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Abstract

Reengineering the receptor footprints of adeno-associated virus (AAV) isolates may yield variants

with improved properties for clinical applications. We generated a panel of synthetic AAV2

vectors by replacing a hexapeptide sequence in a previously identified heparan sulfate receptor

footprint with corresponding residues from other AAV strains. This approach yielded several

chimeric capsids displaying systemic tropism after intravenous administration in mice. Of

particular interest, an AAV2/AAV8 chimera designated AAV2i8 displayed an altered antigenic

profile, readily traversed the blood vasculature, and selectively transduced cardiac and whole-body

skeletal muscle tissues with high efficiency. Unlike other AAV serotypes, which are preferentially

sequestered in the liver, AAV2i8 showed markedly reduced hepatic tropism. These features of

AAV2i8 suggest that it is well suited to translational studies in gene therapy of musculoskeletal

disorders.

New viral strains constantly evolve in nature through iterative mutagenesis1,2. The breadth

of tissue tropism displayed by various AAV isolates, such as AAV8 and AAV9, is beneficial

for gene transfer by systemic delivery3–6. In some cases, however, it would be desirable to

direct homing of AAV vectors to specific organs. All naturally occurring AAV serotypes

and variants tested to date have a propensity to accumulate within the liver, albeit with
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varying efficiency4. Consequently, strategies to redirect AAV capsids from the liver to

target organs would be very useful from a clinical standpoint. Tissue-specific promoters and,

more recently, microRNA-based gene regulation strategies, have been used to sharply

segregate gene expression patterns among different tissue types7,8. However, such

regulatory strategies do not preclude sequestration of AAV vector genomes in off-target

organs such as the liver after systemic administration.

To develop AAV vectors with improved tropism for clinical applications, we reengineered

the heparan sulfate receptor footprint on the AAV2 capsid surface using information

available from structural studies, including crystallographic data and cryo-electron

microscope analysis of AAV capsids and their cognate receptors9–12. The heparan sulfate

footprint on the AAV2 capsid consists of the basic amino acid residues R484, R487, K527,

K532, R585 and R588, which form a continuous basic patch10–12. R585 and R588, located

within the so-called GH loop, form the inner walls of the spikes located on the icosahedral

threefold axis (Fig. 1a), and other residues occupy the floor surrounding these regions12.

Mutation of either R585 or R588 disrupts the basic cluster and abolishes heparan sulfate

binding10,11.

Using site-directed mutagenesis, we substituted the hexapeptide motif 585-RGNRQA-590,

which contains R585 and R588, with corresponding amino acids from different AAV

serotypes and nonhuman primate isolates (Fig. 1b,c) to generate a series of AAV2 inner loop

(AAV2i) mutants. Earlier studies established that mutating R585 and/or R588 on the AAV2

capsid to C, M, A or E is sufficient to attenuate heparan sulfate binding10,11. In the current

study, AAV2i mutants containing Q, A, S or N in position 585 and T, N, A or G in position

588 were also unable to bind heparan sulfate under physiological conditions, as

demonstrated by affinity column binding assays (Supplementary Fig. 1). In general, titers of

all AAV2i mutants were similar to that of the parental AAV2, and their efficiency at

transducing various cell types in vitro was reduced by several orders of magnitude

(Supplementary Fig. 2).

Using live animal bioluminescence imaging, we studied vector biodistribution in normal

BALB/C mice after intravenous administration at low dosage. One week after

administration, most AAV2i mutants were deficient in transduction as evidenced by low

bioluminescent signal (Fig. 1b). A notable exception was AAV2i8, which displayed a

systemic transduction profile (Fig. 1b) regardless of the duration of gene expression or the

intravenous route of administration (tail or portal vein; Supplementary Fig. 3).

