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ABSTRACT

In this paper residue number system (RNS) arith-
meti
 and redundant residue number system (RRNS)
based 
odes as well as their properties are reviewed.
We propose a number of appli
ations for RRNS

odes and demonstrate how RRNS 
odes 
an be
employed in global 
ommuni
ation systems, in or-
der to simplify the asso
iated systems by unifying
the entire en
oding and de
oding pro
edure a
ross
global 
ommuni
ation systems.

1. INTRODUCTION

RNS-based arithmeti
s exhibit a modular stru
ture that
leads naturally to parallelism in digital hardware imple-
mentations. The RNS has two inherent features that are
attra
tive in 
omparison to 
onventional weighted number
systems, su
h as for example the binary weighted number
system representation. These two features are [1{4℄: 1)
the 
arry-free arithmeti
 and 2) the la
k of ordered signi�-

an
e amongst the residue digits. The �rst property implies
that the operations related to the di�erent residue digits are
mutually independent and hen
e the errors o

urring dur-
ing addition, subtra
tion and multipli
ation operations, or
due to the noise indu
ed by transmission and pro
essing,
remain 
on�ned to their original residue digits [1, 5{7℄. In
other words, these errors do not propagate and hen
e do
not 
ontaminate other residue digits due to the absen
e of
a 
arry forward. The above-mentioned se
ond property of
the RNS arithmeti
 implies that redundant residue digits

an be dis
arded without a�e
ting the result, provided that
a suÆ
iently high dynami
 range is retained by the resul-
tant redu
ed-range RNS system, in order to unambiguously
des
ribe the nonredundant information symbols.

As it is well known in VLSI design, usually so-
alled
systoli
 ar
hite
tures [1℄ are invoked to divide a pro
essing
task into several simple tasks performed by small, (ideally)
identi
al, easily designed pro
essors. Ea
h pro
essor 
om-
muni
ates only with its nearest neighbour, simplifying the
inter
onne
tion design and test, while redu
ing signal de-
lays and hen
e in
reasing the pro
essing speed. Due to its
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arry-free property, the RNS arithmeti
 further simpli�es
the 
omputations by de
omposing a problem into a set of
parallel, independent residue 
omputations.

The properties of the RNS arithmeti
 suggest that a
redundant residue number system (RRNS) 
an be used for
self-
he
king, error-dete
tion and error-
orre
tion in digi-
tal pro
essors. The RRNS te
hnique provides a useful ap-
proa
h to the design of general-purpose systems, 
apable of
sensing and re
tifying their own pro
essing and transmis-
sion errors. For example, if a digital re
eiver is implemented
using the RRNS having suÆ
ient redundan
y, then errors
in the pro
essed signals 
an be dete
ted and 
orre
ted by
the RRNS-based de
oding. Furthermore, the RRNS ap-
proa
h [1℄ is the only one, where it is possible to use the
very same arithmeti
 module in the very same way for the
generation of both the information part and the parity part
of a RRNS 
odeword. Moreover, due to the inherent prop-
erties of the RNS, the residue arithmeti
 o�ers a variety
of new approa
hes to the realization of digital signal pro-

essing algorithms, su
h as digital modulation and demod-
ulation as well as the fault-tolerant design of arithmeti

units [2{4, 7{9℄. It also o�ers new approa
hes to the de-
sign of error-dete
tion and error-
orre
tion 
odes. Let us
�rst review the basi
 mathemati
al model required for the

onversion of operands from the weighted number system
to the RNS, or 
onversely, from the RNS to the weighted
number system.

2. RESIDUE NUMBER SYSTEM TRANSFORM
AND ITS INVERSE

For 
onvenien
e, we de�ne the residue number system trans-
form (RNST) as the algorithm that transforms any 
onven-
tional weighted number system, su
h as for example the
natural binary 
oded de
imal (NBCD) number system to
the RNS [3, 7℄. The inverse RNST (IRNST) is de�ned as
the algorithm, whi
h transforms the RNS to the weighted
number system, an issue to be elaborated on below.

Let X be a non-negative integer number in the range
of 0 � X < %n, where % is a base andX is represented in the
weighted number system asX = fbn�1 bn�2 : : : b2 b1 b0g =P

n�1

j=0
bj%

j , where bj 2 f0; 1; : : : ; %� 1g. Spe
i�
ally, a

weighted binary representation is 
onsidered, when % = 2.

