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REES MATRIX COVERS FOR LOCALLY INVERSE SEMIGROUPS
BY

D. B. MCALISTER

Abstract. A regular semigroup S is locally inverse if each local submonoid eSe, e
an idempotent, is an inverse semigroup. It is shown that every locally inverse
semigroup is an image of a regular Rees matrix semigroup, over an inverse
semigroup, by a homomorphism 0 which is one-to-one on each local submonoid;
such a homomorphism is called a local isomorphism. Regular semigroups which are
locally isomorphic images of regular Rees matrix semigroups over semilattices are
also characterized.

Locally inverse semigroups are regular semigroups S in which each local sub-
monoid eSe, e an idempotent, is an inverse semigroup. These semigroups have been
extensively studied in recent years; in particular by Nambooripad, Meakin, Pastijn
and Byleen. They form a broad class of regular semigroups which includes com-
pletely 0-simple semigroups, inverse semigroups and subdirect products of such
semigroups as special cases. As well, naturally ordered regular semigroups are locally
inverse. An extensive bibliography on locally inverse semigroups will be found in [9].

Pastijn [9] has shown that every locally inverse semigroup divides a semigroup
which can be interpreted as an ideal in a Rees matrix semigroup over an £-unitary
inverse semigroup. More precisely, given a locally inverse semigroup S, there is a
Rees matrix semigroup R, over an £-unitary inverse semigroup, and a subsemigroup
£ of £ such that S is a homomorphic image of £. Indeed, the semigroup £ can be
taken as an order ideal of R and the homomorphism 6: T -» S is strictly compatible
(in the sense of [7]).

On the other hand, Byleen [1] has shown that the 4-spiral semigroup [2] is
isomorphic to a Rees matrix semigroup over the bicyclic semigroup. The author [5]
has. shown that any locally inverse semigroup S, such that S = SuS for some
idempotent u, is a locally isomorphic image of a regular Rees matrix semigroup over
an inverse semigroup. The purpose of this note is to extend the latter result to all
locally inverse semigroups.

1. Preliminaries. Let 5 be a regular semigroup and let e be an idempotent of S;
then we shall call eSe a local submonoid of S. We say that S is locally inverse if each
local submonoid of S is an inverse semigroup. If 5 and £ are regular semigroups
then we say that a homomorphism 6 of S onto £ is a local isomorphism if $ is
one-to-one on each local submonoid of S; in this case, we say that £ is a locally
isomorphic image of S.
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Given any regular semigroup S, sets / and A and a A X / matrix £ over S we can
form the / X A Rees matrix semigroup 9H(S; £ A; £) over S, with sandwich matrix
£. Its elements consist of all triples (/', s, X) with multiplication

(i,s,X)(j,t,p) = (i,spXjt,p).

In general, 91L(S; £ A; £) is not regular. However, the set of all regular elements is
a (regular) subsemigroup. We denote this regular semigroup by <3l9It(S; I, A; £)
and call it the regular I X A Rees matrix over S, with sandwich matrix £. It consists
of all triples (/, s, X) such that V(s) n PxjSp^ ¥= 0 for some / G I, p E A. The
following lemma gives some elementary properties of <SLCM,iS; I, A; P) which we
shall find useful in the sequel.

Lemma 1.1 [5]. Let S be a regular semigroup, I and A be nonempty sets and let P be
a AX I matrix over S. Then:

(i) &9H(S; I, A; P) = {(;', i,À)G/XSXA: V(s) n />x,%, * 0 for some j
El,pEA};

(ii) (/', s, X) is idempotent if and only if s = spXis;
(iii) if S is inverse, then <3l911(5; I, A; P) is locally inverse.

Let S be a regular semigroup and let e\/be idempotents in S. Then we will denote
by Sie, f) the sandwich set of e and/. Thus

Sie, f) = {g2 = gES:egf=ef,ge = g= fg).

