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ABSTRACT

In this paper residue number system (RNS) arith-
meti and redundant residue number system (RRNS)
based odes as well as their properties are reviewed.
We propose a number of appliations for RRNS
odes and demonstrate how RRNS odes an be
employed in global ommuniation systems, in or-
der to simplify the assoiated systems by unifying
the entire enoding and deoding proedure aross
global ommuniation systems.

1. INTRODUCTION

RNS-based arithmetis exhibit a modular struture that
leads naturally to parallelism in digital hardware imple-
mentations. The RNS has two inherent features that are
attrative in omparison to onventional weighted number
systems, suh as for example the binary weighted number
system representation. These two features are [1{4℄: 1)
the arry-free arithmeti and 2) the lak of ordered signi�-
ane amongst the residue digits. The �rst property implies
that the operations related to the di�erent residue digits are
mutually independent and hene the errors ourring dur-
ing addition, subtration and multipliation operations, or
due to the noise indued by transmission and proessing,
remain on�ned to their original residue digits [1, 5{7℄. In
other words, these errors do not propagate and hene do
not ontaminate other residue digits due to the absene of
a arry forward. The above-mentioned seond property of
the RNS arithmeti implies that redundant residue digits
an be disarded without a�eting the result, provided that
a suÆiently high dynami range is retained by the resul-
tant redued-range RNS system, in order to unambiguously
desribe the nonredundant information symbols.

As it is well known in VLSI design, usually so-alled
systoli arhitetures [1℄ are invoked to divide a proessing
task into several simple tasks performed by small, (ideally)
idential, easily designed proessors. Eah proessor om-
muniates only with its nearest neighbour, simplifying the
interonnetion design and test, while reduing signal de-
lays and hene inreasing the proessing speed. Due to its
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arry-free property, the RNS arithmeti further simpli�es
the omputations by deomposing a problem into a set of
parallel, independent residue omputations.

The properties of the RNS arithmeti suggest that a
redundant residue number system (RRNS) an be used for
self-heking, error-detetion and error-orretion in digi-
tal proessors. The RRNS tehnique provides a useful ap-
proah to the design of general-purpose systems, apable of
sensing and retifying their own proessing and transmis-
sion errors. For example, if a digital reeiver is implemented
using the RRNS having suÆient redundany, then errors
in the proessed signals an be deteted and orreted by
the RRNS-based deoding. Furthermore, the RRNS ap-
proah [1℄ is the only one, where it is possible to use the
very same arithmeti module in the very same way for the
generation of both the information part and the parity part
of a RRNS odeword. Moreover, due to the inherent prop-
erties of the RNS, the residue arithmeti o�ers a variety
of new approahes to the realization of digital signal pro-
essing algorithms, suh as digital modulation and demod-
ulation as well as the fault-tolerant design of arithmeti
units [2{4, 7{9℄. It also o�ers new approahes to the de-
sign of error-detetion and error-orretion odes. Let us
�rst review the basi mathematial model required for the
onversion of operands from the weighted number system
to the RNS, or onversely, from the RNS to the weighted
number system.

2. RESIDUE NUMBER SYSTEM TRANSFORM
AND ITS INVERSE

For onveniene, we de�ne the residue number system trans-
form (RNST) as the algorithm that transforms any onven-
tional weighted number system, suh as for example the
natural binary oded deimal (NBCD) number system to
the RNS [3, 7℄. The inverse RNST (IRNST) is de�ned as
the algorithm, whih transforms the RNS to the weighted
number system, an issue to be elaborated on below.

Let X be a non-negative integer number in the range
of 0 � X < %n, where % is a base andX is represented in the
weighted number system asX = fbn�1 bn�2 : : : b2 b1 b0g =P

n�1

j=0
bj%

j , where bj 2 f0; 1; : : : ; %� 1g. Spei�ally, a

weighted binary representation is onsidered, when % = 2.

