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Abstract - In this article, we investigate two different 

algorithms for the integration of GPS with redundant 

MEMS-IMUs. Firstly, the inertial measurements are 

combined in the observation space to generate a synthetic 

set of data which is then integrated with GPS by the 

standard algorithms. In the second approach, the method 

of strapdown navigation needs to be adapted in order to 

account for the redundant measurements. Both methods 

are evaluated in experiments where redundant MEMS-

IMUs are fixed in different geometries: orthogonally-

redundant and skew-redundant IMUs. For the latter 

configuration, the performance improvement using a 

synthetic IMU is shown to be 30% on the average. The 

extended mechanization approach provides slightly better 

results (about 45% improvement) as the systematic errors 

of the individual sensors are considered separately rather 

than their fusion when forming compound measurements. 

The maximum errors are shown to be reduced even by a 

factor of 2. 

I. INTRODUCTION 

This research is part of larger investigations that aim to 
develop of a low-cost GPS/INS system for performance 
analysis in sports [1-5]. For ergonomic and economical 
considerations, we are restricted to the employment of low-
cost L1 GPS receivers and Micro-Electro-Mechanical System 
(MEMS) inertial measurement units (IMU).  The performance 
of our prototype with one MEMS-IMU typically reaches a 
position accuracy of 0.5m, a velocity accuracy of 0.2m/s and 
orientation accuracy of 1deg (2deg for heading). 
Unfortunately, MEMS-IMUs are prone to large systematic 
errors (e.g. biases, scale factors, drifts) which limit their 
support in integrated navigation systems. However, they are 
highly miniaturized and hence the possibility of exploiting 
numerous MEMS-IMU sensors can be envisaged to enhance 
the navigation performance. 

Skew-redundant IMUs (SRIMUs) are composed of a 
redundant number of inertial sensors skewed against each 
other (Fig. 1). Their configuration encapsulates a maximum 
amount of information depending on the number of sensors 

and the geometry of configuration.  On the other hand, 
systems based on orthogonally-placed sets of sensors are not 
optimal in terms of redundancy.  

Redundancy can improve the GPS/INS integration 
performance on several levels. Firstly, direct noise estimation 
can be achieved directly from the data and the stochastic 
modeling is closer to reality. Secondly, the noise level can 
therefore be reduced and defective sensors, spurious signals 
and sensor malfunctioning can be detected and isolated. 
Furthermore, sensor error calibration becomes conceivable 
even during uniform motion or static initialization. Due to the 
improved navigation accuracy, redundant IMUs bridge the 
gaps in the GPS data more effectively. Finally, more accurate 
attitude determination is expected for SRIMU configurations. 

 

 

Fig. 1: Orthogonally-redundant (left), skew-redundant IMUs 
(right). 

Redundancy in inertial navigation has been investigated 
with higher-order IMUs [6]. Several authors have presented 
results for simulations and emulations, as well as theoretical 
derivations for MEMS-IMU, but – to the authors’ knowledge 
– no experimental results using MEMS-type sensors have 
been openly published so far. Based on simulations and 
theoretical derivations, [7] has found an accuracy 
improvement of 33% with MEMS-IMUs placed on a 
tetrahedron. Emulations with MEMS-SRIMU presented by 
[8] resulted in performance improvements of 20-34%.  

In the first part of this article, we investigate the capability 
of redundant MEMS-IMU sensors to reduce measurement 



noise. The parity space method is tested with MEMS-IMU for 
fault detection and identification algorithm (FDI). Then, we 
discuss three algorithmic options for the integration of GPS 
data with redundant MEMS-IMUs. Firstly, the inertial 
measurements are combined in the observation space to 
generate a synthetic set of observations that are then 
integrated by the standard GPS/INS algorithm. In the second 
approach, the mechanization equations are adapted to account 
for the redundant measurements. The third algorithm imposes 
geometrical constraints between the inertial sensors at the 
update stage. Finally, the performance of the first two 
algorithms is assessed based on controlled experiments in 
skiing (orthogonally-redundant IMUs) and motorcycling 
(skew-redundant IMUs).  

II. GPS/INS HARDWARE REDUNDANCY 
APPROACHES 

Redundancy in inertial navigation can be generated at 
different levels [9]: 

• Redundancy at system level (Fig. 2): Several 
GPS/INS components are formed and processed 
individually. Fault detection is applied on the 
resulting navigation solutions. 