The sandwich set was introduced by Nambooripad [6] who also introduced the
natural partial order < on a regular semigroup. This is defined as follows: a < b if
and only if a — aa'b for some (all) a' G Via), and a E bS. Although it is not
obvious from the definition, < is left-right symmetric. Indeed, a =s b if and only if
a = eb = bf for some idempotents e,/(P. R. Jones, unpubhshed).

Nambooripad [7] has shown that the following are equivalent for a regular
semigroup S.

Lemma 1.2. Let S be a regular semigroup. Then the following are equivalent:
(i) S is locally inverse;
(ii) | Sie, f) | = 1 for each pair of idempotents e, f E S;
(iii) *s /i compatible with multiplication.

A regular semigroup 5 is called orthodox if the idempotents form a subsemigroup.
T. E. Hall [3] has shown that the minimum inverse congruence ty on an orthodox
semigroup can be defined as follows:

ia,b)E^   if and only if V{a) f) V(b) ¥= 0;
in this case Via) = F(è), where Via) denotes the set of inverses of a in S.

The definition of a local isomorphism 0 of S onto £ requires only that 8 is
one-to-one on each local submonoid of S. However, as the next lemma shows, such a
mapping is necessarily one-to-one on each subset of the form aSb, a, b E S.

Lemma 1.3. Let 6 be a local isomorphism of a regular semigroup S onto a regular
semigroup T, and let a, b E S. Then 6 is one-to-one on aSb.
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Proof. Suppose x, y E aSb and that xd = yd. Then x, y have inverses x', y' in
b'Sa' where a' E Via), b' G V(b). It follows that ixx')6 = iyx')6 with xx', yx' in
aSa' which is a local submonoid. Hence xx' = yx' so that x = yx'x. Similarly,
iy'x)0 = (y'y)8 gives y'y = y'x so that y- G Sx. But then jc = yx'x implies x = y.

Proposition 1.4. Let S be a regular semigroup and let ^ be the minimum inverse
congruence on S. Then the canonical homomorphism GHXx: S -> S/% is a local isomor-
phism if and only if S is locally inverse and orthodox.

Proof. Suppose that 8 is a local isomorphism of S into an inverse semigroup. Let
e, f be idempotents in 5. Then, since idempotents in £ commute, (ef)8 = iefef)6
but ef, efef G eSf so that, since 8 is a local isomorphism, ef = efef. Thus S is
orthodox. Further, since eSe is isomorphic to ieSe)8, which is an inverse submonoid
of T, eSe is inverse for each idempotent e. Thus S is locally inverse.

Conversely, suppose that S is locally inverse and orthodox and suppose that
a, b E eSe with (a, b) E 6H. Then a and b have a common inverse a' G eSe.
However, this means that a' has a, b as inverses in eSe. Since eSe is inverse, this
implies a = b. Hence ^ is a local isomorphism.

2. The main theorem. In this section, we prove the main theorem of this paper.

Theorem 2.1. Let S be a regular semigroup. Then S is locally inverse if and only if S
is a locally isomorphic image of a regular Rees matrix semigroup over an inverse
semigroup.

Let S be a locally inverse semigroup. Fix an idempotent e E S and, for each
idempotent / G S, let f* E Sie, f); since S is locally inverse, /* is uniquely
determined by /. For each pair of idempotents u,vES, let puv in S be defined as
follows:

_  Í u if U — V,
Pu'v     \u*v     iiu^v.

Lemma 2.2. For idempotents u, v, f, g in S, the following are true:
(ï)Pu,v=Pu,vPv,uPu,v'>
(ü)P«,vPv,gPg,u « idempotent;
(iii) pUtVpvjPf¡g < pUig where < denotes the natural partial order on S.

