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ABSTRACT

In this paper residue number system (RNS) arith-
metic and redundant residue number system (RRNS)
based codes as well as their properties are reviewed.
We propose a number of applications for RRNS
codes and demonstrate how RRNS codes can be
employed in global communication systems, in or-
der to simplify the associated systems by unifying
the entire encoding and decoding procedure across
global communication systems.

1. INTRODUCTION

RNS-based arithmetics exhibit a modular structure that
leads naturally to parallelism in digital hardware imple-
mentations. The RNS has two inherent features that are
attractive in comparison to conventional weighted number
systems, such as for example the binary weighted number
system representation. These two features are [1-4]: 1)
the carry-free arithmetic and 2) the lack of ordered signifi-
cance amongst the residue digits. The first property implies
that the operations related to the different residue digits are
mutually independent and hence the errors occurring dur-
ing addition, subtraction and multiplication operations, or
due to the noise induced by transmission and processing,
remain confined to their original residue digits [1,5-7]. In
other words, these errors do not propagate and hence do
not contaminate other residue digits due to the absence of
a carry forward. The above-mentioned second property of
the RNS arithmetic implies that redundant residue digits
can be discarded without affecting the result, provided that
a sufficiently high dynamic range is retained by the resul-
tant reduced-range RNS system, in order to unambiguously
describe the nonredundant information symbols.

As it is well known in VLSI design, usually so-called
systolic architectures [1] are invoked to divide a processing
task into several simple tasks performed by small, (ideally)
identical, easily designed processors. Each processor com-
municates only with its nearest neighbour, simplifying the
interconnection design and test, while reducing signal de-
lays and hence increasing the processing speed. Due to its
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carry-free property, the RNS arithmetic further simplifies
the computations by decomposing a problem into a set of
parallel, independent residue computations.

The properties of the RNS arithmetic suggest that a
redundant residue number system (RRNS) can be used for
self-checking, error-detection and error-correction in digi-
tal processors. The RRNS technique provides a useful ap-
proach to the design of general-purpose systems, capable of
sensing and rectifying their own processing and transmis-
sion errors. For example, if a digital receiver is implemented
using the RRNS having sufficient redundancy, then errors
in the processed signals can be detected and corrected by
the RRNS-based decoding. Furthermore, the RRNS ap-
proach [1] is the only one, where it is possible to use the
very same arithmetic module in the very same way for the
generation of both the information part and the parity part
of a RRNS codeword. Moreover, due to the inherent prop-
erties of the RNS, the residue arithmetic offers a variety
of new approaches to the realization of digital signal pro-
cessing algorithms, such as digital modulation and demod-
ulation as well as the fault-tolerant design of arithmetic
units [2-4, 7-9]. It also offers new approaches to the de-
sign of error-detection and error-correction codes. Let us
first review the basic mathematical model required for the
conversion of operands from the weighted number system
to the RNS, or conversely, from the RNS to the weighted
number system.

2. RESIDUE NUMBER SYSTEM TRANSFORM
AND ITS INVERSE

For convenience, we define the residue number system trans-
form (RNST) as the algorithm that transforms any conven-
tional weighted number system, such as for example the
natural binary coded decimal (NBCD) number system to
the RNS [3,7]. The inverse RNST (IRNST) is defined as
the algorithm, which transforms the RNS to the weighted
number system, an issue to be elaborated on below.

Let X be a non-negative integer number in the range
of 0 < X < o", where g is a base and X is represented in the
weighted number system as X = {bp_1 bn—2 ... b2 b1 bo} =
E;:Ol bjo’, where b; € {0,1,...,0—1}. Specifically, a
weighted binary representation is considered, when g = 2.

Let {mi,ma,...,my}, the set of so-called moduli in-
volved in the RNS, be a set of pairwise relative prime num-
bers, where no two moduli have a common integer divisor
greater than 1. If M = H::l m; > ", then the RNST is
realized by uniquely representing X - which was defined in

0-7803-7005-8/01/$10.00 (c) 2001 IEEE



the range of 0 < X < p" - as a u-tuple residue digit sequence

(r1,r2,...,ry), where r; = X (mod m;) = X — | 2 |m; for
t=1,2,...,u, |z] denotes the largest integer not exceeding

z, and 0 < r; < m; — 1. Furthermore, [0, M — 1] is defined
as the dynamic range of the RNS and any integer X in this
range is uniquely represented by a u-tuple residue sequence,
which is expressed as:

