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We consider pressure-driven, steady-state Poiseuille flow in straight channels with various cross-sectional
shapes: elliptic, rectangular, triangular, and harmonic-perturbed circles. A given shape is characterized by its
perimeterP and areaA which are combined into the dimensionless compactness numberC=P2/A, while the
hydraulic resistance is characterized by the well-known dimensionless geometrical correction factora. We find
that a depends linearly onC, which points outC as a single dimensionless measure characterizing flow
properties as well as the strength and effectiveness of surface-related phenomena central to lab-on-a-chip
applications. This measure also provides a simple way to evaluate the hydraulic resistance for the various
shapes.

DOI: 10.1103/PhysRevE.71.057301 PACS numberssd: 47.60.1i, 47.10.1g

I. INTRODUCTION

The rapid development in the field of lab-on-a-chip sys-
tems during the past decade has put emphasis on studies of
shape dependence in microfluidic channels. Traditionally,
capillary tubes would have circular cross sections, but today
microfabricated channels have a variety of shapes depending
on the fabrication technique in use. Examples are rectangular
channels obtained by hot embossing in polymer wafers,
semi-circular channels in isotropically etched surfaces, trian-
gular channels in KOH-etched silicon crystals, Gaussian-
shaped channels in laser-ablated polymer films, and elliptic
channels in stretched polydimethylsiloxanesPDMSd devices
ssee, e.g., Ref.f1gd.

The pressure-driven, steady-state flow of a liquid through
long, straight, and rigid channels of any constant cross-
sectional shape is referred to as Hagen-Poiseuillesor simply
Poiseuilled flow, and it is often characterized by the hydraulic
resistance,Rhyd=Dp/Q, whereDp is the pressure drop along
the channel andQ is the flow rate through the channel. In
Fig. 1 is shown an arbitrarily shaped cross-sectionV in the
xy plane for a straight channel placed along thez axis. A
natural unit for the hydraulic resistance is given by dimen-
sional analysis asRhyd

* ;hL /A2, where L is the channel
length, h the dynamic viscosity of the liquid, andA
=eVdxdy the cross-sectional area. Typically, the fluid flow is
subject to a no-slip boundary condition at the walls]V and
thus the actual hydraulic resistance will depend on the pe-
rimeter as well as the cross-section area. This dependence
can therefore be characterized by the dimensionless geo-
metrical correction factora given by

a ;
Rhyd

Rhyd
* . s1d

In lab-on-a-chip applicationsf1,2g, where large surface-to-
volume ratios are encountered, the problem of the bulk Poi-
seuille flow is typically accompanied by other surface-related
physical or biochemical phenomena in the fluid. The list of
examples includes surface chemistry, DNA hybridization on
fixed targets, catalysis, interfacial electrokinetic phenomena

such as electro-osmosis, electrophoresis, and electro-viscous
effects, as well as continuous edge-source diffusion. Though
the phenomena are of very different nature, they have at least
one thing in common; they are all to some degree surface
phenomena and their strength and effectiveness depends
strongly on the surface-to-volume ratio. It is common to
quantify this by the dimensionless compactnessC given by

C ;
P2

A , s2d

whereP;e]Vd, is the perimeter of the boundary]V con-
fining the fluidssee Fig. 1d. For other measures ofC we refer
to Ref. 3 and references therein. In this paper we demonstrate
a simple dependence of the geometrical correction factora
on the compactnessC and our results thus point out a unified
dimensionless measure of flow properties as well as the
strength and effectiveness of surface-related phenomena cen-
tral to lab-on-a-chip applications. Furthermore, our results
allow for an easy evaluation of the hydraulic resistance for
elliptical, rectangular, and triangular cross-sections with the
geometrical measureC being the only input parameter.
Above we have emphasized microfluidic flows because here
a variety of shapes are frequently encountered. However, our
results are generally valid for all laminar flows.

FIG. 1. An arbitrary cross-sectional shapeV with boundary]V
of a straight fluid channel with pressure-driven steady-state flow.
The contours show the velocityvsx,yd obtained numerically from
Eq. s3d by a finite-element method. The velocity is zero at the
boundary and maximal near the center-of-mass.
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II. POISEUILLE FLOW

Due to translation invariance along thez axis the velocity
field of a Newtonian fluid in a straight channel is parallel to
thez axis, and takes the formv=vsx,ydez. Consequently, the
nonlinear term in the Navier-Stokes equation drops outf4g,
and, in steady state, given the pressure gradient −sDp/Ldez,
the velocityvsx,yd is thus given by the Poisson equation,

s]x
2 + ]y

2dvsx,yd =
Dp

hL
, s3d

with the velocity being subject to a no-slip condition at the
boundary]V. The relation between the pressure dropDp, the
velocity vsx,yd, and the geometrical correction factora be-
comes

Dp = RhydQ = aRhyd
* Q = aRhyd

* E
V

dxdyvsx,yd, s4d

whereQ is the volume flow rate.

III. THE GEOMETRICAL CORRECTION FACTOR
VERSUS COMPACTNESS

Our main objective is to find the relation between the
geometrical correction factora and the compactnessC for
various families of geometries.