Proof, (i) If u = v then, since puu = u, the result is clear. Otherwise,

Pu,vPv,uPu,v — u*vv*uu*v = u*v*u*v   since v* E S(e, v) implies«* = vv*,

u* E S(e,u) implies u* = uu*,

= u*e ■ v*e ■ u*v   since v* E S(e,v) implies v* = v*e,

u* E S(e, u) implies u* = u*e,
= u* -ev* -eu*  v
= m* ■ eu* ■ ev* ■ v

since eu*, ev* are idempotents in eSe which is inverse,
= u*ev*v
— u*ev = u*v = puv   since v* E S(e, v) implies ev = ev*v.
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(ii) If u = v then pUtVpv,gpgu = Pu,gPg,u which is idempotent, by (i). Similarly, if
v = g or g = m, then (i) shows that (ii) is true, so we may suppose u¥= v, v ¥= g,
g ¥= u. Then

Pu.vPv.gPg.u -Pu.vPv.gPg.u = U*VV*gg*U ■ U*VV*gg*U

= u*v*g*u*v*g*u   as in the proof of (i)
= u*e ■ v*e ■ g*e ■ u*e ■ v* ■ g*u
= u* ■ ev* ■ eg* ■ eu* ■ ev* ■ g*u

= u* ■ eu* ■ ev* ■ ev* ■ eg* ■ g*u
since idempotents in eSe commute

= u* ■ ev* ■ eg*u

= u*v*g*u=puvPvgpgu.

(iii) We consider first the special case of pu vpv fpf g in which one of u = v, v = f,
f = g holds. In this case, the expression reduces topuvpDg.

If u — v or v — g this expression is just p so that puvpvg < pug is certainly true
in this case. If u ¥= v, v ¥= g then

Pu vPv.g ~ u*v ' V*S = u*v*g — u* ■ eu* ■ ev* ■ g

= u* ■ ev* ■ eu*g = u*v* ■ u*g.

If g = u then the expression is¡ustpuvpv u which is an idempotent in uSu, and so is
below u= puu. Hence the result is valid in this case. Otherwise

Pu.vPv.g = u*v*u*g = u*v*u ■ u*g = u*v*u -pug.

But u*v*u = puvpVyU is an idempotent in uSu, by (i), so that, since u*v*u < u we
naVePu,vPv,g^UPu,g=Pu,g-

Returning to the general case, one sees that if any ofM = t>, v — f, f — g holds
then the inequality reduces to puvpvg < pug which we have just shown to be true.
Hence, we may assume u =£ v,v =f= f,f' =£ g. Then

Pu.vPv.fPf.g = u*vv*ff*g = u*v*f*g.

If u = g this is, by (ii), an idempotent in uSu and so is below u = puu. If u ¥= g, we
can write the expression as

u*eu*v*f*g = u* ■ eu* ■ ev* ■ ef* ■ g   as in the proof of (i),

= u* ■ ev* ■ ef* ■ eu*g    since idempotents in eSe commute
= u*v ■ v*f-f*u ■ u*g

= [Pu.V-Pv.f-Pf,u]Pu,g

< uPu.g = Pu.g    by i") S™«5Pu,vPv,fPf,u G uSu-

Proposition 2.3. Let W = {(u, x, v) E E X S X E: x E uSv) with the multiplica-
tion

(u, x, v)(f, y, g) = (u, xpvJy, g).
Then W is an orthodox locally inverse semigroup.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REES MATRIX COVERS 731

Proof. First, it is easy to see that IF is a regular semigroup; indeed, (u, x, v) has
inverse (t>, x', u) where x' G V(x) D vSu. Suppose that (u, x, v) is idempotent in
IF. Then x = xpv ux = xpv u-puv-pv ux where xpv u, pvux are idempotents in uSu,
vSv respectively. Hence x < u -puc ■ v — puv. Conversely, if x < puv, then x = fpuv
= puvg where/, g are idempotents. Thus

*P»,«X = fPu,vPv,uPu,v8 = fPu.vS = xg = x-

Hence IF has, for idempotents, the set of triples {(u, x, v) E E X S X E: x < pUtV).
Suppose that (u, x, v) and (g, y, h) are idempotents in IF. Then (u, x, v)ig, y, h)

= («» xp0igy, «). Now, since x < puv, y < pgh, we have xpvgy « pu,0pVigpgth < pu>h
by Lemma 2.2(iü). Hence (u, x, v)ig, y, h) is idempotent. Thus IF is orthodox.