X & (ri,ra,...,my), 0<X <M,
r; =X (mod m;), i=1,2,...,u. (1)

Assuming that the integers X; and X» have RNS repre-
sentations OfX1 = (7‘11, r12,... ,Tlu) and X2 = (7‘21, T22,...,
T2, ), Tespectively, then X; e X», where o denotes addition,
subtraction or multiplication, yields another unique residue
sequence X3, provided that X3 remains within the dynamic
range of [0, M). The arithmetic operations over the RNS
can be carried out on a residue-by-residue basis, which can
be expressed as:

X1 e X5 < [(r1; ® r2i) (mod m;)]; (2)

i=1"

where on the left the operation e represents ordinary addi-
tion, subtraction or multiplication of two integers, and on
the right it represents the same operations performed on the
basis of the appropriate residue digits r1; and ry;, with re-
spect to their corresponding modulus m;. This allows us to
convert binary arithmetic operations carried out with large
integers to residue arithmetic operations involving a higher
number of smaller residue digits, where the operations can
be executed in parallel fashion and there is no carry forward
between the residue digits. The lack of carry forward be-
tween the residue digits prevents the propagation of errors
between residue digits.

In contrast to the RNST, the IRNST is defined as the
algorithm that transforms the operands from the RNS do-
main to the conventional weighted number system represen-
tation. A well-known implementation of the IRNST is the
so-called Chinese remainder theorem (CRT) [5]. According
to the CRT, for any given u-tuple (ri,rs2,...,r,), where
0<ri<m;fori=1,2,...,u there exists one and only one
integer X such that 0 < X < M and r; = X (mod m;). It
can be shown that the numerical value of X can be com-
puted by [5]:

X = irszMz (mod M), (3)

i=1

where M; = M/m; and the integers T; are computed a

priori by solving the so-called congruence T; M; = 1 (mod m;).

The coefficients T; are also often referred to as the multi-
plicative inverses of M;.

The CRT is a classical algorithm for the implementa-
tion of the IRNST. However, the real-time implementation
of the CRT is not practical, since it requires modular oper-
ations with respect to a large integer M. In order to avoid
processing large integers, especially in the context of error
control invoking the RRNS, a frequently used approach is
the so-called base extension (BEX) operation in conjunction
with the mixed radix conversion approach [7].

3. REDUNDANT RESIDUE NUMBER
SYSTEM AND RRNS ENCODING

If a residue number system is designed not only for the
representation of data, but also for the protection of data,
usually we design the RNS using so-called redundant mod-
uli, in order that the system has the capability of self-
checking, error-detection and error-correction [1]. In this
case the operand X is limited to the so-called informa-
tion dynamic range of [0, M = Hlemi), where v < wu,
and m1,ma, ..., m, are referred to as the information mod-
uli, while my4+1, My42,..., m, are the so-called redundant
moduli. We express the product of the redundant mod-
uli as Mg = H;L;lv my4j. The interval [0, M) constitutes
the legitimate range of the operand X, and the interval
[M,MMEg) is the associated so-called illegitimate range.
Any integer belonging to the legitimate range will be la-
belled as legitimate and those belonging to the illegitimate
range as illegitimate, since it does not represent a legitimate
number or operand, directly accruing from the nonredun-
dant information-bearing residue digits.

An important property of the RRNS is that an integer
represented by the residues of the RRNS can be recovered
by any group of v number of moduli and their corresponding
residue digits. This property constitutes the basis in the
design of RRNS based error-detection and error-correction
schemes.

A RRNS having v number of information moduli and
u—v number of redundant moduli is denoted as a RRNS(u, v)
code. The operation associated with generating the redun-
dant residue digits of an integer operand X can also be
viewed or interpreted, as an encoding operation generating
the parity residue digits of a RRNS(u,v) code. The RRNS
encoding operation can be implemented based on a group of
codewords having typical integer values, by invoking exclu-
sively addition operations. In order to augment this state-
ment, below we provide an example showing the associated
groups of codewords for the RRNS(7,3) code having infor-
mation moduli of m; =4, m2 =5, ms = 7 and redundant
moduli of m4 =9, ms = 11, me = 13, mr = 17. The legit-
imate range of this code is [0,139], since 4 x 5 x 7 = 140. Ta-
ble 1 portrays a range of typical decimal integer messages,
which are based on the integers ‘1, 2, 5, 10, 20, 50, 100’ of-
ten used in monetary systems. It is well known that on the
average any integer in the legitimate range of [0,139] can
be expressed by the sum of a subset of the lowest possible
number of the specific integers given above. In Table 2 we
summarised a range of binary integer numbers and their
corresponding RRNS codewords.

