
This paper is included in the Proceedings of the

2020 USENIX Annual Technical Conference.
July 15–17, 2020

978-1-939133-14-4

Open access to the Proceedings of the

2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for

Multi-hundred-gigabit Networks
Alireza Farshin, KTH Royal Institute of Technology; Amir Roozbeh,

KTH Royal Institute of Technology and Ericsson Research; Gerald Q. Maguire Jr.

and Dejan Kostić, KTH Royal Institute of Technology

https://www.usenix.org/conference/atc20/presentation/farshin

Reexamining Direct Cache Access to Optimize

I/O Intensive Applications for Multi-hundred-gigabit Networks

Alireza Farshin∗†

KTH Royal Institute of Technology

Amir Roozbeh∗

KTH Royal Institute of Technology

Ericsson Research

Gerald Q. Maguire Jr.

KTH Royal Institute of Technology

Dejan Kostić

KTH Royal Institute of Technology

Abstract

Memory access is the major bottleneck in realizing multi-

hundred-gigabit networks with commodity hardware, hence it

is essential to make good use of cache memory that is a faster,

but smaller memory closer to the processor. Our goal is to

study the impact of cache management on the performance

of I/O intensive applications. Specifically, this paper looks

at one of the bottlenecks in packet processing, i.e., direct

cache access (DCA). We systematically studied the current

implementation of DCA in Intel® processors, particularly

Data Direct I/O technology (DDIO), which directly transfers

data between I/O devices and the processor’s cache. Our

empirical study enables system designers/developers

to optimize DDIO-enabled systems for I/O intensive

applications. We demonstrate that optimizing DDIO could

reduce the latency of I/O intensive network functions running

at 100 Gbps by up to ~30%. Moreover, we show that DDIO

causes a 30% increase in tail latencies when processing

packets at 200 Gbps, hence it is crucial to selectively inject

data into the cache or to explicitly bypass it.

1 Introduction

While the computer architecture community continues to

focus on hardware specialization, the networking community

tries to achieve greater flexibility with Software-defined

Networking (SDN) together with Network Function Virtu-

alization (NFV) by moving from specialized hardware toward

commodity hardware. However, greater flexibility comes

at the price of lower performance compared to specialized

hardware. This approach has become more complex due to the

end of Moore’s law and Dennard scaling [14]. Furthermore,

commercially available 100-Gbps networking interfaces

have revealed many challenges for commodity hardware

to support packet processing at multi-hundred-gigabit rates.

More specifically, the interarrival time of small packets is

∗Both authors contributed equally to the paper.
†This author has made all open-source contributions.

shrinking to a few nanoseconds (i.e., less than Last Level

Cache (LLC) latency). Consequently, any costly computation

prevents commodity hardware from processing packets at

these rates, thereby causing a tremendous amount of buffering

and/or packet loss. As accessing main memory is impossible

at these line rates, it is essential to take greater advantage

of the processor’s cache [81]. Processor vendors (e.g.,

Intel®) introduced new monitoring/controlling capabilities

in the processor’s cache, e.g., Cache Allocation Technology

(CAT) [59]. In alignment with the desire for better cache

management, this paper studies the current implementation

of Direct Cache Access (DCA) in Intel processors, i.e., Data

Direct I/O technology (DDIO), which facilitates the direct

communication between the network interface card (NIC) and

the processor’s cache while avoiding transferring packets to

main memory. Our goal is to complete the recent set of studies

focusing on understanding the leading technologies for fast

networking, i.e., Peripheral Component Interconnect express

(PCIe) [58] and Remote Direct Memory Access (RDMA) [37].

We believe that understanding & optimizing DDIO is the

missing piece of the puzzle to realize high-performance

I/O intensive applications. In this regard, we empirically

reverse-engineer DDIO’s implementation details, evaluate

its effectiveness at 100/200 Gbps, discuss its shortcomings,

and propose a set of optimization guidelines to realize

performance isolation & achieve better performance for multi-

hundred-gigabit rates. Moreover, we exploit a little-discussed

feature of Xeon® processors to demonstrate that fine-tuning

DDIO could improve the performance of I/O intensive

applications by up to ~30%. To the best of our knowledge,

we are the first to: (i) systematically study and reveal details

of DDIO and (ii) take advantage of this knowledge to process

packets more efficiently at 200 Gbps.

Why DCA matters? Meeting strict Service Level Objectives

(SLO) and offering bounded latency for Internet services is

becoming one of the critical challenges of data centers while

operating on commodity hardware [54]. Consequently, it is

essential to identify the sources of performance variability

in commodity hardware and tame them [51]. In computer

USENIX Association 2020 USENIX Annual Technical Conference 673

systems, one of these sources of variability is the cache

hierarchy, which can introduce uncertainty in service times,

especially in tail latencies. Additionally, the advent of

modern network equipment [82] enables applications to push

costly calculations closer to the network while keeping &

performing only stateful functions at the processors [36, 38],

thereby making modern network applications ever more I/O

intensive. Hence, taming the performance variability imposed

by the cache, especially for I/O, is now more crucial than

before. Moreover, as CPU core count goes up, it is important

to be able to deliver appropriate I/O bandwidth to them.

Therefore, we go one level deeper [61] to investigate the

impact of I/O cache management, done by DCA, on the

performance of multi-hundred-gigabit networks.

Contributions. In this paper, we:

1 Design a set of micro-benchmarks to reveal little-known

details of DDIO’s implementation* (§4),

2 Extensively study the characteristics of DDIO in different

scenarios and identify its shortcomings* (§5),

3 Show the importance of balancing load among cores and

tuning DDIO capacity when scaling up (§6),

4 Measure the sensitivity of multiple applications (i.e.,

Memcached, NVMe benchmarks, NFV service chains)

to DDIO (§7),

5 Demonstrate the necessity and benefits of bypassing

cache while receiving packets at 200 Gbps (§8),

6 Discuss the lessons learned from our study that are

essential for optimizing DDIO-enabled systems receiving

traffic at multi-hundred-gigabit rates (§9).

2 Direct Cache Access (DCA)

A standard method to transfer data from an I/O device

to a processor is Direct Memory Access (DMA). In this

mechanism, a processor, typically instructed by software,

provides a set of memory addresses, aka receive (RX)

descriptors, to the I/O device. Later, the I/O device directly

reads/writes data from/to main memory without involving the

processor. For inbound traffic, the processor can be informed

about newly DMA-ed data either by receiving an interrupt

or polling the I/O device. Next, the processor fetches the

I/O data from main memory to its cache in order to process

the data. For outbound traffic, the processor informs the I/O

device (via transmit (TX) descriptors) of data that is ready

to be DMA-ed from main memory to the device. The main

source or destination of traditional DMA transfers is main

memory, see Fig. 1a. However, the data actually needs to be

loaded into the processor’s cache for processing. Therefore,

this method is inefficient and costly in terms of (i) number

of accesses to main memory [43] (i.e., 2n+ 5 for n cache

lines [43]), (ii) access latency to the I/O data, and (iii) memory

bandwidth usage. Moreover, the negative impact of these

inefficiencies becomes increasingly severe with higher link

*The source code is available at: https://github.com/aliireza/

ddio-bench

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
e
m

o
ry

 C
o

n
tr

o
ll
e
r

DRAM

(a) Trad. DMA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
e
m

o
ry

 C
o

n
tr

o
ll
e
r

DRAM

(b) DCA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
e
m

o
ry

 C
o

n
tr

o
ll
e
r

DRAM

(c) DDIO.

Figure 1: Different approaches of DMA for transferring data

from an I/O device (e.g., NIC). Red arrows show the path that

a packet traverses before reaching the processing core.

speeds. For instance, a server has 6.72 ns to process small

packets at 100 Gbps, whereas every access to main memory

takes ~100 ns, 15× more expensive. Therefore, placing the

I/O data directly in the processor’s cache rather than in main

memory is desirable. The advent of faster I/O technologies

motivated researchers to introduce Direct Cache Access

(DCA) [25, 42, 43]. DCA exploits PCIe Transaction Layer

Packet Processing Hint [30], making it possible to prefetch

portions of I/O data to the processor’s cache, see Fig. 1b.

Potentially, this overcomes the drawbacks of traditional DMA,

thereby achieving maximal I/O bandwidth and reducing

processor stall time. Although this way of realizing DCA

can effectively prefetch the desired portions of I/O data (e.g.,

descriptors and packet header), it is still inefficient in terms

of memory bandwidth usage since the whole packet is DMA-

ed into main memory. Additionally, this requires operating

system (OS) intervention and support from the I/O device,

system chipset, and processor [1]. To address these limitations

and avoid ping-ponging data between main memory & the

processor’s cache, Intel rearchitected the prefetch hint-based

DCA, introducing Data Direct I/O technology (DDIO) [28].

3 Data Direct I/O Technology (DDIO)

Intel introduced DDIO technology with the Xeon E5 family.

With DDIO, I/O devices perform DMA directly to/from

Last Level Cache (LLC) rather than system memory, see

Fig. 1c. DDIO is also known as write-allocate-write-update-

capable DCA (wauDCA) [45], as it uses this policy to update

cache lines in an n-way set associative LLC, where n cache

lines form one set. For packet processing applications, NICs

can send/receive both RX/TX descriptors and the packets

themselves via the LLC, thereby improving applications’

response time & throughput†. DDIO works as follows [41]:

Writing packets. When a NIC writes a cache line to LLC

via PCIe, DDIO overwrites the cache line if it is already

present in any LLC way (aka a PCIe write hit or write update).

Otherwise, the cache line is allocated in the LLC and DDIO

writes the data into the newly allocated cache line (aka a

PCIe write miss or write allocate). In the latter case, DDIO is

restricted to use only a limited portion of LLC when allocating

†We will use the terms I/O device and NIC interchangeably.

674 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/aliireza/ddio-bench
https://github.com/aliireza/ddio-bench

cache lines. It is possible to artificially increase this portion

by warming up the cache with processor writes to the address

of these buffers, then DDIO performs write-updates [16].

Reading packets. A NIC can read a cache line from LLC if

the cache line is present in any LLC way (aka a PCIe read

hit). Otherwise, the NIC reads a cache-line-sized chunk from

system memory (aka a PCIe read miss).

To monitor DDIO and its interaction with I/O devices, Intel

added uncore performance counters to its processors [29].