To complete the proof, we must show that IF is locally inverse; so suppose that
iu, x, v), (m, y, v), iu, z, v) are idempotents with (w, x, v) < (w, z, v) and (m, y, v)
< iu, z,v). Then

iu, x, v)iu, y, v) = iu, xpvuy, v)

= ("> xPv,uyPv,uz> v)    since ("> >'. v) < ("- 2. «) implies>> =^p„,„z,

= ("» yPv,uxPv,yz> v)   since xPv,u^yPv,u are idempotents in wSm,

= («, J/>„„x, ü)    since (m, x, v) < iu, z, v) implies x = xpv uz,

= iu, y,v)iu,x,v).

Thus the idempotents, in each local submonoid of IF, commute so that IF is locally
inverse.

Proof of Theorem 2.1. Let U = W/% and denote by xp the natural homomor-
phism of IF onto U. Then U is an inverse semigroup and, by Proposition 1.4, xp is a
local isomorphism. Now, let / and A be subsets of £ such that S = U {uSv: u E I,
v G A} and form the A X / matrix Q over U with

qv u= iv,vu,u)xp   iorvEA,uEl.

We show that S is a locally isomorphic image of 91911(1/; I, A; Q). Suppose that
[u,ig, x, k)\p, v] E 91911 then (g, x, k)xp E iu, uw, w)\pUiz, zv, v)xp for some w E
A, z El. Thus ig, x, k)xp = iu, u, u)xpig, x, k)xpiv, v, v)xp so that 919H Ç
{[«,(«, x, v)xp, v]: x E uSv}. On the other hand, if x E uSv then x has an inverse
x' E gSk for some g E I, k E A. Now

[u, iu, x, v)xp, v] [g, ig, x', k)xp, k] [u, iu, x, v)ip, v]

= [u,iu, x, v)xPiv, vg, g)xpig, x', k)xPik, ku, u)xPiu, x, v)\p, v]

= [m,(w, x -vg ■ x' ■ ku ■ x, v)ip, v]

— [m,(m, xx'x, v)xp, v]    since x G uSv, x' E gSk,

= [u,iu,x,v)xp,v\.

Hence, 91911 = {[«, iu, x, v)\p, v]: x E uSv).
Since xp is an isomorphism on each (u, u, w)IF(t>, v, v) — {iu, x, v): x E uSv], we

can define a mapping 8 from 91911 onto S by setting [u, iu, x, v)xp, v]6 — x. Now

[u,iu, x, v)xp, v][g,ig, y, k)i, k] =[u,{u, x, v)xpiv, vg, g)xpig, y, k)\\>, k]

= [u,{u, xvgy, k)xp, k] =[«,(«, xy, k)\p, k].
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Hence,

[u, iu, x, v)xp, v]8[g,{g, y, k)\p, k]8 = xy

= [u,{u, x, v)xp, v][g,ig, y, k)xp, k]8

so   that   Í   is   a   homomorphism.   Finally,   suppose   [h, («, x, v)xp, v]8 =
[u,iu, y, v)xp, v]8. Then, by definition, x = y; thus 8 is one-to-one on each local
submonoid of 91911.

Corollary 2.4. Let S be an idempotent generated locally inverse semigroup. Then S
is a locally isomorphic image of an idempotent generated regular Rees matrix semi-
group over an inverse semigroup.

Let % be a down directed partially ordered set, with ty an ideal and subsemilattice
of 9C, and let G be a group which acts on 9C, on the left, by order automorphisms.
Then Pastijn [9] has generalized the construction of £-unitary inverse semigroups,
given in [4], as follows:

Let I, A be nonempty sets and let £ be a A X / matrix over G such that pXi
induces an automorphism on ^ for each X E A, i E I. Then the set

M = {ii, A,g,X)ElX6ÜXGXA:g-xAEsÜ}

is a semigroup under the multiplication

ii, A, g, X){j, B,h,p) = (i, A A gpXjB, gpXjh, p).

Pastijn [9] shows that M is a locally inverse semigroup and that every locally inverse
semigroup is a strictly compatible (in the sense of [7]) image of an order ideal and
subsemigroup of a semigroup constructed as above.

