturbation). These twin properties provide remarkable stability that
maintains digestive function for the host across a range of feeding and management
conditions, but they also provide a challenge to engineering the rumen for improved
function (e.g., improved fiber utilization or decreased methane production). Direct
ruminal dosing or feeding of probiotic strains often fails to establish the added strains,
due to intensive competition and amensalism from the indigenous residents that are
well-adapted to the historical conditions within each rumen. Known exceptions include
introduced strains that can fill otherwise unoccupied niches, as in the case of specialist
bacteria that degrade phytotoxins such as mimosine or fluoroacetate. An additional
complicating factor in manipulating the ruminal fermentation is the individuality or host
specificity of the microbiota, in which individual animals contain a particular community
whose species composition is capable of reconstituting itself, even following a near-
total exchange of ruminal contents from another herd mate maintained on the same
diet. Elucidation of the interactions between the microbial community and the individual
host that establish and maintain this specificity may provide insights into why individual
hosts vary in production metrics (e.g., feed efficiency or milk fat synthesis), and how to
improve herd performance.

Keywords: fermentation, host specificity, redundancy, resilience, rumen

Introduction

The rumen is the characteristic defining feature and most voluminous digestive organ of ruminant
animals, and the microbial fermentation that occurs within is largely responsible for providing the
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energy and protein needs of the animal, in the form of
volatile fatty acids (VFA) and microbial cell protein, respectively
(Hungate, 1966). Because the ruminal fermentation is of central
importance in ruminant nutrition, the prospects of manipulating
the fermentation to improve the performance of the predom-
inant ruminant livestock species (cattle, sheep and goats) has
long attracted the attention of both microbiologists and animal
scientists (Chalupa, 1977). In addition to its practical impor-
tance, the rumen is an ideal laboratory for elucidating funda-
mental principles of microbial ecology, for several reasons: i)
The organ itself is of manageable size, and is contained within
a unique animal unit; ii) access can readily provided by cannu-
lation surgery; iii) the experimentalist can dictate the types and
amounts of inputs (feed and water), and can accurately measure
outputs; and iv) assembling a number of habitats for replicated
studies is as simple as gathering the desired number of animal
units. None of these useful properties are as easily embodied
in other commonly studied microbial habitats (e.g., soils, lakes,
etc.). And while it is clear that the ruminal microbial commu-
nity is rich in terms of both its biomass density and its species
diversity, this community operates under the same ecological
principles as do the microbial communities in other habitats
(Weimer, 1998).

Central to attaining the goal of improving the ruminal fer-
mentation are fundamental questions regarding variability in the
composition and activities of the ruminal microbiota, and the
extent to which these factors impact overall animal performance.
Historically attempts at ruminal manipulation have focused on
using chemical agents (reviewed by Chalupa, 1977) or enzymes
(reviewed by Beauchemin et al., 2003) as feed additives. However,
recent advances in our understanding of the microbial commu-
nity have allowed us to formulate strategies based on microbial
agents (e.g., probiotics) that might contribute to a re-engineering
of community dynamics and activities. These microbially based
approaches, particularly those based on Domain Bacteria, are the
subject of this analysis.

The Ruminal Microbiota

The ruminal microbial community consists of two groups of
procaryotes (bacteria and archaea) and two groups of eucary-
otes (protists and fungi). Bacteria and protists together account
for well over 90% of the microbial biomass, and the bacteria in
particular have been the focus of most quantitative studies on
community composition.

Following the development of culture techniques suitable
for strictly anaerobic bacteria, extensive efforts were made by
microbiologists—particularly Hungate and others – toward iso-
lation and characterization of ruminal bacteria. The vast majority
of isolates were classifiable into about two dozen species, but
even then it was noted (by comparison of colony counts in agar
roll tubes versus direct enumeration of cells under the micro-
scope) that only ∼8% of the bacterial community was cultivable
using standard anaerobic techniques and media (Bryant and
Burkey, 1953), although later refinements in media and tech-
nique improved this value somewhat (Bryant and Robinson,

1961; Leedle and Hespell, 1980). The development of molecular
methods for characterizing microbial communities by sequenc-
ing genes for small-subunit rRNA genes, and more recently
by metagenomic analysis employing next-generation sequenc-
ing (NGS), have provided a fuller appreciation for the very large
number of bacterial species in a typical rumen. Over the past
5 years there have been over 30 publications that have quantified
the microbial community composition at different taxonomic
levels based on NGS technology alone; these studies have been
well summarized in the recent review of McCann et al. (2014). It
is clear from these studies that community composition data are
influenced by a variety of factors which can be broadly grouped
into those resulting from authentic differences in composition
versus those in which the community composition results were
influenced by the experimental methods employed (Table 1). The
effect of methodology was highlighted by the landmark study of
Henderson et al. (2013), who showed dramatic differences in the
yield, quality, and taxonomic distribution of DNA that resulted
from the use of different DNA isolation methods. Techniques
that employed bead-beating of samples, particularly with phenol
present during the beating step, gave superior yields of high-
quality DNA compared to methods that employed commercial
kits routinely used for DNA isolation from soils or feces. Of par-
ticular importance was their demonstration that, upon analysis
of sequences by Titanium 454 pyrosequencing, isolation meth-
ods that gave low DNA yields also gave community compositions
quite different from those obtained using high-yield isolation
methods.

Further complications result from the use of different methods
of analyzing the isolated DNA. Quantitative real-time PCR stud-
ies with genus-specific primers suggest that the genus Prevotella
can constitute around half of the total bacterial 16S rRNA gene
copy number (Stevenson and Weimer, 2007), a proxy for rela-
tive population size. By contrast, most studies that have employed
pyrotag sequencing suggests that the phylum Bacteroidetes
(which includes Prevotella and many other genera), while of
major abundance, are substantially outnumbered by members of
the phylum Firmicutes (de Menezes et al., 2011; Henderson et al.,
2013; Mohammed et al., 2014). Similar disparities are observable
by cross-comparison of different studies at almost any phyloge-
netic level. Overall, then, we must be cautious in interpreting
quantitative abundance data across studies, and instead should
focus primarily on differences among animals, treatments, and
time-dependent dynamics within individual studies, or perhaps
across studies that at least used similar methods of DNA isolation
and analysis (Henderson et al., 2013).

One of the major problems in associating specific animal pro-
duction responses with microbial community composition is that
a substantial number of animals are typically required to demon-
strate a statistically significant effect of treatment (e.g., diet),
but the number of animals available for microbiological studies
(e.g., ruminally cannulated cows for optimal sampling at a sim-
ilar physiological state) is often limited. One approach to this
dilemma is to conduct production experiments with a large num-
ber of cows, a small subset of which meet the desired sampling
criteria (de Menezes et al., 2011), and then verify a lack of differ-
ences in production metrics between the subset of animals and
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TABLE 1 | Factors that can affect the outcome of microbial community analysis in the rumen, with references for studies in which individual factors
were examined systematically.

Factor Reference

Factors resulting from authentic differences in the subject

Animal type (species, breed, age, stage of ruminal development) Lee et al. (2012), Li et al. (2012), Wu et al. (2012), Henderson et al. (2013), Rey
et al. (2014)

Diet (ration ingredients and chemical composition) Numerous studiesa

Phase of ruminal contents (liquid, suspended solid, ruminal mat, epimural) Numerous studiesb

Plane of nutrition Mohammed et al. (2012b)

Time of sample collection relative to time of feed presentation Li et al. (2009), Welkie et al. (2010)

Ruminal pH Khafipour et al. (2009), Palmonari et al. (2010), Mohammed et al. (2012b), Petri
et al. (2013a,b)

Host specificity (animal individuality) Weimer et al. (2010a,b), Jami and Mizrahi (2012), Mohammed et al. (2012b),
Zhou et al. (2012)

Factors resulting from study methodology

Method of sample collection (ruminal cannula, stomach tube) Lodge-Ivey et al. (2009), Henderson et al. (2013)

Site of sampling (cranial/caudal, dorsal/ventral) Li et al. (2009)

DNA isolation method Henderson et al. (2013)

DNA analysis method (ARISA, qPCR, tRFLP, clone library construction, NGS) de Menezes et al. (2011), Mohammed et al. (2014)

aTajima et al. (2001), Callaway et al. (2010), Fernando et al. (2010), Pitta et al. (2010), Weimer et al. (2010b), Welkie et al. (2010), de Menezes et al. (2011), Khafipour
et al. (2011), Broadway et al. (2012), Mohammed et al. (2012a), Ramirez et al. (2012), Wang et al. (2012), Petri et al. (2013a,b), Zened et al. (2013), Zhang et al. (2013),
Mohammed et al. (2014).

bSadet et al. (2007), Pitta et al. (2010), Welkie et al. (2010), de Menezes et al. (2011), Fouts et al. (2012), Lee et al. (2012), Mohammed et al. (2012a, 2014), Henderson
et al. (2013), Petri et al. (2013a).

the larger set. Such experimental designs may not be appropriate
for all studies, however. For example, ruminally cannulated cows
that provide optimal sampling logistics may not be practical for
methane emissions measurements due to potential losses of fer-
mentation gases from the vicinity of the cannula (de Menezes
et al., 2011; Beauchemin et al., 2012), though this would not be an
issue for animals confined to chambers for collection of gaseous
emissions.

Despite the caveats listed above with regard to methodolo-
gies, it is clear that molecular approaches, particularly NGS,
have tremendously expanded our appreciation for the richness
and complexity of the ruminal microbial community. As these
quantitative phylogenetic assessments mount, we must tackle the
challenge of relating this information to the physiologies and
interrelationships of the different species. This will demand that
we distinguish between microbial populations and their level
of metabolic activity, a problem elegantly addressed using such
novel methodologies as simultaneous DNA/cDNA quantification
(Lettat and Benchaar, 2013) and metatranscriptomic profiling
(Dai et al., 2015). Additionally, it will ultimately be necessary to
isolate and characterize newmicrobial species, particularly phylo-
types revealed to be abundant but which have heretofore escaped
cultivation in the laboratory (Kobayashi, 2006).

Ecological Properties of the Ruminal
Microbiome

Redundancy
With regard to the ruminal microbial community, we can define
redundancy as the overlapping distribution of physiological capa-
bilities across multiple microbial taxa. Conceptually, redundancy

with respect to catabolism can be inferred from a comparison
of the number of degradable substrates (or, for polymeric sub-
strates, the number of different monomeric units and different
linkages between monomeric units) in the feed on the one hand,
and the number of species available to carry out the degrada-
tions. Despite the complexity of feeds ingested by the ruminant,
there are a relatively modest number of potential “degradation
points” (see Tables 2 and 3 for a partial listing of biopolymers
and soluble substrates, respectively). By contrast, the number
of microbial species in the rumen is enormous. For example,
in an oft-cited study Kim et al. (2011) used rarefaction analy-
sis of 16S rRNA sequences archived in the Ribosomal Database
Project to predict that 99.9% species coverage in the rumen
would be obtained from 78,218 bacterial and 24,480 archaeal
sequences, and most NGS studies have obtained 100s–1000s of
operational taxonomic units (OTUs, a proxy for species) per indi-
vidual ruminal sample. Dividing the large number of species
by the relatively small number of degradation points provides
a clear indication that, on average, there are many different
species that can potentially contribute to the degradation of each
substrate or linkage. Moreover, because many species can partic-
ipate in the degradation of multiple substrates or attack multiple
linkages within biopolymers, it is clear that the ruminal com-
munity is, from a metabolic standpoint, highly redundant in its
composition. Although there are no specific surveys that have
determined the number of species capable of degrading individ-
ual substrates in the rumen, it appears that catabolic redundancy
is skewed heavily toward the most abundant and degradable
substrates (or, for biopolymers, their monomeric units), and it
would be surprising indeed if the number of species capable
of degrading glucose did not greatly outnumber those capa-
ble of degrading, for example, oxalate. It thus appears that
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TABLE 2 | Polysaccharides degraded by mixed ruminal microbes and pure culture of ruminal bacteria.

