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Twisted bilayer graphene (TBG) is remarkable for its topological flat bands, which drive strongly-
interacting physics at integer fillings, and its simple theoretical description facilitated by the
Bistritzer-MacDonald Hamiltonian, a continuum model coupling two Dirac fermions. Due to the
large moiré unit cell, TBG offers the unprecedented opportunity to observe reentrant Hofstadter
phases in laboratory-strength magnetic fields near 25T. This Letter is devoted to magic angle TBG
at 2π flux where the magnetic translation group commutes. We use a newly developed gauge-
invariant formalism to determine the exact single-particle band structure and topology. We find
that the characteristic TBG flat bands reemerge at 2π flux, but, due to the magnetic field break-
ing C2zT , they split and acquire Chern number ±1. We show that reentrant correlated insulating
states appear at 2π flux driven by the Coulomb interaction at integer fillings, and we predict the
characteristic Landau fans from their excitation spectrum. We conjecture that superconductivity
can also be re-entrant at 2π flux.

Introduction. Twisted bilayer graphene (TBG) is the
prototypical moiré material obtained from rotating two
graphene layers by an angle θ. Near the magic angle
θ = 1.05◦, the two bands near charge neutrality flat-
ten to a few meV, pushing the system into the strong-
coupling regime and unravelling a rich landscape of cor-
related insulators and superconductors [1–7]. Due to the
large moiré unit cell, magnetic fluxes of 2π are achieved
at only 25T. In Hofstadter tight-binding models, such as
the square lattice with Peierls substitution, the 2π-flux
and zero-flux models are equivalent, although the situ-
ation is more complicated in TBG [8]. This begs the
question: do insulating and superconducting phases of
TBG repeat at 25T?

We study the Bistritzer-MacDonald (BM) Hamiltonian
[9], describing the interlayer moiré-scale coupling of the
graphene Dirac fermions within a single valley, which has
established itself as a faithful model of the emergent TBG
physics. We write the BM Hamiltonian in the particle-
hole symmetric approximation as

HBM (r) =

(
−i~vF∇∇∇ · σσσ h.c.∑3
j=1 Tje

2πiqj ·r −i~vF∇∇∇ · σσσ

)
. (1)

Here qj = Cj−13z q1 are the inter-layer momentum hop-

pings, q1 = (0, 4 sin( θ2 )/3ag), and ag = .246nm is the
graphene lattice constant. The BM couplings T1 =
w0σ0 + w1σ1, Tj+1 = exp( 2πi

3 jσ3)T1 exp(− 2πi
3 jσ3) act

on the sublattice indices of the Dirac fermions, and σj
are the Pauli matrices. The lattice potential scale is
w1 = 110meV with w0/w1 = .6 - .8 [10, 11] and the ki-
netic energy scale is 2π~vF |q1| = 190meV. The spectrum
of HBM (r) has been thoroughly investigated [12–17].

The salient feature of the BM model from the Hofs-
tadter perspective is the size of the moiré unit cell. After
a unitary transform by diag(eiπq1·r, e−iπq1·r), HBM (r) is

put into Bloch form and is periodic under translations
by ai, the moiré lattice vectors [18]. Near the magic an-
gle, the moiré unit cell area Ω = |a1 × a2| is a factor of
θ−2 ∼ 3000 times larger than the graphene unit cell. This
dramatic increase in size brings the Hofstadter regime

φ = eBΩ/~ ∼ 2π (2)

within reach, showcasing physics which is only possible
in strong flux [8, 19–24]. Here e/2π~ is the flux quantum
(henceforth e= ~ = 1) and the magnetic field B is near
25T at φ = 2π and θ = 1.05◦. In the lattice Hofstadter
problem, there is an exact periodicity in flux depending
on the orbitals [8]. This is no longer true in the contin-
uum model Eq. (1). Nevertheless we find that the flat
bands and correlated insulators are revived at φ = 2π.

A constant magnetic field εij∂iAj = B > 0 (repeated
indices are summed) is incorporated into Eq. (1) via the
canonical substitution −i∇∇∇ → πππ = −i∇∇∇−A(r) yielding

Hφ
BM . Because the vector potential breaks translation

symmetry, the spectrum in flux cannot be solved using
Bloch’s theorem. This problem has a long history with
many approaches [25–36]. However, we found that none
accommodated the more demanding topological calcu-
lations essential for understanding TBG. Our separate
work Ref. [37] contains technical calculations and proofs
of formulae for the band structure, non-abelian Wilson
loop, and many-body form factors. We apply the theory
here to study the single-particle and many-body physics
of TBG at 2π flux. Accompanying this paper, Ref. [38]
experimentally confirms our prediction of re-entrant cor-
related insulators in TBG at 2π flux.

Magnetic Bloch Theorem. In zero flux, the translation
group of a crystal allows one to construct an orthonormal
basis of momentum eigenstates labeled by k in the Bril-
louin zone (BZ) and the spectrum is given by the Bloch
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FIG. 1. TBG in flux. (a) The band structure and density of states at φ = 2π, w0/w1 = 0.8, and θ = 1.05◦ reveal ∼ 1.5meV
flat bands with a 40meV gap. (b) The full Hofstadter spectrum shows the flat bands remain gapped at all flux. (c) Calculating
the Wilson loop W (k1) of the two flat bands shows that, due to C2T breaking, the topology of the flat bands is trivial when
they are connected.