• Redundancy at sensor level: on IMU (Fig. 3) or 
multi-IMU level (Fig. 4). In the first geometry, 
individual IMUs are processed together or 
individually. Fault detection algorithms can be 
used before or after the navigation processing. In 
the second configuration, a multi-IMU sensor (e.g. 
SRIMU) is processed in one or multiple 
navigation processors. Fault detection is generally 
performed before the navigation process. 
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Fig. 2: Redundancy at system level. 
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Fig. 3: Redundancy on IMU level. 

System redundancy is not attractive for the sports 
application in terms of cost and size. Therefore, we will 
concentrate on sensor redundancy and investigate how it can 
be used to reduce measurement noise and improve navigation 

accuracy. Furthermore, we focus on detection and isolation of 
spurious signals and defective sensors. Finally, we highlight 
two geometries for IMU sensor redundancy (orthogonally- 
and skew-redundant IMU).  
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Fig. 4: Redundancy on multi-IMU level. 

A. Noise Reduction 

Combinations of redundant inertial sensors not only 
decrease the measurement noise, but also offer the possibility 
to estimate its level during the processing. Hence, the noise 
figures can evolve during the processing and adapt to 
particular situations (e.g. increased vibrations). 

From n  independent measurements 1x ,…, nx  (with their 

respective variances 2
1σ ,…, 2

nσ ), we can compute their best 

estimate x̂ . Assuming homogenous measurements (constant 

iσ ), its variance 2
x̂σ

 
can be derived as [10]: 
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where the iw  are weighting factors. 

According to equation (1), the noise affecting the best 
estimate x̂  derived from measurements of 4 MEMS-IMUs is 
supposed to be 2 times lower than the noise of the individual 
MEMS-IMU. Hence, the expected noise reduction for such 
configuration is of 100%. 

The theoretical noise reduction was verified by comparing 
the differences between the MEMS-IMUs measurements and 
their best estimate to the reference measurements provided by 
a tactical-grade IMU (LN200). Thereafter, a parametric 
compensation was performed to remove systematic errors. 
Thus, the remaining differences were considered to be 
composed of white noise only. The averaged noise of the 4 
MEMS-IMUs gyros was estimated to 0.0194rad/s, whereas 
the noise level of their best estimate amounts to 0.0101rad/s. 
Hence, the experimental noise reduction is of approximately 
92 % which confirms the validity of the theoretical model. 
Fig. 5 illustrates these results graphically. 

B. Fault Detection and Isolation 

Fault Detection and Isolation (FDI) algorithms for inertial 
navigation were thoroughly investigated in the past. The most 
commonly used approach is the parity space method [7, 11-
13], but other approaches such as artificial neural networks 
have also been examined [14]. The complexity of 



implementation of an efficient FDI system is increased using 
MEMS-type IMUs. Indeed, their poor performance (noise 
density variations) creates high risk of false alarm as well as 
increased exposure to misdetection of faulty measurements 
[7]. In this article, we investigate the feasibility of using the 
parity space method with MEMS-IMUs. 
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Fig. 5: Illustration of the angular rate measurements of 4 MEMS-
IMU in comparison to the reference measurements from a tactical-
grade IMU. 

This method performs composite statistical tests. Indeed, 
the fault detection can be viewed as a choice between two 
hypotheses concerning the absence or the presence of 
erroneous measurements. The hypothesis test is based on a 
decision variable D  that is compared to a threshold variable 
T . The decision variable D  is computed as follows [12]: 

T
D = f f  

( )
1

T T

M ω ω ω ω

− = − ⋅  
f I A A A A z  

(2) 

where 12M =  is the number of measurements, 3N =  is 

the number of independent parameters, ωA  the matrix which 

transforms the state space to the measurement space (equation 
(8)) and z  represents the vector of measurements. 