Let fm1;m2; : : : ;mug, the set of so-alled moduli in-
volved in the RNS, be a set of pairwise relative prime num-
bers, where no two moduli have a ommon integer divisor
greater than 1. If M =

Q
u

i=1
mi � %n, then the RNST is

realized by uniquely representing X - whih was de�ned in
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the range of 0 � X < %n - as a u-tuple residue digit sequene
(r1; r2; : : : ; ru), where ri = X (mod mi) = X � b X

mi
mi for

i = 1; 2; : : : ; u, bz denotes the largest integer not exeeding
z, and 0 � ri � mi � 1. Furthermore, [0;M � 1℄ is de�ned
as the dynami range of the RNS and any integer X in this
range is uniquely represented by a u-tuple residue sequene,
whih is expressed as:

X , (r1; r2; : : : ; ru); 0 � X < M;

ri = X (mod mi); i = 1; 2; : : : ; u: (1)

Assuming that the integers X1 and X2 have RNS repre-
sentations ofX1 = (r11; r12; : : : ; r1u) andX2 = (r21; r22; : : : ;
r2u), respetively, then X1 �X2, where � denotes addition,
subtration or multipliation, yields another unique residue
sequene X3, provided that X3 remains within the dynami
range of [0; M). The arithmeti operations over the RNS
an be arried out on a residue-by-residue basis, whih an
be expressed as:

X1 �X2 , [(r1i � r2i) (mod mi)℄
u

i=1
; (2)

where on the left the operation � represents ordinary addi-
tion, subtration or multipliation of two integers, and on
the right it represents the same operations performed on the
basis of the appropriate residue digits r1i and r2i, with re-
spet to their orresponding modulus mi. This allows us to
onvert binary arithmeti operations arried out with large
integers to residue arithmeti operations involving a higher
number of smaller residue digits, where the operations an
be exeuted in parallel fashion and there is no arry forward
between the residue digits. The lak of arry forward be-
tween the residue digits prevents the propagation of errors
between residue digits.

In ontrast to the RNST, the IRNST is de�ned as the
algorithm that transforms the operands from the RNS do-
main to the onventional weighted number system represen-
tation. A well-known implementation of the IRNST is the
so-alled Chinese remainder theorem (CRT) [5℄. Aording
to the CRT, for any given u-tuple (r1; r2; : : : ; ru), where
0 � ri < mi for i = 1; 2; : : : ; u there exists one and only one
integer X suh that 0 � X < M and ri = X (mod mi). It
an be shown that the numerial value of X an be om-
puted by [5℄:

X =

uX

i=1

riTiMi (mod M); (3)

where Mi = M=mi and the integers Ti are omputed a
priori by solving the so-alled ongruene TiMi = 1 (modmi).
The oeÆients Ti are also often referred to as the multi-
pliative inverses of Mi.

The CRT is a lassial algorithm for the implementa-
tion of the IRNST. However, the real-time implementation
of the CRT is not pratial, sine it requires modular oper-
ations with respet to a large integer M . In order to avoid
proessing large integers, espeially in the ontext of error
ontrol invoking the RRNS, a frequently used approah is
the so-alled base extension (BEX) operation in onjuntion
with the mixed radix onversion approah [7℄.

3. REDUNDANT RESIDUE NUMBER
SYSTEM AND RRNS ENCODING

If a residue number system is designed not only for the
representation of data, but also for the protetion of data,
usually we design the RNS using so-alled redundant mod-
uli, in order that the system has the apability of self-
heking, error-detetion and error-orretion [1℄. In this
ase the operand X is limited to the so-alled informa-
tion dynami range of

�
0; M =

Q
v

i=1
mi

�
, where v � u,

and m1;m2; : : : ;mv are referred to as the information mod-
uli, while mv+1;mv+2; : : :, mu are the so-alled redundant
moduli. We express the produt of the redundant mod-
uli as MR =

Q
u�v

j=1
mv+j. The interval [0;M) onstitutes

the legitimate range of the operand X, and the interval
[M;MMR) is the assoiated so-alled illegitimate range.
Any integer belonging to the legitimate range will be la-
belled as legitimate and those belonging to the illegitimate
range as illegitimate, sine it does not represent a legitimate
number or operand, diretly aruing from the nonredun-
dant information-bearing residue digits.