Hamiltonian at each k. A similar construction can be
followed at 2π flux where the magnetic translation group
commutes. To begin, define the canonical momentum
πµ = −i∂µ −Aµ and guiding centers Qµ = πµ −Bεµνxν
which obey the (gauge-invariant) algebra

[πµ, πν ] = iBεµν , [Qµ, Qν ] = −iBεµν , [πµ, Qν ] = 0,
(3)

forming two decoupled algebras which are isomorphic to
the free oscillator algebra. The kinetic term of Eq. (1)
contains only πµ operators and commutes with the guid-
ing centers Qµ. The Landau level ladder operators

a = (πx + iπy)/
√

2B, a† = (πx − iπy)/
√

2B (4)

obeying [a, a†] = 1 allow the Dirac Hamiltonian to be
exactly solved in flux [31]. Without a potential term,
the Qµ operators generate the macroscopic Landau level
degeneracy. A potential term U(r) will break the de-
generacy. If U(r) is periodic, the magnetic translation

operators Tai = eiai·Q commute with Hφ
BM because

TaiU(r)T †ai = U(r + ai) = U(r), and [Tai , πµ] = 0 (5)

using Eq. (3) and the Baker-Campbell-Hausdorff (BCH)
formula. The magnetic translation operators obey the
projective representation Ta1

Ta2
= eiφTa2

Ta1
[25]. For

generic flux, Ta1
and Ta2

do not commute, creating
a characteristic fractal spectrum [19]. Our interest in
this work is the Hofstadter regime where φ = 2π, the
magnetic translation operators commute, and the spec-
trum consists of bands labeled by a “momentum” k =
k1b1 +k2b2, ki ∈ (−π, π) and ai ·bj = δij . To determine
the band structure, one needs a basis of magnetic trans-
lation group irreps on infinite boundary conditions. Our
results rest on the following construction at φ = 2π:

|k, n, α, l〉 =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n, α, l〉 (6)

where R is the moiré Bravais lattice, α = A,B is the sub-
lattice index, l = ±1 is the layer index, and n is the Lan-

dau level defined by |n, α, l〉 = a†n√
n!
|0, α, l〉 , a |0, α, l〉 = 0.

A similar construction was used in Ref. [8] to identify a
projective representation of the magnetic space group 1′

in the Hofstadter Hamiltonian of a tight-binding model.
The states in Eq. (A1) are magnetic translation group
eigenstates obeying Tai |k, n, α, l〉 = eik·ai |k, n, α, l〉,
which immediately proves their orthogonality at different
k. Orthogonality at different n follows because |k, n〉 are
eigenstates of the Hermitian operator a†a with eigenvalue
n. The normalization N (k) is determined by requiring
orthonormality 〈k′,m|k, n〉 = (2π)2δmnδ(k−k′) and can
be expressed in terms of theta functions (App. A). We
find that N (k∗) = 0, indicating that the states are not
well-defined at k∗ = πb1 + πb2. This is because the
states in Eq. (A1) are built from Landau levels |n, α, l〉
which carry a Chern number, but Chern states cannot
be periodic and well-defined everywhere in the BZ [39].
On infinite boundary conditions, the point k∗ is a set of
measure zero in the BZ, and we prove in Ref. [37] that
the basis in Eq. (A1) is complete with the exception of
pathological examples that do not occur when the wave-
functions are suitably smooth.

The basis states in Eq. (A1) yield a simple expression
for the magnetic Bloch Hamiltonian

(2π)2δ(0)[Hφ=2π
BM (k)]mn,αβ,ll′ = 〈k,m, α, l|Hφ=2π

BM |k, n, β, l′〉 .
(7)

The matrix elements of Eq. (7) can be computed exactly

to obtain an expression for Hφ=2π
BM (k) (App. A). Truncat-

ing to NLL Landau levels, we obtain a finite 4NLL×4NLL
matrix that can be diagonalized at each k to produce a
band structure. This is similar to the zero flux expansion
of HBM on a plane wave basis, where high momentum
modes are truncated. As computed in Fig. 1a, the fa-
mous flat bands of magic-angle TBG remain at 2π flux
suggesting that the system will be dominated by strong
interactions. We use the open momentum space tech-
nique [36] to obtain the Hofstadter spectrum (Fig. 1b)
which shows the evolution of the higher energy passive
bands. At 2π flux, full density Bloch-like flat bands reap-
pear at charge neutrality and are the focus of this work.
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Topology of the Flat bands. Similar to the zero flux
TBG flat bands, the reentrant flat bands at 2π flux have
a very small bandwidth of ∼ 1 meV. However, their
topology is quite different due to the breaking of crys-
talline symmetries by magnetic field. Let us review the
zero flux model. Ref. [12] showed that the space group
p6′2′2 of the BM Hamiltonian (Eq. (1)) was generated
by C3z, C2x, and C2zT and also featured an approximate
unitary particle-hole operator P . Notably, C2zT alone is
sufficient to protect the gapless Dirac points and fragile
topology of the flat bands [12].

Because a perpendicular magnetic field is reversed by
time-reversal and C2x symmetries (while it is invariant
under in-plane rotations), the C2x and C2zT symmetries

are broken in flux [8]. Thus, the space group of Hφ
BM is

reduced to p31m′ which is generated by C3z and MT ≡
C2xC2zT . P also remains a symmetry. Without C2zT ,
the system changes substantially. The most direct way
to assess the topology at 2π flux is to calculate the non-
Abelian Wilson loop. To do so, we need an expression
for the Berry connection AMN (k) where M,N index the
occupied bands. At 2π flux, the Berry connection Ai =
bi · A contains new contributions [37]:

AMN
i (k) = [U†(k)(i∂ki − εijZ̃j)U(k)]MN

− δMN εij∂kj log
√
N (k)

(8)

where U(k) is the matrix of eigenvectors and M,N span
the occupied bands. In the case of the TBG flat bands,
U(k) is a 4NLL×2 matrix. The Abelian term in the sec-
ond line of Eq. (8) is an exact expression for the Berry
connection of a Landau level which is discussed at length
in Ref. [37] and accounts for the Chern number of the ba-

sis states. The non-Abelian term Z̃j acts nontrivially on
the Landau level indices (App. A). We numerically calcu-
late the Wilson loop [40] over the flat bands in Fig. 1(c)
which shows no winding. Hence the fragile topology of
the flat bands, which was protected by C2zT , is broken in
flux. However, we calculate that the neighboring passive
bands are gapped (unlike at zero flux) and carry nonzero
Chern numbers (App. B). They are dispersive Landau
levels originating from the Rashba point of the passive
bands at zero flux [11].