A. Elliptical cross section

The elliptical family of cross sections is special in the
sense that Eq.s3d can be solved analyticallyssee, e.g., Ref.
f4gd and we can get an explicit expression for the geometrical
correction factor introduced in Eq.s1d. For an ellipse cen-
tered at the origin with semi-major and minor axesa andb it
can be verified by direct insertion that

vsx,yd =
Dp

hL

sabd2

2sa2 + b2dS1 −
x2

a2 −
y2

b2D s5d

fulfills Eq. s3d. From Eq.s4d it can now be shown that

asgd = 4psg + g−1d, s6d

whereg=a/b. Furthermore, for an ellipse we have

Csgd =
16

p
gSE

0

p/2

duÎ1 − s1 − g−2dsin2 uD2

. s7d

The relation betweena and C can now be investigated
through a parametric plot. In order to get an approximate
expression forasCd we begin by inverting Eq.s6d. By select-
ing the proper root we getgsad which we then substitute into
Eq. s7d such that

Csad =
1

2p2SE
0

p

duÎa + Îa2 − s8pd2 cosuD2

. s8d

Expanding arounda=8p and inverting we get

asCd =
8

3
C −

8p

3
+ OsfC − 4pg2d, s9d

and in Fig. 2 we compare the exact solutionssolid lined, from
a parametric plot of Eqs.s6d and s7d, to the approximate
result sdashed lined in Eq. s9d. Results of a numerical finite-
element solution of Eq.s3d are also includedss pointsd. As
seen, there is a close-to-linear dependence ofa on C as de-
scribed by Eq.s9d.

B. Rectangular cross section

For a rectangle with width-to-height ratiog=w/h we
solve Eq.s3d using Fourier seriesf5g

vsx,yd =
Dp

hL

4h2

p3

3 o
n=1,3,5,. . .

`
1

n3S1 −
coshsnpx/hd

coshsnpw/2hdDsinsnpy/hd

s10d

is indeed a solution. Here, the coordinate system is chosen so
that −w/2,x,w/2 and 0,y,h. From Eq.s4d it follows
that

asgd =
p3g2

8
S o

n=1,3,5,. . .

`
ng

pn5 −
2

p2n5 tanhsnpg/2dD−1

s11d

and for the compactness we have

Csgd = 8 + 4g + 4/g. s12d

Using that tanhsxd.1 for x@1 we get

asgd .
12p5g2

p5g − 186zs5d
, g @ 1, s13d

and substitutinggsCd into this expression and expanding
aroundCsg=2d=18 we get

FIG. 2. The correction factor versus compactness for the ellip-
tical, rectangular, and triangular classes. The solid lines are the
exact results, and the dashed lines indicate Eqs.s9d, s14d, ands15d.
Numerical results from a finite-element simulation are also included
ss, h, andnd. Note that in the case of triangles all classessright,
isosceles, and acute/obtuse scalene triangles—marked by different
grayscale trianglesd fall on the same straight line.
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asCd < 22
7 C − 65

3 + OsfC − 18g2d. s14d

For the two Taylor coefficients we have used the first three
terms in the continued fraction. In Fig. 2 we compare the
exact solution, obtained by a parametric plot of Eqs.s11d and
s12d, to the approximate result, Eq.s14d. Results of a numeri-
cal finite-element solution of Eq.s3d are also includedsh
pointsd. As in the elliptical case, there is a close-to-linear
dependence ofa on C as described by Eq.s14d.

C. Triangular shape

For the equilateral triangle it can be shown analytically
that a=20Î3 andC=12Î3 ssee, e.g., Ref.f4gd. However, in
the general case of a triangle with side lengthsa, b, andc we
are referred to numerical solutions of Eq.s3d. In Fig. 2 we
show numerical resultssn pointsd, from finite-element simu-
lations, for scaling of right triangles, isosceles triangles, and
acute/obtuse scalene trianglessfor the definitions we refer to
Ref. f6gd. The dashed line shows

asCd =
25

17
C +

40Î3

17
, s15d

where the slope is obtained from a numerical fit and subse-
quent use of the first three terms in the continued fraction of
this value. As seen, the results for different classes of tri-
angles fall onto the same straight line. Since we have

Csa,b,cd =
8sa + b + cd2

Î1

2
sa2 + b2 + c2d2 − sa4 + b4 + c4d

s16d

the result in Eq.s15d allows for an easy evaluation ofRhyd for
triangular channels.

D. Harmonically perturbed circle

By use of shape perturbation theory it is possible to ex-
tend the analytical results for Poiseuille flow beyond the few
cases of regular geometries that we have treated above. In
shape perturbation theory the starting point is an analytically
solvable case, which then is deformed slightly characterized
by some small perturbation parametere. As illustrated in Fig.
3 the unperturbed shape is described by parametric coordi-
natessx̃, ỹd in Cartesian form orsr ,ud in polar form. The
coordinates of the physical problem we would like to solve
are sx,yd in Cartesian form andsr ,fd in polar form.