Structural polysaccharides Structure Mixed culture Pure culture

Cellulose β-1,4-glucan Waldo et al. (1972), Van Soest
(1973)

Hungate (1966)

Homoxylan β-1,4-xylan Weimer et al. (2000) Suen et al. (2011)

Arabinoxylan β-1,4-xylan with α-1 → 3 arabinose substituents Hespell and Cotta (1995)

4-O-Methylglucuronoxylan β-1,4-xylan with methylglucuronic acid substituents Dehority (1965)

Pectins (forage) Gradel and Dehority (1972) Gradel and Dehority (1972)

Pectins (citrus) Methoxylated α-1,4-galacturonic acid Gradel and Dehority (1972)

Xyloglucan β-1,4-glucan with β-1,6 xylose substituents Suen et al. (2011)

Storage polysaccharides

Starch α-1.4-glucan Mertens and Lofton (1980) Cotta (1988)

α-1,4 glucan with a-1,6 branching at ∼3–4% of residues

Fructans 2,1-fructan with 1 → 2 glucosyl substituents Ziolecki et al. (1992)

Glucomannan β-(1 → 4)-linked mannose and glucose in a ratio of 1.6:1 Suen et al. (2011), Christopherson
et al. (2014)

Laminarin β(1 → 3):β(1 → 6) glucan (ratio of 3:1) Teather and Wood (1982)

Lichenan Repeating β-1,3 and β-1,4 glucan Christopherson et al. (2014)

Where possible, references were selected to provide a spectrum of compounds within each class, or a spectrum of taxonomy of the degradative strains.

the ruminal community is composed of a mix of generalists
that compete for a large number of abundant substrates, and
specialists that face much less competition for a relatively smaller
number of typically less abundant substrates. The redundancy
of the ruminal microbial community is further suggested by
the fact that, within studies, considerable changes in community
composition often do not translate into changes in fundamen-
tal fermentation metrics such as pH, VFA concentrations or
molar proportions of VFA (Welkie et al., 2010; Sandri et al.,
2014). It must be borne in mind; however, that lack of signif-
icant differences in fermentation variables may reflect, at least
in part, the use of a small number of animals per experimental
treatment.

Aside from these generalizations, a more detailed understand-
ing of redundancy is not easily won, for we are quickly mired in
the difficulty of assigning in situ function to a very large num-
ber of species, only a few of which have been cultured in the
lab. For example, two of the most abundant bacterial genera
in the rumen are Prevotella and Butyrivibrio, and each rumen
typically contains dozens to hundreds of OTUs from each of
these genera, whose rRNA sequences vary sufficiently that cur-
rent taxonomic fashion would classify into a large number of
separate species (Pitta et al., 2010; Li et al., 2012; Mohammed
et al., 2014). Cultured representatives of these genera display
extremely broad degradative capabilities: hydrolysis of proteins
and peptides; hydrolysis of starch and many hemicelluloses, and
fermentation of many amino acids and most sugars (Kelly et al.,
2010; Willems and Collins, 2011). Many of these capabilities can
reside within a single bacterial strain. So while it is clear that rep-
resentatives of these genera can participate in the conversion of
a broad array of substrates, what is not clear is which particu-
lar degradative capability any particular species or strain might
be carrying out in situ, in the presence of a large number of
potential competitors and symbionts. The H2-oxidizing, CO2-
reducing acetogens provide an object lesson in this regard: Such
species have been isolated from the rumen (although they are not

abundant there) but labeling studies have shown that essentially
no acetate is produced from CO2 in the rumen (LeVan et al.,
1998). Moreover, theoretical calculations have shown that these
acetogens would have difficulty competing with methanogens for
available H2, as suggested by their slower growth rates, poorer
affinity for H2, and smaller free energy yield per mol of H2
consumed (Ungerfeld, 2013). Because CO2-reducing acetogens
are very versatile catabolically, it has been suggested that their
presence in the rumen reflects their ability to subsist by degrad-
ing a wide range of organic substrates, rather than by reduc-
tion of CO2 with H2 to acetate (Rieu-Lesme et al., 1996). How
this contention might be proven remains at this point rather
elusive.

Resilience
Like any ecosystem, the organisms of the rumen respond to per-
turbation by internal or external forces. These forces may be
physical (e.g., a change in temperature), chemical (e.g., ruminal
pH, a change in diet composition, or an introduction of a plant
toxin in the feed), or biological (e.g., the input of a non-native
microbe). Perturbations may differ in intensity, frequency and
duration, and these differences play a major role in determining
the nature of themicrobial response. Some perturbations are such
common features of an animal’s existence that they are taken for
granted (e.g., variations in meal patterning or water consump-
tion). Others are less obvious, such as gradual change in forage
quality in a grazing plot over time.

The ruminal response to these internal and external perturba-
tions can be examined using concepts developed from the field
of macroecology. Over the years a complex and often contra-
dictory terminology has evolved among ecologists to describe
these responses. For our purposes, we will use the terminology
of Westman (1978; see Table 3). Responses to perturbation can
be described in terms of the system’s inertia and its resilience.
Inertia refers to system stability (i.e., how well it resists change),
while resilience is a reflection of how the system responds once
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TABLE 3 | Selected examples of reports of soluble substrate degradation by mixed ruminal microbes and pure culture of ruminal bacteria.

Nutritional
strategy

Substrate class Substratesa Reference (mixed culture) Reference (pure culture)

Generalist
Specialist

Aldohexoses Glucose, galactose, mannose Hungate (1966) Hungate (1966)

Aldopentoses Xylose, arabinose, ribose Heald (1952) Rasmussen (1993)

Protein components Amino acids, di-, and tri-peptides Russell (2002) Eschenlauer et al. (2002)

Disaccharides Cellobiose, lactose, maltose, Heald (1952)

Carbohydrate oligomers Cellodextrins, Russell (1985), Shi and Weimer
(1996)

Maltodextrins Kim et al. (1999)

Xylodextrins Cotta (1993)

Nucleic acids DNA, RNA, nucleotide bases Jurtshuk et al. (1958) Cotta (1990)

Ketohexoses Fructose

Deoxyhexoses Rhamnose, fucose, 2-deoxyglucose Rasmussen (1993)

Primary alcohols Methanol, ethanol Pol and Demeyer (1988),
Pradhan and Hemken (1970)

Genthner et al. (1981)

Sugar alcohols, polyols Glycerol, mannitol, 1,2-propanediol Lee et al. (2011) Czerkawski et al. (1984)

Cyclitols myo-inositol, pinitol, quebrachitol Lowry and Kennedy (1995)

Dicarboxyllic acids Malonate, succinate, malate, fumarate Russell and Van Soest (1984)

Hydroxyacids Lactate, malate Hino et al. (1994)

Monolignols Besle et al. (1995)

Phenolic acids Ferulic acid, p-coumaric acid Chesson et al. (1982), Long et al.
(2003)

Tricarboxylic acids Citrate, aconitate, tricarballylate Russell and Van Soest (1984)

Uronic acids Galacturonic acid, glucuronic acid Heald (1952)

Tannins Nelson et al. (1998)

Urea Urea Cook (1976)

Amines Cadaverine, histamine, putrescine,
tyramine

Van Os et al. (1995)

Inorganic electron acceptors Nitrate, sulfate, arsenate Herbel et al. (2002), Van
Zijderveld et al. (2010)

Hydroxyaromatic compounds Phloroglucinol Tsai and Jones (1975), Patel et al.
(1981)

Flavonoids Rutin, quercitin, naringin, hesperidin Simpson et al. (1969)

Plant toxins Allyl cyanide Duncan and Milne (1992)

Fluoroacetate Camboim et al. (2012)

Mimosine Jones and Megarrity (1986) Allison et al. (1992)

Nitro-1-propanol, nitropropionate Majak (1992), Anderson et al.
(1996)

Oxalate Belenguer et al. (2013) Allison et al. (1985)

Mycotoxins Aflatoxin, ochratoxin, zearalenone Kiessling et al. (1984)

Xenobiotic compounds TNT, RDX Fleischmann et al. (2004), Li et al.
(2014)

Substrates are arranged in rough order of their abundance in feeds and forages, which roughly parallels their degradability across a spectrum of nutritional strategies from
generalists to specialists. Where possible, references were selected to provide a spectrum of compounds within each class, or a spectrum of taxonomy of the degradative
strains. For pure cultures, not all individual compounds listed were degraded by all of the pure cultures examined.
aPhloroglucinol, 1,3,5-trihydroxybenzene; RDX, Hexahydro-1,3,5-trinitro-1,3,5-triazine; TNT, 2, 4, 6-trinitrotoluene.

it has been changed. As discussed by Westman (1978), resilience
has four components that describe the extent to which, and the
path by which, an original state may be restored (Table 4). In
macroecology, the properties of inertia and resilience are typically
(and most easily) examined at the level of an individual species,
and are famously illustrated by particular examples of popula-
tion levels of these species over time or across spatial domains
(for example, the spruce budworm in Canadian boreal forests,
or whitefish in the Great Lakes; see Holling, 1973). In habitats

of high species diversity, interactions among organisms become
more and more complex, and unraveling the factors that under-
lie inertia and resilience becomes progressively more difficult for
individual species and more difficult yet for entire communities.
Nevertheless, it is useful to extend these concepts from classi-
cal ecology to the microbial world, including the highly diverse
microbial community of the rumen, as this provides a theoretical
underpinning of discussions on how successfully, and under what
conditions, the ruminal fermentation might be manipulated.
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TABLE 4 | Characteristics that describe the stability and adaptability of the ruminal microbial community

Characteristic Definitiona Likely status in the rumen

Inertia Resistance to change High, based on dosing studies

Resilience Ability to restore its structure following acute or chronic disturbance High, based on exchange studies

Components of resilience:
Elasticity Rapidity of restoration of a stable state following disturbance Relatively high, based on exchange studies

Amplitude Zone from which the system will return to a stable state Very high, based on exchange studies

Hysteresis Degree to which path of restoration is an exact reversal of path of degradation Unknown

Malleability Degree to which stable state established after disturbance differs from the
original steady state

Low

aVerbatim definitions of Westman (1978).

Redundancy and resilience are two concepts from macroe-
cology that appear to apply in microbial ecology as well. Other
concepts may not be quite as readily transferred, at least for
the ruminal habitat. For example, while the rumen may have
a “core microbiome,” it is not clear whether any of its mem-
bers represent keystone species, i.e., species that have a dispro-
portionately large influence on the ecosystem relative to their
abundance, and whose disappearance would imperil ecosystem
function (Mills et al., 1993). Clearly there are keystone func-
tional groups of microbes (e.g., fibrolytics and methanogens), but
within the rumen there are multiple species representing each of
these groups, and this redundancy makes it unlikely that any one
species would have a role in the habitat that would be sufficiently
essential and irreplaceable to merit the designation of keystone
species.

Host Individuality
Producers, especially those holding small herds who spend
a lot of time interacting with their animals, are well aware
of behavioral and production differences among individu-
als. An intriguing question is whether or not these inter-
animal differences are a reflection of, or are even caused
by, differences in the composition of the ruminal micro-
bial community. The potential for a host-specific microbio-
logical uniqueness of the ruminant was first noted in the
protozoal community (Kofoid and MacLennan, 1933; Eadie,
1962), and much later in the fibrolytic bacterial community
(Weimer et al., 1999), prior to the development of advanced
molecular tools to characterize the gut community. The con-
cept of host microbiome individuality has now achieved sub-
stantial attention, primarily as a result of recent studies of
the human gut microbiome. Such studies have revealed that
the human gut contains a “core microbiome” (i.e., a set
of taxa present in all animals in the study), but also a
large number of taxa whose presence or abundance varies
among hosts. In numerous cases, the human gut micro-
biome has been shown to vary in a consistent manner with
such clinical conditions as obesity or various intestinal mal-
adies that may be grouped under the collective term dys-
biosis. These sorts of studies have proliferated into a kind
of microbiological cottage industry, and despite the welter of
breathless press releases for public consumption, we are only
occasionally reminded (e.g., by Hanage, 2014) that the “con-
clusion” of these studies have almost always been based on

association, rather than on a rigorous demonstration of cause and
effect.