To gain a deeper understanding of the topology at 2π
flux, we study the band representation B with topological
quantum chemistry [41–43]. First, Fig. 1b demonstrates
that the flat bands remain gapped from all other bands
in flux. This is despite the fragile topology of TBG, veri-
fying the prediction of Ref. [8]. C2z symmetry, however is
sufficient to protect a gap closing in concert with the frag-
ile topology. Thus B can be simply obtained by reducing
the band representation of TBG in zero flux derived in
Ref. [12] to p31m′. We find

B = 2Γ1 +K2 +K3 +K ′2 +K ′3 = A2b ↑ p31m′ (9)

which is an elementary band representation and is not

topological. The irreps are defined

3m′ 1 C3z

Γ1 1 1
,

3 1 C3z

K2 1 e
2πi
3

K3 1 e−
2πi
3

,

3 1 C3z

K ′3 1 e
2πi
3

K ′2 1 e−
2πi
3

(10)

and A2b denotes two one-dimensional irreps of s or-
bitals placed at the corners of the moiré unit cell, which
matches the charge distribution at zero flux [10, 12, 44].
Another simple observation is that the total Chern num-
ber of the two flat bands is zero, so the flat bands can-
not be modeled by decoupled Landau levels despite the
strong flux, which demonstrates the importance of our
exact approach. Consulting the Bilbao Crystallographic
Server, we observe that Eq. (9) is decomposable in mo-
mentum space [45–47], meaning that B may be split into
two disconnected bands:

B = B+ + B− = (Γ1+K2+K ′3) + (Γ1+K3+K ′2) (11)

where B± carries Chern number C = ±1 mod 3 [48].
The irreps of B± at the K and K ′ points are related by
the anti-unitary operator MT which obeys C3zMT =

MT C†3z, so Eq. (11) is the only allowed decomposition.
We show below that the addition of P , which is not part
of the irrep classification (it is not a crystallographic sym-
metry), forbids this splitting.

Eq. (11) suggests a remarkable similarity to the topol-
ogy of the flat bands at zero flux, where C2zT enforces
connected bands whose Wilson loop eigenvalues wind in
opposite directions [12, 15, 49, 50]. C2zT is crucial to
protecting the fragile topology, which would otherwise
be trivialized from the cancelation of the winding. At
2π flux, breaking C2zT destroys the fragile topology but
allows the bands to split and carry opposite non-zero
Chern numbers. Thus in flux, the fragile topology in the
two TBG flat bands is replaced by stable topology as the
bands split and acquire a Chern number. These bands
carry opposite Chern number, but they cannot annihilate
with each other: MT symmetry ensures any band touch-
ing come in pairs so the Chern numbers can only change
in multiples of two. To understand the mechanism which
splits the flat bands, we re-examine P which has so far
been neglected. P is not an exact (but still a very good)
symmetry of TBG and only anti-commutes when terms
of O(θ) are dropped [12, 15]. We incorporate the exact
θ dependence into the kinetic terms of Eq. (1), breaking
P and opening a ∼ .5meV gap between the flat bands at
K and K ′ and verify the Chern number decomposition
in Eq. (11) from the Wilson loop (App. C).

The particle-hole approximation prevents the Chern
decomposition because P and C3z enforce gapless points
at K and K ′ as we now show. Observe that the K and K ′

points are symmetric under the anti-commuting symme-
try P = PMT because P takes k → −k and MT takes
(kx, ky) → (kx,−ky) [12]. P is anti-unitary and obeys

C3zP = PC†3z. As such, a state |ω〉 of energy E 6= 0
and C3z eigenvalue ω ensures a distinct state P |ω〉 with

https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
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C3z eigenvalue ω and energy −E. Thus all states at
E 6= 0 come in P-related pairs with the same C3z eigen-
value. We see that the irreps of B at K and K ′ cannot
be gapped (they are pinned to E = 0) without violating
P because they have different C3z eigenvalues.

Coulomb Groundstates. We have derived the spectrum
and topology of TBG at 2π flux, thoroughly studying
its single-particle physics. When considering many-body
states, we must include the spin and valley degrees of
freedom. The low energy states in TBG come from the
two graphene valleys which we index by η = ±1. The
valleys are interchanged by C2z which is unbroken by
flux, and hence the flat bands are each four-fold degen-
erate. To split the degeneracy, we consider adding the
interaction

Hint =
1

2Ωtot

∑
q

V (q)ρ̄−qρ̄q, ρ̄q =

∫
d2r e−iq·rn̄(r)

(12)
where V (q) > 0 is the screened Coulomb potential
[51, 52], n̄(r) is the total electron density (summed over
valley and spin) measured from charge neutrality, and
Ωtot is the area of the sample. We now discuss the sym-
metries of the many-body Hamiltonian. In zero flux,
the single-particle and interaction terms conserve spin,
charge, and valley, so there is an exact U(2)×U(2) sym-
metry group. It is also natural to work in a strong cou-
pling expansion where we project Hint onto the two flat
bands and neglect their kinetic energy entirely. This is
a very reliable approximation because the bandwidth is
O(1) meV and the interaction strength is ∼ 20meV. In
this limit, C2zP commutes with the projected Hint oper-
ator and the symmetry group is promoted to U(4)[51, 53].

