Journal of Clinical Microbiology

Reevaluation of the yeast killer phenomenon.

L Polonelli and G Morace J. Clin. Microbiol. 1986, 24(5):866.

	Updated information and services can be found at: http://jcm.asm.org/content/24/5/866
CONTENT ALERTS	These include: Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/

Reevaluation of the Yeast Killer Phenomenon

LUCIANO POLONELLI* AND GIULIA MORACE

Istituto di Microbiologia, Facoltà di Medicina e Chirurgia "A. Gemelli," Università Cattolica del Sacro Cuore, 00168 Rome, Italy

Received 24 March 1986/Accepted 14 July 1986

The killer effect of 36 Hansenula, Pichia, Saccharomyces, and Candida species on 26 hyphomycetes isolates, 1 isolate of the achlorophyllous microorganism Prototheca, 4 isolates of the lipophilic yeast Malassezia, 1 isolate of the aerobic actinomycete Nocardia, and 19 isolates of bacteria was studied. The killer phenomenon, which was previously considered to be restricted to yeasts, was found to occur among unrelated microorganisms.

The first observation of antagonism in microorganisms was probably reported by Pasteur and Joubert (5). They observed the inhibitory effect on Bacillus anthracis of bacteria isolated from urine. A wide range of antimicrobial substances has been successively characterized, including antibiotics, bacteriolytic enzymes, and bacteriocins. In 1963, Bevan and Makower (1) reported, for the first time in yeasts, that a few isolates of Saccharomyces cerevisiae secreted a substance that was lethal to other strains of the same species. Since the original discovery of the killer phenomenon in yeasts, several reports have addressed the question of the frequency of occurrence and range of specificity of yeast killer toxins (6, 9). The ability to kill sensitive strains was reported to be widespread in yeasts, although the establishment of killer properties had to await the use of proper screening conditions, which proved to be critical.

On the basis of these reports, we initiated a study of the killer phenomenon in yeasts which permitted the development of a simple system (killer system) useful for differentiating strains of opportunistic yeasts, including *Candida albicans*, within the species (4, 7, 8).

In this report, we present for the first time evidence on the occurrence of sensitivity to yeast killer toxins among other eucaryotic microorganisms and bacteria.

Yeast cultures (K) previously tested for their killer activity on sensitive yeast isolates were received from public and private collections (C. Stumm, University of Njimegen, Njimegen, The Netherlands; UM, Istituto d'Igiene, Università di Milano, Milan, Italy; CBS, Centraalbureau voor Schimmelcultures, Baarn, The Netherlands; D. G. Ahearn, Georgia State University, Atlanta; UT, Istituto d'Igiene, Università di Torino, Turin, Italy; CDC, Centers for Disease Control, Atlanta, Ga.; UCSC, Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy; UP, Istituto di Microbiologia, Università di Parma, Parma, Italy). The cultures are listed in numerical order in Table 1. Thirty fungal isolates and the achlorophyllous microorganism were obtained from our culture collection (UCSC) or were kindly furnished by other institutions (CBS [see above]; ISS, Istituto Superiore di Sanità, Rome, Italy; NCMH, M. R. McGinnis, North Carolina Memorial Hospital, Chapel Hill; and J. Frisvad, Food Technology Laboratory, Lyngby, Denmark) (Table 2). Twenty bacterial strains

(including the aerobic actinomycete) were isolated from clinical specimens or from soil in our laboratory (Table 2).

A commercially available modified Sabouraud agar (Difco Laboratories, Detroit, Mich.) buffered at pH 4.5 with dibasic anhydrous 0.1 M citric acid-0.2 M potassium phosphate containing 0.003% methylene blue was used for hyphomycetes and bacteria. A different medium, Yeast Morphology Agar (Difco) containing 1% yeast extract (Difco) and 5%

TABLE 1. Recognized killer yeasts tested against procaryotic and eucaryotic microorganisms