Example 1 For the encoding of the decimal integer X =
123, since X can be expressed as 123 = 100 + 20 + 2 + 1,
the RRNS codeword of X can be simply obtained from the
codewords corresponding to Xz, X5, Xo in Table 1 and X,
on the basis of modulo addition. It can be readily shown that
the codeword of X =123 is (3,3,4,6,2,6,4). Similarly, for
a binary integer X = 1011011, the associated codeword is
simply constituted by the corresponding modulo addition of
X7, X5, X4, X2 and X1 of Table 2, where the subscripts
7,5,4,2,1 are simply the indices of the binary 1 positions
in X. The associated codeword of X = 1011011 is hence
(3,1,0,1,3,0,6).

0-7803-7005-8/01/$10.00 (c) 2001 IEEE



Decimal Nonredundant Redundant
message X | residue digits residue digits
L T2 T3 Ta Ts Ts r7
Xo=0 0 0 0 0 0 0 0
X =1 1 1 1 1 1 1 1
X, =2 2 2 2 2 2 2 2
X3=5 1 0 5 5 5 5 5
X4 =10 2 0 3 1 10 10 10
X5 =20 0 0 6 2 9 7 3
X6 =50 2 0 1 5 6 11 16
X7 =100 0o 0 2 1 1 9 15

Table 1: RRNS codewords of some typical decimal integer
messages X in the RRNS with moduli m; = 4, may = 5,
m3 =7, mg =9, ms =11, mg = 13 and mr = 17, where
r; = X (mod m;) and M =4 x 5 x 7 = 140.

Binary Nonredundant Redundant
message X residue digits residue digits
L T2 T3 Ta Ts Te r7
Xo =0000000 | O O O 0 0 0 0
X1 =0000001 | 1 1 1 1 1 1 1
X2 =0000010 | 2 2 2 2 2 2 2
X3 =0000100 | O 4 4 4 4 4 4
X4=0001000 | O 3 1 8§ 8 8 8
X5 =10010000 | O 1 2 7 5 3 16
Xe =0100000 | O 2 3 5 10 6 15
X7 =1000000 O 4 1 1 9 12 13

Table 2: RRNS codewords of some typical binary messages
X in the RRNS with moduli m1 = 4, ms =5, m3z = 7,
mse = 9, ms = 11, me¢ = 13 and mry = 17, where r; =
X (mod m;) and M =4 x 5 x 7 = 140.

4. ERROR-DETECTION AND
ERROR-CORRECTION IN RRNS

In this section, we briefly summarise some properties of the
associated error-detection and error-correction procedures
in the context of the RRNS. Error-detection/correction de-
coding of RRNS(u,v) codes has been discussed in depth
n [3,5-7]. Let us invoke two simple examples, in order
to gain insight into the error-detection and error-correction
mechanism of the RRNS.

Example 2 Let us consider the moduli 3,4,5,7, where 3,4
and b5 are the information moduli and 7 is the redundant
modulus. The information dynamic range is [0, M =3 -4 5)
= [0,60). Upon considering an integer decimal message of
X = 21, the corresponding residue values are X = (0,1, 1,0).
If there is an error in the RNS representation due to trans-
mission or processing, for example rs is changed from 1 to
3, then the received RNS representation becomes (0,1,3,0).
Upon following the general approach of the CRT in Eq.(8)
and using the first three residue digits and their moduli, we
obtain:

My =4x5=20, Mo=3x5=15 My =3x4=12,
T =2 To=3, Ts =3,
X=[0x2x2041x3x15+3 x 3 x 12] mod 60

= 33.

However, where X = 33 (mod 7) =5 # r4 = 0, and we
can conclude that there were errors in the RNS representa-
tion. Therefore, upon designing the RNS using one redun-
dant modulus, the residue digit error of rs can be detected.