Based on the above observations with AAV2i8 containing a 585-QQNTAP-590 motif, we

tested several AAV2i mutants with 585-QXXTXP-590 or 585-NXXTXP-590 motifs derived

from other strains of AAV. AAV2i mutants with residues Q/N585, T588 and P590 showed

systemic transduction profiles similar to that of the AAV8 control (Fig. 1c). In contrast, the

AAV2 control showed a greater tropism for liver, as established earlier4. The higher

transduction efficiency of AAV2i8 compared with AAV2i10, AAV2i11, AAV2irh.2 and

AAV2irh.38 highlights the subtle synergy between residues within the hexapeptide motif in

conferring systemic tissue tropism. Notably, the 585-QQNTAP-590 motif did not result in

systemic tropism when incorporated into the corresponding region on AAV1 or AAV3

capsids (Supplementary Fig. 4). Taken together, these results highlight the complexity of the

structural coordinates required to attain an atypical systemic transduction profile.

To examine the surface footprint of AAV2i8, we generated model surface maps of this

mutant and of parental AAV2 and AAV8 capsids using stereographic roadmap projections,

which allow simultaneous projection of amino acids, charge distribution and capsid surface

topology onto a two-dimensional surface13. Substitution of 585-RGNRQA-590 with
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QQNTAP results in disruption of the continuous basic patch (blue residues) formed by the

cluster of arginine and lysine residues (Fig. 1d). In addition, our model of the AAV2i8

footprint shows an overall chimeric distribution of amino acid residues with respect to

AAV2 and AAV8 (refs. 9,14). The chimeric nature of AAV2i8 is corroborated in the

observation that these capsids were only modestly neutralized when exposed to anti-AAV2

serum or human serum (Supplementary Tables 1 and 2). Thus, reengineering receptor

footprints on AAV capsids can simultaneously alter antigenicity.

Based on its promising transduction profile, the lab-derived AAV2i8 strain was further

characterized. We quantified luciferase transgene expression and genome copy numbers in

cardiac, skeletal muscle and liver tissue lysates at 2 weeks after vector administration in

BALB/C mice. As shown in Figure 2a, AAV8 ubiquitously transduced muscle and liver

tissue with high efficiency, consistent with the systemic transduction profile in Figure 1c.

AAV2 also transduced liver preferentially, although less efficiently than AAV8, and showed

only modest transduction in muscle tissue. The chimeric AAV2i8 transduced cardiac and

skeletal muscle tissue with a high efficiency similar to that of AAV8 and was detargeted

from the liver. These findings were supported by data on biodistribution of vector genome

copies in muscle and liver tissues determined by Q-PCR (Fig. 2b). For AAV2 and AAV8,

high amounts of vector genome copies were recovered from liver compared with cardiac or

skeletal muscle. For AAV2i8, sequestration in liver was ~40-fold lower compared with

AAV2 or AAV8.

Further biodistribution studies confirmed the redirection of AAV2i8 from liver to muscle.

AAV2i8 transduced a wide range of muscle groups in the murine forearms and hind legs as

well as intercostal, facial and abdominal muscles (Fig. 2c). Cardiac and diaphragm muscle

were transduced with high efficiency, whereas low levels of vector genome copies were

recovered from other major organs, such as brain, lung and spleen. These results distinguish

the tissue tropism of the chimeric AAV2i8 capsid from that of any naturally occurring AAV

serotype or isolate characterized thus far (Supplementary Fig. 5).

Our results confirm previous findings that attenuation of heparin binding in general can

result in liver detargeting and systemic dissemination of AAV2-derived vectors. Earlier

studies demonstrated a strong correlation between heparin binding and liver tropism in the

case of AAV2 and AAV6 (refs. 10,15). Disruption of the basic receptor footprint through

mutagenesis of R585 and/or R588 residues (in AAV2) or K531 (in AAV6) attenuated

heparan sulfate binding, which correlated with decreased liver tropism10,15. In addition, it

was demonstrated that an R484E;R585E AAV2 mutant is detargeted from the liver and

retains the ability to transduce muscle tissue with modest efficiency, similar to the parental

AAV2 (ref. 16). Although the R484E;R585E AAV2 vector has not shown high transduction

efficiency in larger animal models17 or been compared directly with AAV8 or AAV9, these

early studies clearly show the potential to control tissue tropism by manipulating receptor-

binding domains. Recently, a novel AAV mutant with cardiac-specific transduction was

generated through directed evolution18. The laboratory-derived M41 clone displayed a

tenfold higher transduction efficiency in cardiac tissue compared with the liver. Whereas

similar trends were observed for several of our mutants, an important advantage of AAV2i8

and mutants with a 585-QXXTXP-590 motif is their ability to efficiently transduce not only

cardiac muscle but the entire range of muscle groups with a transduction efficiency 2–3

orders of magnitude higher than that observed in the liver (Fig. 2c and Supplementary Fig.