An important property of the RRNS is that an integer
represented by the residues of the RRNS an be reovered
by any group of v number of moduli and their orresponding
residue digits. This property onstitutes the basis in the
design of RRNS based error-detetion and error-orretion
shemes.

A RRNS having v number of information moduli and
u�v number of redundant moduli is denoted as a RRNS(u; v)
ode. The operation assoiated with generating the redun-
dant residue digits of an integer operand X an also be
viewed or interpreted, as an enoding operation generating
the parity residue digits of a RRNS(u; v) ode. The RRNS
enoding operation an be implemented based on a group of
odewords having typial integer values, by invoking exlu-
sively addition operations. In order to augment this state-
ment, below we provide an example showing the assoiated
groups of odewords for the RRNS(7,3) ode having infor-
mation moduli of m1 = 4; m2 = 5; m3 = 7 and redundant
moduli of m4 = 9; m5 = 11; m6 = 13; m7 = 17. The legit-
imate range of this ode is [0,139℄, sine 4�5�7 = 140. Ta-
ble 1 portrays a range of typial deimal integer messages,
whih are based on the integers `1, 2, 5, 10, 20, 50, 100' of-
ten used in monetary systems. It is well known that on the
average any integer in the legitimate range of [0,139℄ an
be expressed by the sum of a subset of the lowest possible
number of the spei� integers given above. In Table 2 we
summarised a range of binary integer numbers and their
orresponding RRNS odewords.

Example 1 For the enoding of the deimal integer X =
123, sine X an be expressed as 123 = 100 + 20 + 2 + 1,
the RRNS odeword of X an be simply obtained from the
odewords orresponding to X7, X5, X2 in Table 1 and X1

on the basis of modulo addition. It an be readily shown that
the odeword of X = 123 is (3; 3; 4; 6; 2; 6; 4). Similarly, for
a binary integer X = 1011011, the assoiated odeword is
simply onstituted by the orresponding modulo addition of
X7; X5; X4; X2 and X1 of Table 2, where the subsripts
7; 5; 4; 2; 1 are simply the indies of the binary 1 positions
in X. The assoiated odeword of X = 1011011 is hene
(3; 1; 0; 1; 3; 0; 6).
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Deimal Nonredundant Redundant
message X residue digits residue digits

r1 r2 r3 r4 r5 r6 r7
X0 = 0 0 0 0 0 0 0 0

X1 = 1 1 1 1 1 1 1 1

X2 = 2 2 2 2 2 2 2 2

X3 = 5 1 0 5 5 5 5 5

X4 = 10 2 0 3 1 10 10 10

X5 = 20 0 0 6 2 9 7 3

X6 = 50 2 0 1 5 6 11 16

X7 = 100 0 0 2 1 1 9 15

Table 1: RRNS odewords of some typial deimal integer
messages X in the RRNS with moduli m1 = 4; m2 = 5,
m3 = 7, m4 = 9; m5 = 11, m6 = 13 and m7 = 17, where
ri = X (mod mi) and M = 4� 5� 7 = 140.

Binary Nonredundant Redundant
message X residue digits residue digits

r1 r2 r3 r4 r5 r6 r7
X0 = 0000000 0 0 0 0 0 0 0

X1 = 0000001 1 1 1 1 1 1 1

X2 = 0000010 2 2 2 2 2 2 2

X3 = 0000100 0 4 4 4 4 4 4

X4 = 0001000 0 3 1 8 8 8 8

X5 = 0010000 0 1 2 7 5 3 16

X6 = 0100000 0 2 3 5 10 6 15

X7 = 1000000 0 4 1 1 9 12 13

Table 2: RRNS odewords of some typial binary messages
X in the RRNS with moduli m1 = 4; m2 = 5, m3 = 7,
m4 = 9; m5 = 11, m6 = 13 and m7 = 17, where ri =
X (mod mi) and M = 4 � 5� 7 = 140.