Let fm1;m2; : : : ;mug, the set of so-
alled moduli in-
volved in the RNS, be a set of pairwise relative prime num-
bers, where no two moduli have a 
ommon integer divisor
greater than 1. If M =

Q
u

i=1
mi � %n, then the RNST is

realized by uniquely representing X - whi
h was de�ned in
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the range of 0 � X < %n - as a u-tuple residue digit sequen
e
(r1; r2; : : : ; ru), where ri = X (mod mi) = X � b X

mi

mi for

i = 1; 2; : : : ; u, bz
 denotes the largest integer not ex
eeding
z, and 0 � ri � mi � 1. Furthermore, [0;M � 1℄ is de�ned
as the dynami
 range of the RNS and any integer X in this
range is uniquely represented by a u-tuple residue sequen
e,
whi
h is expressed as:

X , (r1; r2; : : : ; ru); 0 � X < M;

ri = X (mod mi); i = 1; 2; : : : ; u: (1)

Assuming that the integers X1 and X2 have RNS repre-
sentations ofX1 = (r11; r12; : : : ; r1u) andX2 = (r21; r22; : : : ;
r2u), respe
tively, then X1 �X2, where � denotes addition,
subtra
tion or multipli
ation, yields another unique residue
sequen
e X3, provided that X3 remains within the dynami

range of [0; M). The arithmeti
 operations over the RNS

an be 
arried out on a residue-by-residue basis, whi
h 
an
be expressed as:

X1 �X2 , [(r1i � r2i) (mod mi)℄
u

i=1
; (2)

where on the left the operation � represents ordinary addi-
tion, subtra
tion or multipli
ation of two integers, and on
the right it represents the same operations performed on the
basis of the appropriate residue digits r1i and r2i, with re-
spe
t to their 
orresponding modulus mi. This allows us to

onvert binary arithmeti
 operations 
arried out with large
integers to residue arithmeti
 operations involving a higher
number of smaller residue digits, where the operations 
an
be exe
uted in parallel fashion and there is no 
arry forward
between the residue digits. The la
k of 
arry forward be-
tween the residue digits prevents the propagation of errors
between residue digits.

In 
ontrast to the RNST, the IRNST is de�ned as the
algorithm that transforms the operands from the RNS do-
main to the 
onventional weighted number system represen-
tation. A well-known implementation of the IRNST is the
so-
alled Chinese remainder theorem (CRT) [5℄. A

ording
to the CRT, for any given u-tuple (r1; r2; : : : ; ru), where
0 � ri < mi for i = 1; 2; : : : ; u there exists one and only one
integer X su
h that 0 � X < M and ri = X (mod mi). It

an be shown that the numeri
al value of X 
an be 
om-
puted by [5℄:

X =

uX

i=1

riTiMi (mod M); (3)

where Mi = M=mi and the integers Ti are 
omputed a
priori by solving the so-
alled 
ongruen
e TiMi = 1 (modmi).
The 
oeÆ
ients Ti are also often referred to as the multi-
pli
ative inverses of Mi.

The CRT is a 
lassi
al algorithm for the implementa-
tion of the IRNST. However, the real-time implementation
of the CRT is not pra
ti
al, sin
e it requires modular oper-
ations with respe
t to a large integer M . In order to avoid
pro
essing large integers, espe
ially in the 
ontext of error

ontrol invoking the RRNS, a frequently used approa
h is
the so-
alled base extension (BEX) operation in 
onjun
tion
with the mixed radix 
onversion approa
h [7℄.

3. REDUNDANT RESIDUE NUMBER
SYSTEM AND RRNS ENCODING

If a residue number system is designed not only for the
representation of data, but also for the prote
tion of data,
usually we design the RNS using so-
alled redundant mod-
uli, in order that the system has the 
apability of self-

he
king, error-dete
tion and error-
orre
tion [1℄. In this

ase the operand X is limited to the so-
alled informa-
tion dynami
 range of

�
0; M =

Q
v

i=1
mi

�
, where v � u,

and m1;m2; : : : ;mv are referred to as the information mod-
uli, while mv+1;mv+2; : : :, mu are the so-
alled redundant
moduli. We express the produ
t of the redundant mod-
uli as MR =

Q
u�v

j=1
mv+j. The interval [0;M) 
onstitutes

the legitimate range of the operand X, and the interval
[M;MMR) is the asso
iated so-
alled illegitimate range.
Any integer belonging to the legitimate range will be la-
belled as legitimate and those belonging to the illegitimate
range as illegitimate, sin
e it does not represent a legitimate
number or operand, dire
tly a

ruing from the nonredun-
dant information-bearing residue digits.

