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Abstract

Kertesz et al. (Nature Genetics 2008) described PITA, a miRNA target prediction algorithm based on hybridization energy
and site accessibility. In this note, we used a population genomics approach to reexamine their data and found that the
PITA algorithm had lower specificity than methods based on evolutionary conservation at comparable levels of
sensitivity. We also showed that deeply conserved miRNAs tend to have stronger hybridization energies to their targets
than do other miRNAs. Although PITA had higher specificity in predicting targets than a naı̈ve seed-match method, this
signal was primarily due to the use of a single cutoff score for all miRNAs and to the observed correlation between
conservation and hybridization energy. Overall, our results clarify the accuracy of different miRNA target prediction
algorithms in Drosophila and the role of site accessibility in miRNA target prediction.
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Introduction

Population genomics has been suggested as a method of

evaluating the accuracy of genome-wide predictions of cis-

regulatory sites [1–4]. The idea is to use polymorphism data and

population genetics techniques to estimate the level of purifying

selection on predicted cis-regulatory sites genome-wide and to use

this quantity as a proxy for the accuracy of the prediction

algorithm. The underlying assumption is that an accurate

prediction algorithm should identify functionally important sites

that are likely to be under selective constraint. This is the same

assumption underlying comparative genomics approaches but the

population genomics approach is sensitive to natural selection of a

different strength and on a different time scale. It is likely to

become more useful in the future with the advent of high-

throughput genome resequencing.

In this note we used a population genomics approach to

reexamine the methods and data presented in Kertesz et al. [5].

There the authors presented a method for predicting miRNA

binding sites in Drosophila using the score ddG = dG(duplex)–

dG(open) where dG(duplex) is the hybridization energy of the

miRNA to the binding site and dG(open) is the energy required to

open the local RNA secondary structure around the binding site.

The ddG score was used to rank all possible miRNA seed matches

in 39 UTRs (see [5] for details on the method). On a set of 190

experimentally validated target sites, the method was shown to

perform more accurately than several leading methods, including

Pictar [6,7] and the method of Stark et al. [8], that do not use site

accessibility but instead require conservation of seed matches

between species. We found this result surprising because we

expected that conservation would implicitly select for all sequence

determinants of functional miRNA binding, including site

accessibility. We therefore sought to corroborate the results of

Kertesz et al. using a population genomics approach.

Results

We used whole genome shot-gun sequence data from six inbred

lines of D. simulans from the Drosophila Population Genomics

Project [9] to estimate levels of polymorphism within D. simulans

and divergence between D. simulans and D. melanogaster (Methods).

To verify the accuracy of the data and our data processing

methods, we first examined the patterns of polymorphism and

divergence in miRNA genes (Table S1). These patterns have been

established in previous studies of divergence across species [e.g.

10,11] and within species [4,12] and thus are a good test of data

quality. We note that such an analysis was not possible in our

previous study of SNPs in human miRNAs [1] or in miRNA

resequencing studies in humans and Arabidopsis [13–15] because

of the low rate of polymorphism in these species compared to

Drosophila.

Our analysis of evolutionary patterns in miRNA genes

confirmed the following hierarchy of selective constraint on the

different parts of the miRNA precursor: seed.mature miRNA.

star miRNA.loop.flanking control region (Text S1). Our

analysis of indel patterns also confirmed that D. simulans miRNAs

are more strongly depleted of indels than nucleotide substitutions

compared to flanking control regions (Text S1), as previously

observed between mammalian species [11]. A notable observation

from our analysis is that the miRNA precursor loop length is under

stabilizing selection since we observed a strong depletion of indels

in the loop relative to flanking control regions (Table S2, Text S1)
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(one-sided Z test, insertions Z.3.4, P-value,0.0003, deletions

Z.3.9, P-value,4.8e-5). This suggests that miRNA precursor

loop length is functionally important, consistent with previous

experimental [16] and computational [17] data.

Having studied the evolutionary patterns of miRNA genes, we

next reexamined the data presented in [5] that showed higher

accuracy for PITA in comparison to the other miRNA target

prediction methods using the area under the curve (AUC) metric

applied to 190 previously validated miRNA targets. In contrast to

those data, we found that Pictar [6.7] and the method of Stark et al.