We now discuss the fate of the U(4) symmetry in flux.
At B ∼ 25T, the Zeeman effect shifts the energy of the
spin ±1/2 electrons by ±µBB = ±1.4meV where µB
is the Bohr magneton. This shift is comparable to the
bandwidth, so it is consistent to neglect both at leading
order. (The Zeeman term will choose the spin-polarized
states out of the U(4) manifold.) Similarly, although P -
breaking terms allow the flat bands to gap at 2π flux, the
kinetic energy remains ≤ 3meV, so it is consistent to ne-
glect the single-particle Hamiltonian (including particle-
hole breaking terms) as a first approximation. The last
effect to address is twist angle homogeneity which has
recently come under scrutiny [54–56]. Experiments in-
dicate that even in high quality devices, the moiré twist
angle θ varies locally up to .1◦ [57–59], varying the mag-
netic field at φ = 2π between 25− 30T for θ ∈ (1◦, 1.1◦).
In a realistic sample with domains of varying θ at con-
stant B, it is reasonable to expect non-ideal flat bands
with higher bandwidth. However, the large interaction
strength and gap to the passive bands still makes the
strong coupling expansion appropriate. In this limit, the
U(4) symmetry is intact.

An analytic study of the strong-coupling problem is
possible because Hint is positive semi-definite [60]. Fol-
lowing Ref. [61], we will study exact eigenstates at fillings

ν = 0,+2,+4 (the −ν states follows from many-body
particle-hole symmetry [51]) and derive the excitation
spectrum there — effectively determining the complete
renormalization of band structure by the Coulomb inter-
action. Ref. [61] was also able to study odd integer fill-
ings perturbatively using the chiral symmetry at w0 = 0
[13, 14, 16, 62]. The chiral limit w0 = 0 at 2π flux is topo-
logically distinct from the physical regime w0/w1 = .6 -
.8 (unlike at zero flux) so this approach is inapplicable
[62]. We leave the odd fillings to future work.

The many-body calculation at 2π flux is tractable us-
ing a gauge-invariant expression for Hint and the form
factors. Following Ref. [63], we produce exact many-body
insulator eigenstates of the projected Coulomb Hamilto-
nian at filling ν ∈ (−4, 4):

|Ψν〉 =
∏
k

(4+ν)/2∏
j

γ†k,+,ηj ,sjγ
†
k,−,ηj ,sj |0〉 (13)

where the electron operators γ†k,M,η,s create a state at
momentum k, valley η, and spin s in the M = ±1 band.
The states |Ψν〉 fully occupy the two flat bands for ar-
bitrary ηj , sj forming a U(4) multiplet. Including valley
and spin, there are 8 flat bands; state |Ψν〉 fills (4 + ν)/2
of them. At ν = 0, |Ψ0〉 must be a groundstate be-
cause Hint is positive semi-definite and Hint |Ψ0〉 = 0.
At ν = ±4 where the system is a band insulator, |Ψ±4〉
are trivially groundstates because they are completely
empty/occupied respectively. The |Ψ±2〉 states are exact
eigenstates, and we argue they are groundstates using
the flat metric condition (FMC) [63] which assumes the
Hartree potential of the flat bands is trivial. Ref. [51]
found that the FMC holds reliably at zero flux, and we
check that the FMC is similarly reliable at 2π flux [37].

The exact eigenstates |Ψν〉 enable us to compute the
excitation spectrum near filling ν. The Hamiltonian
Rη+(k) governing the +1 charge spectrum is defined

[Hint − µN, γ†k,M,s,η] |Ψν〉 ≡
1

2

∑
N

γ†k,N,s,η[Rη+(k)]NM |Ψν〉

(14)
where η, s are unoccupied indices in |Ψν〉 and µ is the
chemical potential (App. D). Counting the flavors in
Eq. (13), at filling ν the charge ±1 excitations come in
multiples of (4∓ ν)/2. We give an explicit expression for
Rη±(k), the ±1 charge excitation Hamiltonian, in App. D.

The excitation spectra in Fig. 2 describe the behavior
of TBG at densities close to ν, giving distinctive signa-
tures in the Landau fans emanating from the |Ψν〉 insu-
lators [11, 29, 64]. At ν = 0, the ±1 charge excitations
are identical and their dispersion features a charge gap
to a band with a quadratic minima at the Γ point. Hence
at low densities, there are (4 ∓ 0)/2 = 2 massive quasi-
particles, counting the degenerate charge excitations in
different spin-valley flavors. As the flux is increased, the
massive quadratic excitations form Landau levels (quan-
tum Hall states), leading to Landau fans away from ν = 0
in multiples of 2 — half the Landau level degeneracy of
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FIG. 2. 1
2
Rη±(k) spectra at w0/w1 = .71: positive energies

denote a charge gap. (a) At ν = 0, the charge ±1 excitations
are identical and feature a massive particle dispersion at the
Γ point. Degeneracies are lifted because flux breaks C2zT .
(b) At ν = 2, the charge −1 excitation (red) has a large mass,
strongly suppressing the Landau fans pointing towards charge
neutrality, while the +1 excitation (blue) is lighter by a factor
of 3 with a mass of ∼ 200meV in units where vF = 1. The
+1 charge gap at ν = 2 is ∼ .5meV or roughly 5K.

