Reeb Vector Fields and Open Book Decompositions

Ko Honda

University of Southern California

June 11, 2007

Joint work with Vincent Colin

Ko Honda (USC)

Reeb Vector Fields

June 11, 2007 1 / 25

Contact structures and Reeb vector fields

Let M be a closed oriented 3-manifold, and let ξ be a cooriented contact structure on M, i.e., $\xi = \ker \alpha$, where α is a global 1-form on M and $\alpha \wedge d\alpha > 0$.

To any contact 1-form α we can assign its *Reeb vector field* $R = R_{\alpha}$ (a contact vector field $\pitchfork \xi$) defined by:

 $R \lrcorner \ d\alpha = 0,$ $R \lrcorner \ \alpha = 1.$

Dichotomy of contact structures

Contact structures, in dimension three, come in two flavors: *tight* or *overtwisted* (thanks to the work of Bennequin, clarified by Eliashberg). ξ is *overtwisted* if it admits an overtwisted disk, i.e., an embedded disk D such that $\xi_x = T_x D$ for all $x \in \partial D$. ξ is *tight* if it does not admit an overtwisted disk.

Basic Facts:

- (Pfaff-Darboux) Every contact 3-manifold (M, ξ) is locally diffeomorphic to $(\mathbf{R}^3, dz ydx = 0)$.
- (Bennequin) $(\mathbf{R}^3, dz ydx = 0)$ is tight.

The Weinstein conjecture

Weinstein conjecture: For any (M, ξ) and any Reeb vector field R of ξ , there is a closed orbit of R.

Progress in dimension 3:

- Hofer (1992-3): True if (M, ξ) is OT, $\pi_2(M) \neq 0$, or covered by (S^3, ξ_{std}) .
- Taubes (2006): True in general.

The work of Hofer (together with the Floer package) started the subject of *contact homology*.

Contact homology

Contact homology is one of the simplest specializations of *Symplectic Field Theory*, proposed by Eliashberg, Givental, and Hofer and being developed by many people.

It is the homology of a chain complex whose chain groups are generated by closed orbits of R and whose boundary maps count holomorphic cylinders in the symplectization.

The symplectization is the 4-manifold $\mathbf{R} \times M$ with the symplectic form $d(e^t \alpha)$, where $t \in \mathbf{R}$. We choose an *adapted* almost complex structure J which maps ξ to itself and $\frac{\partial}{\partial t} \mapsto R$, $R \mapsto -\frac{\partial}{\partial t}$.

Contact homology

Assume all periodic orbits are *nondegenerate* (the Poincaré return map does not have 1 as an eigenvalue). Then let \mathcal{P} be the set of "good" periodic orbits of R. The chain group is $\mathbf{Q}\langle \mathcal{P} \rangle$.

Define:

$$\partial \gamma = \sum_{\mu(\gamma,\gamma')=1} \# (\text{holomorphic cylinders from } \gamma \text{ to } \gamma') \cdot \gamma'.$$

Here $\mu(\gamma, \gamma')$ is the Conley-Zehnder index of the pair γ , γ' .

$\partial^2 = \mathbf{0}$

The above definition often fails because $\partial^2 \neq 0$.

Recall that the usual way of proving $\partial^2 = 0$ is to glue a holomorphic cylinder from γ to γ' and a holomorphic cylinder from γ' to γ'' . The broken holomorphic cylinder is the end of a 1-dimensional family of holomorphic cylinders from γ to γ'' . If there are no other types of degenerations/bubbling, then the other end of the 1-manifold would also be a broken holomorphic cylinder consisting of a holomorphic cylinder from γ to γ''' , followed by another cylinder from γ''' to γ''' , and (at least with $\mathbf{Z}/2\mathbf{Z}$ -coefficients), we see that $\partial^2 = 0$.

Cylindrical contact homology

However, it is possible that other types of bubbling occur. In that case, we would need to start counting punctured holomorphic spheres with one positive end and n negative ends.

One way of preventing this type of bubbling from happening is to show that there are no periodic orbits with $\mu(\gamma) = 2$ which bound (holomorphic) finite energy planes in $\mathbf{R} \times M$. Then the *cylindrical contact homology*, i.e., the version that only counts holomorphic cylinders, exists.