An important property of the RRNS is that an integer
represented by the residues of the RRNS 
an be re
overed
by any group of v number of moduli and their 
orresponding
residue digits. This property 
onstitutes the basis in the
design of RRNS based error-dete
tion and error-
orre
tion
s
hemes.

A RRNS having v number of information moduli and
u�v number of redundant moduli is denoted as a RRNS(u; v)

ode. The operation asso
iated with generating the redun-
dant residue digits of an integer operand X 
an also be
viewed or interpreted, as an en
oding operation generating
the parity residue digits of a RRNS(u; v) 
ode. The RRNS
en
oding operation 
an be implemented based on a group of

odewords having typi
al integer values, by invoking ex
lu-
sively addition operations. In order to augment this state-
ment, below we provide an example showing the asso
iated
groups of 
odewords for the RRNS(7,3) 
ode having infor-
mation moduli of m1 = 4; m2 = 5; m3 = 7 and redundant
moduli of m4 = 9; m5 = 11; m6 = 13; m7 = 17. The legit-
imate range of this 
ode is [0,139℄, sin
e 4�5�7 = 140. Ta-
ble 1 portrays a range of typi
al de
imal integer messages,
whi
h are based on the integers `1, 2, 5, 10, 20, 50, 100' of-
ten used in monetary systems. It is well known that on the
average any integer in the legitimate range of [0,139℄ 
an
be expressed by the sum of a subset of the lowest possible
number of the spe
i�
 integers given above. In Table 2 we
summarised a range of binary integer numbers and their

orresponding RRNS 
odewords.

Example 1 For the en
oding of the de
imal integer X =
123, sin
e X 
an be expressed as 123 = 100 + 20 + 2 + 1,
the RRNS 
odeword of X 
an be simply obtained from the

odewords 
orresponding to X7, X5, X2 in Table 1 and X1

on the basis of modulo addition. It 
an be readily shown that
the 
odeword of X = 123 is (3; 3; 4; 6; 2; 6; 4). Similarly, for
a binary integer X = 1011011, the asso
iated 
odeword is
simply 
onstituted by the 
orresponding modulo addition of
X7; X5; X4; X2 and X1 of Table 2, where the subs
ripts
7; 5; 4; 2; 1 are simply the indi
es of the binary 1 positions
in X. The asso
iated 
odeword of X = 1011011 is hen
e
(3; 1; 0; 1; 3; 0; 6).

2
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De
imal Nonredundant Redundant
message X residue digits residue digits

r1 r2 r3 r4 r5 r6 r7
X0 = 0 0 0 0 0 0 0 0

X1 = 1 1 1 1 1 1 1 1

X2 = 2 2 2 2 2 2 2 2

X3 = 5 1 0 5 5 5 5 5

X4 = 10 2 0 3 1 10 10 10

X5 = 20 0 0 6 2 9 7 3

X6 = 50 2 0 1 5 6 11 16

X7 = 100 0 0 2 1 1 9 15

Table 1: RRNS 
odewords of some typi
al de
imal integer
messages X in the RRNS with moduli m1 = 4; m2 = 5,
m3 = 7, m4 = 9; m5 = 11, m6 = 13 and m7 = 17, where
ri = X (mod mi) and M = 4� 5� 7 = 140.

Binary Nonredundant Redundant
message X residue digits residue digits

r1 r2 r3 r4 r5 r6 r7
X0 = 0000000 0 0 0 0 0 0 0

X1 = 0000001 1 1 1 1 1 1 1

X2 = 0000010 2 2 2 2 2 2 2

X3 = 0000100 0 4 4 4 4 4 4

X4 = 0001000 0 3 1 8 8 8 8

X5 = 0010000 0 1 2 7 5 3 16

X6 = 0100000 0 2 3 5 10 6 15

X7 = 1000000 0 4 1 1 9 12 13

Table 2: RRNS 
odewords of some typi
al binary messages
X in the RRNS with moduli m1 = 4; m2 = 5, m3 = 7,
m4 = 9; m5 = 11, m6 = 13 and m7 = 17, where ri =
X (mod mi) and M = 4 � 5� 7 = 140.