The Intel Performance Counter Monitor (PCM) tool (e.g.,

pcm-pcie.x*) [86] can count the number of PCIe write

hits/misses (represented as an ItoM event) and PCIe read

hits/misses (represented as a PCIeRdCur event). Next, we

discuss the inherent problem of DDIO, which makes it hard

to achieve low-latency for multi-hundred-gigabit NICs.

3.1 How can DDIO become a Bottleneck?

Researchers have shown some scenarios in which DDIO

cannot provide the expected benefits [11, 41, 50, 83]. Two

typical cases occur when new incoming packets repeatedly

evict the previously DMA-ed packets (i.e., not-yet-processed

and already-processed packets) in the LLC. Consequently, the

processor has to load not-yet-processed packets from main

memory rather than LLC and the NIC needs to DMA the

already-processed packets from the main memory, thereby

missing the benefits of DDIO. Tootoonchian et al. referred

to this problem as the leaky DMA problem [83]. To mitigate

this problem, they proposed reducing the number of “in-flight”

buffers (i.e., descriptors) such that all incoming packets fit in

the limited portion of LLC used for I/O. Thus, performance

isolation can be done using only CAT (i.e., cache partitioning).

Unfortunately, reducing the number of RX descriptors is only

a temporary solution due to increasing link speeds. Multi-

hundred-gigabit NICs introduce new challenges, specifically:

1 Packet loss. At sub-hundred-gigabit link speeds reducing

the number of RX descriptors may not result in a high packet

loss rate, but at ≥100 Gbps packet loss increases due to

the tight processing time budget before buffering/queuing

happens. For instance, every extra ~7 ns spent stalling or

processing/accessing a packet causes another packet to be

buffered when receiving 64-B packets at 100 Gbps. When

there are insufficient resources for immediate processing,

increasing the number of RX descriptors permits packets to

be buffered rather than dropped. Delays in processing might

occur because of interrupt handling, prolonged processing, or

a sudden increase in the packet arrival rate [17]; therefore,

multi-hundred-gigabit networks cannot avoid packet loss

without having a sufficiently large number of descriptors.

Increasing the number of processing cores can reduce the

packet loss rate, but applications that are compute- or memory-

intensive require many cores to operate at the speed of the

underlying hardware, e.g., Thomas et al. [81] mention that

*The description of events can be found in [27] and pp. 63-66 of [41].

a server performing one DRAM access per packet needs 79

cores to process packets at 400 Gbps.

2 TX buffering. One of the scenarios that makes DDIO

inefficient is the eviction of already-processed packets. Re-

ducing the number of RX descriptors may solve this problem

for systems that require a small number of TX descriptors,

but this is not the case for 100-Gbps NICs. Unfortunately,

the de facto medium for DMA-ing packets (i.e., PCIe 3.0)

induces some transmission limitations [58]. Consequently,

packets often need to be buffered in the computer system for

some time before being DMA-ed to the NIC. This buffering

can be realized by either a software queue or increasing

the number of TX descriptors [35]. Unfortunately, either

of these alternatives increases the probability of eviction of

already-processed packets. Therefore, completely solving the

leaky DMA problem requires fine-tuning both the size of the

software queue and the number of RX & TX descriptors.

3 PAUSE frames. To alleviate packet loss, one can use

Ethernet flow control mechanisms (e.g., PAUSE frames)

that cause packets to be buffered earlier in the network,

i.e., PAUSE frames stop the previous network node from

transmitting packets for a short period. However, these

mechanisms are costly in terms of latency, making them

less desirable than packet loss for time-critical applications.

The minimum and maximum pause duration of a 100-Gbps

interface are 5.12 ns and 335.5 µs [56]. Our measurements

show that a core that is simply forwarding packets at 100 Gbps

with 1024 RX & TX descriptors causes the NIC to send

~179 k PAUSE frames while receiving ~80 M packets.

Dynamic reduction. As reducing the number of RX buffers

cannot fully solve the problem and it shifts the problem to

another part of the network, most probably the previous node;

therefore, an alternative is to dynamically reduce the pressure

on the LLC when the number of I/O caused cache evictions

starts to increase†. These cache evictions can be tracked by

monitoring either PCIe events or the length of the software

queue. After detecting a problem, the processor should fetch

a smaller number of packets from the NIC (i.e., reducing

the RX burst size). Thus, the processor passes fewer free

buffers to the NIC, reducing the number of DMA transactions.

Unfortunately, this approach does not perform well, hence we

need a proactive solution, not a reactive one.

Is it sufficient to scale up? Due to the demise of the Dennard

scaling [14], processors are now shipped with more cores

rather than higher clock frequencies. Moreover, the per-core

cache quota (i.e., LLC slices) has decreased in recent Xeon

processors, i.e., the size of LLC slices reduced from 2.5 MiB

to 1.375 MiB in the Xeon scalable family (i.e., Skylake) [55].

This reduction in per-core cache size directly affects the

optimal number of descriptors as these are proportional to the

limited space for DDIO. For instance, using 18 cores, each

having 256 RX descriptors, requires ~6.5 MiB, which is equal

†Our implementation is available at: https://github.com/

tbarbette/fastclick/tree/DMAdynamic

USENIX Association 2020 USENIX Annual Technical Conference 675

https://github.com/tbarbette/fastclick/tree/DMAdynamic
https://github.com/tbarbette/fastclick/tree/DMAdynamic

to ~26.6% of the LLC in this processor and greater than the

available DDIO capacity (see §4.1).

Our approach. To overcome these challenges, it is necessary

to study and analyze DDIO empirically in order to make the

best use of it. A better understanding of DDIO and its imple-

mentation can help us optimize current computer systems and

enables us to propose a better DCA design for future computer

systems that could accommodate the ever-increasing NIC link

speeds. For instance, Fig. 2 demonstrates that tuning DDIO’s

capacity makes it possible to achieve a suitable performance

while using a large number of descriptors (our approach), as

opposed to using a limited number of descriptors (ResQ’s

approach proposed by Tootoonchian et al. [83]).

 0

 300

 600

 900

 1200

 1500

 1800

512 1024 2048 4096

9
9

th
 P

e
rc

e
n

ti
le

 L
a

te
n

c
y
 (
µ

s
)

Number of RX Descriptors

2W 4W 6W 8W

Figure 2: Using more DDIO ways (“W”) enables 2 cores to

forward 1500-B packets at 100 Gbps with a larger number of

descriptors while achieving better or similar tail latency.

4 Understanding Details of DDIO

This section discusses four questions: 1 What part of

LLC is used for I/O? 2 How does I/O interact with other

applications? 3 Does DMA via remote sockets pollute LLC?

and 4 Is it possible to disable/tune DDIO?

Testbed. We use a testbed with the configuration shown in

Table 1 running Ubuntu 18.04.2 (Linux kernel-4.15.0-54). We

use the Skylake server unless stated otherwise. FastClick [9]

is used to generate & process packets. Additionally, we use a

campus trace as a real workload (with mixed-size packets) and

generate synthetic traces (with fixed-size packets). For our

multicore experiment, we use RSS [24] to distribute packets

among different queues (one queue per core), unless stated

otherwise. Furthermore, we isolate the one CPU socket on

which we run the experiment to increase the accuracy of the

measurements. PAUSE frames are disabled to avoid taking

into account pause duration in the end-to-end latency. In all

experiments, the NIC driver sets the appropriate number of TX

descriptors based on the number of TX queues, and to avoid

extra looping at the transmitting side FastClick buffers up to

1024 packets. We use the Network Performance Framework

(NPF) tool [57] to run the experiments.

4.1 Occupancy

Initially, Intel announced that DDIO only uses 10% of

LLC [28] and did not mention what part of the LLC is used

(i.e., ways, sets, or slices [15]). Recent Intel technical reports

mention that DDIO only uses a subset of LLC ways, by default

two ways [41, 72]. However, it is still unclear whether this

“subset” is fixed or whether it can be dynamically selected

using a variant of Least Recently Used (LRU) policies [33,

34, 65, 87]. Knowledge of these details could avoid I/O

contention and optimize performance isolation [83] by

performing precise cache management/partitioning [13, 62]

(e.g., way partitioning with CAT [59]). This issue becomes

increasingly critical for newer generations of Xeon processors

that have lower LLC set-associativity (e.g., 11 ways in some

Skylake processors, as opposed to 20 ways in Haswell

processors), thereby using a larger portion (2
11

≈ 18%) of

the LLC for I/O. Lower set-associativity makes the cache less

flexible when the LLC is divided into multiple partitions, each

of which could be used to accommodate different applications’

code & data. To clarify this, we assumed that the ways that

are used for DDIO are fixed and then try to confirm this

with an experiment in which we co-run an I/O and a cache-

sensitive application. To increase the pressure on the LLC

by DMA-ing more cache lines, we used an L2 forwarding

DPDK-based application as the I/O intensive application.

Specifically, it receives large packets (1024-B) at a high

rate (~82 Gbps) using a large number of RX descriptors

(4096 RX descriptors). For the cache-sensitive application,

we chose water_nsquared from the Splash-3 benchmark

suite [62, 66, 69] since it performs a large number of LLC

accesses; hence, it interferes with the I/O application.

Each application is run on a different core and CAT is used

to allocate different cache ways to each core. We allocate two

fixed ways to the I/O application and two variable ways to

the cache-sensitive application. To avoid memory bandwidth

contention, we also used Memory Bandwidth Allocation

(MBA) technology [21] to limit the memory bandwidth of

each core to 40%. Fig. 3a shows the CAT configuration

used in the experiment. We start by allocating the two

leftmost ways (i.e., bitmask of 0x600) to the cache-sensitive

application and then we keep shifting the allocated ways one

Table 1: Details of our testbed. In each case, the NIC is a Mellanox ConnectX-5 VPI.