As in the case of the human GI tract, it appears that
the rumen of cattle (and probably other ruminant species)
contains a core microbiome (Jami and Mizrahi, 2012;
Petri et al., 2013b). Across studies there is general agree-
ment that the core microbiome of cattle includes members
of the phyla Firmicutes (especially genera Ruminococcus
and Butyrivibrio) and Bacteroidetes (particularly genus
Prevotella), along with some taxa present in lower abun-
dance. Because each study used a relatively small number
of animals, membership in the core microbiome would be
expected to shrink upon inclusion of successively larger
numbers of animals (i.e., upon generalization to a global
population of hosts). Despite this, the core microbiome
remains a useful concept because it focuses attention on
the microbes that are likely to be either essential for, or at
least major contributors to, overall ruminal fermentation.
But we are again confronted with the familiar problems of
assigning specific functions to the members of this commu-
nity, whose cultured representatives often are nutritional
generalists.

Once one gets beyond the core microbiome, it appears that
there is extensive variability among individual animals with
respect to the bacterial species composition of the rumen. Part
of the variation is due to the presence of very low-abundance
OTUs – often as singletons detected by NGS, but substantial
inter-animal variation has been detected even when using rela-
tively low-sensitivity, low-resolution methods such as automated
riborsomal intergenic spacer analysis (ARISA, Welkie et al.,
2010) or denaturing gradient gel electrophoresis (DGGE, Zhou
et al., 2012). Host specificity in the rumen does not appear to
be restricted to Domain Bacteria, as it has been observed for
both the methanogenic archaeal and the protozoal communities
(Zhou et al., 2012).

If the microbial community within each rumen is unique
to its host, several questions arise: At what stage of life is this
community assembled to the point where it can be regarded
as compositionally and functionally unique? What environ-
mental drivers determine the initial establishment and ulti-
mate maintenance of each community? Can community com-
position and its resultant functionality be substantially altered
by some combination of dietary manipulation and exogenous
inoculation?
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Responses to Experimental
Manipulation of the Ruminal Microflora

Insights from Feeding Studies
A variety of microbial strains, some of them marketed com-
mercially, have been tested as feed additives to improve ani-
mal performance, particularly in dairy and beef cattle. Much
of this work has been summarized in excellent reviews (Yoon
and Stern, 1995; Chaucheyras-Durand et al., 2008). Among
the most heavily examined microbes have been Saccharomyces
yeast, the filamentous fungus Aspergillus oryzae (AO), and lactic
acid bacteria. In general, these strains have shown inconsis-
tent production responses that are highly dependent on growth
or lactation stage of the host, feeding level, and diet type.
The few studies that have been conducted regarding persis-
tence of the fed strains suggest that live cultures do not grow
in the rumen, and in fact some of the products are as effec-
tive when added in non-viable forms (or in the case of AO, as
a cell-free extract) as when added to the rations in live form
(Yoon and Stern, 1995).

Even for strains that have shown occasional improvements
in performance, it has proven difficult to convincingly demon-
strate any of the proposed mechanisms of action. These pro-
posed mechanisms range from consuming oxygen, to provid-
ing nutrients (e.g., vitamins or amino acids), to selectively
enhancing growth of particular (usually unidentified) bacte-
rial species. Based on our understanding of microbial ecolog-
ical principles, the lack of persistence of the fed strains is
not surprising, but the occasional demonstration of production
improvement by direct fed microbials is sufficiently intrigu-
ing to warrant a more complete comparison of the microbial
communities in animals fed these products versus control ani-
mals fed the same diet without the fed strains, using more
modern techniques of molecular microbial ecology. There have
been a few studies in this regard. For example, Mosoni et al.
(2007) reported that sheep fed active dry yeast preparations
along with a high-concentrate diet had enhanced levels of 16S
rRNA corresponding to the cellulolytic bacteria Ruminococcus
albus and R. flavefaciens. While the mechanism of action is
not clear, it should be noted that these bacteria are among
the most O2-sensitive ruminal bacteria in culture, and thus
might benefit from the known O2-consuming capacity of the
yeast. On the other hand, there is substantial evidence (dis-
cussed below) that cellulose digestion in the rumen is not lim-
ited by the number or activity of cellulolytic microbes, but
by the accessibility of cellulose, so the effects on the cellu-
lolytic community may be unrelated to the probiotic role of
active dry yeast products, which may be complex and multi-
faceted.

Insights from Ruminal Dosing Studies
A clear indication of the inertia and resilience of the ruminal
community is provided by dosing studies with ruminally cannu-
lated animals. In one of the earliest examples, Varel et al. (1995)
isolated a strain of Clostridium longisporum from the rumen
of a bison, and strain of C. herbivorans from the pig intestinal

tract. Both bacterial strains were more actively cellulolytic in
pure culture than were the common isolates of “classical” rumi-
nal cellulolytic species (Fibrobacter succinogenes, R. albus, and
R. flavefaciens), and on this basis it was hypothesized that
these Clostridium strains would be able to be established in
the rumens of animals fed diets high in cellulosic feeds. Varel
et al. (1995) then dosed fermenter-grown cultures (6 l of cul-
ture, plus 20 l of buffer) into three ruminally cannulated cows
whose rumens had been nearly completely emptied; after dos-
ing the cows were returned to hay feeding. The inoculated
strains had a distinctive colony pigmentation and morphology
that allowed their easy identification on selective agar medium.
Despite the massive inoculation into nearly emptied rumens,
the dosed strains were cleared to undetectable levels, usually
within 24 h of inoculation. While the inoculated strains were
of ruminal or hindgut origin, they represented species that
are not considered abundant in the rumen, which suggested
that these strains were not highly competitive in the rumi-
nal habitat from the start, and under the experimental condi-
tions used, the quantitatively modest residual host community
was easily able to displace the dosed species in relatively short
order.

As summarized in Table 5, other reported dosing experiments
with fibrolytic strains of ruminal origin have proven no more
successful, even when using more modern and sensitive detec-
tion methods. It thus appears that the native (autochthonous)
fibrolytic microbes within each individual rumen are sufficiently
well adapted in their native habitat to outcompete non-native
(allochthonous) strains or species introduced from other habitats,
including other rumens. Within the ruminal habitat, competition
is likely intensified by fiber limitation (i.e., although fiber concen-
tration is high on concentration basis, most fiber is inaccessible).

The situation with non-fibrolytic microbes is not always
as discouraging. Establishment of dosed strains has in a few
cases been dramatically successful. Undoubtedly the premier
example of a successful ruminal introduction is provided by
the case of Synergistes jonesii. The tropical leguminous shrub
Leucaena leucocephala contains high levels of the non-protein
amino acid mimosine, which is ruminally converted to the
goitrogenic 3,4-dihydroxypyridine. Jones and Megarrity (1986)
noted that Indonesian goats were sensitive to mimosine poi-
soning, while Hawaiian goats were not. They further showed
that a single oral dosing of ruminal contents from these resis-
tant Hawaiian goats into Indonesian goats conferred resis-
tance to mimosine poisoning. Allison et al. (1992) isolated
the microbial agent, a novel bacterial species they named
Synergistes jonesii, and demonstrated that the bacterium was
only capable of using mimosine and two other amino acids
as growth substrates. Subsequent studies revealed that inocu-
lation of this bacterium either as a pure culture, or as rumi-
nal contents from mimosine-resistant animals, readily con-
ferred mimosine resistance to the recipient animals (Hammond,
1995).

A second example of a successful inoculation concerns
toxicity of fluoroacetate, a secondary plant metabolite that
blocks the action of citrate synthase, an essential enzyme of
the tricarboxylic acid cycle. Gregg et al. (1998) successfully
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TABLE 5 | Ruminal dosing experiments with fibrolytic microbial strains.

Dosed strain Source Recipient
animals

Result Notes Reference

Clostridium longisporum
B6405 and C. herbivorans
54408

Bison (B6405),
Pig (54408)

Three cannulated
6 years-old cows

Dosed strains not detected (<103

Cells/mL) within 24–48 h of dosing
Rumen nearly emptied prior to
dosing, and feeding resumed
immediately after dosing.

Varel et al. (1995)

Ruminococcus albus (Y1,
LP9155 or AR72), or R.
flavefaciens (SY3 or AR67)

Lab strains Total of 16
cannulated adult
Merino sheep

Strains dosed daily for 9 days at 5 × 1012

cells/dose reached abundances of up to
6.5% of the bacterial community but did
not persist.

No improvement observed in dry
matter digestibility of Rhodes grass
incubated in situ during dosing
period.

Krause et al.
(2001)

R. flavefaciens
NJ + probiotic

Wild moose Six cannulated
non-lactating
dairy cows

Dosed strain (6.8 × 1011 cells) did not
persist.

Dosed strain declined by ∼103-fold
within 24 h and was undetectable by
50 h after dosing.

Chiquette et al.
(2007b)

Calves
(21–35 days old)

Dosed strain showed weak persistence. Dosed strain detected at low levels
(∼102 cells/mL) 7 days after
cessation of dosing.

R. flavefaciens 8/94-32 Norwegian
reindeer

Three starved
male reindeer

Dosed strain did not persist. Population size of the abundant
Ruminococcaceae family did not
change. Some change in overall
bacterial community composition
observed.

Praesteng et al.
(2013)

R. flavefaciens FD-1 Lab strain Six lactating
Murrah buffaloes

Equivocal results: Population of R.
flavefaciens increased from
1.46 × 107/mL prior to dosing to
2.52 × 107/mL during the week after
dosing concluded, but also increased in
control buffaloes fed autoclaved cultures.

Very heavy oral supplementation of
dosed strain [9 × 1014 cells (sic) on
alternate days for 1 month].

Kumar and Sirohi
(2013)

Ruminal fungi Orpinomyces
sp. C-14 or Piromyces sp.
WNG-12

Cattle 15 lactating
Murrah buffaloes

Increased feed digestibility and up to
5.6% improvement in milk production.

Zoospore density higher in dosed
animals, but level of dosage not
reported.

Saxena et al.
(2010)

TABLE 6 | Comparison of niche filling and niche replacement.

Niche filling Niche replacement

Initial status Niche unoccupied Niche occupied, sometimes by
several competitors

Dosing and
results

Single dosing often sufficient
to establish dosed strain

Multiple doses sometimes (but
often not) sufficient to establish
dosed strain

Examples Synergistes jonesii to impart
resistance to mimosine
toxicity

Most commercial probiotics;
Experimental strains of fibrolytics
and homoacetogens

introduced a dehalogenase gene from a Pseudomonas strain
into a ruminally derived strain of Butyrivibrio fibrisolvens, and
then successfully established the recombinant strain by dos-
ing into sheep, which subsequently exhibited retention of the
strain over several months along with a markedly enhanced
tolerance to fluoroacetate. In the case of both mimosine and
fluoroacetate protection, inoculation success is clearly the result
of the dosed strain filling an open niche, aided by the strain’s
highly specialized metabolic capability and a substantial con-
centration of susceptible substrate. Interestingly, more recent
work has revealed that fluoroacetate resistance appears to have
developed naturally in some ruminal bacteria (Camboim et al.,
2012).

Perhaps we should not be surprised by the general diffi-
culty of establishing a single allochthonous microbial strain
within a given rumen, unless that strain can fill an open niche

(Table 6). At the risk of anthropomorphism, we may view
the problem in more familiar sociological terms: In addition
to abiotic stressors, an introduced strain is likely to encounter
many enemies (direct competitors as well as their co-adapted
symbionts, with whom they may have established productive
mutualistic relationships worth defending) and few friends (unaf-
filiated microbes that might immediately benefit from coop-
erating with the introduced strain). This raises the question:
can inoculation success be enhanced by introducing more com-
plex assemblages, or even entire communities, of co-adapted
species?