[8] (hereafter referred to as the ‘‘Stark method’’) had significantly

higher accuracy than PITA as quantified by three measures of

selective constraint: SNP density (Z.19.6, P-value 0), substitution

density (Z.26.6, P-value 0) and the McDonald-Kreitman test (P-

value 5e-7) [18] (Methods, Figure 1, Table S3). Pictar and PITA

had similar sensitivity, defined here as the total number of

predicted targets (Table S3). We hypothesize that the discrepancy

between our results and those of [5] is due to a systematic bias in

the choice of the 190 validated targets in [5]: many of those targets

may have been selected for experimental validation because they

were predicted by computational methods based on conservation.

Since we found that the three measures of selective constraint we

used were entirely consistent across all the different data sets

(Table S3) we report only P-values for substitution density in the

rest of this note.

We validated the results of Figure 1 in three ways. First, to

account for possible sequence-dependent mutation rate biases,

we used published mutation rates of different bases in Drosophila

[19] to correct the raw SNP and substitution densities (Methods).

This correction decreased the difference between the selective

constraint inferred on PITA-predicted targets versus Pictar and

Stark-predicted targets by 7–8.5% but did affect our overall

conclusions. Second, we explored the parameter space of the

three algorithms by varying the number of species used by Pictar

(4 vs. 6 species), the Branch Length Scores of the Stark method

[8] and the accessibility settings of PITA (0/0 vs. 3/15 settings)

(Methods). Our results showed that conservation outperformed

site accessibility as estimated by PITA over a wide range of

conservation and accessibility settings (Table S3). Since the two

accessibility settings behaved very similarly in our analysis, we

present only results for the 0/0 set for the rest of this note.

Third, we compared our results to other studies that compared

miRNA target prediction methods using protein abundance data

following miRNA transfection or knock-down [20,21]. These

quantitative proteomics methods also showed higher accuracy

for conservation-based approaches compared to other methods,

including PITA.

Since PITA does not use conservation, we next tested if PITA

outperformed a simple baseline method: a naı̈ve seed-match

procedure that predicts all sequences reverse-complementary to

bases 1–7 or 2–8 from the 59 end of a mature miRNA as a target

site. We found that PITA indeed improved on the naı̈ve method

(Table S3, P-value,0.00003) but in the process we noticed that

the set of PITA predicted targets was highly biased towards a small

number of miRNAs. Such a bias can be caused by the use of a

single cutoff score to rank all candidate miRNA sites in the

genome, as opposed to fitting a separate cutoff score for each

miRNA individually (e.g. RNAhybrid [22], Pictar [6,7]). Neither

approach is obviously superior because the appropriate cutoff for

each miRNA ultimately depends on the cellular concentration of

the miRNA averaged over various tissues and developmental

stages, a quantity that is not currently available. Nonetheless, it is

Figure 1. Substitution density in different classes of sites. From left to right: 39 UTR, miRNA seed matches (sequences in 39 UTRs reverse-
complementary to bases 1–7 or 2–8 of mature miRNAs), PITA sites (top 15000 sites ranked by ddG, 0/0 set), Pictar sites (S1 set), Accessibility
conservation (conserved but not necessarily aligned sites with ddG,27 in each of 4 species), Conserved 8mers (conserved and aligned in 4 species),
Conserved Pictar sites (S1 anchors, i.e. only conserved S1 sites), Stark sites (Branch Length Score = 0.9).
doi:10.1371/journal.pone.0005681.g001

miRNA Site Accessibility
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worth noting that when applied genome-wide, either method could

potentially cause strong biases in the subset of miRNAs selected.

We hypothesized that deeply conserved miRNAs, defined as

miRNAs conserved in vertebrates, Drosophila and nematodes [23],

have stronger hybridization energy to their targets than other

miRNAs, perhaps because they have been optimized towards

stronger hybridization energy. Given their extreme conservation

we expected that these miRNAs and their targets would be

functionally important. Indeed we found many more binding sites

for deeply conserved miRNAs among the top PITA targets ranked

by dG(duplex) (39%) and ddG (33%) compared to dG(open) (20%)

or local AU content (21%), a simple alternative method of

estimating site accessibility (Methods). Deeply conserved miRNAs

accounted for 29% of all seed matches. This pattern was also clear

when we relaxed the criterion to miRNAs conserved in Drosophila

and either vertebrates or nematodes (data not shown). We also

found that ranking by dG(duplex) alone performed better than the

naı̈ve method (P-value 0.0002) while ranking by dG(open) alone

performed slightly worse, though not significantly so (P-value 0.16)

(Methods). We concluded that the primary determinant for PITA’s

better performance than the naı̈ve method was hybridization

energy, not accessibility, along with the observation that deeply

conserved miRNAs have stronger hybridization energy to their

targets than other miRNAs.