Machine

Configuration Intel Xeon Processor
Memory

Last Level Cache (LLC)

Model Frequency #Cores Size Associativity

Packet generator (Skylake) Gold 6134 3.2 GHz 8 512 GiB 18×1.375 MiB 11

Server (Skylake) Gold 6140 2.3 GHz 18 256 GiB 18×1.375 MiB 11

Server (Haswell) E5-2667 v3 3.2 GHz 8 128 GiB 8×2.5 MiB 20

676 2020 USENIX Annual Technical Conference USENIX Association

to the right until we cover all the LLC ways while measuring

the LLC misses of the I/O application. Fig. 3b shows the

results of this experiment. These results demonstrate that the

cache-sensitive application interferes with the I/O application

in two regions. The first (see 0x0C0 in Fig. 3b) occurs

when the cache-sensitive application uses the same ways

as the I/O application, due to the code/data interference

of the two applications. However, the second (see 0x003

in Fig. 3b) cannot be explained with this same argument

since the I/O application is limited to using other ways (i.e.,

0x0C0). Furthermore, since the CPU socket is isolated, no

other application can cause cache misses. CAT only mitigates

the contention induced by code/data not DDIO. Therefore, we

conclude that the second interference is most probably due

to I/O, which means DDIO uses the two rightmost ways in

LLC (i.e., bitmask of 0x003). The interference is proportional

to the number of received packets per second × average

packet size. We expected to see roughly the same amount

of cache misses for bitmasks of 0x180 and 0x060, as they are

completely symmetrical in terms of way occupancy. However,

the undocumented LRU policy of the CPU may affect how

the application uses the cache ways.

Ways used for cache-sensitive application

Ways used for I/O application

Ways used for both applications

Unoccupied ways

0x600

0x300

0x180

0x0C0

0x060

0x030

0x018

0x00C

0x006

0x003

0 0 0 0 1 1 0 0 0 0 0

The bitmask used by CAT
to allocate LLC ways to the
cache-sensitive application

(a) CAT configuration.

 0

 2

 4

 6

 8

 10

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

S
u

m
 o

f
C

a
c
h

e
 M

is
s
e

s
 (

M
ill

io
n

)

Ways Allocated by CAT to the Cache-sensitive Application

No Contention

Contention with I/O App. (Code/Data)

Contention with DDIO

(b) Sum of cache misses for the I/O application.

Figure 3: Interference of an I/O and a cache-sensitive

application using the parsec_native configuration (to cause

a high rate of cache misses) when the cache-sensitive

application uses different LLC ways. The rise in the rightmost

side shows the contention with DDIO ways.

4.2 I/O Contention

One of the established mechanisms to ensure performance

isolation and mitigate cache contention is CAT, which limits

different applications to a subset of LLC ways. However,

§4.1 showed that DDIO uses two fixed LLC ways. Therefore,

isolating applications using CAT may not fully ensure

performance isolation, due to cache contention caused by

I/O. Such contention may occur in two common scenarios:

1 I/O vs. Code/Data. When an application is limited

to using those ways which are also used by DDIO, then

cache lines allocated in LLC for DDIO may evict the

code/data of any application (i.e., either I/O or non-I/O

application). This issue was discussed by Tootoonchian et

al. [83]. Their proposed framework, ResQ, uses only 90% of

LLC to avoid interfering with DDIO’s reserved space, but

does not mention which part of LLC is isolated. §4.1 showed

the destructive (i.e., ~2.5×) impact on the cache misses

of the I/O application due to a cache-hungry application

overlapping with DDIO, see the rise in cache misses at the

right side of Fig. 3b. However, it did not show the impact

of contention on the cache-hungry application; therefore, we

repeated the experiment and measured the cache misses of the

cache-sensitive application while using a lighter configuration.

Fig. 4 illustrates that the cache misses of the cache-sensitive

application were similarly adversely affected. Therefore,

overlapping any application with DDIO ways in LLC can

reduce the performance of both applications. To tackle this,

one can isolate the I/O portion of LLC (e.g., the two ways

used for DDIO) by using CAT so that applications share

the LLC without overlapping with I/O. Comparing Fig. 3b

and 4, we see that an unexpected rise (almost 3×) in cache

misses occurs in a different region (i.e., bitmask of 0x600 in

Fig. 4 as opposed to bitmask of 0x003 in Fig. 3b) when I/O

is evicting code/data. Hence, we speculate that CAT does not

use a bijective function to map I/O & code/data to ways, thus

f : code/data → Ways is not equivalent to g : I/O → Ways .

Specifically, I/O evicts code/data when the latter is located

in the two leftmost ways whereas code/data evicts I/O when

the latter is using the two rightmost ways. Such information

is useful to know, as it will give us an understanding of the

eviction policy and the default priority of code/data and I/O.

2 I/O vs. I/O. When multiple I/O applications are isolated

from each other with CAT, they could still unintentionally

compete for the fixed ways allocated to DDIO. §8.1 elaborates

the negative impact of this type of contention.

Security implication. Since DDIO uses two fixed ways in

LLC, it is possible to extend microarchitectural attacks to

extract useful information from I/O data (e.g., NetCAT [44]

and Packet Chasing [76, 77]). Furthermore, I/O applications

can be vulnerable to performance attacks.

USENIX Association 2020 USENIX Annual Technical Conference 677

 0

 50

 100

 150

 200

 250

 300

 350

 400

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

S
u

m
 o

f
C

a
c
h

e
 M

is
s
e

s
 (

k
)

Ways Allocated by CAT to the LLC-sensitive Application

Contention

No Contention

Figure 4: Interference of the cache-sensitive and the I/O

applications. Y axis shows the sum of cache misses of the

cache-sensitive application. The cache-sensitive application

uses a lighter configuration (i.e., ddio_sim), which causes

fewer cache misses than the I/O application.

4.3 DMA via Remote Socket

According to Intel [16, 32], the current implementation of

DDIO only affects the local socket. Consequently, if a core

accesses I/O data from an I/O device connected to a remote

socket, the data has to traverse the inter-core interconnect,

i.e., Intel QuickPath Interconnect (QPI) or Intel Ultra path

Interconnect (UPI). It was uncertain whether data traversing

the inter-core interconnect is loaded into the LLC of the

remote socket or not. We clarified this by running the same

experiment discussed in §4.2 while the NIC is connected to a

remote socket. The result (removed for brevity) showed that

cache misses of neither application were affected by the I/O

cache lines, hence packets coming through the UPI links do

not end up in the local LLC. Additionally, the cache misses

of the I/O application dramatically increased to 20× greater

than when receiving packets via the local socket without any

contention. Thus, DDIO is ineffective for the remote socket

and it pollutes the LLC on the socket connected to the NIC.

4.4 Tuning Occupancy and Disabling DDIO

Although [20, 72] mention that DDIO uses two ways by

default, there is no mention of whether it is possible to

increase or decrease the number of ways used by DDIO. A

little-discussed Model Specific Register (MSR) called “IIO

LLC WAYS” with the address of 0xC8B* is discussed in a

few online resources [64, 79] and server manuals [73, 74].

For Skylake, the default value of this register is equal to

0x600 (i.e., two bits set). While these bits cannot be unset,

it is possible to set additional bits and the maximum value

for this register on our CPU is 0x7FF (i.e., 11 bits set:

the same as the number of LLC ways). New values for

this register follow the same format as CAT bitmasks. On

*One can read/write this register via msr-tools (e.g., rdmsr and wrmsr).

a processor with the Skylake microarchitecture, these new

values should contain consecutive ones, while the Haswell

microarchitecture does not require this (i.e., allowing any

value in [0x60000, 0xFFFFF]).

To see whether this MSR register has an effect on

performance, we measured the PCIe read/write hit rates (i.e.,

ItoM and PCIeRdCur events) while using different values

for IIO LLC WAYS. We calculate the hit rate based on the

number of hits and misses during an experiment where an I/O

application processes packets of 1024 B at 100 Gbps while

using 4096 RX descriptors. Fig. 5 shows that increasing the

value of this MSR register leads to a higher PCIe read/write

hit rate. This suggests that increasing the value of this register

could improve the ability of the system to handle packets

at high rates. We believe that the value of this register is

positively correlated with the fraction of LLC used by DDIO.

Using the technique in §4.1, we could not detect the newly

added I/O ways, thus we speculate that the newly added ways

follow a different policy (e.g., LRU) than the first two ways

used for I/O. Therefore, we assume that the number of bits

set specifies the number of ways used by DDIO.

 0

 20

 40

 60

 80

 100

0x600 0x700 0x780 0x7C0 0x7E0 0x7F0 0x7F8 0x7FC 0x7FE 0x7FF

P
C

Ie
 M

e
tr

ic
 -

 H
it
 R

a
te

 (
%

)

Value of IIO LLC WAYS register

Read Write

Figure 5: Tuning IIO LLC WAYS register increases PCIe

read/write hit rates. The achieved throughput is 82-86 Gbps

in this experiment.

Disabling DDIO. DDIO is bundled as a part of Intel

Virtualization Technology (Intel VT), hence it is possible

to enable/disable it in BIOS for some vendors [16, 23, 88].

According to [44, 72], DDIO can be disabled globally

(i.e., by setting the Disable_All_Allocating_Flows

bit in “iiomiscctrl” register) or per-root PCIe port

(i.e., setting bit NoSnoopOpWrEn and unsetting bit

Use_Allocating_Flow_Wr in “perfctrlsts_0” register).

Some brief discussions of the benefits of disabling DDIO

exist [11, 78], but we elaborate this more thoroughly in §7.

We implemented an element for FastClick, called DDIOTune,

which can enable/disable/tune DDIO†.

†The element is available at: https://github.com/tbarbette/

fastclick/wiki/DDIOTune

678 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/tbarbette/fastclick/wiki/DDIOTune
https://github.com/tbarbette/fastclick/wiki/DDIOTune

5 Characterization of DDIO

This section scrutinizes the performance of DDIO in different

scenarios while exploiting the tuning capability of DDIO.

The goal is to show where DDIO becomes a bottleneck

and when tuning DDIO matters. Therefore, we examined

the impact of both system parameters (i.e., #RX descriptors,

#cores, and processing time) and workload characteristics

(i.e., packet size and rate) on DDIO performance. All of

these measurements were done 20 times for both Skylake and

Haswell microarchitectures. We observed the same behavior

in both cases, but only discuss the Skylake results for the

sake of brevity. We initially focus on the performance of

an L2 forwarding network function, as an example of an

I/O intensive application. Later, we discuss the impact of

applications requiring more processing time per packet.