Insights from Exchanges of Ruminal
Contents
The possibility that introduced strains can be established more
effectively if accompanied by co-adapted community members
can be examined via experiments in which ruminal contents
are exchanged between pairs of ruminally cannulated animals.
Early ruminal contents exchanges were conducted to test for
specific physiological or nutritional outcomes rather than effects
on the ruminal microbial community. Satter and Bringe (1969)
exchanged ruminal contents between Holstein cows fed diets
high in forages versus high in concentrates, and also switched
the diets themselves coincident with the contents exchange.
They observed that it took 5–6 days for the milk-fat depress-
ing effects of the high-concentrate diet to be expressed in the
recipient cow, and concluded that metabolic changes (includ-
ing possible adaptation of the ruminal microbial community)
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were more important in controlling milk fat synthesis than were
the amount and proportions of different VFA (acetate and pro-
pionate), which differed between the exchanged contents and
would be expected to act more immediately. Interestingly, these
researchers conducted additional comparative experiments in
which abrupt dietary switches were performed without ruminal
contents exchange, but they did not conduct ruminal contents
exchanges while maintaining the cows on their separate diets.
Cockrem et al. (1987) exchanged ruminal contents in varying
amounts between cattle divergently selected for bloat suscepti-
bility, and noted that susceptibility was determined primarily by
ruminal contents volume (i.e., the extent to which the rumens
were re-filled) rather than by the source of the added rumi-
nal fluid. Cole (1991) demonstrated that exchange of ∼50%
of ruminal contents through the cannulas of fed and fasted
sheep (which would be expected to have high and low rumen
microbial activity, respectively) had no measurable effect on
feed intake or on various digestion parameters upon return
of the animals to feed. These authors concluded that improv-
ing “rumen function” (including the ruminal fermentation) is
unlikely to improve feed intake, and thus would not improve
production. Taken together, these early studies suggested that
the ruminal microbial community might be highly resilient and
host-specific.

The above exchange studies demonstrated the adaptability
of animals in response to dramatic changes in ruminal con-
tents, but did not directly address the microbiology of the rumen
prior to or following the exchange. More recent development of
methods for characterizing the microbial community has per-
mitted such examinations. Obviously it is not possible to ster-
ilize the rumen prior to or during the exchange to remove the
resident microbiota from the recipient animal, but it is possi-
ble to remove almost the entire contents of the rumen, leav-
ing behind a modest portion (a few per cent) of the original
resident community that can then be challenged with a rela-
tively massive amount of a co-adapted microbial community
from a donor animal. Such studies have shown that retention
of even a small fraction of the original resident community is
sufficient to facilitate (within days to weeks) a reassortment of
the bacterial community to resemble that of the cow prior to
contents exchange, even when the donor inocula are obtained
from herd mates fed the same diet and housed under appar-
ently identical conditions (Weimer et al., 2010a). One inter-
esting and unexpected result of these exchange experiments
was that ruminal pH and VFA profiles returned to those of
the recipient cows much more quickly (within 1 day) than
did the bacterial community composition. This indicates that
the animal exerts ultimate control over its ruminal chemistry
through salivary buffering and through absorption and passage
of VFA, and in fact this may be one of the means by which
the animal provides its own selective pressure on the microbial
community. Future experiments could include the use of pairs
of animals that are inherently more similar in ruminal chem-
istry, and could explore the response of all the major microbial
groups (not just bacteria), with more detailed characterization
using NGS.

Microbial Ecology and the Prospects
for Establishing Allochthonous Strains
in the Rumen

The essential nutrient transformations within the rumen were
identified in the 1950s and 1960s through the pioneering efforts
of Hungate and others. From these studies it is apparent that,
from an energy conservation and nutrient retention standpoint,
the primary limitations to the ruminal fermentation are (1) the
relatively slow rate and incomplete extent of fiber fermentation;
(2) inefficient nitrogen utilization due to loss of feed protein by
unproductive ruminal fermentation to ammonia; and (3) loss of
feed energy to methane as a result of interspecies hydrogen trans-
fer reactions. Ever since, rumen microbiologists have made these
three limitations the foci of efforts to manipulate the ruminal
fermentation.

Overall, there are two primary strategies for manipulating a
given aspect of the ruminal fermentation: modifying the ration
(including altering the proportions and compositions of the main
ration ingredients as well as adding various chemical modifiers,
enzymes, etc.), and directly altering the composition of themicro-
bial community (primarily via feeding or addition of probiotics).
This review shall consider only the latter strategy, with an empha-
sis on its likelihood for success based on our understanding of the
principles of microbial ecology.

Dietary supplementation with probiotics has become fash-
ionable in human nutrition, and is practiced to some extent in
livestock agriculture in developed countries. The essential aim of
probiotic feeding is to provide a more balanced and harmonious
gut microbial community that improves a suite of gut functions
including digestion and immune response. In many cases, probi-
otic strains appear to function transiently in the community and
their effects are sustained only by frequent (daily or continuous)
feeding – a marketing executive’s dream comes true. Successfully
establishing a probiotic strain would require that the strain
surmount numerous challenges: surviving the stresses of deliv-
ery and inoculation (culture storage, air exposure, mixture into
feeds); locating and accessing its food source within the rumen;
competing effectively against community members already well-
established to the unique characteristics of an individual ruminal
habitat; avoiding predation and antagonistic agents (e.g., bac-
teriocins); establishing productive mutualistic interaction with
particular community members; and growing at a rate sufficient
to exceed the dilution rate of ruminal contents.

The general characteristics of the ruminal habitat and the
associated challenges in establishing an allochthonous microbe
therein parallel in many ways those of another familiar and eco-
nomically important habitat, the anaerobic sludge digester used
in biological waste treatment. In both habitats, a complex mix-
ture of substrates of high organic matter content are degraded
under semi-continuous conditions by a dense and diverse micro-
bial community that operates at several trophic levels. Because
of the large number of potential interactions among community
members, establishing a new member in the community would
likely require a number of accommodations by the existing com-
munity, and a failure of any one of these may be sufficient to
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prevent retention and establishment of the new member. Thus
it is instructive that there are few reports (Duran et al., 2006; Lu
et al., 2009) describing the successful introduction of a probiotic
microbial strain into the sludge digester community, and these
have only been demonstrated at laboratory scale under which
reactor conditions were controlled over a relatively narrow range.

Enhancing Fiber Fermentation
Enhancing plant cell wall digestibility in the rumen by micro-
bial intervention has proven remarkably difficult. Plant fiber is a
complex matrix of cellulose, hemicellulose, and lignin, along with
smaller amounts of pectins and protein. Lignin itself is essen-
tially indigestible under anaerobic conditions, but its effects do
not end there. It also serves as a physical barrier that limits the
accessibility of ruminal microbes and their fibrolytic enzymes
to otherwise digestible structural polysaccharides. Digestibility
can be enhanced by pretreatments (e.g., ammonia) that act
primarily by removing lignin or disrupting its chemical bond-
ing to hemicellulose, but such pretreatments generally are not
cost effective for ruminant agriculture. Ruminants rely instead
on an effective physical pretreatment (mastication and rumi-
nation) to improve the digestibility of relatively indigestible
plant fiber, largely by increasing available surface area for enzy-
matic and microbial attack (Van Soest, 1994). There is ample
experimental evidence that structural polysaccharide degrada-
tion follows first-order kinetics with respect to substrate con-
centration (Waldo et al., 1972; Van Soest, 1973), and its rate
is limited by available surface area (Weimer et al., 1990), and
not by the abundance and activity of the microbial popula-
tion. In fact, several studies have revealed that the in vitro
digestion rate of both neutral detergent fiber and cellulose
does not decline until ruminal contents are diluted approxi-
mately five- or sixfold (Pell and Schofield, 1993; Mouriño et al.,
2001).

If the rate and extent of fiber digestion are limited by substrate
accessibility, one would expect that artificial augmentation of the
ruminal community by exogenous addition of fibrolytic microbes
would not discernibly improve fiber digestion, and dosing experi-
ments by and large have supported this expectation. Most studies
have been aimed specifically at quantifying persistence of dosed
strains, without any reported measure of animal performance.
Of these, the only report (Chiquette et al., 2007b; Table 4) in
which dosing of a fibrolytic bacterial strain was associated with
maintaining population sizes of >107 cells/mL for the repre-
sented species beyond the dosing period, used an aggressive (and
frankly incredible) dosing schedule (reportedly 9 × 1014 cells per
dose on alternate days over a 30 days period). In cases where
fiber digestibility has been measured, dosing has not improved
digestibility or animal performance even during periods of fre-
quent dosing (Krause et al., 2001). These results are in accord
with the work of Dehority and Tirabasso (1998), who showed that
increasing the cell density of cellulolytic bacteria in the rumen
10-fold by feeding a diet high in purified wood cellulose did not
improve in situ digestibility of alfalfa fiber.

Recent work with ruminal fungi suggest that this microbial
group may show promise as a probiotic for improved fiber diges-
tion (Puniya et al., 2014). Ruminal fungi typically account for

only a few per cent of total microbial biomass in the rumen, but
their unique ability to combine physical disruption of plant tissue
by the growing appresoria, with enzymatic hydrolysis of cell wall
polysaccharides may increase in available surface area of fiber that
currently limits its rate of digestion in the rumen. Several early
studies showed very modest improvement in nutrient digestibil-
ity upon dosing with ruminal fungi, but strain persistence was
not measured. However, Saxena et al. (2010) reported modest
improvement in milk production, as well as increased ruminal
zoospore densities, in water buffalo dosed weekly for 180 days
with two different fungal strains, (Table 4); unfortunately, the
specific abundance of the individual species was not measured.

Decreasing Nitrogen Losses
Under modern agricultural production conditions, feed nitro-
gen (primarily in the form of protein) is inefficiently used
by ruminants. It is primarily excreted as ammonia, which
acts variously as an air pollutant and a substrate for nitrifi-
cation to nitrate, which is both a water pollutant and a sub-
strate for respiratory denitrification that yields nitrous oxide, a
potent greenhouse gas, as an ancillary product. Use of biolog-
ical approaches to decrease ruminal protein degradation have
received relatively little attention, in part because non-biological
interventions are available (e.g., roasting of soybeans to reduce
protein reactivity), and in part because there appear to be
few viable biological approaches. Decreasing ruminal proteol-
ysis is challenging because the functionally redundant rumi-
nal community contains many species that produce a variety
of proteases, and that further ferment amino acids and di-
and tripeptides. Some species can potentially be more trou-
blesome than others. Pure cultures of some obligate amino
acid fermenters (sometimes called hyper ammonia-producing
bacteria, HAB) have specific rates of ammonia production up
to 100-fold higher than do Prevotella species (Russell, 2002).
However, the overall contribution of the HAB may be minor,
as the classical HAB species (Clostridium sticklandii, Clostridium
aminophilum, and Peptostreptococcus anaerobius) seem to com-
prise only a small fraction of the ruminal bacterial commu-
nity [<0.7% of 16S rRNA gene copy number, as determined
by qPCR (Wallace, 1996), while Prevotella is perhaps the
most abundant genus in the rumen (Stevenson and Weimer,
2007)].

Methane Mitigation
Methane is the most fully reduced form of carbon, and thus
its production is an ideal electron sink for balancing fermen-
tations of organic matter in the rumen and other microbial
habitats. However, enteric methanogenesis in ruminants repre-
sents a loss of 2–14% of feed energy, and is widely regarded as
a substantial contributor to anthropogenic greenhouse gas emis-
sions (McAllister et al., 1996). Much effort has been expended in
investigating strategies for redirecting the flux of reducing equiv-
alents in the rumen toward alternative electron acceptors, either
through the use of chemical agents that inhibit methanogens or
their symbionts, or through the direct addition or feeding of var-
ious exogenous electron acceptors. The chemical inhibitors often
work well in vitro but show smaller and more transient effects
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in vivo (McAllister et al., 1996). Alternative electron acceptors
(e.g., nitrate, sulfate, or fumarate) can potentially be more effec-
tive on a long-term basis, but their use in vivo is not practical due
their high cost or toxicity issues (particularly H2S produced by
sulfate reduction), and the potential requirement for additional
inoculation of a direct-fed microbial (Jeyanathan et al., 2014). An
alternative approach is to directly inhibit ruminal methanogens
and allow the microbial community to redirect electron flow to
other acceptors, especially C3–C6 VFA. However, careful in vitro
product balance studies with methane inhibited cultures do not
yield a full accounting of this electron flow (see Ungerfeld, 2015,
for a detailed meta-analysis), suggesting that it may be necessary
to employ additional interventions to realize significant methane
mitigation.

