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Contact structures and Reeb vector fields

Let M be a closed oriented 3-manifold, and let ξ be a cooriented contact
structure on M, i.e., ξ = ker α, where α is a global 1-form on M and
α ∧ dα > 0.

To any contact 1-form α we can assign its Reeb vector field R = Rα (a
contact vector field ⋔ ξ) defined by:

Ry dα = 0,

Ry α = 1.

Ko Honda (USC) Reeb Vector Fields June 11, 2007 2 / 25



Dichotomy of contact structures

Contact structures, in dimension three, come in two flavors: tight or
overtwisted (thanks to the work of Bennequin, clarified by Eliashberg). ξ is
overtwisted if it admits an overtwisted disk, i.e., an embedded disk D such
that ξx = TxD for all x ∈ ∂D. ξ is tight if it does not admit an
overtwisted disk.

Basic Facts:

1 (Pfaff-Darboux) Every contact 3-manifold (M, ξ) is locally
diffeomorphic to (R3, dz − ydx = 0).

2 (Bennequin) (R3, dz − ydx = 0) is tight.
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The Weinstein conjecture

Weinstein conjecture: For any (M, ξ) and any Reeb vector field R of ξ,
there is a closed orbit of R .

Progress in dimension 3:

Hofer (1992-3): True if (M, ξ) is OT, π2(M) 6= 0, or covered by
(S3, ξstd ).

Taubes (2006): True in general.

The work of Hofer (together with the Floer package) started the subject of
contact homology.

Ko Honda (USC) Reeb Vector Fields June 11, 2007 4 / 25



Contact homology

Contact homology is one of the simplest specializations of Symplectic
Field Theory, proposed by Eliashberg, Givental, and Hofer and being
developed by many people.

It is the homology of a chain complex whose chain groups are generated
by closed orbits of R and whose boundary maps count holomorphic
cylinders in the symplectization.

The symplectization is the 4-manifold R × M with the symplectic form
d(etα), where t ∈ R. We choose an adapted almost complex structure J
which maps ξ to itself and ∂

∂t
7→ R , R 7→ − ∂

∂t
.
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Contact homology

Assume all periodic orbits are nondegenerate (the Poincaré return map
does not have 1 as an eigenvalue). Then let P be the set of “good”
periodic orbits of R . The chain group is Q〈P〉.

Define:

∂γ =
∑

µ(γ,γ′)=1

#(holomorphic cylinders from γ to γ′) · γ′.

Here µ(γ, γ′) is the Conley-Zehnder index of the pair γ, γ′.
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∂2 = 0

The above definition often fails because ∂2 6= 0.

Recall that the usual way of proving ∂2 = 0 is to glue a holomorphic
cylinder from γ to γ′ and a holomorphic cylinder from γ′ to γ′′. The
broken holomorphic cylinder is the end of a 1-dimensional family of
holomorphic cylinders from γ to γ′′. If there are no other types of
degenerations/bubbling, then the other end of the 1-manifold would also
be a broken holomorphic cylinder consisting of a holomorphic cylinder from
γ to γ′′′, followed by another cylinder from γ′′′ to γ′′, and (at least with
Z/2Z-coefficients), we see that ∂2 = 0.
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Cylindrical contact homology

However, it is possible that other types of bubbling occur. In that case, we
would need to start counting punctured holomorphic spheres with one
positive end and n negative ends.

One way of preventing this type of bubbling from happening is to show
that there are no periodic orbits with µ(γ) = 2 which bound
(holomorphic) finite energy planes in R × M. Then the cylindrical contact
homology, i.e., the version that only counts holomorphic cylinders, exists.

Let HC (α) be the cylindrical contact homology group. It is an invariant of
the contact structure ξ.
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Open book decompositions

Let K be a link in a closed oriented 3-manifold M. Then an open book
decomposition with binding K is a homeomorphism between
(S × [0, 1]/ ∼, (∂S × [0, 1])/ ∼) and (M,K ). Here:

1 S is a compact oriented surface with ∂S 6= ∅;

2 h : S
∼

→ S is a diffeomorphism which is the identity on ∂S ;

3 ∼ is given by (x , 1) ∼ (h(x), 0) for all x ∈ S and (y , t) ∼ (y , t ′) for
all y ∈ ∂S , t, t ′ ∈ [0, 1].
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Thurston-Winkelnkemper

According to the work of Thurston-Winkelnkemper from the 1970’s, given
an open book (S , h), we can construct a contact structure ξ which is
adapted to (S , h):

1 ξ is close to TS away from the binding;

2 ξ is positively transverse to K . Here K is oriented as ∂S .

3 There exist a Reeb vector field of ξ which is transverse to the pages S
in the interior of S and tangent to (and directing) the binding ∂S .
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Correspondence between open books and contact

structures

Theorem (Giroux)

There is a 1-1 correspondence between isotopy classes of contact structures
(M, ξ) and open book decompositions modulo “positive stabilization”.

Hence, the study of contact structures “reduces” to the study of
monodromy maps h ∈ Aut(S , ∂S).
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Role of Stein fillability and tightness

Theorem (Akbulut-Ozbagci, Giroux, inspired by Loi-Piergallini)

ξ is Stein fillable iff there is an adapted open book decomposition (S , h)
such that h is a product of positive Dehn twists.

Theorem (H.-Kazez-Matić)

ξ is tight iff all adapted open book decompositions (S , h) are right-veering.