4. ERROR-DETECTION AND
ERROR-CORRECTION IN RRNS

In this se
tion, we brie
y summarise some properties of the
asso
iated error-dete
tion and error-
orre
tion pro
edures
in the 
ontext of the RRNS. Error-dete
tion/
orre
tion de-

oding of RRNS(u; v) 
odes has been dis
ussed in depth
in [3, 5{7℄. Let us invoke two simple examples, in order
to gain insight into the error-dete
tion and error-
orre
tion
me
hanism of the RRNS.

Example 2 Let us 
onsider the moduli 3; 4; 5; 7, where 3; 4
and 5 are the information moduli and 7 is the redundant
modulus. The information dynami
 range is [0;M = 3 � 4 � 5)
= [0; 60). Upon 
onsidering an integer de
imal message of
X = 21, the 
orresponding residue values are X = (0; 1; 1; 0).
If there is an error in the RNS representation due to trans-
mission or pro
essing, for example r3 is 
hanged from 1 to
3, then the re
eived RNS representation be
omes (0; 1; ~3; 0).
Upon following the general approa
h of the CRT in Eq.(3)
and using the �rst three residue digits and their moduli, we
obtain:

M1 = 4� 5 = 20; M2 = 3� 5 = 15; M3 = 3� 4 = 12;
T1 = 2; T2 = 3; T3 = 3;
X = [0 � 2� 20 + 1� 3� 15 + 3� 3 � 12℄ mod 60

= 33:

However, where X = 33 (mod 7) = 5 6= r4 = 0, and we

an 
on
lude that there were errors in the RNS representa-
tion. Therefore, upon designing the RNS using one redun-
dant modulus, the residue digit error of r3 
an be dete
ted.

Example 3 Let us now invoke an additional redundant mod-
ulus, namely 11 in the above example, whi
h results in a to-
tal of two redundant moduli, namely 7 and 11 in the RRNS.
Let us also 
onsider the integer message X = 21, now hav-
ing 
orresponding residue digits of X = (0; 1; 1; 0; 10) and
that r3 is in error and it was 
hanged from 1 to 3, i.e the
re
eived RNS representation be
omes (0; 1; ~3; 0; 10). A

ord-
ing to the CRT's approa
h, the integer X in the range [0; 60)

an be re
overed by invoking any three moduli and their 
or-
responding residue digits, if no errors o

urred in the re-

eived RNS representation. Let us now 
onsider all possible

ases and attempt to re
over the integer X represented by
(0; 1; ~3; 0; 10), upon retaining all possible 
ombinations of
three out of �ve residue digits, whi
h results in:

(r1; r2; r3) = (0; 1; 3) , X123 = 33 (mod 60);
(r1; r2; r4) = (0; 1; 0) , X124 = 21 (mod 84);
(r1; r2; r5) = (0; 1; 10) , X125 = 21 (mod 132);
(r1; r3; r4) = (0; 3; 0) , X134 = 63 (mod 105);
(r1; r3; r5) = (0; 3; 10) , X135 = 153 (mod 165);
(r1; r4; r5) = (0; 0; 10) , X145 = 21 (mod 231);
(r2; r3; r4) = (1; 3; 0) , X234 = 133 (mod 140);
(r2; r3; r5) = (1; 3; 10) , X235 = 153 (mod 220);
(r2; r4; r5) = (1; 0; 10) , X245 = 21 (mod 308);
(r3; r4; r5) = (3; 0; 10) , X345 = 98 (mod 385);

where Xijk represents the re
overed result by using mod-
uli mi;mj and mk as well as their 
orresponding residue
digits ri; rj and rk. From these results we observe that
X134; X135; X234; X235 and X345 are all illegitimate num-
bers, sin
e their values are out of the legitimate range [0; 60).
In the remaining �ve 
ases, ex
ept for X123, all the re-
sults are the same and equal to 21. Moreover, all these
results were re
overed from three moduli without in
luding
m3, i.e. from X124; X125; X145 and X245, whi
h are equal
to 21. Hen
e, we might 
on
lude that the 
orre
t result is
21 and that there was an error in r3, whi
h 
an be 
orre
ted
by 
omputing r̂3 = 21 (mod 5) = 1.