TBG near B = 0. The gap between the two excitation
bands at Γ depends on w0/w1. Fig. 2a shows the generic
case at w0/w1 = .71, but at w0/w1 = .8 the two bands
are nearly degenerate at Γ (App. D). At ν = 2, the −1
excitation (towards charge neutrality) has a large mass
which reduces the gap between Landau levels and masks
would-be insulating states. However, the +1 excitation
has a smaller effective mass and will create Landau levels
in multiples of (4 − 2)/2 = 1. We do not discuss exci-
tations above ν = 4 here because they fill the passive
bands, and we check that the charge −1 excitation below
ν = 4 (not shown) is gapped with a very large mass. We

note that, with C2zT at zero flux, the excitation bands
must be degenerate at the Γ point [61, 65]. This is not
the case at 2π flux where C2zT is broken. Based on the
U(4) symmetry which determines the (4∓ ν)/2 degener-
acy of the excitations, the breaking of C2zT which allows
the bands to be gapped at Γ, and the large mass of exci-
tations towards charge neutrality, we predict the Landau
fans emerging from ν = 0 and ν = 2 away from charge
neutrality to have degeneracies 2 and 1 respectively, half
that of TBG. Comparing with the zero-flux charge exci-
tations in Ref. [61], we find that the effective masses of
the excitations are larger by a factor of ∼ 2 at 2π flux,
making the Landau fans more susceptible to disorder.

Discussion. We used an exact method to study TBG
at 2π flux, yielding comprehensive results for the single-
particle and many-body physics. Recently, interest in
reentrant superconductivity and correlated phases in
strong flux has invigorated research in moiré materials
[66, 67]. Our formalism makes it possible to study such
phenomena with the tools of modern band theory and
without recourse to approximate models. We find that
the emblematic topological flat bands and correlated in-
sulators of TBG are re-entrant at φ = 2π, providing
strong evidence that magic angle physics recurs at∼ 25T.
This leads us to conjecture that superconductivity, which
occurs at φ = 0 upon doping correlated insulating states,
may also be reentrant at 2π flux, as discussed in Ref. [38].
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Appendix A: Magnetic Bloch Theorem Formulae

This Appendix includes formulae for the band structure, Wilson loop, and many-body form factors. The derivation
of these results is direct but technical, and they are left to a separate work [37].

The starting point of all results in this section are the basis states

|k, n, α, l〉 =
1√
N (k)

∑
R

e−ik·RTR·b1
a1

TR·b2
a2

|n, α, l〉 , N (k) =
√

2

∣∣∣∣θ3( k

2π

∣∣∣∣ i) θ3 ( ik̄2π
∣∣∣∣ i)∣∣∣∣ exp

(
−kk̄

4π

)
(A1)

which are magnetic translation group eigenstates (in any gauge). Here k = k1 + ik2, k̄ = k1 − ik2 and θ3(z|τ) =
θ1(z + 1|τ) is the Jacobi theta function with quasi-period τ and zeros at 1/2 + τ/2. The states in Eq. (A1) carry
a Tai “momentum” quantum number, and have indices n, α, l corresponding to Landau level, sublattice, and layer.
By computing the matrix elements in Eq. 7 of the Main Text, we arrive at an expression for the magnetic Bloch
Hamiltonian at 2π flux:

Hφ=2π(k) =

 vF kθ(
√

φ
2πh(πππ)− 1

2σ2) T1 + T2e
−ik2H2πb1 + T3e

ik1H2πb2

T1 + T2e
ik2H−2πb1 + T3e

−ik1H−2πb2 vF kθ(
√

φ
2πh(πππ) + 1

2σ2)

 , h(πππ) =

(
3
√

3

2π

)1/2(
0 a†

a 0

)
(A2)

where Ti and σi act on the sublattice indices (an expression for Ti is given in the Main Text) and H2πG and a, a† act
on the Landau level basis. Explicitly:

[a]mn =
√
nδm,n−1

Hq
mn = [exp

(
iεijqiZ̃j

)
]mn, [Zj ]mn =

z̄j
√
nδm,n−1 + zj

√
mδn,m−1√

2φ

(A3)
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with φ = 2π and z̄i = (x̂ − iŷ) · ai/
√
|a1 × a2|. Eq. (A2) is the Hamiltonian in the graphene K valley. The

Hamiltonian in the graphene K ′ valley is related by C2zHK(k)C†2z = HK′(−k) where C2z = τ0σ1(−1)a
†a and has the

same spectrum. Here τ0 denotes the layer indices which are in matrix notation in Eq. (A2).
We now analyze the many-body Hamiltonian with the Coulomb interaction

V (q) = πξ2Uξ
tanh ξ|q|/2
ξ|q|/2

, Uξ =
e2

εξ
(in Gauss units) (A4)

where ξ ∈ (10, 20)nm is the screening length given by the distance between the sample gates and ε ∼ 6 is the dielectric
of hexagonal boron nitride. At ξ = 15, Uξ = 17.3meV. We need to compute the form factor (M,N = ±1 index the
flat bands)

Mη
MN (k,q) ≡ eiξq(k)[U†η(k− q)HqUη(k)]MN (A5)

where Uη(k) is the matrix of occupied eigenvectors in the η = K,K ′ graphene valleys and

eiξq(k) =
e−

q̄q
4φϑ

(
(k1−q/2,k2+iq/2)

2π

∣∣∣Φ)√
ϑ
(

(k1,k2)
2π

∣∣∣Φ)ϑ( (k1−q1,k2−q2)
2π

∣∣∣Φ) , Φ =
iφ

4π

(
1 i

i 1

)
(A6)

and the Siegel (or Riemann) theta function is defined

ϑ (z |A ) =
∑
n∈Z2

e2πi(
1
2n·A·n−z·n) . (A7)

Appendix B: Additional Band Structure Plots

This Appendix includes additional plots which support some peripheral claims in the Main Text.
In Fig. 3, we compare the density of states calculated using two methods, the open momentum space sparse matrix

approach developed in Ref. [36] and the exact band structure approach. We can only compare the density of states
between the two methods because the open momentum space approach does not keep the k quantum number. (The
advantage of the momentum space approach is a sparse matrix representation at all values of φ.) To find quantitative
agreement over a ∼ 1meV scale, we need to use a very large sparse matrix, keeping 141 momentum space sites in
each layer and 150 Landau levels for an 84600 × 84600 matrix. We calculate the lowest thousand eigenvalues with
the Arnoldi algorithm and employ the projector technique described in Ref. [36] at 122 momentum space plaquettes
to remove the spurious states. For comparison, we only need to keep 50 Landau levels per sublattice per layer in the
band structure method, and we sample ∼ 1000 k points in the BZ for high accuracy. This calculation takes less than
a minute.