At a practical level, one could consider combining conservation,

hybridization energy and site accessibility to predict miRNA

targets. We thus tested two simple implementations of this idea.

First, we simply ranked conserved Pictar sites by their PITA score.

We observed an increase in the selective constraint among the

highly ranked sites but were unable to make statistically significant

statements due to the small amount of polymorphism data

available (Table S3). Second, we predicted sites using conservation

of accessibility (Methods). Briefly, we required a seed match in

each species with a ddG below a threshold that we varied from 0

to 27 kcal/mol. However, to increase sensitivity and the amount

of polymorphism available for analysis, we did not require the

binding sites to be aligned but just that they appear anywhere in

each orthologous 39 UTR. We found a marginally significant

trend for sites predicted using the 27 kcal/mol threshold to

improve on sites predicted using the 0 kcal/mol threshold (P-

value = 0.09, Methods). This result suggests that using conserva-

tion of accessibility gives a small improvement in predicting

miRNA targets though we do not rule out that more sophisticated

techniques could lead to a larger improvement.

Discussion

In summary, our population genomics study produced three main

findings: first, miRNA precursor loop length is under stabilizing

selection in D. simulans; second, the relative accuracy of the miRNA

prediction algorithms evaluated in Kertesz et al. [5] may require some

revision; third, the hybridization energy of deeply conserved miRNAs

to their targets tends to be stronger than that of other miRNAs.

Several methods of evaluating the accuracy of miRNA target

prediction algorithms are commonly used. These include com-

parative genomics [24,25], quantification of mRNA or protein

abundance following miRNA over-expression or knock-down

[19,20,26], immunoprecipitation of a RISC component (i.e. the

protein complex that binds the miRNA) followed by analysis of the

bound mRNAs by sequencing or microarrays (e.g. [27,28]) and

experimental validation of individual miRNA targets (e.g. using

luciferase assays) [reviewed in 29]. The population genomics

approach has several advantages over these methods. First, unlike

comparative genomics, it is applicable to species-specific miRNA

sites. Although it is difficult to estimate the number of species-specific

sites under selection, previous work suggested that it is at least on the

same order of magnitude as conserved sites [1]. Second, experi-

mental approaches only test if the expression of a gene is repressed

and not if the expression difference has a downstream effect on

phenotype. Moreover, some experiments are performed under non-

physiological conditions, e.g. over-expression of the miRNA or assay

in a heterologous cell type. The population genetics approach

examines the footprint of natural selection which implies a selectable

phenotype, possibly even a subtle one that cannot be assayed in the

lab. Third, unlike the experimental approaches that focus on a few

miRNAs, experimental conditions or targets, it evaluates all miRNA

binding sites in the genome.

Conversely, the population genomics approach suffers from its

own disadvantages. One major disadvantage is that the amount of

polymorphism in a population is typically small and therefore allows

only an aggregate estimate of the accuracy of all miRNA binding

sites. It is currently not possible to estimate the accuracy of targets for

a particular miRNA, let alone a particular binding site. This situation

could change given a quantum leap in sequencing technology that

would allow a much larger number of genomes to be analyzed and

thereby provide accurate estimates of low-frequency polymorphisms.

A second disadvantage is that population genomics methods

typically make implicit mathematical assumptions about the

structure of populations (e.g. random mating) and genomes (e.g.

uniform mutation rates) that may be inappropriate in some

situations. In the context of the D. simulans data, one question is

how well the six inbred lines are modeled as a randomly mating

population. Overall the population genomics approach should be

considered complementary to other approaches.

This study extends our previous analysis of genotyped human

SNPs in miRNA binding sites [1] in several ways. First, the human

SNP data are known to suffer from ascertainment bias (e.g. SNPs

in non-synonymous sites were over-sampled) [30] and there was

the possibility that some bias remained in spite of our controls.

Second, SNP data are only a subset of all the polymorphisms

across the genome. Third, the SNP data did not contain

rearrangements such as indels. Fourth, we extended the analysis

to an important model organism for population genetics, D.

simulans. Fifth, we were able to study the evolution of miRNA

genes whereas we did not have enough data to do this in humans.

