
1

Reengineering with Reflexion

Models: A Case Study

Based on the IEEE Computer article by Gail

Murphy and David Notkin

17-654/17-754: Analysis of Software Artifacts

Jonathan Aldrich

���������� �

Task

• Reengineer Excel code
• 1.2 million LOC

• Extract components

2

���������� �

The Challenge

• Gain knowledge to perform
reengineering

• Typical strategy: sketch a model
• Risk: model may not correspond to code

• System goal: build a validated model
• Task-specific modeling

• Lightweight for early feedback on model

• Iterative to allow refinement of model

���������� 	

Previous Techniques

• Automated
approaches
• Automatically

construct model
from source

• Interactions are
hard-coded
• May be inappropriate

for the task

• Granularity fixed
• Enough detail?
• Too much detail?

• Semi-automated
approaches
• Allow user to

cluster low-level
source code
components in
customized way

• Tough to scale to
larger systems

3

����������

Basic Approach

• Hypothesize a
Model

• Describe mapping to
code
• Can use tools

customized to task

• Validate model vs.
code
• Tool shows

differences

• Refine model and/or
mapping and iterate

���������� �

Defining a Model

• Graph of nodes and

arcs

• Based on

knowledge,

documentation, or

browsing code

• Can be arbitrary

• Estimate: 15-60 min

4

���������� �

Extract Source Model

• Use tool

• Excel example
• Call-graph

constructor
• Approximates

desired dataflow
information

• Could be different in
other applications

• Shows dependences

between source

elements

���������� �

Defining a Mapping

• Source elements to

nodes
• Files

• Classes

• Functions

• First cut may be

approximate

• Estimate: 10-30 min

5

����������

Reflexion Model

• Shows high-level

model
• Convergences

• Divergences

• Absences

• Can investigate

arcs
• Provides valuable

information for

refining model

���������� ��

Refinement Process

• Address divergences/absences
• Modify model

• Modify mapping
• e.g., function g belongs in file f, but was in file p

instead

• Tendency to add functions where the cursor is!

• Refine model
• Split a node into parts, specify substructure

6

���������� ��

State of Excel Documentation

Excel Internals . . . explains the philosophy of a few of
the basic things in Excel, like the cell table formulas,
memory allocation, a little bit about the layer [a special
interface with the operating system that allows
Microsoft to use the same Excel core on both
Windows and Macintosh platforms]. . . . It’s very
sparse. We don’t necessarily rely on that for people to
learn things. I’d say we have a strong oral tradition,
and the idea is that the mentor teaches people or
people learn it themselves by reading code. . . . Over
the course of a project, it goes from mostly truthful to
less truthful, and then we have to fix it up. We don’t fix
it up as we go along on a project. We will give it some
attention between projects.

���������� ��

Initial Modeling Process

• Reading Excel Internals

• Brief discussion with team members

• Drew “natural” model

7

���������� ��

Source Model and Mapping

• Source Model constructed by internal
Microsoft call-graph building tool
• 77,746 calls!

• Mapping
• 170 lines long

• Describes 400 files

• Took a few hours

���������� �	

Initial Reflexion Model

• Tasks
• Update model

• if reasonable
interactions missing

• Investigate edges
• to learn about source

• Update map
• exceptions for functions

logically in another
module

• ultimately 1000 lines
long

• Extended source
model
• global variables

• Detailed focus on
relevant parts of system

• Work done with scripts

8

���������� �

Resulting Model

• Benefits
• Understanding of

system
• Unexpected

dependences

• Feasibility of
reengineering
• How many arcs would

be cut?

• Aid in component
isolation
• Insert conditional

compilation based on
map

���������� ��

Reengineering Tool: Lessons Learned

• Task-specific views are important
• Developer didn’t want to waste time on irrelevant

parts of the system

• Connection to code important
• Both for understanding and for reengineering task

itself

• Both text and GUI interfaces needed
• Most real work done with text!

• Adaptable tools needed
• Engineer wrote scripts to process input/output files