Code	Species	Strain ^a	
K1	Hansenula sp.	Stumm 1034	
K2	Pichia sp.	Stumm 1035	
K3	Hansenula anomala	UM 3	
K4	Hansenula anomala	CBS 5759	
K5	Hansenula anomala	Ahearn UM866	
K6	Hansenula californica	Ahearn WC40	
K 7	Hansenula canadensis Ahearn W		
K8	Hansenula dimennae	Ahearn WC44	
K9	Hansenula mrakii	Ahearn WC51	
K10	Pichia kluyveri	Stumm 1002	
K11	Hansenula anomala	UT 12	
K12	Hansenula bimundalis	Ahearn WC38	
K13	Hansenula fabianii CBS S		
K14	Hansenula petersonii	Ahearn WC53	
K15	Pichia guilliermondii	UT 19	
K16	Saccharomyces cerevisiae	CDC B2210	
K17	Hansenula bimundalis	CBS 5642	
K18	Hansenula fabianii	Ahearn WC45	
K19	Hansenula holstii	CBS 4140	
K20	Hansenula subpelliculosa	CBS 5767	
K21	Pichia ohmeri	CBS 5367	
K22	Candida guilliermondii	UCSC 0	
K23	Candida maltosa	UCSC 0	
K24	Pichia spartinae	UCSC 0	
K25	Hansenula nonfermentans	UM 200	
K26	Pichia carsonii	CBS 810	
K27	Pichia farinosa	CBS 185	
K28	Pichia guilliermondii	CBS 2031	
K29	Candida pseudotropicalis	UP 241	
K30	Candida pseudotropicalis	UP 254	
K31	Candida pseudotropicalis	UP 330	
K32	Pichia kluyveri	UP 5F	
K33	Pichia kluyveri	UP 6F	
K34	Pichia membranaefaciens	UP 10F	
K35	Pichia kluyveri	UP 11F	
K36	Hansenula anomala	UP 25F	

^{*} Corresponding author.

^a Designations are described in the text.

Vol. 24, 1986 NOTES 867

TABLE 2. Evaluation of the yeast killer phenomenon in microorganisms

TABLE 2. Evaluation of the yeast killer phenomenon in microorganisms		
Organism tested ^a	Killer yeasts with inhibitory activity ^b	
Staphylococcus aureus		
UCSC 1	2-9, 23, 35	
UCSC 2	1-11, 13, 14, 18, 20, 22, 23, 23, 29-33, 33, 30	
UCSC 0	1–11, 13–16, 18, 20, 24, 27–36	
Enterobacter cloacae	1 11 12 17 19 20 20 27	
UCSC 1 Escherichia coli	1-11, 13-16, 18, 20, 29-36	
UCSC 1		
UCSC 3		
UCSC 4		
Klebsiella oxytoca		
UCSC 1	3-9, 11, 13, 14, 16, 18, 31, 34, 36	
UCSC 2	1–11, 13, 14, 16, 18–21, 29–32, 34, 36	
UCSC 5	1-11, 13, 14, 16, 18-20, 25, 25-36	
Klehsiella pneumoniae		
UCSC 43 UCSC 54	1, 3–8, 10, 11, 14, 15, 34, 36	
UCSC 56	1-11, 13-13, 16, 20, 27, 29-31, 34, 36	
UCSC 60	1–11, 13–15, 20, 33, 34, 36	
Pseudomonas aeruginosa	1 11 12 14 16 19 20 21 26	
UCSC 1	1-11, 13, 14, 16, 16, 29-31, 36	
Serratia marcescens		
UCSC 1	1–11, 13–15, 18, 29–31, 33, 34, 36	
Nocardia asteroides		
UCSC 0	1, 2, 9	
Malassezia furfur	2.5.0.11.12.14.16.10.20.26	
ISS F1	3-5, 8, 11, 13, 14, 16, 18, 20, 36 8 11 13 14 16 18 20 36	
Malassezia pachydermatis		
ISS P2.		
ISS P5	1-6, 8, 9, 11, 21, 29-31, 36	
Aspergillus flavus UCSC 0	1 2 24 26 20 22 26	
UCSC 2	4-24, 28, 30, 33-36	
Asperoillus fumigatus		
UCSC	3–11, 13, 20, 21, 27, 33–36	
Aspergillus nidulans UCSC 0	1-12, 17-20, 22, 30, 32-36	
Aspergillus niger		
UCSC 0		
UCSC 1 UCSC 2	1. 2. 5–9. 11–16. 21. 26–29. 32–36	
Asperoillus parasiticus		
CBŠ 103.13	2–8	
Aureobasidium pullulans UCSC 1	1-9, 11, 13, 20, 36	
Cunninghamella elegans		
CBS 161-28	1-9, 20, 21, 23, 29-31, 36	
Curvularia sp. NCMH 2007	3–11, 17–24, 26, 27, 29–32, 34–36	
Exophiala jeanselmei UCSC 2		
Fonsecaea pedrosoi		
UCSC 2 Penicillium camembertii	1-14, 10-20, 29-30	
Frisyad BB.	5-9, 11, 12, 19, 21, 27, 29-31, 35, 36	
Frisvad PD	5-9, 27, 29-31, 34-36	
Penicillium melanochlorum Frisvad FTLS 193	1. 2. 9–29. 32–36	
Frisvad FTLS 193	Carting Law fallowing page	