His construction can be interpreted in terms of regular Rees matrix semigroups.
For, with the notation above, let S = £(0,%,^) be the £-unitary inverse semi-
group constructed from G,%,<^, as in [4], and let 5 = 5 U {g E G: gty = ^},
where multiplication is extended from S to S by setting (£, h)-g = (£, hg),
g•(£,«) = igB, gh) for (£, «) G S, g G G. Then S is an inverse semigroup. It is
isomorphic to the semigroup obtained by adjoining the invertible elements of the
translational hull £2(5) of S to S. Thus we can form the regular Rees matrix
semigroup R = 9191L(S; £ A; £) over 5, using the matrix £, above. It is easily seen
that the mapping given by (i, A, g, X) h» (i,iA, g), A) is an embedding of M into R,
indeed onto an ideal of £. Hence, Pastijn's result can be rephrased in the following
form: Every locally inverse semigroup is a strictly compatible image of a subsemi-
group and order ideal of a regular Rees matrix semigroup over an £-unitary inverse
semigroup.

Corollary 2.5. Let S be a locally inverse semigroup. Then there exist an E-unitary
inverse semigroup T, a regular Rees matrix semigroup 9l91t(£; £ A; £) over T and a
homomorphism <p of 91911 onto S such that U(j>'x is completely simple for each
idempotent u E S.

Proof. With the notation introduced in the proof of Theorem 2.1, S is a locally
isomorphic image of 91911 (t/; £ A; Q), under a homomorphism 8. Let £ be an
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£-unitary inverse semigroup which admits an idempotent separating homomorphism
f onto U (such exists, by [4, Theorem 2.4]), and let pXj G £ be such that pXi$ = qXi
for each / G I, X E A. Then the mapping t: 9191L(£; I, A; P) -* 9l91L(t/; I, A; Q)
defined by (/', t, a)t = (i, rf, X) is easily seen to be an onto, idempotent separating
homomorphism. Its composite 4> with 8 gives the required homomorphism onto S.

In the proof of Theorem 2.1, and Corollary 2.5, we can take I = E = A, where, as
usual, £ denotes the set of all idempotents of S. The next result gives a sufficient
condition for a locally inverse semigroup to be isomorphic to a regular Rees matrix
semigroup over an inverse semigroup.

Proposition 2.6. Let S be a locally inverse semigroup and suppose that there are
sets I, A of idempotents of S such that:

(i) S = U {uSv: u E I, v E A},
(ii) uSv n gSk ¥= 0 implies u = g, v = k, for u, g E I, g, k E A.

Then S is isomorphic to an I X A regular Rees matrix semigroup over an inverse
semigroup.

Proof. Let U be as in the proof of Theorem 2.1. Then the mapping 8 given by
[u,iu, x, v)xp, v]6 = x is a local isomorphism of 919IL(C/; I, A; Q) onto S. Suppose
that [u,iu, x, v)xp, v]8 = [g,ig, y, k)xp, k]8. Then x—yE uSv n gSv. Hence, by
(ii), u — g, v = k so that 6 is one-to-one.

As a special case of Proposition 2.6, we have the following useful criterion, which
depends only on the biorder structure of the idempotents in a locally inverse
semigroup.

Theorem 2.7. Let S be a locally inverse semigroup in which
(i) each principal left iright) ideal is contained in a maximal principal left iright)

ideal;
(ii) distinct maximal principal left iright) ideals are disjoint.

Then S is isomorphic to a regular Rees matrix semigroup over an inverse semigroup.

Proof. Let £ A be representative sets of idempotent generators for the maximal
principal right and left ideals of S. Then the hypotheses of Theorem 2.7 imply those
of Proposition 2.6. Hence the result follows.

Corollary 2.8 (Byleen [1]). Let S be a regular semigroup. If the idempotents of S
generate a 4-spiral semigroup then S is isomorphic to a 2X2 Rees matrix semigroup
over an inverse semigroup.