As a concrete example we take the harmonic perturbation
of the circle defined by the transformation

f = u, s17ad

r = arf1 + e sinskudg, s17bd

xsr,ud = arf1 + e sinskudgcosu, s17cd

ysr,ud = arf1 + e sinskudgsinu, s17dd

where a is length scale,k is an integers.2d defining the
order of the harmonic perturbation, 0øuø2p, and 0ør

ø1. Fore=0 the shape is unperturbed. The boundary of the
perturbed shape is described by fixing the unperturbed coor-
dinater=1 and sweeping inu,

]V: sx,yd = sxf1,ug,yf1,ugd. s18d

It is desirable to formulate the perturbed Poiseuille problem
using the unperturbed coordinates. To obtain analytical re-
sults it is important to make the appearance of the perturba-
tion parameter explicit. When performing a perturbation cal-
culation to orderm all terms containingel with l .m are
discarded, while the remaining terms containing the same
power of e are grouped together, and the equations are
solved power by power. To carry out the calculation the ve-
locity vsx,yd is written as

vsx,yd = vsxfr,ug,yfr,ugd

= vs0dsr,ud + evs1dsr,ud + e2vs2dsr,ud + ¯ . s19d

Likewise, the Laplacian operator in Eq.s3d must be ex-
pressed in terms ofr, u, and e. The starting point of this
transformation is the transformation of the gradients

]r = s]rrd]r + s]rud]u, s20ad

]f = s]frd]r + s]fud]u. s20bd

The derivativess]rrd, s]rud, s]frd, and s]fud are obtained
from the inverse transformation of Eqs.s17ad ands17bd. The
expansion in Eq.s19d can now be inserted into Eq.s3d and
using the derivatives, Eqs.s20ad ands20bd, we can carry out
the perturbation scheme. The calculation of the velocity field
to fourth order is straightforward, but tedious. With the ve-
locity field at hand we can calculate the flow rate and from
Eq. s4d we get

a = 8pF1 + 2sk − 1de2 +
47 − 78k + 36k2 − 4k3

8
e4G + Ose6d,

s21d

where we have used the exact resultA= s1+ 1
2e2dpa2 for the

area. The result only involves even powers ofe sincee→
−e is equivalent to a shape rotation, which should leavea
invariant. From a perturbative calculation of the perimeterP
we get the following expression forC to second order ine,

FIG. 3. sad The geometry of the unperturbed and analytically
solvable cross section, the unit circle, described by coordinates
sx̃, ỹd or sr ,ud. sbd The geometry of the perturbed cross section
described by coordinatessx,yd or sr ,fd and the perturbation param-
etere. Herea=1, k=5, ande=0.2.
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C = 4p + 2psk2 − 1de2. s22d

Since a is also quadratic ine this means thata depends
linearly onC to fourth order ine,

asCd =
8

1 + k
C − 8

3 − k

1 + k
p + Ose4d. s23d

Note that although derived fork.2 this expression coin-
cides with that of the ellipse, Eq.s9d, for k=2. Comparing
Eq. s21d sto second order ined with exact numerics we find
that for e up to 0.4 the relative error is less than 0.2% and
0.5% fork=2 andk=3, respectively.

IV. DISCUSSION AND CONCLUSION

We have considered pressure-driven, steady-state Poi-
seuille flow in straight channels with various shapes, and
found a close-to-linear relation betweena andC. Since the
hydraulic resistance isRhyd;aRhyd

* , we conclude thatRhyd
depends linearly onCRhyd

* . Different classes of shape all dis-
play this linear relation, but the coefficients are nonuniversal.
However, for each class only two points need to be calcu-
lated to fully specify the relation for the entire class. The
difference is due to the smoothness of the boundaries. The
elliptical and harmonic-perturbed classes have boundaries
without any cusps whereas the rectangular and triangular
classes have sharp corners. The overall velocity profile tends
to be convex and maximal near the center-of-mass of the

channelssee Fig. 1d. If the boundary is smooth, the velocity
in general goes to zero in a convex parabolic manner
whereas a concave parabolic dependence is generally found
if the boundary has a sharp cornersthis can be proved ex-
plicitly for the equilateral trianglef4gd. Since the concave
drop is associated with a region of low velocity compared to
the convex drop, geometries with sharp changes in the
boundary tend to have a higher hydraulic resistance com-
pared to smooth geometries with equivalent cross-sectional
area.

We believe that the explicit and simple link betweenRhyd
andC is an important observation since at the same timeC is
also central to the strength and effectiveness of various
surface-related phenomena. We note that in micro-channels
the flow properties and electrokinetic phenomena may be
somewhat connected and substantial deviations from classi-
cal Poiseuille flow have been reported recentlyssee Ref.f7g
and references thereind. Nevertheless, our observation is an
important first step with relevance to the use of micro-fluidic
channels in lab-on-a-chip applications. Furthermore, our re-
sults allow for an easy evaluation of the hydraulic resistance
for elliptical, rectangular, and triangular cross sections with
the geometrical measureC being the only input parameter.
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