In Fig. 4, we study the topology of the low lying passive bands. The first important observation is that the passive
bands are gapped from each other and the flat bands. This is not the case in zero flux TBG where the first and second
passive bands are connected [12] with a Rashba-like dispersion at the Γ point [11] due to C3z and C2zT . Recalling
Fig. 1b of the Main Text, we see that the first passive bands at 2π flux (colored red and blue in Fig. 4a) originate
from a Landau level which grows linearly in B at small flux. This is exactly what is predicted from the Rashba point
discussed in Ref. [11]. As the flux increases, the Landau level degeneracy is broken due to dispersion, acquiring a
bandwidth of ∼ 30meV at 2π flux. We calculate the Chern number of the bands in Fig. 4b,c and confirm that the
first passive bands have C = −1, which is the Chern number of a Landau level in our conventions (see Ref. [37] for
a direct calculation). We wish to point out an essential difference between the Chern number topology of the flat
bands and the Chern numbers of the passive bands. The latter are simply Landau levels (magnetic field induced
topology) that have split from the passive bands at φ 6= 0, while the former are a split elementary band representation
(crystalline topology) which cannot be described by decoupled Landau levels. Lastly, we calculate the Chern numbers
of the second passive bands, and find that they are trivial, i.e. they represent atomic states despite the strong flux.
The active bands have Chern number C = ±1, as the elementary band representation splitting in Eq. 11 of the Main
Text shows. Normally, a band with Chern number C = +1 can annihilate the topology of a band with C = −1 by
switching the Chern number in a phase transition. However, in our case, these phase transitions cannot happen: at
the high-symmetry momentum Γ we have avoided crossings. If the transitions happen at generic points in the band
structure, they will happen in pairs (because of MT symmetry), and those pairs come in triplets (because of C3z

symmetry), so the Chern number will change by 6 and this cannot turn the Chern number of the bands to 0.
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FIG. 3. Density of states comparison calculated using the open momentum space method (blue) and exact band structure
method (yellow). The overlaps are colored gray. (a) Comparison over the lowest six bands. (b) Zoom in of the flat bands
between ±1meV. In both cases, the agreement is very good. Further improvement can be achieved by increasing the number of
momentum space plaquettes in the open momentum space method. In the 84600×84600 matrix, each band has approximately
122 states [36] (before spurious states are projected out) compared to the band structure technique which we use to compute
1000 states per band. To achieve convergence between the two densities, more points per band are required.

FIG. 4. Wilson loops of the passive bands. In (a), we show the 2π flux band structure at θ = 1.05◦ with the inclusion of
particle-hole breaking terms (see App. C). In (b), (c), we compute the Wilson loop over individual bands which are color coded
to match (a). We determine from the winding that the first passive passive bands (red and blue) have Chern number −1, and
the second passive bands (which are gapped) have Chern number 0.

Appendix C: Particle-Hole Breaking Terms

In this Appendix, we provide details for incorporating the small angle corrections to the kinetic term of the BM
model (Eq. 1 of the Main Text) into the magnetic Bloch Hamiltonian and numerically calculate the Wilson loop. As
shown in Sec. III of the Main Text, the band representation B of the flat bands is a decomposable elementary band
representation induced from atomic orbitals. While the two flat bands are connected (as is enforced by PMT ), the
topology is trivial, as we calculated directly with the Wilson loop. We now show that O(θ) terms arising from the
relative twist in the kinetic term of BM model [12] break the anti-commuting P symmetry, gapping the flat bands
are decomposing B into disconnected bands of opposite Chern number.

To verify this topology numerically, we study the BM Hamiltonian without the particle-hole symmetric approxima-
tion. As written in Ref. [15], the Hamiltonian takes the form

HBM,θ =

(
−ivF (∇∇∇ · σσσ − θ

2∇∇∇× σσσ) T †(r)

T (r) −ivF (∇∇∇ · σσσ + θ
2∇∇∇× σσσ).

)
(C1)

which is identical to the expression in Eq. 1 of the Main Text with the addition of the ± θ2∇∇∇ × σσσ terms which
incorporate the opposite rotation of the kinetic terms in the top and bottom layers. Letting τi denote Pauli matrices
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acting on the layer index (which is the matrix notation in Eq. (C2)), the additional term is Hθ ≡ ivF θ2τ3∇∇∇× σσσ. It is

direct to see that Hθ breaks particle-hole symmetry P which obeys PHBM (r)P † = −HBM (r). Using the expression
for P = iτ2Rπ where Rπ is the π rotation operator on functions (see Ref. [37]), we find that PHθ(r)P † = +Hθ(r),
breaking particle-hole symmetry. We remark that at zero flux, the topology and spectrum of the BM model is not
strongly influenced by P because C2zT ensures the connectedness of the flat bands and protects their topology. The
O(θ) terms which break P at 2π flux have a more significant effect because C2zT is also broken, allowing the O(θ)
particle-hole breaking terms to open a gap between the flat bands.

We now discuss the form of Hθ at 2π flux. We perform the canonical substitution −i∇∇∇ → πππ to find

Hφ
BM,θ(r) =

(
vF (πππ · σσσ − θ

2πππ × σσσ) T †(r)

T (r) vF (πππ · σσσ + θ
2πππ × σσσ).