5.1 Packet Size and RX Descriptors

§3.1 discussed the negative consequence of a large number of

RX descriptors on DDIO performance. This section continues

this discussion by looking at the PCIe read/write hit rate

metrics for different numbers of RX descriptors and different

packet sizes. Fig. 6 shows the results of our experiments

for PCIe write hit rate. PCIe read hit rates (not included

for brevity) demonstrate similar behavior. When packets

are >512 B, the PCIe read/write hit rates monotonically

decrease with an increasing number of RX descriptors. More

specifically, sending 1500-B packets, even with a relatively

small number of RX descriptors (i.e., 128), causes 10% misses

for both PCIe read and PCIe write hit rates. Furthermore,

increasing the number of RX descriptors to 4096 makes DDIO

operate at ~40% hit rate, hence 60% of packets require cache

allocation and they had to be DMA-ed back to the NIC from

main memory rather than LLC. Note that the packet generator

is generating packets as fast as possible. Therefore, small

packets show the case when the arrival rate is maximal, while

large packets demonstrate maximal throughput, see Fig. 7.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

P
C

Ie
 W

ri
te

 -
 H

it
 R

a
te

 (
%

)

Number of RX Descriptors

256-B Packets

512-B Packets

1024-B Packets

1500-B Packets

Figure 6: Increasing the number of descriptors and/or packet

size adversely affects the performance of 2-way DDIO, while

one core is forwarding packets at the maximum possible rate.

We removed the results for 64-B and 128-B packets, as they

show a behavior similar to 256-B packets.

 0

 2

 4

 6

 8

 10

 12

 14

 16

128 256 512 1024 2048 4096

A
rr

iv
a
l
R

a
te

 (
M

ill
io

n
 P

P
S

)

Number of RX Descriptors

64-B Packets

128-B Packets

256-B Packets

512-B Packets

1024-B Packets

1500-B Packets

(a) Arrival rate.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Number of RX Descriptors

(b) Throughput.

Figure 7: Increasing the packet size reduces the arrival rate,

i.e., the number of received/processed packets per second,

due to NIC and PCIe limitations. Note that our testbed cannot

exceed 90 Gbps when only one core is forwarding packets.

Unexpected I/O evictions. In some cases (e.g., 1500-B

packets with 128 RX descriptors in Fig. 6), the size of

the injected data is smaller than the DDIO capacity (i.e.,

187.5 KiB ≪ 4.5 MiB). Even taking into account the TX

descriptors and the FastClick’s software queue, the maximum

cache footprint of this workload is ~2 MiB. However, DDIO

still experiences ~10% misses. We believe that this behavior

may occur when an application cannot use the whole DDIO

capacity due to (i) the undocumented cache replacement

policy and/or (ii) the cache’s complex addressing [15], thus

multiple buffers may be loaded into the same cache set.

5.2 Packet Rate and Processing Time

§5.1 demonstrated that DDIO performs extremely poorly

when a core does minimal processing at 100 Gbps. Next, we

focus on the worst-case scenario of the previous experiment

(i.e., sending 1500-B packets with 4096 RX descriptors) while

changing the packet rate. To achieve 100 Gbps, we use two

cores. Fig. 8 shows the PCIe read and PCIe write hit rates. The

PCIe read metric results reveal that DDIO performs relatively

well until reaching 98 Gbps. However, the PCIe write results

indicate that DDIO has to continually allocate cache lines in

LLC for 25% of packets at most of these throughputs, due to

insufficient space for all of the buffers. Moreover, throughputs

above 75 Gbps exacerbate this problem.

USENIX Association 2020 USENIX Annual Technical Conference 679

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
C

Ie
 M

e
tr

ic
s
 -

 H
it
 R

a
te

 (
%

)

Throughput (Gbps)

Read

Write

Figure 8: Increasing packet rates negatively impact the PCIe

metrics, when 2 cores forward 1500-B packets with 4096 RX

descriptors. The PCIe write metric is more degradation-prone.

So far, we analyzed DDIO performance when cores

performed minimal processing (i.e., swapping MAC

addresses). Now, we analyze DDIO performance for more

compute/memory-intensive I/O applications. Memory-

intensive applications access memory frequently and execute

few instructions per memory access. The time to accessing

memory differs depending upon the availability of a cache

line in a given part of the memory hierarchy. Therefore, we

focus on the number of CPU cycles of the computation;

noting that a memory access can be accounted for as given

number of cycles. Note that increasing the processing time

can change the memory access pattern, as packets continue

to be injected by the NIC while some packets are enqueued

in the LLC. To see the impact of different packet processing

times on the performance of DDIO, we vary the amount of

computation per packet by calling the std::mt1993 random

number generator multiple times. Ten such calls take ~70

cycles. Fig. 9 illustrates the effect of increasing per-packet

processing time on the PCIe metrics & achieved throughput.

These results demonstrate that increasing processing time

slightly improves PCIe read hits rates up to ~60 calls, i.e.,

400 cycles. This is expected, as increasing processing makes

the application less I/O intensive as the application provides

buffers to the NIC at a slower pace. However, increasing

processing causes the available processing power (i.e., #cores)

to become a bottleneck, substantially decreasing throughput.

Similarly, PCIe write hit rates increases after exceeding 60

calls, due to a decrease in throughput & amount of cache

injection. Therefore, DDIO performance matters most when

an application is I/O bound, rather than CPU/memory bound.

5.3 Numbers of Cores and DDIO Capacity

When processing power limits an application’s performance,

the system should scale up/out. However, this scaling can

affect DDIO’s performance. To see the effect of scaling up,

we measured the PCIe metrics while different numbers of

cores were forwarding large packets. Fig. 10 shows that

when an application is I/O intensive, increasing the number

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

P
C

Ie
 M

e
tr

ic
 -

 H
it
 R

a
te

 (
%

)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of Calls

Write

Read

Throughput

Figure 9: Making an application more compute-intensive

results in better PCIe metrics, but lower throughput. In

addition to forwarding packets, two cores call a dummy

computation, while receiving 1500-B packets with a total

of 4096 RX descriptors at 100 Gbps.

of cores improves the PCIe read/write hit rate, as it enhances

the packet transmission rate because of more TX queues

and faster consumption of packets enqueued in the LLC.

To avoid synchronization problems, every queue is bound

to one core. However, beyond a certain point (i.e., four

cores in our testbed), increasing the number of cores causes

more contention in the cache, as every core loads packets

independently into the limited DDIO capacity. Furthermore,

since newer processors are shipped with more cores, scaling

up, even with a small number of RX descriptors, eventually

causes the leaky DMA problem–the same problem as having

a large number of descriptors (see §3.1).

Fig. 11 shows PCIe metrics for 1, 2, and 4 cores while

changing the number of DDIO ways. Comparing the DDIO

performance of different numbers of cores/DDIO ways, we

conclude that increasing DDIO capacity leads to similar

improvements for PCIe metrics. Therefore, increasing the

DDIO capacity rather than the number of cores is beneficial

when an application’s bottleneck is not processing power or

number of TX queues. Unless scaling up happens efficiently,

some cores may receive more packets than others, causing

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

P
C

Ie
 M

e
tr

ic
 -

 H
it
 R

a
te

 (
%

)

Number of Cores

Write

Read

Figure 10: Increasing the number of cores does not always

improve PCIe metrics for an I/O intensive application.

Different numbers of cores are forwarding 1500-B packets at

100 Gbps with 256 RX descriptors per core.

680 2020 USENIX Annual Technical Conference USENIX Association

performance degradation. We discuss the impact of load

imbalance on DDIO performance in the next section.

 0

 20

 40

 60

 80

 100

2 4 6 8

P
C

Ie
 W

ri
te

 -
 H

it
 R

a
te

 (
%

)

Number of DDIO Ways

1 core

2 cores

4 cores

Figure 11: Increasing the number of DDIO ways can have a

similar positive effect as increasing the number of processing

cores, while forwarding 1500-B packets at 100 Gbps with a

total of 4096 RX descriptors. PCIe read hit rate shows the

same behavior as PCIe writes.

6 Application-level Performance Metrics

The previous section focused on the PCIe read/write hit rates

and showed that increasing link speed & packet size and the

number of descriptors & cores could degrade these metrics.

PCIe read/write hit rates represent the percentage of I/O

evictions (i.e., the performance of DDIO), but also indirectly

affect application performance. The correlation between PCIe

metrics and meaningful performance metrics (e.g., latency

and throughput) depends on an application’s characteristics.

For instance, a low PCIe write hit rate can severely affect an

application that requires the whole DMA-ed data. Conversely,

the impact is much less for an application that needs only a

subset of the DMA-ed packet. Fig. 2 showed one example

of this correlation for the latter case, where the application

only accessed the packet header. These results showed that

even when an application does not require the whole DMA-

ed data, increasing the number of descriptors (i.e., causing

a reduction in PCIe hit rate metrics) could negatively affect

the 99th percentile latency. Note that we observed the same

effect at median latency. This section further elaborates this

impact in two scenarios where a stateful network function is

processing a realistic workload* via 18 cores with a run-to-

completion model [38, 93]. The benefits of increasing cache

performance are not limited to this model and could be even

greater for a pipeline model where fewer cores handle the I/O.

Stateful service chain. To evaluate the effect of increasing

DDIO capacity, we chose a stateful service chain composed

of a router, a network address port translator (NAPT), and a

round-robin load balancer (LB) as a suitable chain to exploit

hardware offloading capabilities of modern NICs while still

keeping state at the processor. In this case, we offload the

*We replay the first 400 k packets of a 28-minute campus trace fifty

times. The full trace has ~800 M packets with an average size of 981 B.

routing table of the router to the NIC and only handle the

stateful tasks (i.e., NAPT + LB) and the basic functionality of

the router in software. We generated 2423 IP filter rules for

the campus trace using the GenerateIPFlowDirector element

in Metron [38] and use DPDK’s Flow API technology [31]

to offload them into a Mellanox NIC. To examine the impact

of load imbalance, we generate two different sets of rules

with different load imbalance factors. One distributes the

rules among 18 cores in a round-robin manner while the

other is load-aware and tries to reduce the flow imbalance

in terms of bytes received by every core. We calculated

the number of packets received by each core for both cases

and the maximum imbalance ratio of a core is 2.78× for

the load-aware technique, while the round-robin technique

causes 1.69× maximum load imbalance. The load-aware

method has a higher load imbalance because we generate

rules for the whole trace, but only replay a subset of it. Fig. 12

shows the 99th percentile latency of this chain for different

load balancing methods (with different load imbalance ratio),

specifically increasing DDIO capacity reduces the 99th

percentile latency by ~21% when the load imbalance is

higher. However, when the load imbalance is lower, these

improvements reduce to ~2%. A higher load imbalance factor

means that a core receives more packets than others, some of

which could be evicted while enqueued in the LLC. Hence,

it is crucial to realize a good balance to get the most out of

DDIO. Furthermore, load imbalance is the root cause of many

other performance degradations and is hard to prevent [8, 10].