One such strategy that has long interested microbiol-
ogists is to promote reductive acetogenesis (4 H2 + 2
CO2 → CH3COOH + 2 H2O) in the rumen, which would
enhance the retention of feed energy in a form readily utiliz-
able by the host. However, ruminal methanogens successfully fill
the niche of H2 utilization in the rumen, and their kinetic and
thermodynamic advantages over known acetogens are well estab-
lished from both pure culture comparisons, and mixed culture
studies conducted in vitro (Fievez et al., 1999). On this basis,
one could predict that acetogens would not establish themselves
when exogenously added into the rumen. In vitro experiments
have largely confirmed these expectations: Acetogens are known
to colonize the rumen early in development (Morvan et al., 1994)
and can be sustained in gnotobiotic lambs, but quickly disappear
upon colonization by methanogens (Gagen et al., 2012). Perhaps
the most interesting aspect of the methanogenesis/acetogenesis
story is the fact that, as pointed out by Jeyanathan et al. (2014)
acetogens can outcompete methanogens in the gut environ-
ments of some non-ruminant animals ranging from termites to
wallabies to humans. Understanding the basis of competitive
success of acetogens in these species may inform future efforts
to mitigate methanogenesis in ruminants (Wright and Klieve,
2011).

Because of its intimate link to decreased feed efficiency, there
have been some efforts to characterizing the methanogenic com-
munity of animals that differ in feed efficiency. Studies have
revealed that beef steers grouped as low- or high-efficiency (high
and low residual feed intake, respectively) differed in the rela-
tive proportions of individual methanogenic OTUs (viz., higher
OTU diversity and higher densities ofMethanospaera stadtmanae
andMethanobrevibacter sp. strain Amb4 in less efficient animals),
even though the total density of methanogenic cells did not dif-
fer (Zhou et al., 2009). How these proportional differences may
be related to differing methane emissions among animals is not
clear. Do particular methanogenic OTUs differ in methane out-
put per unit of cell mass? Can efficiency be increased by ridding
the community of specific OTUs?

Answering these questions will ultimately require isolation
of individual methanogenic OTUs and performing quantitative
comparisons of growth and product formation. In the meantime,
culture-independent methods can provide useful perspective on
how methane emissions might be de-coupled from the abun-
dance of the total methanogenic population. Poulsen et al. (2013)

have recently shown that dietary supplementation with rapeseed
oil (RSO, 33 g/kg DM) decreased methane emissions from dairy
cows by 6.2% and substantially decreased the relative popula-
tion size of one specific group of methanogens, the relatively
abundant Methanomassiliicoccales (formerly Rumen Cluster C –
Thermoplasmata; Iino et al., 2013). Metatranscriptomic data sug-
gest that this group (no representatives of which have been
isolated) are methylotrophs that utilize either methylamines
(MA) or methanol as methanogenic substrates, and that tran-
scription of two Methanomassiliicoccales-specific methyl-CoM
reductase genes decreased upon RSO supplementation. Ruminal
concentrations of MA were significantly higher under RSO
supplementation (0.22 mM vs. 0.04 mM without supplemen-
tation), suggesting that MA (possibly produced from choline
and related compounds) are normal methanogenic precursors
in vivo. Because the flux and passage of MA in the rumen is
not known, it is not yet clear if these cellular-level decreases
are sufficient to completely account for the observed decrease
in methane emitted by the animal, nor is it clear whether
the Methanomassiliicoccales may have additional capabilities
to produce methane from other feed components. Regardless,
this study reinforces the notion that the methanogens are not
a physiologically monolithic group, and that methane mitiga-
tion strategies might be productively directed toward specific
methanogenic subpopulations. Alternatively, Shi et al. (2014)
have reported that, while sheep that produce high or low amounts
of methane have similar levels of methanogens, expression of
certain methanogen-specific genes is elevated in the higher-
emitting animals. This suggests that strategies for mitigating
methane emissions might be expanded to include regulation of
gene expression rather than attempts to control methanogen
population sizes per se.

Other Potential Microbial Interventions
Ruminal acidosis resulting from sudden increases in the amount
or form of dietary starch is a serious health issue that also reduces
productivity in both dairy and beef cattle. Acidosis can occur
in both an acute and sub-acute form, and is typically ascribed
to the activity of bacterial species such as Streptococcus bovis
that produce lactic acid as a major fermentation end product
(Russell, 2002). Lactic acid has a pKa of ∼3.8 and is thus a much
stronger acid than are the volatile fatty acids (pKa∼4.8). Use of
probiotic bacterial strains that consume lactic acid has been pro-
posed as a means of attenuating acidosis, with particular efforts
focused on Megasphaera elsdenii strain NCIMB 41125 (exten-
sively reviewed by Meissner et al., 2010). Dosing experiments
conducted on dairy cows at various stages of lactation and lev-
els of production and fed different diets have yielded inconsistent
effects on ruminal pH and on milk production and composi-
tion, although decreases in ruminal lactate concentrations were
observed. Because relatively few ruminal microbial species are
known to actively ferment lactate, it would seem that lactate uti-
lization might provide M. elsdenii with an opportunity to fill an
available niche in the rumen, but additional studies are necessary
to quantify persistence of the dosed species. Interestingly, qPCR
studies have revealed thatM. elsdenii is barely detectable in most
ruminal samples tested, although its abundance was strongly
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elevated under conditions of both subacute acidosis (Khafipour
et al., 2009) and milk fat depression (MFD; see Palmonari et al.,
2010; Weimer et al., 2010b; Mohammed et al., 2014). Further
research is needed to determine if this species has a causative role
in MFD, or if it is merely associated with MFD through some
other primary driver.

A second strategy to control acidosis is via probiotic addition
of bacteria that rapidly ferment starch but do not produce appre-
ciable amounts of lactic acid. Chiquette et al. (2007a) ruminally
dosed Prevotella bryantii 25A daily for a 10 week period (3 week
prepartum to 7 week postpartum) into cows fed a diet whose
forage:concentrate ratio was 40:60. Relative to control cows, lac-
tate concentrations in the dosed cows were halved (0.7 mM
vs. 1.4 mM), VFA concentrations were higher, and there was
a tendency toward increased milk fat percentage. Interestingly,
ruminal ammonia was also elevated in the dosed strains, sug-
gesting perhaps that the dosed strain contributed to undesirable
degradation of protein and its hydrolytic products. Unfortunately
the abundance or persistence of the dosed strain in the rumenwas
not quantified.

Practical Considerations for Probiotics
For any manipulation involving a probiotic, identification of
the candidate microbial agent through laboratory and animal
trials is just the beginning. Additional research is necessary
to develop a formulation that retains activity over the course
of shipping, storage and application under production condi-
tions. A large body of information on formulation (often pro-
prietary) has been gathered for specific microbial products in
other applications (probiotics for human use, silage inoculants,
etc.), and formulation technology has been developed for cer-
tain ruminal probiotics (particularly yeast and lactic acid bac-
teria). However, probiotic products based on microbes isolated
from the rumen itself may face additional challenges due to
their often strictly anaerobic nature, poor viability retention in

stationary phase, and lack of a highly resistant resting state
(spores, cysts, etc.) to resist environmental insult. Perhaps the
most detailed formulation research on a true ruminal microbe
has been obtained with Megasphaera elsdenii, noted above for
its potential to control lactic acidosis (Meissner et al., 2010).
This bacterium has been successfully packaged into a pouch
containing separate compartments for dried cells and growth
medium; squeezing of the pouch combines the ingredients at
the point of use in a readily incubated form under anaero-
bic conditons. Once grown, the culture was dosed into the
rumens of cannulated cows in research studies, but it is not
clear how effectively it can be introduced into animals via
feeding.

Concluding Remarks

From the above discussion, several salient points emerge. First,
the microbial community is phylogenetically diverse, metabol-
ically redundant, and both compositionally and functionally
resilient. Second, the stability and host specificity of the commu-
nity provide substantial barriers to manipulation of community
composition and function. Third, successes in modifying the
microbial community to improve animal performance have thus
far been most dramatic for specialist microbes that fill an other-
wise unoccupied niche. Fourth, recent advances in determining
community composition and diversity have far outpaced our abil-
ity (or willingness) to dissect out the physiological and ecological
roles of individual phylotypes, particularly those that impact ani-
mal performance. Elucidating these roles and exploiting them
to manipulate the composition and function of the ruminal
microbiome represents probably the most challenging and most
important means by which microbiologists can advance the pro-
ductivity, profitability, and sustainability of ruminant animal
agriculture.

References

Allison, M. J., Dawson, K. A., Mayberry, W. R., and Foss, J. G. (1985).
Oxalobacter formigenes gen. nov., sp. nov: oxalate-degrading anaerobes that
inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7. doi: 10.1007/BF004
46731

Allison, M. J., Mayberry, W. R., McSweeney, C. S., and Stahl, D. A. (1992).
Synergistes jonesii, gen. nov., sp. nov: a rumen bacterium that degrades
toxic pyridinediols. Syst. Appl. Microbiol. 15, 522–529. doi: 10.1016/S0723-
2020(11)80111-6

Anderson, R. C., Rasmussen, M. A., and Allison, M. J. (1996). Enrichment and
isolation of a nitropropanol-metabolizing bacterium from the rumen. Appl.
Environ. Microbiol. 62, 3885–3886.

Beauchemin, K. A., Coates, T., Farr, B., and McGinn, S. M. (2012). Technical note:
can the sulfur hexafluoride tracer gas technique be used to accurately measure
enteric methane production from ruminally cannulated cattle? J. Anim. Sci. 90,
2727–2732. doi: 10.2527/jas.2011-4681

Beauchemin, K. A., Colombatto, D. C., Morgavi, D. P., and Yang, W. Z. (2003).
Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants.
J. Anim. Sci. 81(Suppl. 2), E37–E47.

Belenguer, A., Ben Bati, M., Hervas, G., Toral, P. G., Yanez-Ruiz, D. R., and
Frutos, P. (2013). Impact of oxalic acid on rumen function and bacte-
rial community in sheep. Animal 7, 940–947. doi: 10.1017/S17517311120
02455

Besle, J. M., Jouany, J. P., and Cornu, A. (1995). Transformations of structural
phenylpropanoids during cell wall digestion. FEMS Microbiol. Rev. 16, 33–52.
doi: 10.1111/j.1574-6976.1995.tb00154.x

Broadway, P., Callaway, T., Carroll, J., Donaldson, J. R., Rathmann, R. J.,
Johnson, B. J., et al. (2012). Evaluation of the rumen bacterial diversity of
cattle fed diets containing citrus pulp pellets. Agric. Food Anal. Bacteriol. 2,
297–308.

Bryant, M. P., and Burkey, L. A. (1953). Cultural methods and some char-
acteristics of some of the more numerous groups of bacteria in the
bovine rumen. J. Dairy Sci. 36, 205–217. doi: 10.3168/jds.S0022-0302(53)9
1482-9

Bryant, M. P., and Robinson, I. M. (1961). An improved nonselective culture
medium for ruminal bacteria and its use in determining diurnal variation
in numbers of bacteria in the rumen. J. Dairy Sci. 44, 1446–1456. doi:
10.3168/jds.S0022-0302(61)89906-2

Callaway, T. R., Dowd, S. E., Edrington, T. S., Anderson, R. C., Krueger, N., Bauer,
N., et al. (2010). Evaluation of bacterial diversity in the rumen and feces of cat-
tle fed different levels of dried distillers grains plus solubles. J. Anim. Sci. 88,
3977–3983. doi: 10.2527/jas.2010-2900

Camboim, E. K. A., Almeida, A. P., Tadra-Sfeir, M. Z., Junior, F. G., Andrade, P. P.,
McSweeney, C. S., et al. (2012). Isolation and identification of sodium fluo-
roacetate degrading bacteria from caprine rumen in Brazil. Sci. World J. 2012,
178254. doi: 10.1100/2012/178254

Chalupa, W. (1977). Manipulating rumen fermentation. J. Anim Sci. 46, 585–599.