Let $HC(\alpha)$ be the cylindrical contact homology group. It is an invariant of the contact structure ξ .

イロト 不得下 イヨト イヨト 二日

Open book decompositions

- Let K be a link in a closed oriented 3-manifold M. Then an open book decomposition with binding K is a homeomorphism between $(S \times [0,1]/ \sim, (\partial S \times [0,1])/ \sim)$ and (M, K). Here:
 - **(**) *S* is a compact oriented surface with $\partial S \neq \emptyset$;
 - **2** $h: S \xrightarrow{\sim} S$ is a diffeomorphism which is the identity on ∂S ;
 - ~ is given by $(x, 1) \sim (h(x), 0)$ for all $x \in S$ and $(y, t) \sim (y, t')$ for all $y \in \partial S$, $t, t' \in [0, 1]$.

Thurston-Winkelnkemper

According to the work of Thurston-Winkelnkemper from the 1970's, given an open book (S, h), we can construct a contact structure ξ which is *adapted* to (S, h):

- ξ is close to *TS* away from the binding;
- **2** ξ is positively transverse to *K*. Here *K* is oriented as ∂S .
- Solution There exist a Reeb vector field of ξ which is transverse to the pages S in the interior of S and tangent to (and directing) the binding ∂S .

Correspondence between open books and contact structures

Theorem (Giroux)

There is a 1-1 correspondence between isotopy classes of contact structures (M, ξ) and open book decompositions modulo "positive stabilization".

Hence, the study of contact structures "reduces" to the study of monodromy maps $h \in Aut(S, \partial S)$.

Role of Stein fillability and tightness

Theorem (Akbulut-Ozbagci, Giroux, inspired by Loi-Piergallini)

 ξ is Stein fillable iff there is an adapted open book decomposition (S, h) such that h is a product of positive Dehn twists.

Theorem (H.-Kazez-Matić)

 ξ is tight iff all adapted open book decompositions (S, h) are right-veering.

Roughly speaking, "right-veering" means it sends all properly embedded arcs on S to the right.

(日) (周) (日) (日)

By the Nielsen-Thurston classification of surface homeomorphisms, any h is freely homotopic to $\psi,$ which is one of the following:

• Periodic, i.e.,
$$\psi^n = id$$
.

2 Pseudo-Anosov, i.e., there exist stable and unstable geodesic laminations Λ^s and Λ^u so that $\psi(\Lambda^s) = \Lambda^s$ and $\psi(\Lambda^u) = \Lambda^u$.

③ Reducible, i.e., ψ fixes a multicurve (embedded 1-manifold).

Today we focus on the *pseudo-Anosov case*. For simplicity, assume ∂S is connected.

To each *h* we can associate a pseudo-Anosov ψ as well as a *fractional* Dehn twist coefficient *c*, which is the amount of rotation about the boundary. More precisely, let $F : S \times [0,1] \rightarrow S$ be the free homotopy from h(x) = F(x,0) to $\psi(x) = F(x,1)$. Then the trace of *F* on $\partial S \times [0,1]$ remembers the amount of winding about the boundary of *S*.

The pseudo-Anosov case

The connected component of $S - \Lambda^s$ containing ∂S is a semi-open annulus A whose metric completion has geodesic boundary $\partial S \sqcup \lambda_1 \sqcup \cdots \sqcup \lambda_n$, where λ_i are infinite geodesics. The region between λ_i and λ_{i+1} is called a "prong". ψ cyclically permutes the prongs.

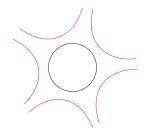


Figure: There are n = 5 prongs.

Ko Honda (USC)

The pseudo-Anosov case

Notice that $c = \frac{k}{n}$, where *n* is the number of prongs and $k \in \mathbb{Z}$.

Theorem (H.-Kazez-Matić)

If $c \leq 0$, then the corresponding (M, ξ) is overtwisted.

Therefore, we only need to consider c > 0, if we are interested in *tight* contact structures.

