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We investigate the unique mechanical properties of re-entrant 3D origami structures based on the Tachi-

Miura Polyhedron (TMP). We explore its potential usage as mechanical metamaterials that exhibit tunable

negative Poisson’s ratio and structural bistability simultaneously. We show analytically and experimentally that

the Poisson’s ratio changes from positive to negative and vice versa during its folding motion. In addition, we

verify the bistable mechanism of the re-entrant 3D TMP under rigid origami configurations without relying on

the buckling motions of planar origami surfaces. This study forms a foundation in designing and constructing

TMP-based metamaterials in the form of bellows-like structures for engineering applications.

Origami is defined as the handcrafted art of paper folding.

In recent decades, origami has attracted significant interest of

mathematicians and engineers, not only because it stimulates

intellectual curiosity, but also because it has large potentials

for engineering applications. One good example is the usage

of origami-patterns for the enhancement of structural bending

rigidity for thin-walled cylindrical structures [1]. By leverag-

ing their compactness, origami structures are also employed

for space applications, such as space solar sails [2, 3] and de-

ployable solar arrays [4]. It is not surprising that biological

systems exhibit origami patterns, e.g., tree leaves [5].

Mechanical metamaterials are another topic of active re-

search in the scientific community nowadays. As a counter-

part of electromagnetic metamaterials, mechanical ones are

constructed in an ordered pattern of unit-cell elements to

achieve unusual mechanical properties [6, 7]. Among them

are negative Poisson’s ratio and controllable instability of

structures. For example, negative Poisson’s ratio has been ex-

ploited to manipulate wave propagation in re-entrant cellular

structures [8]. Previous studies also reported that structural

instability can be used to achieve tailored damping character-

istics in mechanical metamaterials [10, 29].

In this study, we adopt origami structures as a building

block of mechanical metamaterials to achieve simultaneous

negative Poisson’s effect and structural bistability. Specifi-

cally, we employ the Tachi-Miura Polyhedron (TMP), which

is a bellows-like 3D origami structure based on Miura-ori

cells [11, 12] (Fig. 1). Lateral assembly of Miura-ori cells in

the form of 2D Miura-ori sheets has been previously explored

for the construction of metamaterials [13]. However, there

have been limited efforts to study the cylindrical derivative of

Miura-ori in the form of TMP [14]. In contrast to 2D origami

structures such as Miura-ori sheets and waterbomb [15], the

TMP holds a volume that changes continuously from zero to

a certain value, and then it returns to zero again at the ends

of the folding motion (see Fig. 1(a)). This implies that we

can obtain a very large stroke from its folding motion, which

is useful in designing actuators and impact absorbers. Also,

compared to other origami-based cylindrical structures [16–

21], the TMP has a unique feature of rigid foldability. That is,

the deformation takes place only along crease lines instead of

relying on the elasticity of materials. Therefore, the structure
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FIG. 1: (a) Folding motion of Tachi-Miura Polyhedron (TMP). (b)

Folded TMP cell. (c) Top view of TMP. (d) Flat front and rear sheets

of TMP with the crease pattern consisting of mountain and valley

folds. (e) Folded configuration of the front sheet corresponding to

the shaded areas in (c) and (d).

can consist of only rigid panels and hinges without incurring

bending of planar origami surfaces.

In this Letter, we first examine the kinematics of the TMP to

show the tunable characteristics of its Poisson’s ratio. We ver-

ify analytically and experimentally the auxetic effect of vol-

umetric 3D TMP prototypes in bilateral directions, which is

an improvement over the conventional 2D origami structures

with a single-directional negative Poisson’s effect [13, 22, 23].

Second, we investigate the force-displacement relationship

of the TMP structure to show that it exhibits bistable na-

ture under the re-entrant configurations. While previous stud-

ies investigated structural stability in other types of origami-

structures [15, 24–26], bistable – yet foldable – 3D origami
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structures without introducing defects have not been reported

yet. Lastly, a cellular structure consisting of the TMP cells

is explored to form origami-based metamaterials with a view

toward potential engineering applications.

We begin with characterizing the geometry of the TMP. Fig-

ures 1(b) and (c) show the folded TMP cell in slanted and top

views, respectively. This unit cell consists of two flat sheets,

whose geometry can be characterized by length parameters (l,
m, d) and an inner angle of parallelogram (α) (Fig. 1(d)). The

point Q is defined by the two crossing edges of the front and

rear surfaces as shown in Fig. 1(c), which passes through the

quarter line of the sheets (dash-dot line in Fig. 1(d)). Accord-

ingly, the half breadth (B/2) of the TMP cell corresponds to

the distance between points O and Q along the y-axis, and

the half width (W/2) is the distance between points O and R
along the x-axis (Figs. 1(c)). The half height (H/2) of the

TMP cell is also illustrated in Fig. 1(b). Note that the TMP

cell exhibits a re-entrant shape when the given geometrical

angle α is above 45◦.