3. Locally testable semigroups. A regular semigroup S is said to be locally testable
if eSe is a semilattice for each idempotent e. Such a semigroup is clearly locally
inverse and the construction in §2 shows that every locally testable (regular)
semigroup is a locally isomorphic image of a regular Rees matrix over a locally
testable inverse semigroup. On the other hand, the local structure theorem of [5]
shows that if S is a locally testable semigroup, of the form S = SuS, then 5 is a
locally isomorphic image of a regular Rees matrix semigroup over a semilattice.
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Pastijn [11] has shown, more generally, that every locally testable semigroup
divides a regular Rees matrix semigroup over a semilattice. Thus it is natural to ask
if the analog of Theorem 2.1 holds for locally testable semigroups, and semilattices.
This, however, is not the case. In this section we give a set of necessary and sufficient
conditions to determine when a semigroup is a locally isomorphic image of a regular
Rees matrix semigroup over a semilattice.

A subset Q of a regular semigroup 5 is called a quasi-ideal if QSQ G Q. It is easy
to see that Q is a quasi-ideal of S if and only if it is the intersection of a left ideal
and a right ideal of 5. The following results of Pastijn [11], describe relationships
between a locally testable semigroup and its quasi-ideals.

Theorem 3.1. Let S be a regular semigroup. Then:
(i) 5 is locally testable if and only if, for each a E S, aSa = {x: x =£ a);
(ii) the set QiS) of quasi-ideals of S is a i regular) locally testable semigroup under

subset multiplication;
(iü) if S is locally testable then the mapping r\: a i-> aSa is an isomorphism of S into

QiS); in particular aSa ■ bSb = abSab for all a, b E S.

We shall use these results of Pastijn and the next lemma in the proof of the main
result of this section.

Lemma 3.2. Let S be a locally testable semigroup and suppose that SeS D SfS = SgS
for some idempotents e, /, g in S. Then eSf = zSz for some z E S.

Proof. Since g E SeS there exist x E S, x' E F(x) such that x'x = g, xx' < e;
also y- G S, y' G F(y) such thatyy' = g,y'y < /. Then xQlxyty so that SxyS = SgS,
and xy G eSf since ex = exx'x = xx'x = x, y = yf. Put z = xy, we shall show that
eSf = zSz.

Let a E eSf then a E SgS — SuS where u2 — u9lxy. Then there exists a' E Via)
such that aa' E eSe. Thus aa' E SuS implies aa' — eaa'e E eSeueSe so that,
since eSe is a semilattice, aa' < eue = ue. It follows that uea = a and thus a E uS =
xyS. Dually, a E Sxy so that a = aa'a E xySxy. Hence eSf G zSz but, clearly, we
have zSz G eSf so equality prevails.

Theorem 3.3. Let S be a regular semigroup. Then the following statements are
equivalent:

(i) S can be embedded as a quasi-ideal in a locally testable semigroup T such that
T — TuT for some u ET;

(ii) S is locally inverse and eSfhas a greatest member for each e, f E S;
(iii) S is locally testable and the principal ideals form a semilattice under inclusion;
(iv) S is a locally isomorphic image of a regular Rees matrix semigroup over a

semilattice.

Proof. We shall show first that (iv) => (ii) => (i) => (iv).
Let £ = 9l91t(t/;£ A;£)bea regular Rees matrix semigroup over a semilattice

and let (i, x, X), if, y, p) be idempotents in R; thus x = xpXix and y = yp^y. Then
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(/', z, p) E ii, x, X)Rij, u, p) if and only if z = xpXiz = zp jy. Since U is a semi-
lattice, this occurs if and only if z < xpXip^jy. Hence

ii,x,X)R{j, y,p) = {{i,z,p):z^xpXiplijy}

has a greatest element.
Suppose now that 8 is a homomorphism of R onto a regular semigroup s and let e,

f be idempotents in S. Then, by Lallement's lemma, there are idempotents u,v E R
such that u8 = e,v8 = f; consequently iuRv)8 = eSf. Let x E eSf, then there exists
y G uRv with yd = x. Now, y < m, where m is the greatest element of uRv, so that,
since homomorphisms preserve the natural partial order, x = y8 < m# G eS/. Hence
eS/ has a greatest element. Further, since £ is a regular Rees matrix semigroup over
an inverse semigroup, R is locally inverse. Therefore, so is 5 and so (iv) implies (ii).