)
(C2)

As written, Hφ
BM,θ(r) is not in Bloch form because Hφ

BM,θ(r + ai) 6= Hφ
BM,θ(r). To remedy this, we shift into Bloch

form via the unitary transformation:

V1 =

(
eiπq1·r 0

0 e−iπq1·r

)
(C3)

which acts as a momentum shift in each layer, reflecting the fact that the Dirac points in the two layers are displaced
2πq1 from each other. In this section, we only discuss the particle-hole breaking term Hθ. All other terms are given
explicitly in App. A. We compute

V1H
φ
θ V
†
1 = −vF

(
θ
2πππ × σσσ 0

0 − θ2πππ × σσσ.

)
+ πvF

(
θ
2q1 × σσσ 0

0 θ
2q1 × σσσ

)
(C4)

= −vF
θ

2
τ3πππ × σσσ + πvF

θ

2
τ0q1 × σσσ . (C5)

The new term arising from the twist in the kinetic energy is −vF θ2τ3πππ × σσσ = −vF θ2τ3(πxσy − πyσx). Expanding the
σ matrices, we get

πxσy − πyσx =

(
0 −i(πππx − iπππy)

i(πππx + iπππy) 0

)
=
√

2B

(
0 −ia†

ia 0

)
(C6)

which acts on the sublattice vector indices and the Landau level indices. Making use of B = φ/Ω and Ω = 2
3
√
3
(2π/kθ)

2

from Sec. I of the Main Text, we arrive at

V1H
φ
θ V
†
1 =

θ

2
vF kθ

√
3
√

3

2π
τz ⊗

(
0 ia†

−ia 0

)
− θ

4
vF kθτ0σx (C7)

where we also use 2πq1 × σσσ = −kθσx. The second term in Eq. (C7) acts trivially on the Landau level indices. Both
terms in Eq. (C7) are smaller than the leading order kinetic term by a factor of θ. Calculating the matrix elements
of Eq. (C7) on the magnetic translation operator basis states |k, n, α, l〉 (Eq. 6 of the Main Text), we compute the
band structure. As shown in Fig. 5a, the Dirac points at K and K ′ open, leaving the flat bands gapped from each
other. We calculate the Wilson loop over each band individually and confirm the C = ±1 Chern numbers of the split
elementary band representation in Fig. 5b. Lastly, we calculate the dispersion of the flat bands over the full BZ in
Fig. 5c,d.

Appendix D: Charge ±1 Excitation Spectrum

In this section, we give a self-contained derivation of the effective Hamiltonians for charge ±1 excitations following
the method of Ref. [63]. The exact eigenstates |Ψν〉 defined in the Main Text are amenable to the calculation of
various excitation spectra [63]. We describe the simplest case of charge ±1 excitations, which correspond to adding
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FIG. 5. TBG flat bands at 2π flux with particle-hole breaking terms. (a) Examining the band structure reveals gaps opened
at the K and K′ points, allowing the flat bands to separate. This is only possible in flux when C2zT is broken. (b) The
Abelian Wilson loop, calculated over the two bands separately, reproduces the C = ±1 Chern numbers predicted from the
split elementary band representation. (c) and (d) show the band structure across the BZ of the lower and upper flat bands
respectively. The C3z and MT symmetries are evident in the spectrum.

or removing a single electron from |Ψν〉. As discussed at length in Ref. [37], the interaction Hamiltonian is

Hint =
1

2Ωtot

∑
q

V (q)ρ̄−qρ̄q =
1

2Ωtot

∑
G

∑
q∈BZ

O−q,−GOq,G,

Oq,G =
√
V (q + 2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k,q + 2πG)(γ†k−q,M,η,sγk,N,η,s −

1

2
δMNδq,0)

(D1)
where the form factors M(k,q) are defined in Eq. (A5). In this Appendix, we find an exact expression for the charge
excitations above the groundstate defined in Eq. (14) of the Main Text by

[Hint − µN, γ†k,M,s,η] |Ψν〉 ≡
1

2

∑
N

γ†k,N,s,η[Rη+(k)]NM |Ψν〉 (D2)

where −µN is the chemical potential term obeying [N, γ†k,M,s,η] = γ†k,M,s,η. To compute the [Hint, γ
†
k,M,s,η] we first

need the commutators

[Oq,G, γ
†
k,M,s,η] =

√
V (q + 2πG)

∑
N

γ†k−q,N,η,sM̄
η
NM (k,q + 2πG)

[Oq,G, γk,M,s,η] = −[O−q,−G, γ
†
k,M,s,η]† = −

√
V (q + 2πG)

∑
N

γk+q,N,η,sM̄η∗
NM (k,−q− 2πG) .

(D3)

We will focus on the charge +1 excitations which arises from the γ†k,M,s,η commutator. Analogous formulae for the

−1 excitations can be obtained from the γk,M,s,η. Using Eq. (D3), we calculate

[O−q,−GOq,G, γ
†
k,M,s,η] = O−q,−G[Oq,G, γ

†
k,M,s,η] + [O−q,−G, γ

†
k,M,s,η]Oq,G

=
√
V (q + 2πG)

∑
N

O−q,−Gγ
†
k−q,N,η,sM̄

η
NM (k,q + 2πG)

+
√
V (q + 2πG)

∑
N

γ†k+q,N,η,sM̄
η
NM (k,−q− 2πG)Oq,G

=
√
V (q + 2πG)

∑
N

(γ†k−q,N,η,sO−q,−G − [γ†k−q,N,η,s, O−q,−G])M̄η
NM (k,q + 2πG)

+
√
V (q + 2πG)

∑
N

γ†k+q,N,η,sM̄
η
NM (k,−q− 2πG)Oq,G

(D4)
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Evaluating the remaining commutator, we find

[O−q,−GOq,G, γ
†
k,M,s,η] = V (q + 2πG)

∑
N

γ†k,N,η,s[M̄
η(k− q− 2πG,−q− 2πG)M̄η(k,q + 2πG)]NM

+
√
V (q + 2πG)

∑
N

(
γ†k+q,N,η,sM̄

η
NM (k,−q− 2πG)Oq,G + γ†k−q,N,η,sM̄

η
NM (k,q + 2πG)O−q,−G

)
.