 0

 200

 400

 600

 800

 1000

Load-aware Round Robin9
9

th
 P

e
rc

e
n

ti
le

 L
a

te
n

c
y
 (
µ

s
)

Load Balance Method

2W 4W 6W 8W

Figure 12: DDIO should be carefully tuned when the load

imbalance factor is higher. The results shows 99th percentile

latency of a stateful network function while 18 cores are

processing mixed-size packets at 100 Gbps. The throughputs

were 94 & 97 Gbps for load-ware (higher imbalance) & round-

robin (lower imbalance) experiments, respectively.

7 Is DDIO Always Beneficial?

The previous section showed that performance could be

improved by tuning DDIO for I/O intensive network functions

operating at ~100 Gbps. However, these results cannot be

generalized, as the improvements are highly dependent on

the application’s characteristics. Moreover, there may be

some applications that do not benefit from DDIO tuning.

To investigate this, we measure the sensitivity of different

applications to DDIO by enabling/disabling it (see §4.4).

Table 2 shows the results for four applications/benchmarks:

USENIX Association 2020 USENIX Annual Technical Conference 681

Table 2: DDIO sensitivity changes for different applications.

Application

DDIO Enabled Disabled
Sensitivity

Throughput Median (µs) Avg (µs) 99th (µs) Throughput Median (µs) Avg (µs) 99th (µs)

Memcached (TCP) 1003058 TPS N/A 477.62 N/A 994387 TPS N/A 481.62 N/A Low

Memcached (UDP) 638763 TPS N/A 750.12 N/A 631354 TPS N/A 758.75 N/A Low

NVMe (Full Write) 4427.2 MiB/s 44879.4 44437.6 46452.4 4434.2 MiB/s 44827 44374.68 46452.4 Low

NVMe (Random Read) 3372.4 MiB/s 582 589.67 765.7 3233.7 MiB/s 601.8 614.46 805.7 High

NVMe (Random Write) 1498.3 MiB/s 1307.8 1324.73 1991.2 1499.9 MiB/s 1309.5 1323.38 1971.4 Low

L2 Forwarding 98.01 Gbps 500.82 662 1055.98 87.02 Gbps 1058.15 862 1229.62 High

Stateful Service Chain
63.92 Gbps 665 657 923 63.25 Gbps 672 666 931 Low

(without offloading)

Stateful Service Chain
97.35 Gbps 499 505 595 87.46 Gbps 531 924 1981 High

(with round-robin offloading)

(i) DPDK-based implementation of Memcached developed

by Seastar [5], (ii) an NVMe benchmarking tool (i.e., fio [4]),

(iii) L2 forwarding application, (iv) a stateful service chain,

used in §6, which performs IP filtering in software rather than

offloading it to the NIC, and (v) the stateful service chain

with round-robin offloading used in §6. We define sensitivity

as “Low” if the maximum impact on the performance of an

application is ≤ 5%. For Memcached, we use the method

recommended by Seastar [2] with 8 instances of memaslap

clients running for 120 s and a Memcached instance with 4

cores. For NVMe benchmarks, we tested a Toshiba NVMe

(KXG50PNV1T02) with 4×1024-GB SSDs according to [3],

where we report the average of 10 runs. The L2 forwarding

application forwards mixed-size packets, while using 4

cores with a total of 4096 RX descriptors. The stateful

service chain without offloading uses RSS to distribute

packets among 18 cores (to increase the throughput) with

18 × 256 RX descriptors. The results demonstrate that

different applications have different levels of sensitivity

to DDIO, which can be exploited by system developers

to optimize their system in a multi-tenant environment,

where multiple I/O applications co-exist, see §8.1. The most

sensitive application is L2 forwarding, which is the most I/O

intensive application among these applications and can run

at line rate. Some applications (e.g., Memcached) experience

less benefit from DDIO, as their performance may be bounded

by other bottlenecks. A more detailed sensitivity analysis of

different applications remains as our future work.

8 Future Directions for DCA

Tuning DDIO occupancy was shown to substantially

improve the performance of some applications. However,

increasing the portion of the cache used for I/O is only a

temporary solution for two reasons: (i) I/O is only a part of

packet processing and (ii) to achieve suitable performance

many networking applications require a large amount of

cache memory for code/data. Moreover, many network

functions would benefit from performing in-cache flow

classification [92]; hence, there is a trade-off between

allocating cache to I/O vs. code/data and this trade-off

depends on the application’s characteristics & cache size.

Additionally, since DDIO is way-based, the granularity of

partitions is quite coarse in recent Intel processors, due to low

set-associativity. Therefore, it is harder to partition the cache

fairly between code/data & I/O. These reasons, together with

the recent trend in Intel processors of decreasing per-core

LLC, eventually make the current implementation of DCA

a major bottleneck to achieving low-latency service times.

Hence, DCA needs to deliver better performance even with

a small fraction of the cache. This makes it necessary to

rethink the current DCA designs with an eye toward realizing

network services running at multi-hundred gigabits per

second. Some possible directions/proposals for future DCA

are: 1 Fine-grained placement: adopting CacheDirector [15]

methodology (i.e., sending packets to the appropriate LLC

slices) and only sending the relevant parts of these packets to

the L2 cache, L1 cache, or potentially CPU registers [26];

2 Selective DMA/DCA: only DMA relevant parts of the

packet (as required by an application) to the cache and buffer

the rest in either main memory, the NIC, or Top-of-Rack

switch; and 3 I/O isolation: extend CAT to include I/O

prioritization in addition to Code and Data Prioritization

(CDP) technology [60] to alleviate I/O contention. These

ideas could be simulated in a cycle accurate simulator (e.g.,

gem5 [6, 12]), which remains as our future work. Next, we

examine one potential solution in the current systems to

better take advantage of DDIO.

8.1 Bypassing Cache

§3.1 explained that one way to prevent unnecessary memory

accesses and the leaky DMA problem is to reduce the number

of descriptors. However, this could increase packet loss and

generate more PAUSE frames at high link rates. Unfortunately,

both can have a severe impact on the service time as they

postpone the service time by at least a couple of microseconds.

Taking these consequences into account, we believe future

DCA technologies should perform cache injection more

effectively: DMA should not be directed to the cache if this

would cause I/O evictions; thus, buffering packets in local

memory (at a cost of only several hundreds of nanoseconds) is

preferable to dropping or enqueuing packets in previous nodes.

Additionally, bypassing cache would be beneficial in a multi-

682 2020 USENIX Annual Technical Conference USENIX Association

tenant scenario where performance isolation is desired. For

instance, low-priority and/or low-DDIO-sensitive applications

could bypass cache to make room for high-priority and/or

high-DDIO-sensitive applications. In addition, one could

prioritize [7] different traffic flows, thus only a subset of

received traffic (and hence cores) would use cache for I/O.

Implementing a system to prioritize DDIO for different

flows either in a programmable switch or modern NICs (e.g.,

Mellanox Socket Direct Adapters) remains as our future work.

Evaluation. To evaluate the benefits of bypassing the

cache, we use two methods: (i) disabling DDIO and (ii)

exploiting DMA via a remote socket (see §4.3). We set

up a 200-Gbps testbed, see Fig. 13. We first connect two

100-Gbps NICs to the same socket. Next, we connect one

of these NICs to a remote socket. We run two instances

of L2 forwarding application located on the first socket,

each of which uses 4 cores and one NIC to forward mixed-

size packets. We chose four cores per NIC because our

earlier experiments (see Fig. 10) showed that DDIO can

achieve an acceptable performance while receiving 1500-B

packets with four cores. To reduce the contention for cache

and memory bandwidth, we apply CAT & MBA to each

application (similar to ResQ [83]). We assume that one of the

applications has a higher priority, and we measure its latency

in five different scenarios: (i) without the presence of the low-

priority application, (ii) when the low-priority application

pollutes the cache via 2-way DDIO (see Fig. 13a), (iii) when

the low-priority application pollutes the cache via 4-way

DDIO, (iv) when the low-priority application bypasses the

cache by DMA-ing packets via a remote socket (see Fig. 13b),

(v) when the low-priority application bypasses the cache via

disabled DDIO. Fig. 14 shows the 99th percentile latency of

the high-priority application–other percentiles show a similar

trend with a smaller difference. These results demonstrate that

bypassing cache via a remote socket (i.e., case iv) achieves

the same latency as when there is no low-priority application

(i.e., case i). However, when both applications are receiving

traffic via DDIO (i.e., case ii), the 99th percentile latency

degrades ~30%. We observe that bypassing cache has the

same benefits as increasing DDIO capacity (i.e., case iii vs.

case iv). Furthermore, comparing cases (iv) and (v) indicates

that disabling DDIO slightly pollutes the cache (as opposed to

bypassing via a remote socket). We speculate that disabling

DDIO only affects the packets, not the descriptors. Therefore,

we conclude that bypassing cache can result in less variability

in performance and potentially better performance isolation.

Additionally, it is clearly necessary to tune DDIO capacity

when moving toward 200 Gbps.

9 Lessons Learned: Optimization Guidelines

This section summarizes our key findings, which could

help system designers/developers to optimize DDIO for

their applications. Furthermore, our study should inspire

computer architects to improve DCA’s performance by

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
e
m

o
ry

 C
o

n
tr

o
ll

e
r

NIC 1 NIC 2

Main
Memory U

P
I

(a) Through local socket.

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
e
m

o
ry

 C
o

n
tr

o
ll

e
r

NIC 1 NIC 2

Main
Memory U

P
I

(b) Through remote socket.

Figure 13: Receiver setup to achieve 200 Gbps. On the right

setup, the second NIC is connected to the remote socket. It

sends packets through UPI link directly to the main memory.