5). To our knowledge, such an efficient switch in tropism from liver to muscle has not been

demonstrated previously.

Next, we used an isolated hind limb perfusion technique19 to examine the efficiency with

which AAV2i8 traverses the blood vessel barrier. AAV2i8 transduced hind limb skeletal

Asokan et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2010 July 29.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



muscle as efficiently as AAV8 at low volume of injection, at moderate and high vector

dosage (Fig. 3a–c). At low vector dose, AAV8 displayed three- to tenfold increases in

transduction efficiency at higher volumes of injection. However, AAV2i8 traversed blood

vessels and transduced underlying skeletal muscle with high efficiency regardless of the

volume of injection.

The atypical tropism of AAV2i8 distinguishes it from natural AAV serotypes 8 and 9 and

suggests that engineered AAV vectors can be tailored for specific clinical applications. The

mechanism underlying the switch in AAV2i8 tropism from liver to muscle is currently

unknown. Our results support the notion that the chimeric vector possesses a unique surface

footprint that facilitates specific interactions with receptors distinct from those used by

AAV2 and AAV8. Another possible explanation of our findings is that the increased

circulation half-life of AAV2i8 allows sequestration in tissues other than the liver through

heparan sulfate–independent uptake mechanisms. AAV2i8 showed markedly reduced blood

clearance and appears to persist well over 48 h in blood (Fig. 3d). Moreover, muscle-specific

luciferase transgene expression levels increased gradually over the course of several weeks

(Supplementary Fig. 6). In contrast, AAV8 vector genome copy number rapidly decreased,

approaching background levels within the same time period. These results and previous

observations that other AAV serotypes with systemic tissue tropism have long circulation

half-lives4 suggest that strategies to manipulate blood circulation time of AAV capsids

might afford control over vector tropism.

From the standpoint of vector development and clinical safety, AAV2i8 is an attractive

candidate for gene therapy of muscular dystrophies, which requires transduction of a wide

range of muscle types after systemic administration6,20. The selective muscle tropism of

AAV2i8 and its ability to evade sequestration by liver, when exploited in conjunction with

transcriptional regulatory elements such as muscle- specific promoters, should allow

exquisite control over vector biodistribution as well as cardiac or skeletal muscle–specific

transgene expression. Preliminary isolated limb perfusion studies in nonhuman primates

comparing AAV2i8 with AAV8 and AAV9 have shown promising results (data not shown)

in this regard.

In summary, we have developed a strategy to engineer synthetic AAV strains with atypical

transduction profiles. Extrapolation of this approach to receptor binding domains other than

the heparan sulfate binding domain and to other natural AAV isolates might yield new

chimeric vectors with unique tissue tropisms and antigenicity suitable for translational

disease-specific applications.

METHODS

Methods and any associated references are available in the online version of the paper at

http://www.nature.com/naturebiotechnology/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Structure-function correlates of AAV2i vectors with reengineered receptor footprints. (a)

Three-dimensional structural model of the AAV2 capsid highlighting the 585–590 region

containing basic residues implicated in heparan sulfate binding. Inset shows VP3 trimer,

with residues 585-RGNRQA-590 located on the innermost surface loop highlighted in red.

VP3 monomers are colored salmon, blue, and gray. Images were rendered using Pymol. (b)

Representative live animal bioluminescent images of luciferase transgene expression

profiles in BALB/c mice (n = 3) injected intravenously (tail vein) with AAV2i CMV-Luc

vectors (dose 1 × 1010 vg in 200 µl PBS). Photographs and bioluminescent images were

obtained at 1 week after injection. The overlay demonstrates decreased transduction

efficiency for most AAV2i mutants with the exception of AAV2i8. Bioluminescence scale

ranges from 0–4 × 105 relative light units (photons/sec/cm2). Residues within the 585–590

region in each AAV2i mutant are indicated below corresponding mouse image data. (c)