RRNS 
odes exhibit similar 
oding properties to the
well-known Reed-Solomon (RS) 
odes [5, 7℄. RRNS 
odes

onstitute a 
lass of maximumminimum-distan
e separable

odes. An RRNS(u; v) 
ode - where the information dy-
nami
 range represented by the RRNS(u; v) is [0;

Q
v

i=1
mi)

and the RRNS 
ode's dynami
 range is [0;
Q

u

i=1
mi) - has a

minimum distan
e of (u� v + 1) and hen
e it is 
apable of
dete
ting (u� v) or less residue digit errors and 
orre
t up
to b(u� v)=2
 random residue digit errors. An RRNS(u; v)

ode is 
apable of 
orre
ting t random residue digit errors
and simultaneously dete
ting � (� > t) residue digit errors,
if and only if t + � � (u � v). Moreover, an RRNS(u; v)

ode is 
apable of 
orre
ting t random residue digit errors
and simultaneously 
orre
ting � residue erasures, provided
that 2t+ � � (u� v).

A

ording to the 
arry-free property and due to the la
k
of weighted signi�
an
e of the residue digits in the RNS
arithmeti
, in RRNS 
odes some of the 
hannel-impaired
residue digits 
an be dis
arded as an error 
orre
tion mea-
sure, provided that a suÆ
iently high dynami
 range is re-

3
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tained by the redu
ed-range system, in order to unambigu-
ously de
ode the result. The above statement 
an be aug-
mented as follows. Let fm1;m2; : : : ;mug be a set of u mod-
uli of an RRNS(u; v) 
ode, where m1 < m2 < : : : < mu.
Furthermore, let X be the integer message, whi
h is ex-
pressed with the aid of the residue digits as (r1; r2; : : : ; ru)
with respe
t to the above moduli. If the dynami
 range of
X is [0;

Q
v

i=1
mi), where v � u, then X 
an be re
overed

from any v out of the u number of residue digits and their
relevant moduli. This property implies that d (d � u � v)
number of residue digits 
an be dropped before the IRNST
stage, while still re
overing the message X using the re-
tained residue digits, provided that the retained residue
digits are the 
orre
t, ie un
orrupted residue digits.

Moreover, if we let d be the number of dis
arded residue
digits, where d � u � v, then, a RRNS(u; v) 
ode is 
on-
verted to a RRNS(u�d; v) after d out of the u residue digits
are dis
arded. Hen
e, the redu
ed RRNS(u�d; v) 
ode 
an
dete
t up to (u � v � d) residue digit errors and 
orre
t
up to b(u � v � d)=2
 residue digit errors. This property
suggests that the RRNS(u; v) de
oding 
an be designed by
�rst dis
arding d (d � u � v) out of the u residue digits,
whi
h is followed by RRNS(u � d; v) de
oding. Sin
e the
dis
arded residue digits and their 
orresponding moduli do
not have to be 
onsidered in the RRNS(u� d; v) de
oding,
the de
oding pro
edure is therefore simpli�ed.

5. APPLICATIONS OF RRNS CODES

In addition to the above mentioned appli
ations of RRNS

odes for self-
he
king, error-dete
tion and error-
orre
tion,
a useful property of the RRNS is that an RRNS 
odeword
does not 
hange its error-dete
tion and error-
orre
tion 
har-
a
teristi
s after arithmeti
 operations, su
h as addition,
subtra
tion and multipli
ation [7℄. This property 
an be
employed in order to support fault-tolerant signal pro
ess-
ing. Let us invoke an example, in order to augment this
property.

Example 4 Let us 
onsider the RRNS 
odes based on a
RRNS using nonredundant moduli of m1 = 4; m2 = 5 and
m3 = 7 as well as redundant moduli of m4 = 9; m5 =
11, m6 = 13 and m7 = 17. Table 1 summarised a range
of typi
al de
imal integers and their 
orresponding RRNS

odewords. Let us now 
onsider an operation in the de
imal
integer �eld:

Y = 5� Y1 + Y2 � Y3; (4)

where Y1, Y2 and Y3 are possibly from di�erent sour
es and
may in
lude the transmission and pro
essing errors. How-
ever, due to the inherent properties of the RRNS 
odes, the
operations in Eq.(4) 
an be 
arried out as follows. Firstly,
before we evaluate Eq.(4), Y1, Y2 and Y3 are �rst error-

orre
tion de
oded. Sin
e four redundant moduli are in-

luded, up to two residue digit errors in Y1, Y2 or Y3 
an
be 
orre
ted. Se
ondly, Table 1 is used in order to eval-
uate Eq.(4). Thirdly, sin
e an RRNS 
odeword does not

hange its error-dete
tion/
orre
tion 
apability, when the

odewords are subje
ted to the arithmeti
 operations of addi-
tion and multipli
ation, the resultant RRNS 
odeword 
or-
responding to Y in Eq.(4) 
an be further error-
orre
tion
de
oded, in order to remove the errors that may have hap-
pened in the evaluation of Eq.(4). Note that no 
onventional

odes, su
h as Hamming 
odes, BCH 
odes and 
onvolu-
tional 
odes have this property, sin
e all these 
odes will


hange their stru
ture when the asso
iated 
odewords are
subje
ted to the multipli
ation operation.

Using the operand values of Table 1, let Y1 = X1 = 1,
Y2 = X2 = 2 and Y3 = X6 = 50. For example, the
RRNS 
odeword 
orresponding to 5 is (1; 0; 5; 5; 5; 5; 5) a
-

ording to Table 1. It 
an be readily shown that the 
ode-
word 
orresponding to the operation in Eq.(4) is given by
Y = 5 � 1 + 2� 50 = 105, yielding the residue-sequen
e of
(1; 0; 0; 6; 6; 1; 3) - provided that no more than two residue
digit errors o

urred in Y1, Y2 or Y3. Moreover, even if
two residue digit errors o

urred during the last operation of
Eq.(4), and hen
e the above 
odeword 
hanged to (1; ~1; 0; 6; ~3;
1; 3), i.e., r2 and r5 are in error, by using RRNS error-

orre
tion de
oding, the value of Y = 105 
an still be 
or-
re
tly re
overed, sin
e four redundant moduli were invoked.

Let us now demonstrate another potential appli
ation
of the RRNS 
odes in the 
ontext of the generi
 
ommu-
ni
ation system depi
ted in Fig.1. In this framework, re-
dundan
y has to be added for the implementation of fault-
tolerant 
omputing (or signal-pro
essing), prote
tion of in-
formation over both wired and wireless 
hannels, in order
to a
hieve reliable pro
essing and 
ommuni
ations. Con-
ventionally, the en
oding and de
oding at di�erent stages
has been treated separately. The en
oded 
odewords of the
wired 
hannels have been histori
ally de
oded in order to
remove the related redundan
y, before forwarding the in-
formation to the en
oder of the air interfa
e of Fig.1. The
information at the air interfa
e is then often re-en
oded us-
ing a di�erent 
hannel 
ode, in order to implement reliable
transmission over the asso
iated wireless 
hannels. Further
additional en
oding/de
oding operations may take pla
e at
other interfa
es of a global 
ommuni
ations system, as il-
lustrated in Fig.1.

However, with the advent of RRNS 
odes, the above
mentioned en
oding/de
oding pro
edures 
an be substan-
tially simpli�ed, sin
e the required redundan
y of the entire
global system 
an be jointly designed. Let us invoke an ex-
ample to support this argument.

Example 5 With referen
e to Table 1, let us assume that
the fault-tolerant terminals use only one redundant modu-
lus for the self-
he
king of the asso
iated arithmeti
 units,
employing for example the RRNS(4; 3) 
ode. Let us assume
furthermore that two redundant moduli are required for the
prote
tion of information over the wired 
hannel se
tion
of Fig.1, employing the one-residue digit error-
orre
ting
RRNS (5; 3) 
ode. Finally, four redundant moduli have
to be employed for the prote
tion of information over the
low-reliability wireless 
hannels, using the two-residue digit
error-
orre
tion RRNS(7; 3) 
ode. Let m1, m2, m3, m4,
m5, m6 and m7 be the moduli invoked in the required RRNS,
where m1, m2 and m3 are the nonredundant moduli, while
m4, m5, m6 and m7 are the redundant moduli. The RRNS

odes prote
ting the entire system of Fig.1 
an be designed
as follows.