Example 3 Let us now invoke an additional redundant mod-
ulus, namely 11 in the above example, which results in a to-
tal of two redundant moduli, namely 7 and 11 in the RRNS.
Let us also consider the integer message X = 21, now hav-
ing corresponding residue digits of X = (0,1,1,0,10) and
that rs is in error and it was changed from 1 to 3, i.e the
received RNS representation becomes (0,1, 3,0, 10). Accord-
ing to the CRT’s approach, the integer X in the range [0, 60)
can be recovered by invoking any three moduli and their cor-
responding residue digits, if no errors occurred in the re-
ceived RNS representation. Let us now consider all possible
cases and attempt to recover the integer X represented by
(0,1,3,0,10), upon retaining all possible combinations of
three out of five residue digits, which results in:

(ri,re,r3) =(0,1,3) <& Xia3 = 33 (mod 60),
(ri,r2,m4) = (0,1,0) &  Xi24 =21 (mod 84),
(7'1, r2, 1"5) = (0, ]., 10) & X5 =21 (mod 132)
(7'1,1”3, 4) = (0,3,0) < X34 =63 (mod 105),
(7‘1,1"3, 5) = (0,3, 10) & Xigs = 153 (mod 165),
(7'1,1"4, 5) = (0,0, 10) R X145 =21 (mod 231),
(royra,ra) = (1,3,0) & Xoza = 133 (mod 140),
(7‘ r3,T 5) = (1,3, 10) & Xoags =153 (mod 220),
(T' r4,T 5) = (1,0, 10) R X245 =21 (mod 308),
(7‘3,1“4,1“5) =(3,0,10) & X345 = 98 (mod 385),

where X;;i, represents the recovered result by using mod-
uli mi;,m; and my as well as their corresponding residue
digits r;,r; and ry,. From these results we observe that
X134,X135,X234,X235 and X345 are all illegitimate num-
bers, since their values are out of the legitimate range [0, 60).
In the remaining five cases, except for Xia2sz, all the re-
sults are the same and equal to 21. Moreover, all these
results were recovered from three moduli without including
mgs, i.e. from Xi2a, X125, X145 and Xoss, which are equal
to 21. Hence, we might conclude that the correct result is
21 and that there was an error in r3, which can be corrected
by computing 73 = 21 (mod 5) =

RRNS codes exhibit similar coding properties to the
well-known Reed-Solomon (RS) codes [5,7]. RRNS codes
constitute a class of maximum minimum-distance separable
codes. An RRNS(u,v) code - where the information dy-
namic range represented by the RRNS(u, v) is [0, H”
and the RRNS code’s dynamic range is [0, H has
minimum distance of (v — v + 1) and hence it 1s capable of
detecting (u — v) or less residue digit errors and correct up
to | (u—v)/2| random residue digit errors. An RRNS(u,v)
code is capable of correcting ¢ random residue digit errors
and simultaneously detecting 8 (8 > t) residue digit errors,
if and only if ¢t + 8 < (u — v). Moreover, an RRNS(u, v)
code is capable of correcting ¢ random residue digit errors
and simultaneously correcting 3 residue erasures, provided
that 2t + 3 < (u —v).

According to the carry-free property and due to the lack
of weighted significance of the residue digits in the RNS
arithmetic, in RRNS codes some of the channel-impaired
residue digits can be discarded as an error correction mea-
sure, provided that a sufficiently high dynamic range is re-
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tained by the reduced-range system, in order to unambigu-
ously decode the result. The above statement can be aug-
mented as follows. Let {m1i, ma,...,my} be a set of v mod-
uli of an RRNS(u,v) code, where mi1 < ma < ... < my.
Furthermore, let X be the integer message, which is ex-
pressed with the aid of the residue digits as (ri,r2,...,7ry)
with respect to the above moduli. If the dynamic range of
X is [0, [[;_, m:), where v < u, then X can be recovered
from any v out of the u number of residue digits and their
relevant moduli. This property implies that d (d < u — v)
number of residue digits can be dropped before the IRNST
stage, while still recovering the message X using the re-
tained residue digits, provided that the retained residue
digits are the correct, ie uncorrupted residue digits.

Moreover, if we let d be the number of discarded residue
digits, where d < u — v, then, a RRNS(u,v) code is con-
verted to a RRNS(u—d, v) after d out of the u residue digits
are discarded. Hence, the reduced RRNS(u—d,v) code can
detect up to (u — v — d) residue digit errors and correct
up to [(u — v — d)/2] residue digit errors. This property
suggests that the RRNS(u, v) decoding can be designed by
first discarding d (d < u — v) out of the u residue digits,
which is followed by RRNS(u — d,v) decoding. Since the
discarded residue digits and their corresponding moduli do
not have to be considered in the RRNS(u — d, v) decoding,
the decoding procedure is therefore simplified.