4. ERROR-DETECTION AND
ERROR-CORRECTION IN RRNS

In this setion, we briey summarise some properties of the
assoiated error-detetion and error-orretion proedures
in the ontext of the RRNS. Error-detetion/orretion de-
oding of RRNS(u; v) odes has been disussed in depth
in [3, 5{7℄. Let us invoke two simple examples, in order
to gain insight into the error-detetion and error-orretion
mehanism of the RRNS.

Example 2 Let us onsider the moduli 3; 4; 5; 7, where 3; 4
and 5 are the information moduli and 7 is the redundant
modulus. The information dynami range is [0;M = 3 � 4 � 5)
= [0; 60). Upon onsidering an integer deimal message of
X = 21, the orresponding residue values are X = (0; 1; 1; 0).
If there is an error in the RNS representation due to trans-
mission or proessing, for example r3 is hanged from 1 to
3, then the reeived RNS representation beomes (0; 1; ~3; 0).
Upon following the general approah of the CRT in Eq.(3)
and using the �rst three residue digits and their moduli, we
obtain:

M1 = 4� 5 = 20; M2 = 3� 5 = 15; M3 = 3� 4 = 12;
T1 = 2; T2 = 3; T3 = 3;
X = [0 � 2� 20 + 1� 3� 15 + 3� 3 � 12℄ mod 60

= 33:

However, where X = 33 (mod 7) = 5 6= r4 = 0, and we
an onlude that there were errors in the RNS representa-
tion. Therefore, upon designing the RNS using one redun-
dant modulus, the residue digit error of r3 an be deteted.

Example 3 Let us now invoke an additional redundant mod-
ulus, namely 11 in the above example, whih results in a to-
tal of two redundant moduli, namely 7 and 11 in the RRNS.
Let us also onsider the integer message X = 21, now hav-
ing orresponding residue digits of X = (0; 1; 1; 0; 10) and
that r3 is in error and it was hanged from 1 to 3, i.e the
reeived RNS representation beomes (0; 1; ~3; 0; 10). Aord-
ing to the CRT's approah, the integer X in the range [0; 60)
an be reovered by invoking any three moduli and their or-
responding residue digits, if no errors ourred in the re-
eived RNS representation. Let us now onsider all possible
ases and attempt to reover the integer X represented by
(0; 1; ~3; 0; 10), upon retaining all possible ombinations of
three out of �ve residue digits, whih results in:

(r1; r2; r3) = (0; 1; 3) , X123 = 33 (mod 60);
(r1; r2; r4) = (0; 1; 0) , X124 = 21 (mod 84);
(r1; r2; r5) = (0; 1; 10) , X125 = 21 (mod 132);
(r1; r3; r4) = (0; 3; 0) , X134 = 63 (mod 105);
(r1; r3; r5) = (0; 3; 10) , X135 = 153 (mod 165);
(r1; r4; r5) = (0; 0; 10) , X145 = 21 (mod 231);
(r2; r3; r4) = (1; 3; 0) , X234 = 133 (mod 140);
(r2; r3; r5) = (1; 3; 10) , X235 = 153 (mod 220);
(r2; r4; r5) = (1; 0; 10) , X245 = 21 (mod 308);
(r3; r4; r5) = (3; 0; 10) , X345 = 98 (mod 385);

where Xijk represents the reovered result by using mod-
uli mi;mj and mk as well as their orresponding residue
digits ri; rj and rk. From these results we observe that
X134; X135; X234; X235 and X345 are all illegitimate num-
bers, sine their values are out of the legitimate range [0; 60).
In the remaining �ve ases, exept for X123, all the re-
sults are the same and equal to 21. Moreover, all these
results were reovered from three moduli without inluding
m3, i.e. from X124; X125; X145 and X245, whih are equal
to 21. Hene, we might onlude that the orret result is
21 and that there was an error in r3, whih an be orreted
by omputing r̂3 = 21 (mod 5) = 1.