868 NOTES J. Clin. Microbiol.

TABLE 2—Continued

Organism tested ^a	Killer yeasts with inhibitory activity ^b
Penicillium notatum	
UCSC 2	1–36
Penicillium palitans	
Frisvad AMAS 4	
Phaeoannellomyces werneckii	
UCSC 1	1-9, 11-20, 22-24, 29-31
UCSC 1	
Phialophora verrucosa	
UCSC 0	1-8, 10, 11, 17, 24, 26-28, 33-36
Pseudallescheria boydii	
UCSC 1	1-8, 11, 13, 17, 20, 34, 36
Rhizopus microsporus	
var. microsporus	
CBS 699.68	1–8, 21
Scopulariopsis brevicaulis	
UCSC 1	1–11, 20, 21, 23, 25, 26, 28–32, 36
Sporothrix schenckii	
UCSC 0	1-9, 21, 29–31, 36
Xylohypha bantiana	
UCSC 0	
Prototheca stagnora	
UCSC 0	1–9, 11–16, 20, 22–24, 27, 28, 36

^a Strain designations are described in the text.

Tween 40 (E. Merck AG, Darmstadt, Federal Republic of Germany) and buffered at pH 4.5, was adopted for culturing the isolates of *Malassezia furfur* and *Malassezia pachydermatis* according to their individual nutritional requirements.

Twenty-four-hour bacterial cultures grown on McConkey agar (Difco) or blood agar (BBL Microbiology Systems, Cockeysville, Md.) at 37°C were suspended in physiological saline. The *Malassezia* spp. isolates were grown on Yeast Morphology Agar for 3 days at 28°C to obtain a heavy suspension in distilled sterile water, as were the hyphomycetes, which were cultured for 7 days on Sabouraud dextrose agar (Difco).

The suspensions were adjusted to an optical density of approximately 25% at 530 nm; 1 ml was then mixed with 20 ml of the buffered medium maintained at 45°C and poured

into a petri dish. After cooling, 50-µl drops of a heavy distilled water suspension of each killer yeast grown on Sabouraud dextrose agar for 48 h at 25°C were placed on the surface of the agar containing the isolate to be tested. The plates were incubated at 25°C.

Once incubated, the plates were observed daily until there was evidence of growth of the sensitive strain (24 to 72 h for bacteria and longer for the other microorganisms). The killer effect was considered positive either for bacteria (Fig. 1) or for fungi (Fig. 2) when a clear zone of inhibition surrounded the killer colony.

Yeast killer toxins appeared to be inhibitory for a wide variety of procaryotic and eucaryotic organisms. The highest activity was observed in the *Hansenula* species, as expected. Each bacterial or fungal isolate (Table 2) which grew

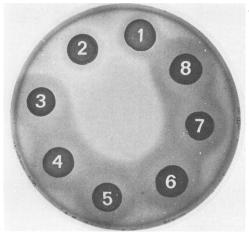


FIG. 1. Inhibitory effect of the first eight killer yeasts on *Citrobacter freundii* UCSC 0. Killer yeasts 1 and 2 displayed a weaker activity during the period of observation.