 0

 200

 400

 600

 800

 1000

 1200

 1400

i ii iii iv v

9
9

th
 P

e
rc

e
n

ti
le

 L
a

te
n

c
y
 (
µ

s
)

Scenario

98.73 Gbps

187.19 Gbps

197.67 Gbps 197.09 Gbps

179.81 Gbps

Figure 14: Bypassing cache and tuning DDIO at 200 Gbps

mitigate I/O contention and improve the tail latency of the

high-priority application up to 30%. Scenarios: (i) 100 Gbps

with no contention; (ii) contention at 200 Gbps; (iii) tuning

DDIO at 200 Gbps; (iv) bypassing cache via a remote socket;

and (v) bypassing cache via disabled DDIO. The total

achieved throughput of the receiver is written on the bars.

offering increasing control. Although we focused on packet

processing, our work is not limited to network functions.

Our investigations could be equally useful in other contexts

(e.g., HPC) that require high-bandwidth I/O when transferring

data via RDMA and processing with GPUs. We showed that

current approaches to avoid DDIO becoming a bottleneck

are only temporary solutions and they are inapplicable to

multi-hundred-gigabit network applications. We proposed

a benchmarking method to understand the unknown &

little-discussed details of DDIO. Later, we characterized the

performance of DDIO in different scenarios and showed the

benefits of bypassing the cache. We concluded that there is no

one-size-fits-all approach to utilize DDIO. Our study reveals:

• The locations of LLC to which DDIO injects data (§4.1).

• Co-locating an application’s code/data with I/O in the cache

could adversely impact its performance (§4.2).

• The way that DDIO behavior changes for different system

parameters and workload characteristics (§5).

• If an application is I/O bound, adding excessive cores could

degrade its performance (Fig. 10).

• If an application is I/O bound, carefully sizing the DDIO

capacity can improve its performance and could lead to the

USENIX Association 2020 USENIX Annual Technical Conference 683

same improvements as adding more cores (Fig. 11).

• If an application starts to become CPU bound, adding more

cores can increase its throughput, but then it has to balance

load among cores to maximize DDIO benefits (Fig. 12).

• If an application is truly CPU/memory bound, DDIO tuning

is less efficient (Fig. 9). However, it can be beneficial to

buffer in DRAM incoming requests/packets which cannot

be processed in time, rather than having the NIC issue

PAUSE frames or drop packets.

• Going beyond ~75 Gbps can cause DDIO to become a

bottleneck (Fig. 8). Therefore, it is essential to bypass cache

to realize performance isolation. Bypassing cache could

be done for low-priority traffic or applications that do not

benefit from DDIO (§8.1).

• Different applications have different levels of sensitivity

to DDIO (§7). Identifying this level is essential to utilize

system resources more efficiently, provide performance

isolation, and improve performance.

10 Related Work

The most relevant work to our study is ResQ [83], which we

discussed thoroughly in §3.1 and §8.1. This section discusses

other efforts relevant to our work.

Injecting I/O into the cache. The idea of loading I/O data

directly to the processor’s cache was initially proposed using

cache injection techniques [52, 63]. Later, it was used to

enhance network performance on commodity servers and was

referred to as DCA [25]. Amit Kumar et al. [42] investigated

the role of coherency protocol in DCA. Their results indicated

that the benefit of DCA would be limited when the network

processing rate cannot match the I/O rate. In addition, [75]

showed that DCA could cause cache pollution; hence they

proposed an alternative cache injection mechanism to mitigate

the problem. A. Kumar et al. [43] characterized DCA for

10-Gbps Ethernet links. Other works have discussed that DCA

is insufficient due to architectural limitations [40, 46, 71]. For

example, the work in [46] proposed a new I/O architecture

that decouples and offloads I/O descriptor management from

the NIC to an on-chip network engine. Similarly, the work

in [40] proposed a flexible network DMA interface which can

support DCA. Last but not least, Wen Su et al. [71] proposed

an improvement to combine DCA with an integrated NIC to

reduce latency.

Efforts toward realizing 100 Gbps. Many have tried to

tackle challenges to achieve suitable performance for fast

networks, mostly in the context of NFV [49] and key-value

stores [19, 45]. Some research has exploited new features

in modern/smart/programmable NICs (e.g., [38, 47, 84, 94])

& switches (e.g., [36]) or proposed new features (e.g., [70])

to offload costly software processing. A number of works

investigate packet processing models (e.g., [9, 39, 93]).

CacheBuilder [80] and CacheDirector [15] have discussed

the importance of cache management in realizing 100-Gbps

networks. HALO [92] exploited the non-uniform cache

architecture (NUCA) characteristics of LLC to perform in-

cache flow classification. Last but not least, IOctopus [68]

proposed a new NIC design and wiring for servers to avoid

non-uniform DMA penalties. Our work is complementary to

these works.

Cache partitioning. Many have tried to overcome cache

contention by performing cache partitioning [53]. These

efforts can be split into two main categories: (i) software

techniques and (ii) hardware techniques. The former group

principally relies on physical addresses to partition cache

based on sets [22, 48, 67] or slices [15]. This way of cache

partitioning does not require any hardware support, but it is

not very commonly used, due to its drawbacks (e.g., OS/App

modification and costly re-partitioning). The latter group

mostly exploits way-partitioning (e.g., CAT) to partition the

cache among different applications [13, 18, 62, 89, 90, 91].

In addition to these techniques, Wang et al. [85] proposed

a hybrid approach that combines both techniques to achieve

finer granularity for partitioning. To the best of our knowledge,

there are only two works (ResQ [83] and CacheDirector [15])

that have specifically tried to exploit cache partitioning

techniques to improve packet processing. ResQ proposes

to isolate a percentage of LLC that is used for I/O and

CacheDirector exploits the NUCA used in Intel processors

to distribute I/O more efficiently among different LLC slices.

Our work is complementary to these works, as most of them

do not consider I/O when partitioning the cache.

11 Conclusion

DCA technologies were introduced to improve the perfor-

mance of networking applications. However, we system-

atically showed that the latest implementation of DCA in

Intel processors (i.e., DDIO) cannot perform as needed with

increasing link speeds. We demonstrated that better I/O man-

agement is required to meet the critical latency requirements

of future networks. Our main goal is to emphasize that

networking is, now more than before, tightly coupled with the

capability of the current hardware. Consequently, realizing

time-critical multi-hundred-gigabit networks is only possible

by (i) increasingly well-documented control over the hardware

and (ii) improved holistic system design optimizations.

Acknowledgments

We would like to thank our shepherd, Mark Silberstein, and

anonymous reviewers for their insightful comments. We are

grateful to Tom Barbette for helping us with his NPF tool.

This work was partially supported by the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded

by the Knut and Alice Wallenberg Foundation. The work was

also funded by the Swedish Foundation for Strategic research

(SSF). This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement

No 770889).

684 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Direct Cache Access (DCA), Oct 2010.

ftp://supermicro.com/ISO_Extracted/CDR-X8-

Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/

v16.3/PROXGB/DOCS/SERVER/DCA.htm, accessed

2019-08-05.

[2] Memcached Benchmark, 2015. https://github.com/

scylladb/seastar/wiki/Memcached-Benchmark,

accessed 2019-12-30.

[3] Benchmarking - Benchmarking Linux with Sysbench,

FIO, Ioping, and UnixBench: Lots of Examples. https:

//wiki.mikejung.biz/Benchmarking, 2018.

[4] Flexible I/O Tester (fio). https://fio.readthedocs.

io/en/latest/fio_doc.html, 2019.

[5] Seastar. http://seastar.io/, 2019.

[6] Mohammad Alian, Yifan Yuan, Jie Zhang, Ren Wang,

Myoungsoo Jung, and Nam Sung Kim. Data

Direct I/O Characterization for Future I/O System

Exploration. In 2020 IEEE International Symposium

on Performance Analysis of Systems and Software

(ISPASS), 2020. https://yifanyuan3.github.io/

publication/ddio_gem5, accessed 2020-05-20.

[7] Philip C Arellano and James A Coleman. Method,

apparatus, and system for allocating cache using traffic

class, March 30 2017. US Patent App. 14/866,862.

[8] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire

Jr., and Dejan Kostić. RSS++: Load and State-Aware

Receive Side Scaling. In Proceedings of the 15th

International Conference on Emerging Networking

Experiments And Technologies, CoNEXT ’19, page

318–333, New York, NY, USA, 2019. Association for

Computing Machinery.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast

Userspace Packet Processing. In Proceedings of

the Eleventh ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, ANCS

’15, pages 5–16, Washington, DC, USA, 2015. IEEE

Computer Society.

[10] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,

Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and

Marco Chiesa. A High-Speed Load-Balancer Design

with Guaranteed Per-Connection-Consistency . In 17th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), pages 667–683, Santa Clara,

CA, February 2020. USENIX Association.

[11] Harsha Basavaraj. A case for effective utilization of

Direct Cache Access for big data workloads. Master’s

thesis, UC San Diego, 2017. https://escholarship.

org/uc/item/0fr3735b, accessed 2019-07-24.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black,

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad

Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

The Gem5 Simulator. SIGARCH Comput. Archit. News,

39(2):1–7, August 2011.

[13] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma,

and D. Sanchez. KPart: A Hybrid Cache Partitioning-

Sharing Technique for Commodity Multicores. In 2018

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 104–117, Feb

2018.

[14] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-

alingam, and D. Burger. Dark silicon and the end of

multicore scaling. In 2011 38th Annual International

Symposium on Computer Architecture (ISCA), pages

365–376, June 2011.

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire

Jr., and Dejan Kostić. Make the Most out of Last

Level Cache in Intel Processors. In Proceedings of

the Fourteenth EuroSys Conference 2019, EuroSys ’19,

pages 8:1–8:17, New York, NY, USA, 2019. ACM.

[16] Financial Services Industry (FSI) - Frequently Asked

Questions. https://software.intel.com/en-

us/articles/financial-services-industry-

fsi-frequently-asked-questions, accessed

2019-07-24.

[17] Intel Forum. Intel Ethernet X520 to XL710 -

Tuning the buffers: a practical guide to reduce or

avoid packet loss in DPDK applications. https:

//etherealmind.com/wp-content/uploads/2017/

01/X520_to_XL710_Tuning_The_Buffers.pdf,

accessed 2019-07-24.