Suppose (ii) holds. Then, firstly, S is locally testable. For if m denotes the
maximum member of eSe then, from the definition of < , we find that e = m. Thus
x E eSe implies x < e which, in turn imphes x = ue = ev for some idempotents u, v.
This gives x2 = uex = ux = u ■ ue = ue = x so that eSe is a band. Since S is locally
inverse, it follows that S is locally testable. Hence, by Theorem 3.1, S can be
embedded in the semigroup QiS) of quasi-ideals of S.

Let 5" C QiS) consist of all quasi-ideals of S of the forms
S, aS, Sa, SaS, aSa   for a ES.

It follows from (ii) that aSb = cSc for some c E S, for any a, b G S. Thus, it is easy
to see that 9" is a regular subsemigroup of QiS) into which S can be embedded as a
quasi-ideal. Further, 5" = WS", where S is an idempotent of 9".

(i) => (iv) For each idempotent e in S there exist re, r'e G F(/*e) in £ such that
rer'e = e, r'eretùu. \x,tps e = /yr^' G fTe G S. Then, for x E eSf, we have

XPf,eX = re ■ KXrf ■ <Xr! ■ r'f  - re ' KXTj ' Tf  = X

since r'exrf E uTu which is a semilattice.
Let

IF= {ie,x,f) EEXSXE:xEeSf)
under the multiplication (e, x, /)(g, y, «) = (e, xpfgy, «). Then, since x/>/(,;c = x
for x G eS/, IF is a band and, as in the proof of Theorem 2.1, it is locally inverse.
Hence the canonical homomorphism <%Xx: W -> W/% is a local isomorphism onto a
semilattice. It follows, as in the proof of Theorem 2.1, that S is a locally isomorphic
image of a regular Rees matrix semigroup over W/%.

Finally, we show the equivalence of (iii) with the other three statements. Suppose
(i) and thus (ii) and (iv) hold. Then S^S = {SeS: e2 = e) U {S) so that this is a
semilattice under subset multiphcation. Indeed, SeS■ SfS = SpefS where pef =
max{x: x E eSf). Since SeS ^ SfS if and only if SeS = SeS ■ SfS it is easy to see
that < coincides with inclusion. Hence (iii) holds.

Conversely, suppose that (iii) holds. Then, by Lemma 3.2, given idempotents,
e, f, eSf = zSz for some z E S and so, by Theorem 3.1, eSf = {x E S: x « z) has a
greatest element. Thus (ii) holds.
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Corollary 3.4. Under the conditions of Theorem 3.3, S is a locally isomorphic
image of a regular Rees matrix semigroup over the semilattice of principal ideals.

Proof. From the form of % on a locally inverse band, it follows that, if we take S"
for T in the proof of Theorem 3.3, then W/% is isomorphic to the semilattice of
principal ideals of S.

Example 3.5, which follows, shows that the principal ideals of a locally testable
semigroup need not form a semilattice under inclusion. Hence the semigroup need
not be a locally isomorphic image of a regular Rees matrix semigroup over a
semilattice.

Example 3.5. Let S = {1,2} X [0,1) X (1,2} U {(/, 1, i): i = 1,2} under the
multiplication

(i, x A y, v)     if/ = u,
{i,x,j)iu,y,v) = ,

(i,0,v) otherwise.

Then S is a locally testable semigroup; the idempotents are the triples (/', x, i),
1 = 1,2, xG[0,1]. Since (1,1,1)5(2,1,2) = {(1, x,2): x G [0,1)}, we see that
(1,1,1)5(2,1,2) does not have a greatest element so that (ii) of Theorem 3.3 does not
hold.

The distinct principal ideals of S are generated by the idempotents (1, x, 1), x < 1
and (2,1,2). We have

(1, x, 1) <j.(l, y, 1)   if and only if x <j,

(l,x, 1) <j.(2,1,2)   if and only if x < 1.