The threshold T  can be obtained from 

( ) ( )2 2 1, ,FA n n FAT P r Q P rσ σ −= ⋅  (3) 

where FAP  is the probability of false alarm, r M N= −  

is the redundancy, ( ) ( )2 21Q r P rχ χ= − , ( )rP 2χ  being a 

chi-square probability function, and 2
nσ  is the measurement 

noise (0.1 rad/s/sqrt(Hz)). Assuming a probability of false 

alarm of 5% ( 0.05FAP = ), the threshold value for our 

system is:  

( ) 2 20.05 0.0155 /FAT P rad s= =  

We now want to compare this theoretical threshold to an 
optimized threshold that minimizes the sum of the probability 
of false alarm and of misdetection [15] and that takes into 
account the reference measurements provided by the tactical-
grade IMU. Comparing the MEMS-IMU measurements to the 
reference measurements, we first verify the normality of the 
difference vectors (Fig. 6). It reveals quasi-Gaussian 
distribution.  
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Fig. 6: Graphical assessment of the normality of the difference 
vector. 

Now, we compute the variance of the difference vectors 
2
diffσ . Assuming that all measurements having a difference 

exceeding a threshold of 3.5 diffσ⋅  are erroneous, we 

estimate the value of T̂  that minimizes the sum of false 

alarms and misdetections ( 2 2ˆ = 0.0156 /T rad s ). Thus, we 
observe that the theoretical threshold values computed with 
the parity space method and the empirical best threshold 
value are of the same order of magnitude. 

This experimentally derived T̂  value could be used in the 
future data sets. Fig. 7 represents the values of D  and T  and 
shows when fault and correct measurements were detected 
successfully as well as the occurrence of misdetections and 
false alarms. Nevertheless, the figure also shows the difficulty 
of finding a good threshold value. Indeed, even with the best 

possible T̂  value approximately 76% of the faults aren’t 
detected. The number of false alarms is also important; the 
false-alarm-to-fault ratio is roughly 35%. This it shows the 
need for a more complex FDI model. One possibility would 
be to train an artificial neural network with a large number of 
real or emulated measurements in which faults occurs 
frequently. The presented study considered only fault 
detection. Similar studies are planned on fault identification.  
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Fig. 7: Estimation of the best threshold and evaluation of its 
performance. 

C. Redundant IMU Geometries 

Two configurations for redundant IMUs are considered: 

• Orthogonally redundant IMUs 

• Skew redundant IMUs (SRIMUs) 
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Fig. 8: Inertial sensors placed on a cone (left), on a cone and its 
axis (middle) and platonic solids (right). 

The maximum amount of information – and hence 
redundancy – is encapsulated in SRIMU systems if the 
individual sensors are arranged according to well-defined 
geometries [8, 12, 16]. Ref. [16] presented first a theory how 
sensors have to be placed on a cone (and eventually its axis) 
in order to maximize redundancy (Fig. 8). Other 
configurations that have been considered are based on 
platonic solids [7]. The first approach presents the advantage 
that the amount of redundancy of the vertical axis can be 
varied with respect to the redundancy of the horizontal plane 
by changing the cone's half-angle. This is an interesting 
option when IMU are used together with GPS, because the 
vertical performance is reduced by a factor 2-3 with respect to 
the horizontal plane due to the satellite geometry. However, 
the motion of athletes is complex and involves large rotations 
around all axes. Hence, the approach using platonic solids, 
e.g. a tetrahedron, seems appropriate. 

III. SYSTEM AND OBSERVATION MODEL 

In this section, we will first present the mechanization 
approach applied for the integration of GPS with single 
IMUs. Then, three mechanizations approaches described by 
[6] are reviewed. 

A. Single IMU Mechanization 

An extended Kalman filter (EKF) has been implemented in 
the local level frame (superscript n ) which makes the 
interpretation of the state variables straightforward. The 
following strapdown equations need to be solved [10]: 

( )
( )

= - × +

-

nn

n n b n n n n
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n n b b
b b ib in

                

vr

v R f ω +ω v g

R R ω ω

 (4) 

Given the observations b

ibω  and 
bf , knowledge of ng , 

and the initial conditions. 

For the inertial measurements a simplified model was 
considered. Judging that the misalignments, drifts and 
constant offsets could not be decorrelated efficiently given the 
characteristics of the MEMS-IMU sensors and limited 
integration periods, only a bias term is considered [5]. Their 
associated errors are modeled as first order Gauss-Markov 
processes: 

2
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2β σ β

= + +
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b w
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where ˆ b
is the estimated inertial observation (specific 

force 
bf  or rotation rate b

ibω ), 
b

 the inertial measurement, 

bb the bias of the inertial measurement, bw  the 

measurement noise, 2σ b  the covariance at zero time lag and 

bβ  the inverse of the correlation time [17]. 