Frontiers in Microbiology | www.frontiersin.org 12 April 2015 | Volume 6 | Article 296

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Weimer Redundancy, resilience, and individuality

Chaucheyras-Durand, F., Walker, N. D., and Bach, A. D. (2008). Effects of active
dry yeasts on the rumen microbial ecosystem: past, present and future. Anim.
Feed Sci. Technol. 145, 5–26. doi: 10.1016/j.anifeedsci.2007.04.019

Chesson, A., Stewart, C. S., and Wallace, R. J. (1982). Influence of plant pheno-
lic acids on growth and cellulolytic activity of rumen bacteria. Appl. Environ.
Microbiol. 44, 597–603.

Chiquette, J., Allison, M. J., and Rasmussen, M. A. (2007a). Prevotella bryantii 25A
used as a probiotic in early-lactation dairy cows: effect on ruminal fermenta-
tion characteristics, milk production, and milk composition. J. Dairy Sci. 91,
3536–3543. doi: 10.3168/jds.2007-0849

Chiquette, J., Talbot, G., Markwell, F., Nili, N., and Forster, R. J. (2007b). Repeated
ruminal dosing of Ruminococcus flavefaciensNJ along with a probiotic mixture
in forage or concentrate-fed dairy cows: effect on ruminal fermentation, cellu-
lolytic populations and in sacco digestibility.Can. J. Anim. Sci. 87, 237–249. doi:
10.4141/A06-066

Christopherson, M., Dawson, J., Stevenson, D. M., Cunningham, A.,
Bramhacharya, S., Weimer, P. J., et al. (2014). Unique aspects of fiber
degradation by the ruminal ethanologen Ruminococcus albus 7 revealed
by physiological and transcriptomic analysis. BMC Genomics 15:1066. doi:
10.1186/1471-2164-15-1066

Cockrem, F. R. M., McIntosh, J. T., Mclaren, R. D., and Morris, C. A. (1987).
The relationship between volume of rumen contents and genetic susceptibil-
ity to pasture bloat in cattle. Anim. Prod. 45, 43–47. doi: 10.1017/S00033561000
36606

Cole, N. A. (1991). Effects of animal-to-animal exchange of ruminal contents on
the feed intake and ruminal characteristics of fed and fasted lambs. J. Anim. Sci.
69, 1795–1803.

Cook, A. R. (1976). Urease activity in the rumen of sheep and the isolation of
ureolytic bacteria. J. Gen. Microbiol. 92, 32–48. doi: 10.1099/00221287-92-1-32

Cotta, M. A. (1988). Amylolytic activity of selected species of ruminal bacteria.
Appl. Environ. Microbiol. 54, 772–776.

Cotta, M. A. (1990). Utilization of nucleic acids by Selenomonas ruminantium and
other ruminal bacteria. Appl. Environ. Microbiol. 56, 3867–3870.

Cotta, M. A. (1993). Utilization of xylooligosaccharides by selected ruminal bacte-
ria. Appl. Environ. Microbiol. 59, 3557–3563.

Czerkawski, J. W., Piatkova, M., and Breckinridge, G. (1984). Microbial
metabolism of 1,2-propanediol studied by the Rumen Simulation Technique
(Rusitec). J. Appl. Bacteriol. 16, 8–94. doi: 10.1111/j.1365-2672.1984.tb0
4698.x

Dai, X., Tian, Y., Li, J., Su, X., Wang, X., Zhao, S., et al. (2015). Metatranscriptomic
analyses of plant cell wall polysaccharide degradation bymicroorganisms in cow
rumen. Appl. Environ. Microbiol. 81, 1375–1386. doi: 10.1128/AEM.03682-14

Dehority, B. A. (1965). Degradation and utilization of isolated hemicellulose by
pure cultures of cellulolytic rumen bacteria. J. Bacteriol. 89, 1515–1520.

Dehority, B. A., and Tirabasso, P. A. (1998). Effect of ruminal cellulolytic bac-
terial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 76,
2905–2911.

de Menezes, A. B., Lewis, E., O’Donovan, M., O’Neill, B., Clipson, N., and
Doyle, E. M. (2011). Microbiome analysis of dairy cows fed pasture or
total mixed rations. FEMS Microbiol. Ecol. 78, 256–265. doi: 10.1111/j.1574-
6941.2011.01151.x

Duncan, A. J., and Milne, J. A. (1992). Rumen microbial degradation of allyl
cyanide as a possible explanation for the tolerance of sheep to brassica-derived
glucosinolates. J. Sci. Food Agric. 58, 15–19. doi: 10.1002/jsfa.2740580104

Duran, M., Tepe, N., Yurtsever, D., Punzi, V., Bruno, C., and Mehta, R. (2006).
Bioaugmenting anaerobic digestion of biosolidswith selected strains of Bacillus,
Pseudomonas, and Actinomycetes species for increased methanogenesis and
odor control. Appl. Microbiol. Biotechnol. 73, 960–966. doi: 10.1007/s00253-
006-0548-6

Eadie. J. M. (1962). Inter-relationships between certain rumen ciliate protozoa.
J. Gen. Microbiol. 29, 579–588. doi: 10.1099/00221287-29-4-579

Eschenlauer, S. C. P., McKain, N., Walker, N. D., McEwan, N. R., Newbold, C. J.,
and Wallace, R. J. (2002). Ammonia production by ruminal microorganisms
and numeration, isolation, and characterization of bacteria capable of growth
on peptides and amino acids from the sheep rumen. Appl. Environ. Microbiol.
68, 4925–4931. doi: 10.1128/AEM.68.10.4925-4931.2002

Fernando, S. C., Purvis, H. T. II, Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R.,
Nagaraja, T. G., et al. (2010). Rumen microbial population dynamics during

adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 7482–7490. doi:
10.1128/AEM.00388-10

Fievez, V., Piattoni, F., Mbanzamihigo, L., and Demeyer, D. (1999). Reductive ace-
togenesis in the hindgut and attempts to its induction in the rumen—a review.
J. Appl. Anim. Res. 16, 1–22. doi: 10.1080/09712119.1999.9706258

Fleischmann, T. J.,Walker, K. C., Spain, J. C., Hughes, J. B., and Craig, A.M. (2004).
Anaerobic transformation of 2, 4, 6-TNT by bovine ruminal microbes. Biochem.
Biophys. Res. Commun. 314, 957–963. doi: 10.1016/j.bbrc.2003.12.193

Fouts, D. E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R. C., MacNeil,
M. D., et al. (2012). Next generation sequencing to define prokaryotic and
fungal diversity in the bovine rumen. PLoS ONE 7:e48289. doi: 10.1371/jour-
nal.pone.0048289

Gagen, E. J., Mosoni, P., Denman, S. E., Al Jassim, R., McSweeney, C. S., and
Forano, E. (2012). Methanogen colonisation does not significantly alter aceto-
gen diversity in lambs isolated 17 h after birth and raised aseptically. Microb.
Ecol. 64, 628–640. doi: 10.1007/s00248-012-0024-z

Genthner, B. R., Davis, C. L., and Bryant, M. P. (1981). Features of rumen and
sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-
utilizing species. Appl. Environ. Microbiol. 42, 12–19.

Gradel, C. M., and Dehority, B. A. (1972). Fermentation of isolated pectin and
pectin from intact forages by pure cultures of rumen bacteria. Appl. Microbiol.
23, 332–340.

Gregg, K., Hamdorf, B., Henderson, K., Kopecny, J., and Wong, C. (1998).
Genetically modified ruminal bacteria protect sheep from fluoroacetate poison-
ing. Appl. Environ. Microbiol. 64, 3496–3498.

Hammond, A. C. (1995). Leucaena toxicosis in ruminants and its control. J. Anim.
Sci. 73, 1487–1492.

Hanage, W. P. (2014). Microbiology: microbiome science needs a healthy dose of
skepticism.Nature 512, 365–366. doi: 10.1038/512247a

Heald, P. J. (1952). The fermentation of pentoses and uronic acids by bacteria from
the rumen contents of sheep. Biochem. J. 50, 503–508.

Henderson, G., Cox, F., Kittelmann, S., Miri, V. H., Zethof, M., Noel, S. J., et al.
(2013). Effect of DNA extraction methods and sampling techniques on the
apparent structure of cow and sheep rumen microbial communities. PLoS ONE
8:e74787. doi: 10.1371/journal.pone.0074787

Herbel, M. J., Switzer Blum, J., Hoeft, S. E., Cohen, S. M., Arnold, L. L., Lisak, J.,
et al. (2002). Dissimilatory arsenate reductase activity and arsenate-respiring
bacteria in bovine rumen fluid hamster feces, and termite hindgut. FEMS
Microbiol. Ecol. 41, 59–67. doi: 10.1111/j.1574-6941.2002.tb00966.x

Hespell, R. B., and Cotta, M. A. (1995). Degradation and utilization by Butyrivibrio
fibrisolvensH7c of xylans with different chemical and physical properties. Appl.
Environ. Microbiol. 61, 3042–3050.

Hino, T., Shimada, K., and Maruyama, T. (1994). Substrate preference in a strain
of Megasphaera elsdenii, a ruminal bacterium, and its implications in pro-
pionate production and growth competition. Appl. Environ. Microbiol. 60,
1827–1831.

Holling, S. C. (1973). Resilience and stability of ecological systems.Annu. Rev. Ecol.
Syst. 4, 1–23. doi: 10.1146/annurev.es.04.110173.000245

Hungate, R. E. (1966). The Rumen and Its Microbes. New York: Academic Press.
Iino, T., Tamaki, H., Tamazawa, S., Ueno, Y., Ohkuma, M., Suzuki, K., et al. (2013).

Candidatus Methanogranum caenicola: a novel methanogen from the anaero-
bic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and
Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class
Thermoplasmata.Microbes Environ. 28, 244–250. doi: 10.1264/jsme2.ME12189

Jami, E., and Mizrahi, I. (2012). Composition and similarity of bovine rumen
microbiota across individual animals. PLoS ONE 7:e33306. doi: 10.1371/jour-
nal.pone.0033306

Jeyanathan, J., Martin, C., and Morgavi, D. P. (2014). The use of direct-fed
microbials for mitigation of ruminant methane emissions: a review. Animal 8,
250–261. doi: 10.1017/S1751731113002085

Jones, R. J., and Megarrity, R. G. (1986). Successful transfer of DHP-degrading bac-
teria from Hawaiian goats to Australian ruminants to overcome the toxicity of
Leucaena. Aust. Vet. J. 63, 259–262. doi: 10.1111/j.1751-0813.1986.tb02990.x

Jurtshuk, P., Doetsch, R. N., and Shaw, J. C. (1958). Anaerobic purine dissimilation
by washed suspensions of bovine rumen bacteria. J. Dairy Sci. 41, 190–202. doi:
10.3168/jds.S0022-0302(58)90883-X

Kelly,W. J., Leahy, S. C., Altermann, E., Yeoman, C. J., Dunne, J. C., Kong, Z., et al.
(2010). The glycobiome of the rumen bacterium Butyrivibrio proteoclasticum

Frontiers in Microbiology | www.frontiersin.org 13 April 2015 | Volume 6 | Article 296

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Weimer Redundancy, resilience, and individuality

316T highlights adaptation to a polysaccharide-rich environment. PLoS ONE
5:e11942. doi: 10.1371/journal.pone.0011942

Khafipour, E., Li, S., Plaizier, J. C., and Krause, D. O. (2009). Rumen micro-
biome composition determined using two nutritional models of subacute rumi-
nal acidosis. Appl. Environ. Microbiol. 75, 7115–7124. doi: 10.1128/AEM.00
739-09

Kiessling, K. H., Pettersson, H., Sandholm, K., and Olsen, M. (1984). Metabolism
of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen
fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol. 47,
1070–1073.