Working Conjecture

Conjecture

Suppose ∂S is connected. If (S, h) is pseudo-Anosov and $c > \frac{1}{n}$, then the cylindrical contact homology is well-defined and nontrivial. Moreover, the cylindrical contact homology is infinitely generated, and the number of generators $[\gamma]$ with action $\int_{\gamma} \alpha \leq L$ (with respect to a contact 1-form α) is exponentially growing with respect to L. Here n is the number of prongs.

This result echoes results of Gabai-Oertel on essential laminations. In particular, M has universal cover \mathbb{R}^3 (and is hyperbolic) when $c > \frac{1}{n}$.

The current version of the theorem is:

Theorem

The conjecture holds when $c > \frac{1}{n}$ and the stable lamination is oriented.

.

Growth Rate of Contact Homology

Example: Standard contact structure on S^3 . Modulo taking direct limits, there are two simple periodic orbits. Since multiple covers of simple orbits are also counted, the growth rate of generators of $HC(S^3, \xi_{std})$ is linear with respect to the action.

Example: Tight contact structure (T^3, ξ_1) . The closed orbits are in 2-1 correspondence with $\mathbf{Z}^2 - \{(0,0)\}$. Hence *HC* grows quadratically with respect to the action.

Conjecture

Suppose M is irreducible and atoroidal. Then $HC(M, \xi)$ is cylindrical and grows exponentially with respect to the action if M is hyperbolic and ξ is universally tight.

イロト 不得下 イヨト イヨト 二日

Sketch of Proof

Suppose h is freely isotopic to id. The general case is only more complicated. I will explain why the cylindrical theory is well-defined.

Step 1. Suppose there is a finite energy plane $\tilde{u} : \mathbf{C} \to \mathbf{R} \times M$. The projection to M is basically a disk $u : D \to M$ with $u(\partial D) = \gamma$. u has finitely many complex branch points and u is positively transverse to R (by the holomorphic condition). Hence all the intersections of D with the binding K are *positive*. Now consider the cut-open disk $D_0 = D - u^{-1}(S \times \{0\} - N(K))$.

Goal: Show that the cut-open disk D_0 cannot possibly exist. (It is useful to project it to S.)

イロト 不得下 イヨト イヨト 二日

The cut-open disk D_0

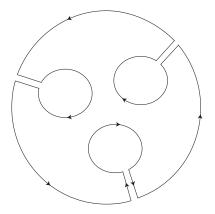


Figure: The cut-open disk D_0 .

Ko Honda	

The Rademacher function

Step 2. Define the *Rademacher function* of a path in the Farey tessellation as follows:

$$\Phi(\delta) = \#(\mathsf{right turns}) - \#(\mathsf{left turns}),$$

if δ begins at the edge 0 $\rightarrow \infty$ and ends on another edge.

The Rademacher function has the following convenient properties:

•
$$\Phi(\delta\delta') = \Phi(\delta) + \Phi(\delta') + 0, 3, \text{ or } -3;$$

• $\Phi(\delta^{-1}) = -\Phi(\delta).$

The Rademacher function

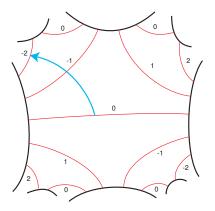


Figure: The tessellation of the universal cover \tilde{S} of S and values of the Rademacher function on the tessellation.

We now calculate the Rademacher function of the boundary of the cut-open disk D_0 .

For example, if S is the once-punctured torus, triangulate it using arcs. Then pass to the universal cover \tilde{S} . If α is an arc of D from ∂D to an intersection with K, then there is a path $\alpha(h(\alpha))^{-1}$ which is a subarc of the boundary. Now, $\Phi(\alpha(h(\alpha))^{-1})$ is very positive if c is very positive. Hence, if $c \gg 0$, then Φ of the boundary could never be zero!

Sketch of Proof, Continued

A similar technique gives restrictions on holomorphic cylinders which are asymptotic to γ' at the positive end and asymptotic to γ'' at the negative end.

Final and extremely important ingredient: Dynamics of pseudo-Anosov diffeomorphisms, due to Thurston. If $\psi : S \to S$ is pseudo-Anosov, then the number of periodic points with period *n* grows exponentially with *n*. The count of such periodic points is essentially the E_1 term of a spectral sequence. The above restrictions on holomorphic cylinders prevents the higher E_m terms from collapsing too much!