B. Synthetic Mechanization 

In the synthetic mechanization approach, the redundant 
IMU data is merged before being introduced to GPS/INS 
algorithm based on the single IMU mechanization (Fig. 9). 
While fusing the IMU data, defective sensors can be detected 
and realistic noise and covariance terms can be estimated [6]. 
However, the estimated “compound” biases cannot be back-
projected to the individual sensors.  

In a first step, synthetic inertial measurements bω  and 
bf  

need to be generated: 
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This requires estimating the orthogonal projectors ωπ  for 

the angular rate measurements ω  and fπ  for the specific 

force f  as well as their accuracy ( bωP  and bf
P ): 
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ωA  and fA  transform the data from the actual sensor 

axes (superscript ib ) to the three orthogonal axes of the 

predefined body frame (superscript b ). Their rows contain 
the direction cosine matrices of the angular rate sensor and 
accelerometer axes: 
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Fig. 9: Principle of mechanization based on a synthetic IMU. 

C. Extended Mechanization 

In order to be able to estimate individual sensor errors, the 
last two expressions of equation (4) need to be revised: 
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With this approach, it is possible to detect defective sensors 
and to estimate noise terms during the integration (Fig. 10). 
Moreover, the systematic errors can be modeled and 
estimated for each sensor. However, this approach requires 
the modification of the GPS/INS software to accommodate 
the new form of mechanization equations.  

D. Geometrically-Constrained Mechanization 

As for the extended mechanization, the geometrically-
constrained mechanization allows estimating the individual 
sensor errors. In this approach, multiple navigation solutions 
are computed (one for each IMU) and compared at regular 
time intervals (Fig. 11). This is, however, at the cost of 
increased computational effort and important modifications of 
the GPS/INS software. In principle, defective sensors cannot 
be detected and realistic noise terms cannot be estimated by 
this approach. 
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Fig. 10: Principle of extended IMU mechanization. 
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Fig. 11: Principle of geometrically-constrained IMU 
mechanization. 

Consider that two IMUs are employed. Both units are 
integrated using the standard IMU mechanization. The 

relative orientation parameters (relative orientation 2

1

b

bR  and 

lever arm 2

1

b

ba ) can be modeled and estimated as random 

constants supposing their direct determination is not accurate 
enough [6]. 
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At predefined stages, the following relationships can be 
imposed: 
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E. Algorithm Selection 

The derivation of a synthetic IMU is the most 
straightforward approach as it does not require any 
modification of the standard GPS/INS algorithm. Unlike the 
extended and geometrically-constrained method, this 
approach does not allow the feedback of sensor errors which 
might yield less optimal navigation performance. On the other 
hand, [5] has shown that the MEMS-IMU biases are relatively 
stable for the short trajectories encountered in some sports 
(e.g. lap, downhill). Furthermore, the same research has 
shown that the simplified error model was suitable for the 
considered application and sensors.  

The geometrically-constrained approach represents and 
interesting option for system calibration if the relative sensor 
geometry is insufficiently known. As mentioned, the 
computational effort is increased considerably compared to 
the first two approaches. In addition, it is more sensitive to 
sensor failures because defects can only be noticed at the 
update stage and the measurement faults can generally not be 
isolated. In the sequel, the synthetic IMU approach will be 
compared to the approach based on extended IMU 
mechanization. 

IV. RESULTS 

A. Estimation of the Relative Alignment of the MEMS-IMU 

The alignment between the individual MEMS-IMU sensors 
and with respect to the reference IMU was estimated by 
feeding the EKF with the reference attitude observations 
using the following model: 

3 200
ˆ( ) ( )

0

LNh ϕ
− = + Ω +

Ω =

x I φ w
 (12) 

where Ω  is the skew-symmetric form of the misalignment 

angles, 200LNφ  is the vector of Euler angles of the reference 

attitude, and ϕw  the measurement noise. The accuracy of the 

determined misalignment angles is limited by the accuracy of 
the MEMS-IMU determination and is estimated to 0.5°. 