Step 1: The fault-tolerant terminal No.1 uses moduli
m1, m2, m3 and m4, in order to form the RRNS(4; 3) 
ode-
words, whi
h are expressed as (r1; r2; r3; r4), where r1, r2
and r3 are the nonredundant residue digits, while r4 is the
redundant residue digit. Following all the asso
iated sig-
nal pro
essing operations to be 
arried out by the terminal
- whi
h may involve additions, subtra
tions and multipli
a-
tions on the basis of the RNS - and invoking self-
he
king,
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the fault-tolerant terminal forwards the RRNS(4; 3) 
ode-
words to the en
oder of the wired 
hannels. For simpli
ity
the output 
odewords of the fault-tolerant terminal No.1 are
still expressed as (r1; r2; r3; r4), whi
h will also be used
throughout our further dis
ourse.

Step 2: With the aid of the Base Extension algorithm [2℄,
the wired 
hannel's en
oder - namely En
oder 1 in Fig.1 -

omputes an additional redundant residue digit r5 based on
(r1; r2; r3; r4) and (m1;m2; m3;m4;m5), in order to form
the RRNS(5; 3) 
odewords (r1; r2; r3; r4; r5). Then, these

odewords are transmitted over the wired 
hannel in Fig.1.

Step 3: The wired 
hannel's de
oder - namely De
oder
1 in Fig.1 - re
eives the 
odewords (r1; r2; r3; r4; r5),
whi
h are error-
orre
tion de
oded. The 
orre
ted 
odewords
are expressed as (r1; r2; r3; r4; r5), whi
h are forwarded
to the en
oder of the wireless 
hannel.

Step 4: Similarly to Step 2, with the aid of the base
extension algorithm [2℄, the wireless 
hannel's en
oder 
om-
putes the additional redundant residue digit r6 and r7, based
on (r1; r2; r3; r4; r5) and (m1;m2;m3;m4;m5;m6;m7), in
order to form the RRNS(7; 3) 
odewords (r1; r2; r3; r4; r5;
r6; r7). Then, these 
odewords are transmitted over the
wireless 
hannel of Fig.1.

Step 5: After the wireless 
hannel's de
oder re
eived
the 
odewords (r1; r2; r3; r4; r5, r6; r7), the 
odewords
are error-
orre
tion de
oded and the redundant residue dig-
its r6 and r7 are removed from the 
orre
ted 
odewords. The
wireless 
hannel de
oder then passes the RRNS(5; 3) 
ode-
words to the wired 
hannel's en
oder, namely to En
oder
3 in Fig.1. These RRNS(5; 3) 
odewords are expressed as
(r1; r2; r3; r4; r5).

Step 6: The RRNS(5; 3) 
odewords are transmitted over
the wired 
hannel to the wired 
hannel's de
oder, namely to
De
oder 3 in Fig.1.

Step 7: After the wired 
hannel's de
oder re
eived the
RRNS(5; 3) 
odewords (r1; r2; r3; r4; r5), error-
orre
tion
de
oding is invoked, in order to 
orre
t the residue digit er-
rors and then the redundant residue digit r5 is removed.
The resulting RRNS(4; 3) 
odewords (r1; r2; r3; r4) are
then forwarded to the fault-tolerant terminal No.2.

Step 8: The fault-tolerant terminal No.2 �nally 
arries
out its tasks using the RNS representation of its operands in
the form of the RRNS(4; 3) 
odewords, invokes self-
he
king,
and �nally outputs the re
overed information.

In the upper bran
h of Fig.1 the wired 
hannel's en-

oder only had to 
ompute one additional redundant residue
digit, in 
ontrast to invoking an independent en
oder, as in
a 
onventional system, where ea
h se
tion of the 
ommu-
ni
ations links is prote
ted independently. Similarly, the
wireless 
hannel's en
oder only had to 
ompute two addi-
tional redundant residue digits, in 
ontrast to 
omplete re-
en
oding in independently prote
ted 
onventional systems.
In the bottom bran
h of Fig.1, the en
oder of the wired

hannel, and the en
oder of the fault-tolerant terminal No.
2 - whi
h is not shown in the �gure - 
an be totally removed,
while in 
onventional independently prote
ted systems all
these en
oders would have to be in
luded. Based on these
fa
ts, we 
an 
on
lude that in 
onjun
tion with appropri-
ate joint system design using RRNS 
odes, the 
omplex-
ity of the error-
orre
tion/dete
tion sub-systems in global
tele
ommuni
ation systems 
an be de
reased. Our future
work in this �eld will be based on designing systems invok-
ing the prin
iples proposed in this 
ontribution.
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Figure 1: A transmission and 
omputing system framework
in
luding fault-tolerant terminals, wired transmissions and
wireless transmissions.
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