Roughly speaking, “right-veering” means it sends all properly embedded
arcs on S to the right.
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Nielsen-Thurston classification of surface homeomorphisms

By the Nielsen-Thurston classification of surface homeomorphisms, any h
is freely homotopic to ψ, which is one of the following:

1 Periodic, i.e., ψn = id .

2 Pseudo-Anosov, i.e., there exist stable and unstable geodesic
laminations Λs and Λu so that ψ(Λs) = Λs and ψ(Λu) = Λu.

3 Reducible, i.e., ψ fixes a multicurve (embedded 1-manifold).
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The pseudo-Anosov case

Today we focus on the pseudo-Anosov case. For simplicity, assume ∂S is
connected.

To each h we can associate a pseudo-Anosov ψ as well as a fractional
Dehn twist coefficient c , which is the amount of rotation about the
boundary. More precisely, let F : S × [0, 1] → S be the free homotopy
from h(x) = F (x , 0) to ψ(x) = F (x , 1). Then the trace of F on
∂S × [0, 1] remembers the amount of winding about the boundary of S .
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The pseudo-Anosov case

The connected component of S − Λs containing ∂S is a semi-open annulus
A whose metric completion has geodesic boundary ∂S ⊔ λ1 ⊔ · · · ⊔ λn,
where λi are infinite geodesics. The region between λi and λi+1 is called a
“prong”. ψ cyclically permutes the prongs.

Figure: There are n = 5 prongs.
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The pseudo-Anosov case

Notice that c = k

n
, where n is the number of prongs and k ∈ Z.

Theorem (H.-Kazez-Matić)

If c ≤ 0, then the corresponding (M, ξ) is overtwisted.

Therefore, we only need to consider c > 0, if we are interested in tight
contact structures.
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Working Conjecture

Conjecture

Suppose ∂S is connected. If (S , h) is pseudo-Anosov and c > 1
n
, then the

cylindrical contact homology is well-defined and nontrivial. Moreover, the
cylindrical contact homology is infinitely generated, and the number of
generators [γ] with action

∫
γ
α ≤ L (with respect to a contact 1-form α) is

exponentially growing with respect to L. Here n is the number of prongs.

This result echoes results of Gabai-Oertel on essential laminations. In
particular, M has universal cover R3 (and is hyperbolic) when c > 1

n
.

Ko Honda (USC) Reeb Vector Fields June 11, 2007 17 / 25



Current Theorem

The current version of the theorem is:

Theorem

The conjecture holds when c > 1
n

and the stable lamination is oriented.
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Growth Rate of Contact Homology

Example: Standard contact structure on S3. Modulo taking direct limits,
there are two simple periodic orbits. Since multiple covers of simple orbits
are also counted, the growth rate of generators of HC (S3, ξstd) is linear
with respect to the action.

Example: Tight contact structure (T 3, ξ1). The closed orbits are in 2-1
correspondence with Z2 − {(0, 0)}. Hence HC grows quadratically with
respect to the action.

Conjecture

Suppose M is irreducible and atoroidal. Then HC(M, ξ) is cylindrical and
grows exponentially with respect to the action if M is hyperbolic and ξ is
universally tight.
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Sketch of Proof

Suppose h is freely isotopic to id . The general case is only more
complicated. I will explain why the cylindrical theory is well-defined.

Step 1. Suppose there is a finite energy plane ũ : C → R × M. The
projection to M is basically a disk u : D → M with u(∂D) = γ. u has
finitely many complex branch points and u is positively transverse to R (by
the holomorphic condition). Hence all the intersections of D with the
binding K are positive. Now consider the cut-open disk
D0 = D − u−1(S × {0} − N(K )).

Goal: Show that the cut-open disk D0 cannot possibly exist. (It is useful
to project it to S .)
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The cut-open disk D0

Figure: The cut-open disk D0.
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The Rademacher function

Step 2. Define the Rademacher function of a path in the Farey
tessellation as follows:

Φ(δ) = #(right turns) − #(left turns),

if δ begins at the edge 0 → ∞ and ends on another edge.

The Rademacher function has the following convenient properties:

1 Φ(δδ′) = Φ(δ) + Φ(δ′) + 0, 3, or − 3;

2 Φ(δ−1) = −Φ(δ).
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The Rademacher function
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Figure: The tessellation of the universal cover S̃ of S and values of the
Rademacher function on the tessellation.
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Sketch of Proof, Continued

We now calculate the Rademacher function of the boundary of the
cut-open disk D0.

For example, if S is the once-punctured torus, triangulate it using arcs.
Then pass to the universal cover S̃ . If α is an arc of D from ∂D to an
intersection with K , then there is a path α(h(α))−1 which is a subarc of
the boundary. Now, Φ(α(h(α))−1) is very positive if c is very positive.
Hence, if c ≫ 0, then Φ of the boundary could never be zero!
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Sketch of Proof, Continued

A similar technique gives restrictions on holomorphic cylinders which are
asymptotic to γ′ at the positive end and asymptotic to γ′′ at the negative
end.

Final and extremely important ingredient: Dynamics of pseudo-Anosov
diffeomorphisms, due to Thurston. If ψ : S → S is pseudo-Anosov, then
the number of periodic points with period n grows exponentially with n.
The count of such periodic points is essentially the E1 term of a spectral
sequence. The above restrictions on holomorphic cylinders prevents the
higher Em terms from collapsing too much!
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