Hence 5(1,1,1)5 and 5(2,1,2)5 have no greatest lower bound.
The situation in Example 3.5 can occur only because the partially ordered set of

principal ideals is not updirected. Indeed, we have

Proposition 3.6. Let S be a locally testable semigroup in which the set of principal
ideals is updirected. Then S is a locally isomorphic image of a regular Rees matrix
semigroup over a semilattice.

Proof. Let e,fbe idempotents of 5. Then there is an idempotent u in 5 such that
{<?, /} G SuS. Thus there exist re, rf E S, r'e E Vie), r¡ E Vif) such that rer'e = e,
r¿reuu, rfrf = f, rfrfuu. Let x G eSf, then x = rer¡xrfrf where r'exrf E uSu which is a
semilattice; so that r'exr¡ < m. Hence x < reurf = rerf so that e5/has greatest element
rerj. The result now follows from Theorem 3.3.

Corollary 3.7. Let S be a regular semigroup. Then S is a locally isomorphic image
of a regular Rees matrix semigroup over a chain if and only if it is locally testable and
its principal ideals form a chain under inclusion.

4. Acknowledgements and closing remarks. A weaker version of Theorem 2.1 was
previously obtained by T. E. Hall and the author (unpubhshed). This result was
obtained by embedding a locally inverse semigroup 5 as a subsemigroup and order
ideal in a locally inverse semigroup £, of the form £ = TuT for some idempotent u.
The local structure theorem of [5] was then used to express 5 as a locally isomorphic

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



rees matrix covers 737

image of a subsemigroup and order ideal of a regular Rees matrix semigroup over
the inverse semigroup uTu.

The existence of an embedding of 5 into £, as above, depends strongly on Hall's
result, announced at the Nebraska Semigroup Conference, September, 1980, which
showed that any regular semigroup U can be embedded in a regular semigroup V so
that idempotents which are potentially ^-related in U are actually öD-related in V.
Hall and the author (also unpublished) had previously shown that any locally inverse
semigroup 5, with zero, could be obtained as a locally isomorphic image of a regular
Rees matrix semigroup over an inverse semigroup. Their proof of this result also
depends on embedding 5 in a locally inverse semigroup £ of the form T = TuT. The
same argument extends to give the following result which was also found by
Margolis (letter to the author) using different methods.

Theorem 4.1. Let Qbe a class of regular semigroups with zero and suppose C has the
following properties :

ii) if CEGthenCx E 6;
(ii) the 0-direct union of members of G is also in Q;
(iii) C G (3 if and only if 7G(C), the idempotent generated subsemigroup of C, is also

ine.
Let S be a regular semigroup which is locally in Q. Then S is a locally isomorphic

image of a regular Rees matrix semigroup over a member of Q.

I am grateful to both Hall and Margolis for interesting discussions on the problem
considered in this paper.

Finally, one can obtain any locally inverse semigroup as a divisor of a regular
Rees matrix semigroup over an inverse semigroup in the following natural fashion:

Let 5 be a locally inverse semigroup and denote by 5 the inverse semigroup of all
one-to-one partial right translations of 5. For each pair of idempotents e, f E S and
g E Sie, f) the mapping pef: Seg -» Sgf defined by xpef = xgf belongs to 5; this
does not depend on 5 being locally inverse. Thus, we can form the regular Rees
matrix semigroup £ = 91911(5; £,£,£) over 5; here £ is the set of idempotents of
5 and pe f is the e, f entry of £.

When 5 is locally inverse, Rp - {ie,a, f) E R: Aa is principal} is a regular
subsemigroup of £ and it can be shown that 5 is a locally isomorphic image of Rp.
If further, the intersection of principal left ideals of 5 is either empty or principal
then Rp is, in fact, a regular Rees matrix semigroup over an inverse semigroup. This
gives an alternative proof to Theorem 2.1, for such a semigroup. The class of these
semigroups includes Ê-unipotent regular semigroups, which have been considered by
several authors.
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