Representative live animal bioluminescent images of luciferase transgene expression

profiles in BALB/c mice (n = 3) injected intravenously (tail vein) with AAV2, AAV8,

AAV2i8 and structurally related AAV2i mutants (dose 1 × 1011 vg in 200 µl PBS)

packaging the CBA (chicken beta actin)-Luc cassette. All AAV2i mutants show a systemic

transduction profile similar to that of AAV8, with AAV2i8 showing enhanced transduction

efficiency. Bioluminescence scale ranges from 0–3 × 106 relative light units (photons/sec/

cm2). Residues within 585–590 region in each AAV2i mutant is indicated below

corresponding mouse image data. (d) Comparison of AAV2, AAV2i8 and AAV8 capsid

surface residues based on schematic “Roadmap” projections. A section of the asymmetric

unit surface residues on the capsid crystal structures of AAV2 and AAV8, as well as a

model of AAV2i8, are shown. Close-up views of the heparan sulfate binding region and

residues 585–590 reveal a chimeric footprint on the AAV2i8 capsid surface. Red, acidic

residues; blue, basic residues; yellow, polar residues; green, hydrophobic residues. Each

residue is shown with a black boundary and labeled with VP1 numbering based on the

AAV2 capsid protein sequence.
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Figure 2.

Selective muscle tropism of AAV2i8. (a) Quantification of luciferase transgene expression

in three major tissues: cardiac (black bars), skeletal muscle (pooled hind limb and

abdominal; gray bars) and liver (white bars). Tissue lysates were obtained from BALB/c

mice (n = 3) at 2 weeks after administration of AAV2, AAV2i8 and AAV8 (dose 1 × 1011

vg, tail vein) and subjected to luminometric analysis. AAV2i8 shows high transduction in

cardiac and skeletal muscle and low transduction in liver. Luciferase levels are shown as

relative light units normalized to protein levels determined using a Bradford assay. Error

bars indicate s.d. (b) Vector genome copy numbers (luciferase transgene) in three major

tissues: cardiac (black bars), skeletal muscle (pooled hind limb and abdominal; gray bars)

and liver (white bars). Host genomic as well vector DNA was extracted from tissue lysates

obtained from BALB/c mice (n = 3) at 2 weeks after administration of AAV2, AAV2i8 and

AAV8 (dose 1 × 1011 vg, tail vein). Host and vector genome copy number were determined

by Q-PCR with specific primer sets against the lamin gene and luciferase transgene,

respectively. AAV2i8 shows enhanced muscle sequestration and decreased accumulation in

liver tissue compared with AAV2 and AAV8. (c) Luciferase transgene expression in major

muscle sub-groups obtained from BALB/c mice (n = 3) at 2 weeks after intravenous

administration of AAV2i8 (dose 1 × 1011 vg, tail vein) packaging the CBA (chicken beta

actin)-Luc cassette. Tissue lysates from five different muscle groups from the hind limb

skeletal muscle (alternating black and white bars), three groups from the forelimb

(alternating black and white bars), intercostals, cardiac, facial, diaphragm, tongue,

abdominal and vertebral muscle types (black bars) were subjected to luminometric analysis.

Luciferase levels are shown as relative light units normalized to protein levels determined by

a Bradford assay. Error bars indicate s.d.
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Figure 3.

Blood transport profile of AAV2i8. (a–c) Luciferase transgene expression in pooled skeletal

muscle subgroups from right and left hind limb of BALB/c mice (n = 4) after isolated

perfusion of AAV2i8 (black bars) or AAV8 (gray bars) into each saphenous vein. Tissue

lysates prepared after administration of three different doses (1 × 109 (a), 1 × 1010 (b), 1 ×

1011 (c) vg) in low (200 µl), medium (500 µl) or high (1 ml) volume of injection were

subjected to luminometric analysis. Luciferase levels are shown as relative light units

ormalized to protein levels determined using a Bradford assay. (d) Vector genome copy

numbers recovered from blood at different time intervals after administration through the

tail vein (n = 3). Whole blood DNA was extracted and analyzed by Q-PCR with primers

against the luciferase transgene. AAV2i8 shows prolonged circulation compared with

AAV8. Error bars indicate s.d.
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