RRNS odes exhibit similar oding properties to the
well-known Reed-Solomon (RS) odes [5, 7℄. RRNS odes
onstitute a lass of maximumminimum-distane separable
odes. An RRNS(u; v) ode - where the information dy-
nami range represented by the RRNS(u; v) is [0;

Q
v

i=1
mi)

and the RRNS ode's dynami range is [0;
Q

u

i=1
mi) - has a

minimum distane of (u� v + 1) and hene it is apable of
deteting (u� v) or less residue digit errors and orret up
to b(u� v)=2 random residue digit errors. An RRNS(u; v)
ode is apable of orreting t random residue digit errors
and simultaneously deteting � (� > t) residue digit errors,
if and only if t + � � (u � v). Moreover, an RRNS(u; v)
ode is apable of orreting t random residue digit errors
and simultaneously orreting � residue erasures, provided
that 2t+ � � (u� v).

Aording to the arry-free property and due to the lak
of weighted signi�ane of the residue digits in the RNS
arithmeti, in RRNS odes some of the hannel-impaired
residue digits an be disarded as an error orretion mea-
sure, provided that a suÆiently high dynami range is re-
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tained by the redued-range system, in order to unambigu-
ously deode the result. The above statement an be aug-
mented as follows. Let fm1;m2; : : : ;mug be a set of u mod-
uli of an RRNS(u; v) ode, where m1 < m2 < : : : < mu.
Furthermore, let X be the integer message, whih is ex-
pressed with the aid of the residue digits as (r1; r2; : : : ; ru)
with respet to the above moduli. If the dynami range of
X is [0;

Q
v

i=1
mi), where v � u, then X an be reovered

from any v out of the u number of residue digits and their
relevant moduli. This property implies that d (d � u � v)
number of residue digits an be dropped before the IRNST
stage, while still reovering the message X using the re-
tained residue digits, provided that the retained residue
digits are the orret, ie unorrupted residue digits.

Moreover, if we let d be the number of disarded residue
digits, where d � u � v, then, a RRNS(u; v) ode is on-
verted to a RRNS(u�d; v) after d out of the u residue digits
are disarded. Hene, the redued RRNS(u�d; v) ode an
detet up to (u � v � d) residue digit errors and orret
up to b(u � v � d)=2 residue digit errors. This property
suggests that the RRNS(u; v) deoding an be designed by
�rst disarding d (d � u � v) out of the u residue digits,
whih is followed by RRNS(u � d; v) deoding. Sine the
disarded residue digits and their orresponding moduli do
not have to be onsidered in the RRNS(u� d; v) deoding,
the deoding proedure is therefore simpli�ed.

5. APPLICATIONS OF RRNS CODES

In addition to the above mentioned appliations of RRNS
odes for self-heking, error-detetion and error-orretion,
a useful property of the RRNS is that an RRNS odeword
does not hange its error-detetion and error-orretion har-
ateristis after arithmeti operations, suh as addition,
subtration and multipliation [7℄. This property an be
employed in order to support fault-tolerant signal proess-
ing. Let us invoke an example, in order to augment this
property.

Example 4 Let us onsider the RRNS odes based on a
RRNS using nonredundant moduli of m1 = 4; m2 = 5 and
m3 = 7 as well as redundant moduli of m4 = 9; m5 =
11, m6 = 13 and m7 = 17. Table 1 summarised a range
of typial deimal integers and their orresponding RRNS
odewords. Let us now onsider an operation in the deimal
integer �eld:

Y = 5� Y1 + Y2 � Y3; (4)

where Y1, Y2 and Y3 are possibly from di�erent soures and
may inlude the transmission and proessing errors. How-
ever, due to the inherent properties of the RRNS odes, the
operations in Eq.(4) an be arried out as follows. Firstly,
before we evaluate Eq.(4), Y1, Y2 and Y3 are �rst error-
orretion deoded. Sine four redundant moduli are in-
luded, up to two residue digit errors in Y1, Y2 or Y3 an
be orreted. Seondly, Table 1 is used in order to eval-
uate Eq.(4). Thirdly, sine an RRNS odeword does not
hange its error-detetion/orretion apability, when the
odewords are subjeted to the arithmeti operations of addi-
tion and multipliation, the resultant RRNS odeword or-
responding to Y in Eq.(4) an be further error-orretion
deoded, in order to remove the errors that may have hap-
pened in the evaluation of Eq.(4). Note that no onventional
odes, suh as Hamming odes, BCH odes and onvolu-
tional odes have this property, sine all these odes will

hange their struture when the assoiated odewords are
subjeted to the multipliation operation.

Using the operand values of Table 1, let Y1 = X1 = 1,
Y2 = X2 = 2 and Y3 = X6 = 50. For example, the
RRNS odeword orresponding to 5 is (1; 0; 5; 5; 5; 5; 5) a-
ording to Table 1. It an be readily shown that the ode-
word orresponding to the operation in Eq.(4) is given by
Y = 5 � 1 + 2� 50 = 105, yielding the residue-sequene of
(1; 0; 0; 6; 6; 1; 3) - provided that no more than two residue
digit errors ourred in Y1, Y2 or Y3. Moreover, even if
two residue digit errors ourred during the last operation of
Eq.(4), and hene the above odeword hanged to (1; ~1; 0; 6; ~3;
1; 3), i.e., r2 and r5 are in error, by using RRNS error-
orretion deoding, the value of Y = 105 an still be or-
retly reovered, sine four redundant moduli were invoked.

Let us now demonstrate another potential appliation
of the RRNS odes in the ontext of the generi ommu-
niation system depited in Fig.1. In this framework, re-
dundany has to be added for the implementation of fault-
tolerant omputing (or signal-proessing), protetion of in-
formation over both wired and wireless hannels, in order
to ahieve reliable proessing and ommuniations. Con-
ventionally, the enoding and deoding at di�erent stages
has been treated separately. The enoded odewords of the
wired hannels have been historially deoded in order to
remove the related redundany, before forwarding the in-
formation to the enoder of the air interfae of Fig.1. The
information at the air interfae is then often re-enoded us-
ing a di�erent hannel ode, in order to implement reliable
transmission over the assoiated wireless hannels. Further
additional enoding/deoding operations may take plae at
other interfaes of a global ommuniations system, as il-
lustrated in Fig.1.

However, with the advent of RRNS odes, the above
mentioned enoding/deoding proedures an be substan-
tially simpli�ed, sine the required redundany of the entire
global system an be jointly designed. Let us invoke an ex-
ample to support this argument.

Example 5 With referene to Table 1, let us assume that
the fault-tolerant terminals use only one redundant modu-
lus for the self-heking of the assoiated arithmeti units,
employing for example the RRNS(4; 3) ode. Let us assume
furthermore that two redundant moduli are required for the
protetion of information over the wired hannel setion
of Fig.1, employing the one-residue digit error-orreting
RRNS (5; 3) ode. Finally, four redundant moduli have
to be employed for the protetion of information over the
low-reliability wireless hannels, using the two-residue digit
error-orretion RRNS(7; 3) ode. Let m1, m2, m3, m4,
m5, m6 and m7 be the moduli invoked in the required RRNS,
where m1, m2 and m3 are the nonredundant moduli, while
m4, m5, m6 and m7 are the redundant moduli. The RRNS
odes proteting the entire system of Fig.1 an be designed
as follows.