To calculate W , B, and H under various folding configu-

rations, we consider a quarter model of the TMP (Fig. 1(e)),

which corresponds to the dark colored area in Figs. 1(b)-(d).

Here, the folding angles, θM and θS , are functions of α (de-

termined by the given geometry) and θG (varies by the degree

of folding). The mathematical expressions for these folding

angles are described in supplemental document. It should be

noted that while θM ∈ [0, 90◦] and θS ∈ [0, 90◦], the range of

α is limited to satisfy 2l−d cotα+2m cos 2α > 0. This is to

avoid the collision between points P and P ′ during folding.

Accordingly, θG ∈ [0, 2α]. Based on the geometry described

in Fig. 1, W , B, and H are obtained as follows:

B = 2m sin θG + d cos θM

W = 2l +
d

tanα
+ 2m cos θG

H = 2d sin θM .

(1)

We investigate the Poisson’s ratios of the TMP by defining

them as

νHB = −
(dB/B )

(dH/H )
and νHW = −

(dW/W )

(dH/H )
. (2)

Differentiating Eq. (1) with respect to the folding angles and

plugging them into Eq. (2), we obtain the Poisson’s ratios as

follows:

νHB =
4m tanα cos θG cos2 (θG/2) + d

2m sin θG + d cos θM
sin θM tan θM

νHW = −
4m tanα sin θG cos2 (θG/2)

2l+ (d/ tanα) + 2m cos θG
sin θM tan θM .

(3)

To verify this analytical expression, we fabricate three pro-

totypes of the TMP (α = 30◦, 45◦, and 75◦) by using pa-

per (See supplemental document for details). The number

of Miura-ori layers used in each configuration is N = 7,

and the characteristic lengths of the prototypes are identical

(l = m = 50 mm and d = 30 mm). We conduct three mea-

surements of B and W at each H , as we gradually change

the folding angle. We compare the measured Poisson’s ratios

with the analytical results from Eq. (3).

Fig. 2 shows the Poisson’s ratios as a function of a fold-

ing ratio defined as (90◦ − θM )/90◦. The Poisson’s ratio

νHW in the case of α = 45◦, 30◦, and 70◦ are plotted in

Fig. 2(a), while the insets show the folded configurations un-

der α = 70◦. We find νHW is always negative regardless of

the folding ratio and α. On the other hand, the Poisson’s ratio

νHB related to width B is positive in the initial folding stage,

and it approaches zero. It is notable that in the re-entrant case

(e.g., α = 70◦), νHB becomes negative as shown in Fig. 2(b).

As seen in the inset, we evidently observe that B increases

and then decreases as the folding ratio of the re-entrant TMP

increases. We find excellent agreement between the experi-

mental and analytical results. The areal change of the TMP

is also measured and compared with the analytical predictions

in the supplemental document.

The analytical contour plot of νHB as a function of con-

tinuous α and the folding ratio is shown in Fig. 2(c). If α
is above approximately 55◦, νHB becomes negative during

the folding motion. Fig. 2(d) also shows the contour plot of

νHB but d = 60 mm. By choosing a certain α angle (e.g.

α = 70◦ as shown in the inset of Fig. 2(d)), we observe νHB

changes from positive to negative in the initial folding stage,

and then it becomes positive again around 62 %. The sign

of νHB changes multiple times in one folding motion. This

is a unique feature of the TMP compared to the conventional

2D Miura-ori, in which negative Poisson’s effect has been re-

ported, but multiple sign flips of the Poisson’s ratio has not

been discovered [13, 22, 23]. Solving dB = 0, we obtain the

analytical expression for the transition between positive and

negative νHB :

cos2θM =
2m tanα− d± 2

√

m tanα (m tanα− 2d)

dtan2α
.

(4)

This boundary is plotted in a dashed curve in Fig. 2(c,d).

Now we investigate force and folding ratio relationship to

validate the bistable nature of the TMP. We model the TMP

by rigid plates connected by torsional spring along the crease

lines (see supplemental document for details). We consider

the folding behavior of the TMP under a uniaxial force (F ) in

the z-direction. By applying virtual displacement (δu) to the

TMP and using the principle of virtual work, we obtain the

following equation:

Fδu = 2nMMMδθM + 2nSMSδθS , (5)

where nM = 8(N − 1) and nS = 8N are the number of hor-

izontal and inclined crease lines related to θM and θS respec-

tively, and MM (MS) is the bending moment along horizon-

tal (inclined) crease lines. Let the torsional spring constant

be kθ , assuming that the torsion spring is linear and identi-

cal throughout all crease lines. Mathematically, this can be
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FIG. 2: Poisson’s ratio change of TMP. (a) νHW and (b) νHB as a function of the folding ratio. Insets show folded configurations of re-entrant

TMP under α = 70
◦ and l = m = 50, d = 30 mm. Errorbars indicate standard deviations. Contour plot of νHB as a function of α and the

folding ratio if (c) d = 30 and (d) d = 60. The white dashed line indicates the boundary between positive and negative νHB .

expressed as M = 2kθ
(

θ − θ(0)
)

where θ(0) is the initial

folding angle (i.e., natural angle with no potential energy).