[18] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf

Schuster. Ginseng: Market-Driven LLC Allocation. In

2016 USENIX Annual Technical Conference (USENIX

ATC 16), pages 295–308, Denver, CO, June 2016.

USENIX Association.

[19] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,

Nicolai Oswald, Boris Grot, and Vijay Nagarajan.

Scale-out ccNUMA: Exploiting Skew with Strongly

Consistent Caching. In Proceedings of the Thirteenth

EuroSys Conference, EuroSys ’18, pages 21:1–21:15,

New York, NY, USA, 2018. ACM.

USENIX Association 2020 USENIX Annual Technical Conference 685

ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://wiki.mikejung.biz/Benchmarking
https://wiki.mikejung.biz/Benchmarking
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
http://seastar.io/
https://yifanyuan3.github.io/publication/ddio_gem5
https://yifanyuan3.github.io/publication/ddio_gem5
https://escholarship.org/uc/item/0fr3735b
https://escholarship.org/uc/item/0fr3735b
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf

[20] Jeff Gilbert and Mark Rowland. The Intel

Xeon Processor E5 Family: Architecture,

Power Efficiency, and Performance, August

2012. https://www.hotchips.org/wp-

content/uploads/hc_archives/hc24/HC24-8-

DataCenter/HC24.29.827-Xeon-Rowland-Xeon-

E5-2600-Disclaimer.pdf, accessed 2019-07-24.

[21] Andrew Herdrich, Khawar Abbasi, and Marcel Cornu.

Introduction to Memory Bandwidth Allocation,

March 2019. https://software.intel.com/en-

us/articles/introduction-to-memory-

bandwidth-allocation, accessed 2019-07-24.

[22] J. Herter, P. Backes, F. Haupenthal, and J. Reineke.

CAMA: A Predictable Cache-Aware Memory Allocator.

In 2011 23rd Euromicro Conference on Real-Time

Systems, pages 23–32, July 2011.

[23] How to disable Data Direct I/O (DDIO) on

Intel Xeon E5? https://forums.intel.com/

s/question/0D50P0000490NFhSAM/how-to-

disable-data-direct-io-ddio-on-intel-xeon-

e5?language=en_US, accessed 2019-07-24.

[24] Ted Hudek. Introduction to Receive Side Scaling,

04 2017. https://docs.microsoft.com/en-

us/windows-hardware/drivers/network/

introduction-to-receive-side-scaling,

accessed 2019-12-29.

[25] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache

access for high bandwidth network I/O. In 32nd

International Symposium on Computer Architecture

(ISCA’05), pages 50–59, June 2005.

[26] Stephen Ibanez, Muhammad Shahbaz, and Nick

McKeown. The Case for a Network Fast Path to the

CPU. In Proceedings of the 18th ACM Workshop on Hot

Topics in Networks, HotNets ’19, page 52–59, New York,

NY, USA, 2019. Association for Computing Machinery.

[27] Information about PCM PCIe counters. https:

//software.intel.com/en-us/forums/software-

tuning-performance-optimization-platform-

monitoring/topic/543883, accessed 2019-07-24.

[28] Intel. Intel Data Direct I/O Technology Overview, 2012.

https://www.intel.com/content/www/us/en/

io/data-direct-i-o-technology-brief.html,

accessed 2019-07-26.

[29] Intel. Intel Xeon Processor Scalable Memory

Family Uncore Performance Monitoring, July 2017.

https://www.intel.com/content/www/us/en/

processors/xeon/scalable/xeon-scalable-

uncore-performance-monitoring-manual.html,

accessed 2019-07-26.

[30] Intel. Intel Arria 10 Avalon-ST Interface

with SR-IOV PCIe Solutions User Guide,

2019. https://www.intel.com/content/

www/us/en/programmable/documentation/

lbl1415123763821.html#lbl1453336559194,

accessed 2019-07-26.

[31] Intel Ethernet Flow Director and Memcached

Performance, 2014. https://www.intel.com/

content/dam/www/public/us/en/documents/

white-papers/intel-ethernet-flow-director.

pdf, accessed 2019-09-09.

[32] IO Issues: Remote Socket Accesses. https:

//software.intel.com/en-us/vtune-amplifier-

cookbook-io-issues-remote-socket-accesses,

accessed 2019-09-01.

[33] Sanjeev Jahagirdar, Varghese George, Inder Sodhi,

and Ryan Wells. Power Management of the Third

Generation Intel Core Micro Architecture formerly

codenamed Ivy Bridge, 2012. https://bit.ly/

2LKVfZr, accessed 2019-07-24.

[34] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely,

Jr., and Joel Emer. High Performance Cache

Replacement Using Re-reference Interval Prediction

(RRIP). In Proceedings of the 37th Annual International

Symposium on Computer Architecture, ISCA ’10, pages

60–71, New York, NY, USA, 2010. ACM.

[35] Muthurajan Jayakumar. Data Plane Development

Kit: Performance Optimization Guidelines. https:

//software.intel.com/en-us/articles/dpdk-

performance-optimization-guidelines-white-

paper, accessed 2019-07-24.

[36] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. NetCache: Balancing Key-Value Stores with

Fast In-Network Caching. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

pages 121–136, New York, NY, USA, 2017. ACM.

[37] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Design Guidelines for High Performance RDMA

Systems. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), pages 437–450, Denver, CO, June

2016. USENIX Association.

[38] Georgios P. Katsikas, Tom Barbette, Dejan Kostić,

Rebecca Steinert, and Gerald Q. Maguire Jr. Metron:

NFV Service Chains at the True Speed of the

Underlying Hardware. In 15th USENIX Conference

on Networked Systems Design and Implementation

(NSDI 18), NSDI’18, pages 171–186, Renton, WA, 2018.

USENIX Association.

686 2020 USENIX Annual Technical Conference USENIX Association

https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://bit.ly/2LKVfZr
https://bit.ly/2LKVfZr
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper

[39] Georgios P. Katsikas, Marcel Enguehard, Maciej

Kuźniar, Gerald Q. Maguire Jr., and Dejan Kostić. SNF:

synthesizing high performance NFV service chains.

PeerJ Computer Science, 2:e98, November 2016.

[40] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,

Thomas Anderson, and Arvind Krishnamurthy. High

Performance Packet Processing with FlexNIC. SIG-

PLAN Not., 51(4):67–81, March 2016.

[41] Maciek Konstantynowicz, Patrick Lu, and Shrikant M.

Shah. Benchmarking and Analysis of Software Data

Planes. Technical report, Cisco, Intel Corporation, FD.io,

Dec 2017. https://fd.io/wp-content/uploads/

sites/34/2018/01/performance_analysis_sw_

data_planes_dec21_2017.pdf, accessed 2019-07-

24.

[42] A. Kumar and R. Huggahalli. Impact of Cache

Coherence Protocols on the Processing of Network

Traffic. In 40th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 2007), pages

161–171, Dec 2007.

[43] A. Kumar, R. Huggahalli, and S. Makineni. Character-

ization of Direct Cache Access on multi-core systems

and 10GbE. In 2009 IEEE 15th International Sym-

posium on High Performance Computer Architecture,

pages 341–352, Feb 2009.

[44] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano

Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:

Practical Cache Attacks from the Network. In S&P,

May 2020. Intel Bounty Reward.

[45] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn,

Anuj Kalia, Michael Kaminsky, David G. Andersen,

Seongil O, Sukhan Lee, and Pradeep Dubey. Full-

Stack Architecting to Achieve a Billion-Requests-Per-

Second Throughput on a Single Key-Value Store Server

Platform. ACM Trans. Comput. Syst., 34(2):5:1–5:30,

April 2016.

[46] G. Liao, X. Znu, and L. Bnuyan. A new server I/O

architecture for high speed networks. In 2011 IEEE

17th International Symposium on High Performance

Computer Architecture, pages 255–265, Feb 2011.

[47] Hyeontaek Lim, Dongsu Han, David G. Andersen,

and Michael Kaminsky. MICA: A holistic approach

to fast in-memory key-value storage. In 11th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 14), pages 429–444, Seattle, WA,

2014. USENIX Association.

[48] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,

Xiaodong Zhang, and P. Sadayappan. Gaining insights

into multicore cache partitioning: Bridging the gap

between simulation and real systems. In 2008 IEEE

14th International Symposium on High Performance

Computer Architecture, pages 367–378, Feb 2008.

[49] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári,

D. Rossi, T. Zinner, R. Bifulco, M. Jarschel, and

G. Bianchi. Survey of Performance Acceleration

Techniques for Network Function Virtualization.

Proceedings of the IEEE, 107(4):746–764, April 2019.

[50] Patrick Lu. Performance Considerations for

Packet Processing on Intel Architecture, May 2017.

https://fdio-vpp.readthedocs.io/en/latest/

events/Summits/FDioMiniSummit/OSS_2017/

2017_05_10_performanceconsideration.html,

accessed 2019-07-24.

[51] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,

Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.

Taming Performance Variability. In 13th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI 18), pages 409–425, Carlsbad,

CA, October 2018. USENIX Association.

[52] V. Milutinovic, A. Milenkovic, and G. Sheaffer. The

cache injection/cofetch architecture: initial performance

evaluation. In Proceedings Fifth International

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, pages 63–

64, Jan 1997.

[53] Sparsh Mittal. A Survey of Techniques for Cache

Partitioning in Multicore Processors. ACM Comput.

Surv., 50(2):27:1–27:39, May 2017.

[54] Jeffrey C. Mogul and John Wilkes. Nines are Not

Enough: Meaningful Metrics for Clouds. In Proc. 17th

Workshop on Hot Topics in Operating Systems (HoTOS),

2019.

[55] David Mulnix. Intel Xeon Processor Scalable

Family Technical Overview, Sep 2017. https:

//software.intel.com/en-us/articles/intel-

xeon-processor-scalable-family-technical-

overview, accessed 2019-07-24.

[56] NetApp. What is the potential impact of PAUSE frames

on a network connection?, Nov 2017. https://ntap.

com/2RpAx1Q, accessed 2019-07-24.

[57] Network Performance Framework. https://github.

com/tbarbette/npf, accessed 2019-07-24.

[58] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,

Yury Audzevich, Sergio López-Buedo, and Andrew W.