Kim, K. H., Choung, J. J., and Chamberlain, D. G. (1999). Effects of varying the
degree of synchrony of energy and nitrogen release in the rumen on the syn-
thesis of microbial protein in lactating dairy cows consuming a diet of grass
silage and a cereal-based concentrate. J. Sci. Food Agric. 79, 1441–1447. doi:
10.1002/(SICI)1097-0010(199908)79:11<1441::AID-JSFA385>3.0.CO;2-Z

Kim, M., Morrison, M., and Yu, Z. (2011). Status of the phylogenetic diver-
sity census of ruminal microbiomes. FEMS Microbiol. Ecol. 76, 49–63. doi:
10.1111/j.1574-6941.2010.01029.x

Kobayashi, Y. (2006). Inclusion of novel bacteria in rumen microbiology: need
for basic and applied science. Anim. Sci. J. 77, 375–385. doi: 10.1111/j.1740-
0929.2006.00362.x

Kofoid, C. S., and MacLennan, R. F. (1933). Ciliates from Bos Indicus Linn. III.
Epidinium Crawley, Epiplastron, gen. nov., and Ophryoscolex Stein. Univ.
Calif. Publ. Zool. 39, 1.

Krause, D. O., Bunch, R. L., Conlan, L. L., Kennedy, P. M., Smith, W. J., Mackie,
R. I., et al. (2001). Repeated ruminal dosing of Ruminococcus spp. does not
result in persistence, but changes in the other microbial populations occur that
can be measured with quantitative 16S-rRNA-based probes. Microbiology 147,
1719–1729.

Kumar, B., and Sirohi, S. K. (2013). Effect of isolate of ruminal fibrolytic bacterial
culture supplementation on fibrolytic bacterial population and survivability of
inoculated bacterial strain in lactating Murrah buffaloes. Vet. World 6, 14–17.
doi: 10.5455/vetworld.2013.14-17

Lee, H. J., Jung, J. Y., Oh, Y. K., Lee, S.-S., Madsen, E. L., and Jeon, C. O. (2012).
Comparative survey of rumen microbial communities and metabolites across
one caprine and three bovine groups, using bar-coded pyrosequencing and
1H-nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78,
5983–5993. doi: 10.1128/AEM.00104-12

Lee, S. Y., Lee, S. M., Cho, Y. B., Kam, D. K., Lee, S. C., Kim, C. H., et al. (2011).
Glycerol as a feed supplement for ruminants: in vitro fermentation characteris-
tics and methane production. Anim. Feed Sci. Technol. 166–167, 269–274. doi:
10.1016/j.anifeedsci.2011.04.070

Leedle, J. A. Z., and Hespell, R. B. (1980). Differential carbohydrate media and
anaerobic replica plating techniques in delineating carbohydrate-utilizing sub-
groups in rumen bacterial populations. Appl. Environ. Microbiol. 39, 709–719.

Lettat, A., and Benchaar, C. (2013). Diet-induced alterations in total and metabol-
ically active microbes within the rumen of of dairy cows. PLoS ONE 89:e60978.
doi: 10.1371/journal.pone.0060978

LeVan, T. D., Robinson, J. A., Ralph, J., Greening, R. C., Smolenski, W. J., Leedle,
J. A. Z., et al. (1998). Assessment of reductive acetogenesis with indigenous
ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ.
Microbiol. 64, 3429–3436.

Li, M., Penner, G. B., Hernandez-Sanabria, E., Oba, M., and Guan, L. L.
(2009). Effects of sampling location and time, and host animal on assess-
ment of bacterial diversity and fermentation parameters in the bovine
rumen. J. Appl. Microbiol. 107, 1924–1934. doi: 10.1111/j.1365-2672.2009.0
4376.x

Li, R. W., Connor, E. E., Li, C., Baldwin, R. L. VI, and Sparks, M. E. (2012).
Characterization of the rumen microbiota of pre-ruminant calves using
metagenomic tools. Environ. Microbiol., 14, 129–139. doi: 10.1111/j.1462-
2920.2011.02543.x

Li, R. W., Giarrizzo, J. G., Wu, S., Li, W., Duringer, J. M., and Craig, A. M., et al.
(2014). Metagenomic insights into the RDX-degrading potential of the ovine
rumen microbiome. PLoS ONE 9:e110505. doi: 10.1371/journal.pone.0110505

Lodge-Ivey, S. L., Browne-Silva, S., and Horvath, M. B. (2009). Technical note:
bacterial diversity and fermentation end products in rumen fluid samples col-
lected via oral lavage or rumen cannula. J. Anim. Sci. 87, 2333–2337. doi:
10.2527/jas.2008-1472

Long, R., Shikui, D., Wang, Y., Ma, X., and Pagella, J. (2003). Metabolism of
aromatic and alicylic compounds in the digestive tract of ruminants. Acta
Prataculturae Sinica 13, 18–25.

Lowry, J. B., and Kennedy, P. M. (1995). Forage plant cyclitols are readily fermented
by the ruminant. J. Sci. Food Agric. 67, 21–23. doi: 10.1002/jsfa.2740670104

Lu, Y., Lai, Q., Zhao, H., Ma, K., Zhao, X., Chen, H., et al. (2009). Characteristics
of hydrogen and methane production from cornstalks by an augmented two-
or three-stage anaerobic fermentation process. Biores. Technol. 100, 2889–2895.
doi: 10.1016/j.biortech.2009.01.023

Majak, W. (1992). Further enhancement of 3-nitropropanol detoxification by
ruminal bacteria in cattle. Can. J. Anim. Sci. 72, 863–870. doi: 10.4141/cjas92-
098

McAllister, T. A., Okine, E. K., Mathison, G. W., and Cheng, K. J. (1996). Dietary,
environmental, and microbiological aspects of methane production in rumi-
nants. Can. J. Anim. Sci. 76, 231–243. doi: 10.4141/cjas96-035

McCann, J. C., Wickersham, T. A., and Loor, J. J. (2014). High-throughput meth-
ods redefine the rumen microbiome and its relationship with nutrition and
metabolism. Bioinform. Biol. Insights 8, 109–125. doi: 10.4137/BBI.S15389

Meissner, H. H., Henning, P. H., Horn, C. H., Leeuw, K.-J., Hagg, F. M., and
Fouché, G. (2010). Ruminal acidosis: a review with detailed reference to the
controlling agent Megasphaera elsdenii NCIMB 41125. S. Afr. J. Anim. Sci. 40,
79–100. doi: 10.4314/sajas.v40i2.57275

Mertens, D. R., and Lofton, J. R. (1980). The effect of starch on forage fiber
digestion kinetics in vitro. J. Dairy Sci. 63, 1437–1446. doi: 10.3168/jds.S0022-
0302(80)83101-8

Mills, L. S., Soule, M. E., and Doak, D. F. (1993). The keystone-species concept in
ecology and conservation. BioScience 43, 219–224. doi: 10.2307/1312122

Mohammed, R., Beauchemin, K. A., Muck, R. E., and Weimer, P. J. (2012a).
Changes in ruminal bacterial community composition following feeding of
alfalfa silage inoculated with a commercial silage inoculant. J. Dairy Sci. 95,
328–339. doi: 10.3168/jds.2011-4492

Mohammed, R., Stevenson, D. M., Weimer, P. J., Penner, G. B., and Beauchemin,
K. A. (2012b). Individual animal variability in ruminal bacterial communities
and ruminal acidosis in primparous Holstein cows during the periparturient
period. J. Dairy Sci. 95, 6716–6730. doi: 10.3168/jds.2012-5772

Mohammed, R., Brink, G. E., Stevenson, D. M., Neumann, A. P., Beauchemin,
K. A., Suen, G., et al. (2014). Bacterial communities and volatile fatty acid pro-
files in the rumen of Holstein heifers fed orchardgrass pasture or hay. Front.
Microbiol. 5:689. doi: 10.3389/fmicb.2014.00689

Morvan, B., Dore, J., Rieu-Lesme, F., Foucat, L., Fonty, G., and Gouet, P.
(1994). Establishment of hydrogen-utilizing bacteria in the rumen of the
newborn lamb. FEMS Microbiol. Lett. 117, 249–256. doi: 10.1111/j.1574-
6968.1994.tb06775.x

Mosoni, P., Chaucheyras-Durand, F., Béra-Maillet, C., and Forano, E. (2007).
Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep
after supplementation of a forage diet with readily fermentable carbohydrates.
Effect of a yeast additive. J. Appl. Microbiol. 103, 2676–2685. doi: 10.1111/j.1365-
2672.2007.03517.x

Mouriño, F., Akkarawongsa, R., and Weimer, P. J. (2001). pH at the initiation of
cellulose digestion determines cellulose digestion rate in vitro. J. Dairy Sci. 48,
848–859. doi: 10.3168/jds.S0022-0302(01)74543-2

Nelson, K. E., Thonney,M. L.,Woolston, T. K., Zinder, S. H., and Pell, A. N. (1998).
Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bac-
teria. Appl. Environ. Microbiol. 64, 3824–3830.

Palmonari, A., Stevenson, D. M., Mertens, D. R., Cruywagen, C. W., and Weimer,
P. J. (2010). pH dynamics and bacterial community composition in the rumen
of lactating dairy cows. J. Dairy Sci. 93, 279–287. doi: 10.3168/jds.2009-2207

Patel, T. R., Jure, K. G., and Jones, G. A. (1981). Catabolism of phloroglucinol by
the rumen anaerobe coprococcus. Appl. Environ. Microbiol. 42, 1010–1017.

Pell, A. N., and Schofield, P. (1993). Computerized monitoring of gas produc-
tion to measure forage digestion in vitro. J. Dairy Sci. 76, 1063–1073. doi:
10.3168/jds.S0022-0302(93)77435-4

Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J.,
McKinnon, J. J., et al. (2013a). Changes in the rumen epimural bacterial diver-
sity of beef cattle as affected by diet and induced ruminal acidosis.Appl. Environ.
Microbiol. 79, 3744–3755. doi: 10.1128/AEM.03983-12

Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J.,
McKinnon, J. J., et al. (2013b). Characterization of the core rumen microbiome

Frontiers in Microbiology | www.frontiersin.org 14 April 2015 | Volume 6 | Article 296

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Weimer Redundancy, resilience, and individuality

in cattle during transition from forage to concentrate as well as during and after
an acidotic challenge. PLoS ONE 8:e83424. doi: 10.1371/journal.pone.0083424

Pitta, D., Pinchak, W. E., Dowd, S. E., Osterstock, J., Gontcharova, V., Youn, E.,
et al. (2010). Rumen bacterial diversity dynamics associated with changing from
bermudagrass hay to grazed winter wheat diets.Microb. Ecol. 59, 511–522. doi:
10.1007/s00248-009-9609-6

Pol, A., and Demeyer, D. I. (1988). Fermentation of methanol in the sheep rumen.
Appl. Environ. Microbiol. 54, 832–834.

Poulsen, M., Schwab, C., Jensen, B. B., Engberg, R. M., Spang, A., Canibe, N.,
et al. (2013). Methylotrophic methanogenic Thermoplasmata implicated in
reduced methane emissions from bovine rumen. Nat. Comm. 4, 1428. doi:
10.1038/ncomms2432

Pradhan, K., and Hemken, R.W. (1970).Utilization of ethanol and its effect on fatty
acid patterns in ruminants. J. Dairy Sci. 53, 1739–1746. doi: 10.3168/jds.S0022-
0302(70)86472-4

Praesteng, K. E., Pope, P. B., Cann, I. K., Mackie, R. I., Mathisen, S. D., Folkow,
L. P., et al. (2013). Probiotic dosing of Ruminococcus flavefaciens affects rumen
microbiome structure and function in reindeer.Microb. Ecol. 66, 840–849. doi:
10.1007/s00248-013-0279-z

Puniya, A. K., Salem, A. Z. M., Kumar, S., Dagar, S. S., Griffith, G. W., Puniya,
M., et al. (2014). Role of live microbial feed supplements with reference to
anaerobic fungi in ruminant productivity. J. Integr. Agric. 14, 550–560. doi:
10.1016/S2095-3119(14)60837-6

Ramirez, H. R., Nestor, K., Tedeschi, L., Callaway, T. R., Dowd, S. E., Fernando,
S. C., et al. (2012). The effect of brown-midrib corn silage and dried dis-
tillers’ grains with solubles on milk production, nitrogen utilization, and bac-
terial community structure in dairy cows. Can. J. Microbiol. 92, 365–380. doi:
10.1016/S2095-3119(14)60837-6

Rasmussen, M. A. (1993). Isolation and characterization of Selenomonas ruminan-
tium strains capable of 2-deoxyribose utilization. Appl. Environ. Microbiol. 59,
2077–2081.