The current study confirmed the result from [1] that conserved

miRNA sites are under strong negative selection even compared to

other conserved 39 UTR 8mers (P value,0.00007 in 4 species).

However, unlike in humans [1], the naı̈ve seed match method

showed a signal of selective constraint relative to 39 UTRs in D.

simulans (P value,0.0006). Plausible reasons for this difference

include the larger effective population size of Drosophila, longer 39

UTRs in humans leading to more spurious seed matches and more

non-conserved miRNAs annotated in humans than Drosophila.

While it was unsurprising that selective constraint on conserved

miRNA sites was stronger than on non-conserved miRNA sites

and selective constraint on accessible sites fell between these two

extremes, the aim of our study was to determine the precise

magnitude of the differences in selective constraint between these

different data sets. In particular, we found significantly higher

selective constraint on conserved miRNA sites than on accessible

miRNA sites as computed by PITA.

Materials and Methods

Data
We used miRNA gene annotations from Rfam 10.0 [31] and

supplemented them with annotations from [32]. We obtained D.

miRNA Site Accessibility
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simulans genome sequence data from the Drosophila Population

Genetics Project (http://www.dpgp.org) [8]. We downloaded

Pictar miRNA target predictions [33] from the UCSC genome

browser [34]. We downloaded PITA miRNA target predictions

and the PITA executable [5] from http://genie.weizmann.ac.il/

pubs/mir07/index.html and miRNA target predictions from Stark

et al. [7] from http://compbio.mit.edu/fly/motif-instances.

There are two sets of Pictar predictions: the S1 set uses

conservation in D. melanogaster, D. yakuba, D. ananassae and D.

pseudoobscura and the S3 set uses conservation in these four species

as well as D. mojavensis and D. virilis. ‘‘Anchors’’ are conserved

miRNA sites while the full S1 or S3 set also contains some species-

specific miRNA sites. There are also two sets of PITA predictions:

the 0/0 set does not require unpaired bases flanking the miRNA

sites, while the 3/15 set requires 3 bases upstream and 15 bases

downstream of the miRNA sites to be unpaired. These sets of

parameters were learned from the training data in [5]. The Stark

predictions have a BLS (Branch Length Score) parameter which

refers to the fraction of total branch length on the phylogenetic

tree on which the miRNA site is conserved.

We mapped all predicted miRNA target sites to genomic

coordinates (D. melanogaster Release 4). Since a significant fraction

of genes do not have experimentally supported 39 UTRs, some

algorithms simply use a fixed amount of genomic sequence

downstream from the stop codon as the 39 UTR. This procedure

can lead to significant differences between different sets of miRNA

target predictions so we considered only miRNA binding sites in

annotated RefSeq 39 UTRs. 39 UTR alignments and RefSeq

mRNA annotations were processed as previously described [6].

Processing of D. simulans genome sequence data
Because of the low coverage of the shotgun sequence data and

the variable number of lines sequenced across the genome, we

chose not to estimate allele frequencies but only the presence or

absence of SNPs and substitutions. Since low-coverage shotgun

sequence data is prone to sequencing errors, we discarded bases

with quality score ,16, which corresponds to an error probability

of ,20%. We assume a base in D. simulans is the same as the D.

melanogaster allele unless there is a different base passing the

threshold score in at least one line. This assumption is correct in

,95% of the cases, since the sequence divergence between the two

species is ,5% [8]. If there is a different D. simulans base, we

assume that the base is a fixed substitution in D. simulans unless

there is at least one other base passing the threshold score. This

assumption is correct in ,99% of cases since the polymorphism

rate in D. simulans is ,1% [8]. For insertions, we compared the

minimum score of any base in the insertion to the threshold.

Although the exact substitution and indel rates we report are

sensitive to our choice of threshold, we based our conclusions only

on the relative rates in different functional classes of nucleotides

which are not biased by the choice of threshold since there is no

reason to expect different functional classes to have different rates

of sequencing error. Error bars in all tables and figures represent

one standard deviation from a binomial distribution: square-root

[np(1-p)] where n is the number of bases and p is the probability of

the mutation falling into a particular segment. For Table S3 we

made the additional approximation 1-p<1.