Moore. Understanding PCIe Performance for End

Host Networking. In Proceedings of the 2018

USENIX Association 2020 USENIX Annual Technical Conference 687

https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://ntap.com/2RpAx1Q
https://ntap.com/2RpAx1Q
https://github.com/tbarbette/npf
https://github.com/tbarbette/npf

Conference of the ACM Special Interest Group on Data

Communication, SIGCOMM ’18, pages 327–341, New

York, NY, USA, 2018. ACM.

[59] Khang Nguyen. Introduction to Cache Allocation

Technology in the Intel Xeon Processor E5 v4 Family,

Feb 2016. https://software.intel.com/en-

us/articles/introduction-to-cache-

allocation-technology, accessed 2019-07-24.

[60] Khang T Nguyen. Code and Data Prioritization

- Introduction and Usage Models in the

Intel® Xeon® Processor E5 v4 Family,

2016. https://software.intel.com/en-

us/articles/introduction-to-code-and-data-

prioritization-with-usage-models, accessed

2019-07-26.

[61] John Ousterhout. Always Measure One Level Deeper.

Commun. ACM, 61(7):74–83, June 2018.

[62] Jinsu Park, Seongbeom Park, and Woongki Baek.

CoPart: Coordinated Partitioning of Last-Level Cache

and Memory Bandwidth for Fairness-Aware Workload

Consolidation on Commodity Servers. In Proceedings

of the Fourteenth EuroSys Conference 2019, EuroSys

’19, pages 10:1–10:16, New York, NY, USA, 2019.

ACM.

[63] Hazim Shafi Patrick Joseph Bohrer, Ramakrishnan Ra-

jamony. Method and apparatus for accelerating

input/output processing using cache injections , March

2004. US Patent No. US6711650B1.

[64] PCIe Bandwidth Drops on Skylake-SP. https:

//software.intel.com/en-us/forums/software-

tuning-performance-optimization-platform-

monitoring/topic/741386, accessed 2019-07-24.

[65] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt,

Simon C. Steely, and Joel Emer. Adaptive Insertion

Policies for High Performance Caching. In Proceedings

of the 34th Annual International Symposium on

Computer Architecture, ISCA ’07, pages 381–391, New

York, NY, USA, 2007. ACM.

[66] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros.

Splash-3: A Properly Synchronized Benchmark Suite

for Contemporary Research. In 2016 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 101–111, April 2016.

[67] Timothy Sherwood, Brad Calder, and Joel Emer.

Reducing Cache Misses Using Hardware and Software

Page Placement. In Proceedings of the 13th

International Conference on Supercomputing, ICS ’99,

pages 155–164, New York, NY, USA, 1999. ACM.

[68] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai

Eran, Gerd Zellweger, Austin Bolen, Liran Liss, Adam

Morrison, and Dan Tsafrir. IOctopus: Outsmarting

Nonuniform DMA. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems,

ASPLOS ’20, page 101–115, New York, NY, USA, 2020.

Association for Computing Machinery.

[69] Splash-3 Benchmark Suite. https://github.com/

SakalisC/Splash-3, accessed 2019-07-24.

[70] Brent Stephens, Aditya Akella, and Michael Swift.

Loom: Flexible and Efficient NIC Packet Scheduling. In

16th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19), pages 33–46, Boston,

MA, February 2019. USENIX Association.

[71] W. Su, L. Zhang, D. Tang, and X. Gao. Using

Direct Cache Access Combined with Integrated NIC

Architecture to Accelerate Network Processing. In

2012 IEEE 14th International Conference on High

Performance Computing and Communication 2012

IEEE 9th International Conference on Embedded

Software and Systems, pages 509–515, June 2012.

[72] Roman Sudarikov and Patrick Lu. Hardware-Level

Performance Analysis of Platform I/O, June 2018.

https://dpdkprcsummit2018.sched.com/event/

EsPa/hardware-level-performance-analysis-

of-platform-io, accessed 2019-07-24.

[73] Supermicro. 1028UX-LL1-B8, 1028UX-LL2-B8,

and 1028-LL3-B8 User’s Manual. https://www.

supermicro.com/manuals/superserver/1U/MNL-

1886.pdf, accessed 2019-07-24.

[74] Supermicro. 6028UX-TR4 User’s Manual.

https://www.supermicro.com/manuals/

superserver/2U/MNL-1706.pdf, accessed 2019-07-

24.

[75] D. Tang, Y. Bao, W. Hu, and M. Chen. DMA cache:

Using on-chip storage to architecturally separate I/O

data from CPU data for improving I/O performance. In

HPCA - 16 2010 The Sixteenth International Symposium

on High-Performance Computer Architecture, pages 1–

12, Jan 2010.

[76] Mohammadkazem Taram, Ashish Venkat, and Dean

Tullsen. Packet Chasing: Spying on Network Packets

over a Cache Side-Channel, 2019. https://arxiv.

org/pdf/1909.04841.pdf, accessed 2019-09-15.

[77] Mohammadkazem Taram, Ashish Venkat, and Dean

Tullsen. Packet Chasing: Observing Network Packets

over a Cache Side-Channel. In Proceedings of the 47th

688 2020 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://github.com/SakalisC/Splash-3
https://github.com/SakalisC/Splash-3
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://arxiv.org/pdf/1909.04841.pdf
https://arxiv.org/pdf/1909.04841.pdf

International Symposium on Computer Architecture,

ISCA ’20, New York, NY, USA, 2020.

[78] Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic,

Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan,

Claude Barthels, Yaohua Wang, Mohammad Sadrosa-

dati, Saugata Ghose, Ankit Singla, Pratap Subrah-

manyam, and Onur Mutlu. Enabling Efficient RDMA-

based Synchronous Mirroring of Persistent Memory

Transactions. CoRR, abs/1810.09360, 2018.

[79] Temporary PCIe Bandwidth Drops on Haswell-v3.

https://software.intel.com/en-us/forums/

software-tuning-performance-optimization-

platform-monitoring/topic/600913, accessed

2019-07-24.

[80] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker,

and George Porter. Dark Packets and the End of Network

Scaling. In Proceedings of the 2018 Symposium

on Architectures for Networking and Communications

Systems, ANCS ’18, pages 1–14, New York, NY, USA,

2018. ACM.

[81] Shelby Thomas, Geoffrey M. Voelker, and George

Porter. CacheCloud: Towards Speed-of-light Datacenter

Communication. In 10th USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud 18), Boston, MA,

July 2018. USENIX Association.

[82] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone,

Robert Soulé, and Noa Zilberman. The Case For In-

Network Computing On Demand. In Proceedings of

the Fourteenth EuroSys Conference 2019, EuroSys ’19,

pages 21:1–21:16, New York, NY, USA, 2019. ACM.

[83] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin

Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott

Shenker. ResQ: Enabling SLOs in Network Function

Virtualization. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

18), pages 283–297, Renton, WA, April 2018. USENIX

Association.

[84] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:

A SmartNIC-Driven Accelerator-Centric Architecture

for Network Servers. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems,

ASPLOS ’20, page 117–131, New York, NY, USA, 2020.

Association for Computing Machinery.

[85] X. Wang, S. Chen, J. Setter, and J. F. Martínez. SWAP:

Effective Fine-Grain Management of Shared Last-Level

Caches with Minimum Hardware Support. In 2017

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 121–132, Feb

2017.
[86] Thomas Willhalm, Roman Dementiev, and Patrick

Fay. Intel Performance Counter Monitor - A

Better Way to Measure CPU Utilization, Jan 2017.

https://software.intel.com/en-us/articles/

intel-performance-counter-monitor, accessed

2019-07-24.

[87] Henry Wong. Intel Ivy Bridge Cache Replacement

Policy. http://blog.stuffedcow.net/2013/01/

ivb-cache-replacement/, accessed 2019-07-24.

[88] Xeon E5 disable DDIO in OS? https://forums.

intel.com/s/question/0D50P0000490VP0SAM/

xeon-e5-disable-ddio-in-os?language=en_US,

accessed 2019-07-24.

[89] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu

Wang, Yingwei Luo, and Zhenlin Wang. DCAPS:

Dynamic Cache Allocation with Partial Sharing. In

Proceedings of the Thirteenth EuroSys Conference,

EuroSys ’18, pages 13:1–13:15, New York, NY, USA,

2018. ACM.

[90] Cong Xu, Karthick Rajamani, Alexandre Ferreira,

Wesley Felter, Juan Rubio, and Yang Li. dCat: Dynamic

Cache Management for Efficient, Performance-sensitive

Infrastructure-as-a-service. In Proceedings of the

Thirteenth EuroSys Conference, EuroSys ’18, pages

14:1–14:13, New York, NY, USA, 2018. ACM.

[91] M. Xu, L. Thi, X. Phan, H. Y. Choi, and I. Lee. vCAT:

Dynamic Cache Management Using CAT Virtualization.

In 2017 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 211–222, April

2017.

[92] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.

HALO: Accelerating Flow Classification for Scalable

Packet Processing in NFV. In Proceedings of the 46th

International Symposium on Computer Architecture,

ISCA ’19, pages 601–614, New York, NY, USA, 2019.

ACM.

[93] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A

Closer Look at NFV Execution Models. In Proceedings

of the 3rd Asia-Pacific Workshop on Networking 2019,

APNet ’19, pages 85–91, New York, NY, USA, 2019.

ACM.

[94] N. Zilberman, Y. Audzevich, G. A. Covington, and

A. W. Moore. NetFPGA SUME: Toward 100 Gbps

as Research Commodity. IEEE Micro, 34(5):32–41,

Sep. 2014.

USENIX Association 2020 USENIX Annual Technical Conference 689

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US

	Introduction
	Direct Cache Access (DCA)
	Data Direct I/O Technology (DDIO)
	How can DDIO become a Bottleneck?

	Understanding Details of DDIO
	Occupancy
	I/O Contention
	DMA via Remote Socket
	Tuning Occupancy and Disabling DDIO

	Characterization of DDIO
	Packet Size and RX Descriptors
	Packet Rate and Processing Time
	Numbers of Cores and DDIO Capacity

	Application-level Performance Metrics
	Is DDIO Always Beneficial?
	Future Directions for DCA
	Bypassing Cache

	Lessons Learned: Optimization Guidelines
	Related Work
	Conclusion