Step 1: The fault-tolerant terminal No.1 uses moduli
m1, m2, m3 and m4, in order to form the RRNS(4; 3) ode-
words, whih are expressed as (r1; r2; r3; r4), where r1, r2
and r3 are the nonredundant residue digits, while r4 is the
redundant residue digit. Following all the assoiated sig-
nal proessing operations to be arried out by the terminal
- whih may involve additions, subtrations and multiplia-
tions on the basis of the RNS - and invoking self-heking,
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the fault-tolerant terminal forwards the RRNS(4; 3) ode-
words to the enoder of the wired hannels. For simpliity
the output odewords of the fault-tolerant terminal No.1 are
still expressed as (r1; r2; r3; r4), whih will also be used
throughout our further disourse.

Step 2: With the aid of the Base Extension algorithm [2℄,
the wired hannel's enoder - namely Enoder 1 in Fig.1 -
omputes an additional redundant residue digit r5 based on
(r1; r2; r3; r4) and (m1;m2; m3;m4;m5), in order to form
the RRNS(5; 3) odewords (r1; r2; r3; r4; r5). Then, these
odewords are transmitted over the wired hannel in Fig.1.

Step 3: The wired hannel's deoder - namely Deoder
1 in Fig.1 - reeives the odewords (r1; r2; r3; r4; r5),
whih are error-orretion deoded. The orreted odewords
are expressed as (r1; r2; r3; r4; r5), whih are forwarded
to the enoder of the wireless hannel.

Step 4: Similarly to Step 2, with the aid of the base
extension algorithm [2℄, the wireless hannel's enoder om-
putes the additional redundant residue digit r6 and r7, based
on (r1; r2; r3; r4; r5) and (m1;m2;m3;m4;m5;m6;m7), in
order to form the RRNS(7; 3) odewords (r1; r2; r3; r4; r5;
r6; r7). Then, these odewords are transmitted over the
wireless hannel of Fig.1.

Step 5: After the wireless hannel's deoder reeived
the odewords (r1; r2; r3; r4; r5, r6; r7), the odewords
are error-orretion deoded and the redundant residue dig-
its r6 and r7 are removed from the orreted odewords. The
wireless hannel deoder then passes the RRNS(5; 3) ode-
words to the wired hannel's enoder, namely to Enoder
3 in Fig.1. These RRNS(5; 3) odewords are expressed as
(r1; r2; r3; r4; r5).

Step 6: The RRNS(5; 3) odewords are transmitted over
the wired hannel to the wired hannel's deoder, namely to
Deoder 3 in Fig.1.

Step 7: After the wired hannel's deoder reeived the
RRNS(5; 3) odewords (r1; r2; r3; r4; r5), error-orretion
deoding is invoked, in order to orret the residue digit er-
rors and then the redundant residue digit r5 is removed.
The resulting RRNS(4; 3) odewords (r1; r2; r3; r4) are
then forwarded to the fault-tolerant terminal No.2.

Step 8: The fault-tolerant terminal No.2 �nally arries
out its tasks using the RNS representation of its operands in
the form of the RRNS(4; 3) odewords, invokes self-heking,
and �nally outputs the reovered information.

In the upper branh of Fig.1 the wired hannel's en-
oder only had to ompute one additional redundant residue
digit, in ontrast to invoking an independent enoder, as in
a onventional system, where eah setion of the ommu-
niations links is proteted independently. Similarly, the
wireless hannel's enoder only had to ompute two addi-
tional redundant residue digits, in ontrast to omplete re-
enoding in independently proteted onventional systems.
In the bottom branh of Fig.1, the enoder of the wired
hannel, and the enoder of the fault-tolerant terminal No.
2 - whih is not shown in the �gure - an be totally removed,
while in onventional independently proteted systems all
these enoders would have to be inluded. Based on these
fats, we an onlude that in onjuntion with appropri-
ate joint system design using RRNS odes, the omplex-
ity of the error-orretion/detetion sub-systems in global
teleommuniation systems an be dereased. Our future
work in this �eld will be based on designing systems invok-
ing the priniples proposed in this ontribution.
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Figure 1: A transmission and omputing system framework
inluding fault-tolerant terminals, wired transmissions and
wireless transmissions.
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