Population genomic tests
Lower SNP and substitution densities are consistent with

stronger negative selection but these measures can be affected by

variation in the mutation rate across the genome, for example due

to base composition. One way to eliminate biases caused by

mutation rate variation is to compare the ratio of fixed

substitutions to polymorphisms using a Chi square test within

the framework of the McDonald-Kreitman (MK) test [17] because

mutation biases are expected to affect substitutions and polymor-

phisms equally. Although the MK test can be biased when used on

a set of a genes with different genealogies, it is not biased when

there is free recombination between all SNPs, an assumption we

find reasonable for miRNA binding sites scattered across the

genome and for Drosophila, in which the extent of linkage

disequilibrium is generally low.

To compare the selective constraint on different classes of sites,

we used two statistical tests. First, we used a one-sided Z test on the

substitution or SNP density since for large sample sizes the

distribution of the difference in substitution or SNP densities is

approximately normally distributed. Selection is expected to affect

divergence more strongly than polymorphism (an expectation

realized in our data) so we mainly presented P-values for

substitution density in the main text. Second, we used a Chi

square test to compare the ratios of substitutions to polymorphisms

of the two classes, applying the logic of the MK test.

Comparison of miRNA target site predictions
For the comparison between Pictar, Stark and PITA, the

specific parameters we compared were Pictar S1 anchors, Stark

BLS score 0.9 and PITA 3/15 set. See the section Data above for

details of these three sets. As shown in Table S3, we find entirely

consistent results when varying the conservation parameters (i.e.

SNP and substitution densities decreased with increasing cross-

species conservation) and there was little difference between the

different accessibility settings of PITA (3/15 vs. 0/0).

For the AU content analysis, in the main text we reported values

for AU content in a window of 100-nt surrounding the binding

site. We repeated our analysis for windows in the range 40–100-nt

in increments of 20-nt and established that the ranges of the

substitution density (28.8–30.2 per kb) and SNP densities (21.0–

22.9 per kb) were small.

For the comparison of top PITA sites ranked by ddG,

dG(duplex), dG(open) and AU content, we took the top 15000

sites as suggested by [5]. For all the target predictions, the measure

of sensitivity used is the number of targets predicted and is not

based on a reference set of validated targets.

Correction for sequence dependent mutation bias
The top 15000 PITA sites (both 0/0 and 3/15 sets) have higher

GC content than all miRNA seed matches (51–54% for PITA vs.

37% for all miRNA seed matches). Previous studies of the neutral

mutation pattern in Drosophila using dead-on-arrival non-LTR

retrotransposable elements in euchromatic regions suggested that

the neutral mutation rate of G’s and C’s is 50% higher than A’s

and T’s [18]. Although these mutation rates were not estimated

separately for transcribed sequences, we found that the patterns in

39 UTRs for SNPs and rooted substitutions (using D. yakuba as an

outgroup) were comparable to the previous estimate (30% and

55% respectively). We thus used the 50% rate to correct the

constraint estimates we computed for PITA sites, and we estimate

that constraint on the top 15000 PITA sites is 7–8.5% higher than

recorded in Table S3. Nonetheless, this correction does not affect

the overall conclusions of our study.

MiRNA site accessibility analysis
To predict miRNA sites using conservation of miRNA site

accessibility, we used PITA with default parameters to predict

miRNA sites individually in orthologous 39 UTRs from D.

melanogaster, D. yakuba, D. ananassae and D. pseudoobscura, the same

four species used in the S1 settings of the Pictar miRNA site

miRNA Site Accessibility
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predictions. We considered a gene to be targeted by a miRNA if

there was a miRNA site (not necessarily aligned) with ddG below a

certain threshold in all four orthologous 39 UTRs. We took

thresholds of 0, 21, 23, 25 and 27 kcal/mol. We chose

27 kcal/mol because it is roughly the cutoff used for the top PITA

3/15 set of targets (27.16 kcal/mol). For 39 UTRs with more than

one site for the miRNA, we took the minimum ddG.

Supporting Information

Table S1 List of microRNAs removed from the analysis

Found at: doi:10.1371/journal.pone.0005681.s001 (0.15 MB

PDF)

Table S2 Insertions and deletions in microRNA genes

Found at: doi:10.1371/journal.pone.0005681.s002 (0.26 MB

PDF)

Table S3 Substitution density, SNP density and McDonald-

Kreitman ratios of different classes of sites

Found at: doi:10.1371/journal.pone.0005681.s003 (0.05 MB

DOC)

Text S1 Evolutionary Patterns in MicroRNA Genes

Found at: doi:10.1371/journal.pone.0005681.s004 (0.04 MB

DOC)
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