5. APPLICATIONS OF RRNS CODES

In addition to the above mentioned applications of RRNS
codes for self-checking, error-detection and error-correction,
a useful property of the RRNS is that an RRNS codeword
does not change its error-detection and error-correction char-
acteristics after arithmetic operations, such as addition,
subtraction and multiplication [7]. This property can be
employed in order to support fault-tolerant signal process-
ing. Let us invoke an example, in order to augment this
property.

Example 4 Let us consider the RRNS codes based on a
RRNS using nonredundant moduli of mi =4, ms =5 and
m3 = 7 as well as redundant moduli of ma = 9, ms =
11, me = 13 and my = 17. Table 1 summarised a range
of typical decimal integers and their corresponding RRNS
codewords. Let us now consider an operation in the decimal
integer field:

Y:5XY1+Y2XY3, (4)
where Y1, Ya and Y3 are possibly from different sources and
may include the transmission and processing errors. How-
ever, due to the inherent properties of the RRNS codes, the
operations in Eq.(4) can be carried out as follows. Firstly,
before we evaluate Eq.(4), Y1, Y2 and Ys are first error-
correction decoded. Since four redundant moduli are in-
cluded, up to two residue digit errors in Y1, Y2 or Ys can
be corrected. Secondly, Table 1 is used in order to eval-
uate Eq.(4). Thirdly, since an RRNS codeword does not
change its error-detection/correction capability, when the
codewords are subjected to the arithmetic operations of addi-
tion and multiplication, the resultant RRNS codeword cor-
responding to Y in Eq.(4) can be further error-correction
decoded, in order to remove the errors that may have hap-
pened in the evaluation of Eq.(4). Note that no conventional
codes, such as Hamming codes, BCH codes and convolu-
tional codes have this property, since all these codes will

change their structure when the associated codewords are
subjected to the multiplication operation.

Using the operand values of Table 1, let Y1 = X1 =1,
Yo = Xo = 2 and Y3 = X¢ = 50. For example, the
RRNS codeword corresponding to 5 is (1,0,5,5,5,5,5) ac-
cording to Table 1. It can be readily shown that the code-
word corresponding to the operation in Eq.({) is given by
Y =5 x 142 x50 =105, yielding the residue-sequence of
(1,0,0,6,6,1,3) - provided that no more than two residue
digit errors occurred in Y1, Yo or Ys. Moreover, even if
two residue digit errors occurred during the last operation of
Eq.(4), and hence the above codeword changed to (1,1,0,6,3,
1,3), i.e., r2 and r5 are in error, by using RRNS error-
correction decoding, the value of Y = 105 can still be cor-
rectly recovered, since four redundant moduli were invoked.

Let us now demonstrate another potential application
of the RRNS codes in the context of the generic commu-
nication system depicted in Fig.1. In this framework, re-
dundancy has to be added for the implementation of fault-
tolerant computing (or signal-processing), protection of in-
formation over both wired and wireless channels, in order
to achieve reliable processing and communications. Con-
ventionally, the encoding and decoding at different stages
has been treated separately. The encoded codewords of the
wired channels have been historically decoded in order to
remove the related redundancy, before forwarding the in-
formation to the encoder of the air interface of Fig.1. The
information at the air interface is then often re-encoded us-
ing a different channel code, in order to implement reliable
transmission over the associated wireless channels. Further
additional encoding/decoding operations may take place at
other interfaces of a global communications system, as il-
lustrated in Fig.1.

However, with the advent of RRNS codes, the above
mentioned encoding/decoding procedures can be substan-
tially simplified, since the required redundancy of the entire
global system can be jointly designed. Let us invoke an ex-
ample to support this argument.

Example 5 With reference to Table 1, let us assume that
the fault-tolerant terminals use only one redundant modu-
lus for the self-checking of the associated arithmetic units,
employing for ezample the RRNS(4,3) code. Let us assume
furthermore that two redundant moduli are required for the
protection of information over the wired channel section
of Fig.1, employing the one-residue digit error-correcting
RRNS (5,3) code. Finally, four redundant moduli have
to be employed for the protection of information over the
low-reliability wireless channels, using the two-residue digit
error-correction RRNS(7,3) code. Let mi, ma, ms, ma,
ms, me and my be the moduli invoked in the required RRNS,
where m1, ma and ms are the nonredundant moduli, while
ma4, ms, me and my are the redundant moduli. The RRNS
codes protecting the entire system of Fig.1 can be designed
as follows.