(D5)
Let us focus on the form factor product M̄(k−q,−q)M̄(k,q). Using Eq. (A5), we compute (suppressing the η index
temporarily)

M̄(k− q,−q)M̄(k,q) = eiξq(k)+iξ−q(k−q)U†(k)H−qU(k− q)U†(k− q)HqU(k)

= U†(k)H−qU(k− q)U†(k− q)HqU(k)

= (U†(k− q)HqU(k))† U†(k− q)HqU(k)

= M†(k,q)M(k,q) ≡ P (k,q)

(D6)

where we used the identity e−iξq(k)−iξ−q(k−q) = 1 proven in Ref. [37] and H−q = Hq†. As a result of Eq. (D6),

P η(k,q + 2πG) ≡Mη†(k,q + 2πG)Mη(k,q + 2πG) (D7)

is positive semi-definite. The second line of Eq. (D5) simplifies considerably when acting on |Ψν〉 (defined in Eq. (13)
of the Main Text):

Oq,G |Ψν〉 = δq,0
√
V (2πG)

∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k, 2πG)(γ†k,M,η,sγk,N,η,s −

1

2
δMN ) |Ψν〉

= δq,0
√
V (2πG)

∑
k∈BZ

∑
η,s

(
∑
j

δs,sjδη,ηjTr [M̄η(k, 2πG)]− 1

2
Tr [M̄η(k, 2πG)]) |Ψν〉

= δq,0
√
V (2πG)

∑
k∈BZ

(
ν + 4

2
Tr [M̄η(k, 2πG)]− 4

2
Tr [M̄η(k, 2πG)]) |Ψν〉

= νδq,0
√
V (2πG)

∑
k∈BZ

1

2
Tr M̄η(k, 2πG) |Ψν〉 .

(D8)

Returning to the second line of Eq. (D5) and using Eq. (D8), we obtain:√
V (q + 2πG)

∑
N

(
γ†k+q,N,η,sM̄NM (k,−q− 2πG)Oq,G + γ†k−q,N,η,sM̄NM (k,q + 2πG)O−q,−G

)
|Ψν〉

= νδq,0V (2πG)

 ∑
q′∈BZ

1

2
Tr M̄(q, 2πG)

∑
N

γ†k,N,η,s
(
M̄NM (k,−2πG) + M̄NM (k, 2πG)

)
|Ψν〉 .

(D9)

The sum [M̄(k,−2πG) + M̄(k, 2πG)]NM is Hermitian, which it must be because this term is part of the effective
Hamiltonian. Gathering results, we find the effective Hamiltonian 1

2R
η
±(k) where Rη+(k) = RηF (k) + νRηH(k) − 2µ1

and Rη−(k)∗ = RηF (k)− νRηH(k) + 2µ1 and the various terms are defined by

RηF (k) =
∑
G

 1

NM

∑
q∈BZ

Ω−1V (q + 2πG)Mη†(k,q + 2πG)Mη(k,q + 2πG)

 ,

RηH(k) =
∑
G 6=0

Ω−1V (2πG)

 1

NM

∑
q∈BZ

1

2
Tr Mη(q, 2πG)

Mη(k, 2πG) +H.c.,

µ = ν
∑
G6=0

Ω−1V (2πG)

 1

NM

∑
q∈BZ

1

2
Tr Mη(q, 2πG)

2

(D10)

where we have discretized the Brillouin zone by taking NM to be the (finite) number of moiré unit cells, so each q
sum has NM terms. The value of the chemical potential is derived using the flat metric approximation in Ref. [37].
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Importantly, the Fock term RF (k) is positive definite [61]. We conclude that the groundstate |Ψ0〉 where ν = 0 is
stable to charge excitations and generically (but not always) will be insulating. Lastly, we note that

R−ηF (k) = ν1R
η
F (k)ν1, R−ηH (k) = ν1R

η
H(k)ν1 (D11)

where ν1 is a Pauli matrix, so charge +1 and charge −1 spectra are related by the unitary matrix ν1 and hence have
identical spectra.

In Fig. 6, we study the dispersion relation of the quasi-particles near ν = 0 obtained from the charge ±1 excitation
Hamiltonian Rη±(k). We find that the nearly degenerate bands at the Γ point for w0/w1 = .8 (shown in Fig. 2 of the
Main Text) are not generic, which is understood from the symmetries. At zero flux, Ref. [61] found that the excitation
bands had a protected degeneracy at the Γ point due to C2zT symmetry, but nonzero flux breaks this symmetry and
allows the bands to gap. Fig. 6a shows the gap between the two excitation bands at Γ as a function of w0, from which
we see that w0 = .8w1 is in a non-generic region in the parameter space where the bands are close in energy. Fig. 6b-d
show three examples of excitation band structures.

FIG. 6. Charge ±1 excitations at ν = 0 using ξ = 10nm in Eq. (A4). (a) The excitation gap of Rη±(k = 0) is plotted as a
function of w0, showing that the near-degeneracy of the bands at w0/w1 = .8 is accidental. (b)− (d) display the band structure
at w0/w1 = .75, .79, .85 respectively, highlighting the gap closing and reopening at Γ as w0/w1 is increased.
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