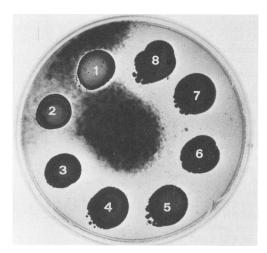


FIG. 2. Inhibitory effect of the first eight killer yeasts on *Pseudallescheria boydii* UCSC 1. Killer yeasts 1 and 2 displayed a weaker activity during the period of observation.

^b Active killer (K) yeasts are numbered according to the codes given in Table 1. Inactive killer yeasts are not listed.

Vol. 24, 1986 NOTES 869

under the experimental conditions was found to be sensitive to at least one killer yeast. The inhibitory effect of the various killer yeasts was expressed differently against various species and strains within the same species.

Until now, there have been no reports of the occurrence of sensitivity to yeast killer toxins among bacteria and eucaryotic microorganisms other than yeasts. The toxic substance produced by some strains of *C. albicans* that inhibits *Neis-*seria gonorrhoeae (2) is not a killer toxin, because it does not affect other yeast isolates.

Although the inhibition observed in this work might not necessarily be due to killer toxins but to a variety of different metabolic products, the fact that recognized killer yeasts have displayed their toxic activity in the classic procedure for detecting the killer phenomenon led us to extend that definition to unrelated microorganisms.

We report here, for the first time, the occurrence of yeast killer activity against bacteria, aerobic actinomycetes, hyphomycetes, achlorophyllous microorganisms, and lipophilic yeasts.

By analogy with a number of gram-negative and grampositive bacteria, which produce bacteriocins (3, 10), and the classic killer phenomenon among yeasts, the yeast killer activity in bacteria and hyphomycetes is expressed differently against different strains within the same species. This finding implies the possible extension of the killer system (7) to bacteria and hyphomycetes for differentiating strains of the same species for epidemiologic purposes.

Finally, the occurrence of the killer phenomenon among yeasts, bacteria, aerobic actinomycetes, hyphomycetes, and achlorophyllous microorganisms, if confirmed with purified killer toxins, implies a unique form of bioaction. Such a study is under way in our institute.

This study was supported by grants from the Ministero della Pubblica Istruzione and the Consiglio Nazionale delle Ricerche (Controllo Malattie da Infezione contratto 85.00883.52).

We thank Maria Luigia Leori and Marcello Porretta for their technical assistance.

LITERATURE CITED

- Bevan, E. A., and M. Makower. 1963. The physiological basis of the killer character in yeast. 21st Int. Congr. Genetics 1:202-203.
- 2. Hipp, S. S., W. D. Lawton, N. C. Chen, and H. A. Gaafar. 1974. Inhibition of *Neisseria gonorrhoeae* by a factor produced by *Candida albicans*. Appl. Microbiol. 27:192-196.
- Holland, I. B. 1975. Physiology of colicin action. Adv. Microb. Physiol. 12:56-139.
- Morace, G., C. Archibusacci, M. Sestito, and L. Polonelli. 1984.
 Strain differentiation of pathogenic yeasts by the killer system. Mycopathologia 84:81-85.
- Pasteur, L., and J. F. Joubert. 1877. Charbon et septicemie. C.R. Soc. Biol. Paris 85:101-115.
- Philliskirk, G., and T. W. Young. 1975. The occurrence of killer character in yeasts of various genera. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:147-151.
- Polonelli, L., C. Archibusacci, M. Sestito, and G. Morace. 1983.
 Killer system: a simple method for differentiating *Candida albicans* strains. J. Clin. Microbiol. 17:774-780.
- 8. Polonelli, L., M. Castagnola, D. V. Rossetti, and G. Morace. 1985. Use of killer toxins for computer-aided differentiation of *Candida albicans* strains. Mycopathologia **91**:175–179.
- Stumm, C., J. H. M. Hermans, E. J. Middelbeek, A. F. Croes, and G. J. M. L. de Vries. 1977. Killer sensitive relationships in yeasts from natural habitats. Antonie van Leeuwenhoek J. Microbiol. 41:125-128.
- Tagg, J. R., A. S. Dajani, and L. W. Mannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722-756.