Step 1: The fault-tolerant terminal No.1 uses moduli
mi, ma, ms and my, in order to form the RRNS(4,3) code-
words, which are expressed as (r1, T2, r3, r4), where r1, T2
and r3 are the nonredundant residue digits, while r4 is the
redundant residue digit. Following all the associated sig-
nal processing operations to be carried out by the terminal
- which may involve additions, subtractions and multiplica-
tions on the basis of the RNS - and invoking self-checking,
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the fault-tolerant terminal forwards the RRNS(4,3) code-
words to the encoder of the wired channels. For simplicity
the output codewords of the fault-tolerant terminal No.1 are
still expressed as (ri, T2, T3, ra), which will also be used
throughout our further discourse.

Step 2: With the aid of the Base Ezxtension algorithm [2],
the wired channel’s encoder - namely Encoder 1 in Fig.1 -
computes an additional redundant residue digit rs based on
(r1, r2, r3, r4) and (my, ma, ms, ma, ms), in order to form
the RRNS(5,3) codewords (r1, T2, T3, Ta, r5). Then, these
codewords are transmitted over the wired channel in Fig.1.

Step 3: The wired channel’s decoder - namely Decoder
1 in Fig.1 - receives the codewords (ri, r2, T3, Ta, T5),
which are error-correction decoded. The corrected codewords
are expressed as (ri, T2, T3, T4, T5), which are forwarded
to the encoder of the wireless channel.

Step 4: Similarly to Step 2, with the aid of the base
extension algorithm [2], the wireless channel’s encoder com-
putes the additional redundant residue digit re¢ and rz, based
on (ri,r2,r3,ra,75) and (my, ma, ms, Ma, M5, Mg, M7), in
order to form the RRNS(7,3) codewords (ri, r2, T3, T4, T5,
re, r7). Then, these codewords are transmitted over the
wireless channel of Fig.1.

Step 5: After the wireless channel’s decoder received
the codewords (ri, T2, T3, r4, Ts, re, T7), the codewords
are error-correction decoded and the redundant residue dig-
its re and r7 are removed from the corrected codewords. The
wireless channel decoder then passes the RRNS(5,3) code-
words to the wired channel’s encoder, namely to Encoder
3 in Fig.1. These RRNS(5,3) codewords are expressed as
(r1, 72, r3, T4, T5).

Step 6: The RRNS(5,3) codewords are transmitted over
the wired channel to the wired channel’s decoder, namely to
Decoder 3 in Fig.1.

Step 7: After the wired channel’s decoder received the
RRNS(5,3) codewords (ri, T2, T3, T4, T5), error-correction
decoding is invoked, in order to correct the residue digit er-
rors and then the redundant residue digit rs is removed.
The resulting RRNS(4,3) codewords (ri, r2, T3, T4) are
then forwarded to the fault-tolerant terminal No.2.

Step 8: The fault-tolerant terminal No.2 finally carries
out its tasks using the RNS representation of its operands in
the form of the RRNS(4,3) codewords, invokes self-checking,
and finally outputs the recovered information.

In the upper branch of Fig.1 the wired channel’s en-
coder only had to compute one additional redundant residue
digit, in contrast to invoking an independent encoder, as in
a conventional system, where each section of the commu-
nications links is protected independently. Similarly, the
wireless channel’s encoder only had to compute two addi-
tional redundant residue digits, in contrast to complete re-
encoding in independently protected conventional systems.
In the bottom branch of Fig.1, the encoder of the wired
channel, and the encoder of the fault-tolerant terminal No.
2 - which is not shown in the figure - can be totally removed,
while in conventional independently protected systems all
these encoders would have to be included. Based on these
facts, we can conclude that in conjunction with appropri-
ate joint system design using RRNS codes, the complex-
ity of the error-correction/detection sub-systems in global
telecommunication systems can be decreased. Our future
work in this field will be based on designing systems invok-
ing the principles proposed in this contribution.

Encoder 1 Encoder 2

Fault-tolerant
terminal
Wired Air
transmission - interface
Decoder 1

Decoder 3

Wireless
channel

Decoder 2

Fault-tolerant
terminal

n

Wir‘ed' - Air
transmission interface
Encoder 3,

Figure 1: A transmission and computing system framework
including fault-tolerant terminals, wired transmissions and
wireless transmissions.
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