Based on the geometry of the TMP and Eq. (5), the compres-

sive force can be expressed as (see supplemental document for

details):

F

(kθ/d )
= −

32

cos θM

{

N − 1

N

(

θM − θ
(0)
M

)

+
(

θS − θ
(0)
S

) cos3 θG

2 sin θM

cosα sin θS

}

. (6)

Note that we use a normalized force to remove the effect of

spring coefficient and the dimension of the TMP.

Figure 3 shows the force-folding ratio relationship of the

TMP under different initial conditions. When the natural fold-

ing angle θ
(0)
M

is 45◦ and the number of layers N is 7, the nor-

malized force increases monotonically regardless of α values

as shown in Fig. 3(a). However, in the case of θ
(0)
M

= 80◦ (i.e.,

a more upward initial posture than θ
(0)
M

= 45◦), we observe

the TMP with α = 70◦ exhibits a local minimum point in the

force-folding relationship (see the solid curve in Fig. 3(b)).

This indicates that the re-entrant structure under θ
(0)
M

= 80◦

and α = 70◦ has two stable configurations: one is the initial

state (the folding ratio of 11%) and the other is a state in the

middle of the folding motion (folding ratio of about 67%). At

certain geometrical and folding configurations, the 3D TMP

structure can exhibit two or even three different equilibrium

states under the same normalized force (see supplemental doc-

ument for an example of F/(kθ/d) = 45). We also note

that this can incur an interesting phenomenon, such as neg-

ative stiffness, snap-through and hysteresis effects, which can

be exploited for the purpose of energy absorption and impact

mitigation.

We now investigate numerically the local minimum points

under various combinations of α and θ
(0)
M

values (Fig. 3(c)).

We observe that the bistability arises when the TMP exhibits

re-entrant shapes and appropriate initial folding angles are ap-

plied (minimal θ
(0)
M

is 73◦ given the geometry), implying that

by changing θ
(0)
M

, one can manipulate the stability of the TMP.
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FIG. 3: Force-folding ratio relationship. The number of layers N is 7, and initial folding angle is (a) θ
(0)
M

= 45
◦ and (b) θ

(0)
M

= 80
◦.

Illustrations indicate the folded shape of the TMP with α = 70
◦. (c) Folding ratio at local minimum point under different initial angles θ

(0)
M

.

It should be noted that the bistability in this TMP structure is

achieved solely by its kinematics, without relying on material

properties or deformation of the facets. While previous stud-

ies discovered simultaneous foldability and bistability in the

setting of 2D origami cells [26], a 3D version of such archi-

tectures has been unexplored. Thus, the TMP can serve as

a prototypical 3D origami structure, which exhibits foldabil-

ity and bistability at the same time. The bistable characteristic

can provide self-locking mechanisms, so that the structure can

cease its folding motion and maintain a certain folded config-

uration stably.

Lastly, we explore the design of a cellular structure con-

sisting of multiple TMP cells (Fig. 4). Similar to its unit

cell, this TMP cellular structure transforms from a 2D state to

another 2D configuration, while filling 3D space in the tran-

sition stage. Therefore, by taking advantage of the unique

kinematics of the TMP unit cell discussed above, we can de-

sign a new type of 3D structures which exhibit tunable Pois-

son’s ratio and structural bistability. Figure 4(a) shows the

TMP cellular structure with α = 30◦, where we observe the

structure stretches in the y-direction while being contracted

in the x-direction monotonically (i.e., positive νHB and neg-

ative νHW ). If α = 70◦, it expands in the y-direction at

first behaving similar to the previous case, but past a cer-

tain threshold, it starts to shrink in all directions as shown in

Fig. 4(b) due to the negative Poisson’s ratios in bilateral di-

rections. These TMP cellular structures are also one degree-

of-freedom system. Therefore all TMP cells fold and unfold

simultaneously by manipulating one parameter, folding angle

θM in this study.

In conclusion, we investigated unique kinematics of

origami-based 3D structures based on the Tachi-Miura Poly-

hedron (TMP). We found that the Poisson’s ratio of the re-

entrant TMP can be tuned to exhibit negative values in bilat-

eral directions under the strains along the stacking direction.

Also, the re-entrant TMP can exhibit bistable characteristics

in contrast to normal TMP configurations. The findings in

this study can form a foundation in designing and constructing

a new type of mechanical metamaterials, which feature con-

trollable auxeticity and structural stability. These 3D cellular

structures offer an enhanced degree of freedom in structural

responses, showing great potentials for various engineering

applications such as space structures and impact absorbers.
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FIG. 4: Folding motions of TMP cellular structures. The numbers

show folding ratios, and l = m = 50 mm, d = 30 mm. (a) α = 30
◦.
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