B. Two Orthogonally-Redundant IMU 

In a skiing experiment, the low-cost L1 GPS/MEMS-IMU 
instruments were mounted in a backpack together with a 
reference system, comprising a dual-frequency GPS receiver 
(Javad) and a tactical-grade IMU (LN200). Redundant 

MEMS-IMU sensors (Xsens MTi) in orthogonal 
configuration were rigidly fixed to the reference IMU (Fig. 
12). A downhill of approximately 1 minute duration was 
performed by a professional skier after a static initialization 
phase of 2-3 minutes.  

 

Fig. 12: Investigation of orthogonally redundant IMUs: 
Experimental setup mounted on a professional skier. 

For this experiment, we integrate two orthogonally 
redundant IMUs at 100Hz with the L1 as well as the L1/L2 
DGPS at 1Hz. The use of two MEMS-IMU reduces the noise 
level of the measurements by a factor of 2 . In this 
configuration, measurement outliers can neither be detected 
nor identified. Nevertheless, an accuracy improvement was 
noticed for the orientation (20-30%, Table 1) while the 
position and velocity states where not improved significantly. 
The performance improvement is similar for the two 
integration approaches and equivalent with respect to the 
employment of single- or dual-frequency differential 
processing.  

L1 L1/L2 
 

synthetic extended synthetic extended 
roll -37% -24% -43% -20% 

pitch -25% -5% -7% 8% 
heading -34% -24% -32% -22% 

Table 1: Orientation improvement with two orthogonally-
redundant MEMS-IMUs compared to the average performance of 
the single sensors. 

The estimated synthetic biases represent approximately the 
average of the biases estimated by processing of the 
individual MEMS-IMUs (Fig. 13). Ref. [5] has already shown 
the relevance of using this simplified error model.  

C. Skew-Redundant IMU 

For a second experiment, a regular tetrahedron consisting 
of 4 Xsens MT-i was set up (Fig. 1). In order to investigate 
the performance of the multi-IMU system, it was fixed rigidly 
to a reference system consisting again of a tactical-grade IMU 



(LN200) and a differential, dual-frequency GPS receiver 
(Javad Legacy) [18]. The system was installed on a 
motorcycle (Fig. 14).  
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Fig. 13: Synthetic IMU bias compared to the individually 
estimated biases. 

 

Fig. 14: SRIMU installed on a motorcycle. 

As previously shown for this setup, the inertial 
measurement noise is reduced by a factor of 2 due to the 
measurement redundancy. Table 2 summarizes the navigation 
performance of the particular GPS/MEMS-SRIMU system. 
The orientation accuracy of the system has now dropped 
below 1deg. The experiment confirms previous findings [4] 
where the velocity and orientation accuracies were invariant 
with respect to the accuracy of GPS aiding (e.g. L1 or L1/L2 
differential code and carrier-phase). On the other hand, the 
position accuracy is largely improved using dual-frequency 
GPS processing with ambiguity fixing. Because of the 
relatively long baseline for single-frequency CP-DGPS, the 

ambiguities could not be fixed which resulted in code-
differential positioning accuracy.  

synthetic extended 
 

L1 L1/L2 L1 L1/L2 

N [m] 0.83 0.03 0.83 0.03 

E [m] 2.40 0.05 2.40 0.04 

D [m] 0.81 0.08 0.81 0.07 

vN [m/s] 0.07 0.05 0.07 0.03 

vE [m/s] 0.07 0.07 0.07 0.05 

vD [m/s] 0.11 0.10 0.12 0.06 

rl [deg] 0.69 1.09 1.04 0.83 

pt [deg] 0.79 1.05 0.92 0.86 

hd [deg] 0.42 0.68 0.67 0.62 

Table 2: Average absolute accuracy of the tested GPS/MEMS-
SRIMU system. 

Table 3 indicates the performance improvement of the 
GPS/MEMS-SRIMU system compared to the average 
accuracy of the solutions computed with the single MEMS-
IMUs. An average improvement of 30% is obtained for the 
synthetic IMU approach. The extended mechanization 
performs slightly better than the synthetic approach (average 
improvement of 46%). This can be explained by the 
estimation of the individual biases and the FDI scheme that 
can run in parallel to the filter (rather than in cascade as in the 
synthetic IMU approach). However, the navigation 
performance is not improved by 100% as could be expected 
from the noise reduction. Indeed, residual correlations 
between the inertial measurements as well as the correlations 
between the filter states most likely limit the accuracy 
progression.  
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Fig. 15: Orientation error after integration of a single sensor 
(individual) and after extended mechanization. 