Rey, M., Enjalbert, F., Combes, S., Cauquil, L., Bouchez, O., and Monteils,
V. (2014). Establishment of ruminal bacterial community in dairy calves
from birth to weaning is sequential. J. Appl. Microbiol. 116, 245–257. doi:
10.1111/jam.12405

Rieu-Lesme, F., Morvan, B., Collins, M. D., Fonty, G., and Willems, A. (1996).
A new H2 /CO2-using acetogenic bacterium from the rumen: description
of Ruminococcus schinkii sp. nov. FEMS Microbiol. Lett. 140, 281–286. doi:
10.1016/0378-1097(96)00195-4

Russell, J. B. (1985). Fermentation of cellodextrins by cellulolytic and noncellu-
lolytic rumen bacteria. Appl. Environ. Microbiol. 49, 572–576.

Russell, J. B. (2002). Rumen Microbiology and Its Role in Ruminant Nutrition.
Ithaca: James B. Russell Publishing.

Russell, J. B., and Van Soest, P. J. (1984). In vitro ruminal fermentation of organic
acids common in forage. Appl. Environ. Microbiol. 47, 155–159.

Sadet, S., Martin, C., Meunier, B., and Morgavi, D. P. (2007). PCR-DGGE analy-
sis reveals a distinct diversity in the bacterial population attached to the rumen
epithelium. Animal 1, 939–944. doi: 10.1017/S1751731107000304

Sandri, M., Manfrin, C., Pallavicini, A., and Stefanon, B. (2014). Microbial diversity
of the liquid fraction of rumen content from lactating cows.Animal 8, 572–579.
doi: 10.1017/S1751731114000056

Satter, L. D., and Bringe, A. N. (1969). Effect of abrupt ration changes on milk
and blood components. J. Dairy Sci. 52, 1776–1780. doi: 10.3168/jds.S0022-
0302(69)86840-2

Saxena, S., Sehgal, J., Puniya, A. K., and Singh, K. (2010). Effect of administration of
rumen fungi on production performance of lactating buffaloes. Benef. Microbes
1, 183–188. doi: 10.3920/BM2009.0018

Shi, W., Moon, C. D., Leahy, S. C., Kang, D., Froula, J., Kittelmann, S., et al. (2014).
Methane yield phenotypes linked to differential gene expression in the sheep
rumen microbiome. Genome Res. 24, 1517–1525. doi: 10.1101/gr.168245.113

Shi, Y., and Weimer, P. J. (1996). Utilization of individual cellodextrins by three
predominant ruminal cellulolytic bacteria. Appl. Environ. Microbiol. 62, 1084–
1088.

Simpson, F. J., Jones, G. A., and Wolin, E. A. (1969). Anaerobic degradation of
some bioflavonoids by microflora of the rumen. Can. J. Microbiol. 15, 972–974.
doi: 10.1139/m69-173

Stevenson, D.M., andWeimer, P. J. (2007). Dominance of Prevotella and low abun-
dance of classical ruminal bacterial species in the bovine rumen revealed by

relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 7, 165–174.
doi: 10.1007/s00253-006-0802-y

Suen, G., Weimer, P. J., Stevenson, D. M., Aylward, F. O., Boyum, J., Deneke
J., et al. (2011). The complete genome sequence of Fibrobacter succinogenes
S85 reveals a cellulolytic and metabolic specialist. PLoS ONE 6:e0018814. doi:
10.1371/journal.pone.0018814

Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M., and Benno,
Y. (2001). Diet-dependent shifts in the bacterial population of the rumen
revealed with real-time PCR. Appl. Environ. Microbiol. 67, 2766–2774. doi:
10.1128/AEM.67.6.2766-2774.2001

Teather, R. M., and Wood, P. J. (1982). Use of Congo red-polysaccharide inter-
actions in enumeration and characterization of cellulolytic bacteria from the
bovine rumen. Appl. Environ. Miccrobiol. 43, 777–780. doi: 10.1007/s12649-
014-9317-4

Tsai, C. G., and Jones, G. A. (1975). Isolation and identification of rumen bac-
teria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21,
794–801. doi: 10.1139/m75-117

Ungerfeld, E. M. (2013). A theoretical comparison between two ruminal electron
sinks. Front. Microbiol. 4:319. doi: 10.3389/fmicb.2013.00319

Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-
inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6:37. doi:
10.3389/fmicb.2015.00037

Van Os, M., Lassalas, B., Toillon, S., and Jouany, J. P. (1995). In vitro degrada-
tion of amines by rumen micro-organisms. J. Agric. Sci. 125, 299–305. doi:
10.1017/S0021859600084446

Van Soest, P. J. (1973). The uniformity and nutritive availability of cellulose. Fed.
Proc. 32, 1804–1808.

Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd Edn. Ithaca:
Cornell University Press.

Van Zijderveld, S. M., Gerrits, W. J. J., Apajalahti, J. A., Newbold, J. R., Dijkstra,
J., Leng, R. A., et al. (2010). Nitrate and sulfate: effective alternative hydrogen
sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93,
5856–5866. doi: 10.3168/jds.2010-3281

Varel, V. H., Yen, J. T., and Kreikemeier, K. K. (1995). Addition of cellulolytic
clostridia to the bovine rumen and pig intestinal tract. Appl. Environ. Microbiol.
61, 1116–1119.

Waldo, D. R., Smith, L. W., and Cox, E. L. (1972). Model of cellulose disap-
pearance from the rumen. J. Dairy Sci. 55, 125–129. doi: 10.3168/jds.S0022-
0302(72)85442-0

Wallace, R. J. (1996). Ruminal metabolism of peptides and amino acids. J. Nutr.
126, S1326–S1334.

Wang, X., Li, X., Zhao, C., Hu, P., Chen, H., Liu, Z., et al. (2012). Correlation
between composition of the bacterial community and concentration of vola-
tivel fatty acids in the rumen during the transition period and ketosis in dairy
cows. Appl. Environ. Microbiol. 78, 2386–2392. doi: 10.1128/AEM.07545-11

Weimer, P. J. (1998). Manipulating ruminal fermentation: a microbial ecological
perspective. J. Anim. Sci. 76, 3114–3122.

Weimer, P. J., Hackney, J. M., Jung, H.-J. G., and Hatfield, R. D. (2000).
Fermentation of a bacterial cellulose/xylan composite by mixed ruminal
microflora: implications for the role of polysaccharide matrix interactions
in plant cell wall biodegradability. J. Agric. Food Chem. 48, 1727–1733. doi:
10.1021/jf991372y

Weimer, P. J., Lopez-Guisa, J. M., and French, A. D. (1990). Effect of cellulose fine
structure on kinetics of its digestion by mixed ruminal microorganisms in vitro.
Appl. Environ. Microbiol. 56, 2421–2429.

Weimer, P. J., Stevenson, D. M., Mantovani, H. C., and Man, S. L. C. (2010a).
Host specificity of the ruminal bacterial community of the dairy cow follow-
ing near-total exchange of ruminal contents. J. Dairy Sci. 93, 5902–5912. doi:
10.3168/jds.2010-3500

Weimer, P. J., Stevenson, D. M., and Mertens, D. R. (2010b). Shifts in bacterial
community composition in the rumen of lactating dairy cows under conditions
of milk fat depression. J. Dairy Sci. 93, 265–278. doi: 10.3168/jds.2009-2206

Weimer, P. J., Waghorn, G. C., Odt, C. L., and Mertens, D. R. (1999). Effect of diet
on populations of three species of ruminal cellulolytic bacteria in lactating dairy
cows. J. Dairy Sci. 82, 122–134. doi: 10.3168/jds.S0022-0302(99)75216-1

Welkie, D. G., Stevenson, D. M., and Weimer, P. J. (2010). ARISA analysis of rumi-
nal bacterial community dynamics in lactating dairy cows during the feeding
cycle. Anaerobe 16, 94–100. doi: 10.1016/j.anaerobe.2009.07.002

Frontiers in Microbiology | www.frontiersin.org 15 April 2015 | Volume 6 | Article 296

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Weimer Redundancy, resilience, and individuality

Westman, W. E. (1978). Measuring the inertia and resilience of ecosystems.
BioScience 28, 705–710. doi: 10.2307/1307321

Willems, A., and Collins, M. D. (2011). “Genus Butyrvibrio,” in Bergey’s Manual of
Systematic Bacteriology, Vol. 3, The Firmicutes, eds P. Vos, G. Garrity, D. Jones,
N. R. Krieg, W. Ludwig, and F. A. Rainey (Heidelberg: Springer), 934–937.

Wright, A. D., and Klieve, A. V. (2011), Does the complexity of the rumen micro-
bial ecology preclude methane mitigation? Anim. Feed Sci. Technol. 166–167,
248–253. doi: 10.1016/j.anifeedsci.2011.04.015

Wu, S., Baldwin, R. L. VI, Li, W., Li, C., Connor, E. E., and Li, R. W. (2012). The
bacterial community composition of the bovine rumen detected using pyrose-
quencing of 16S rRNA genes.Metagenomics 1, 11. doi: 10.4303/mg/235571

Yoon, I., and Stern, M. D. (1995). Influence of direct-fed microbials on ruminal
microbial fermentation and performance of ruminants. Asian Austr. J. Anim.
Sci. 8, 533–555. doi: 10.5713/ajas.1995.553

Zened, A., Combes, S., Caquil, L., Mariette, J., Klopp, C., Bouchez, O., et al. (2013).
Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is
affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83,
504–514. doi: 10.1111/1574-6941.12011

Zhang, R., Zhu, W., Zhu, W., Liu, J., and Mao, S. (2013). Effect of dietary for-
age sources on rumen microbiota, rumen fermentation and biogenic amines
in dairy cows. J. Sci. Food Agric. 94, 1886–1895. doi: 10.1002/jsfa.6508

Zhou, M. I., Hernandez-Sanabria, E., and Guan, L. L. (2009). Assessment of the
microbial ecology of ruminal methanogens in cattle with different feed efficien-
cies. Appl. Environ. Microbiol. 75, 6524–6533. doi: 10.1128/AEM.02815-08

Zhou, M., Hünerberg, M., Beauchemin, K. A., McAllister, T. A., Okine, E. K., and
Guan, L. L. (2012). Individuality of ruminal methanogen/protozoan popula-
tions in beef cattle fed diets containing dried distillers’ grain with solubles.Acta
Agric. Scand. A Anim. Sci. 62, 273–288. doi: 10.1080/09064702.2013.788206

Ziolecki, A., Guczynska, W., and Wojciechowicz, M. (1992). Some rumen bacteria
degrading fructan. Lett. Appl. Microbiol. 15, 244–247. doi: 10.1111/j.1472-
765X.1992.tb00774.x

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015Weimer. This is an open-access article distributed under the terms
of the CreativeCommons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 16 April 2015 | Volume 6 | Article 296

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations
	Introduction
	The Ruminal Microbiota
	Ecological Properties of the Ruminal Microbiome
	Redundancy
	Resilience
	Host Individuality

	Responses to Experimental Manipulation of the Ruminal Microflora
	Insights from Feeding Studies
	Insights from Ruminal Dosing Studies
	Insights from Exchanges of Ruminal Contents

	Microbial Ecology and the Prospects for Establishing Allochthonous Strains in the Rumen
	Enhancing Fiber Fermentation
	Decreasing Nitrogen Losses
	Methane Mitigation
	Other Potential Microbial Interventions
	Practical Considerations for Probiotics

	References