Table 3 also recapitulates the performance enhancement 
with respect to the maximum errors. It is of 61% for the 
synthetic IMU approach and even more substantial for the 
extended mechanization where the maximum errors are 
reduced by a factor of 2. Fig. 15 illustrates how the peaks of 



the orientation errors in the single MEMS-IMU/GPS 
integration are smoothed out by the extended mechanization.  

RMS Maximum error 
 

synthetic extended synthetic extended 
N -29% -35% -71% -94% 
E -41% -51% -77% -94% 
D -5% -19% -27% -82% 
vN -37% -61% -82% -95% 
vE -50% -67% -81% -93% 
vD -7% -44% -25% -74% 
rl -57% -67% -80% -87% 
pt -28% -41% -59% -80% 
hd -21% -27% -45% -69% 

Table 3: Performance improvement of the average and maximum 
errors by the MEMS-SRIMUs compared to the performance of the 
individually integrated MEMS-IMU sensors. 

D. Note on the Observability 

The estimated synthetic biases represent again the mean 
value of the biases estimated individually (similar to those 
depicted in Fig. 13). On the other hand, the biases estimated 
in the extended mechanization do not match the individually 
estimated biases (Fig. 16). The covariance analysis of the 
state vector reveals that biases are only weakly correlated 
(0.2-0.3, Fig. 17). The correlation level does not explain the 
encountered differences and therefore we focus on the 
observability of the system. A system with system matrix F , 
observation matrix H  and n  states is observable if the 

observablity matrix O  has rank n  [19]: 
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The mechanization approach based on a single MEMS-
IMU is observable: the observability matrix has rank 15 
which corresponds to the number of states. In the extended 
mechanization approach, the number of states increases to 33, 
but the rank of the observability matrix remains 15. 
Therefore, it might be that the observability of the sensor 
biases is reduced in favor of the “interesting” states (position, 
velocity and orientation). In the future, we will concentrate on 
the observability of the subsystems in order to evaluate 
possibilities to further improve the extended mechanization 
approach and to verify its stability. Such analysis could be 
based on singular value decomposition as suggested in [20]. 
Indeed, each singular value is an observability measure for 
the subspace spanned by the corresponding singular vector.  

V. CONCLUSION AND PERSPECTIVES 

In the first part of the article, we have presented fault 
detection and identification with the commonly used parity 
space method in case of redundant MEMS-IMUs. It was 
shown that the theoretical threshold matched that derived 
from experimental data. However, the percentages of 
undetected errors (76%) as well as the level of false alarms 
(35%) are unacceptable and new methods have to be 
developed. 
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Fig. 16: Individual biases vs. biases estimated by the extended 
mechanization.  
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Fig. 17: State correlations in extended mechanization - position 
(3), velocity (3), orientation (3), accelerometer biases (12), 
gyroscope biases (12). 

In the second part, we focused on the method of integration 
of redundant MEMS-IMU with GPS data. We have shown 
that the navigation performance can be improved by 30-50% 
when using 4 MEMS-IMUs placed on the faces of a regular 
tetrahedron. Maximum errors can even be reduced by a factor 
of 2. The skew-redundant geometry makes maximum use of 
the available information. Two integration approaches were 
been investigated: an algorithm based on a synthetic IMU and 
an extended mechanization approach, where the state vector 



is increased by individual biases per sensor. The second 
method is found to be more optimal for system calibration 
because the error characteristics of the individual sensors are 
considered separately rather than the fusion of compound 
measurements. Furthermore, fault detection can be performed 
within this integration procedure whereas the synthetic 
approach requires cascade processing. Although it performs 
slightly better than the first approach, it was shown that the 
estimated biases do not correspond to the real biases. This 
might be explained by the reduced observability of the 
system, but this hypothesis needs further investigation in 
order to assess the entire potential of the extended 
mechanization. 

Due to the increased accuracy and the possibility to detect 
measurement errors, redundant IMUs have the potential of 
better bridging the gaps in GPS data. Future work will include 
additional experiments to confirm the accuracy improvements 
of the two presented experiments. More testing and 
simulations are required in order to determine the ideal 
number and geometry of the redundant IMUs. Furthermore, 
we aim to focus on alternative approaches to improve static 
initialization.  
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