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Abstract

Refactoring is the process of changing the design of a program without changing what it does.

Typical refactorings, such as function extraction and generalisation, are intended to make a program

more amenable to extension, more comprehensible and so on. Refactorings differ from other sorts

of program transformation in being applied to source code, rather than to a ‘core’ language within a

compiler, and also in having an effect across a code base, rather than to a single function definition,

say. Because of this, there is a need to give automated support to the process. This paper reflects on

our experience of building tools to refactor functional programs written in Haskell (HaRe) and Erlang

(Wrangler). We begin by discussing what refactoring means for functional programming languages,

first in theory, and then in the context of a larger example. Next, we address system design and details

of system implementation as well as contrasting the style of refactoring and tooling for Haskell and

Erlang. Building both tools led to reflections about what particular refactorings mean, as well as

requiring analyses of various kinds, and we discuss both of these. We also discuss various extensions

to the core tools, including integrating the tools with test frameworks; facilities for detecting and

eliminating code clones; and facilities to make the systems extensible by users. We then reflect

on our work by drawing some general conclusions, some of which apply particularly to functional

languages, while many others are of general value.

1 Introduction

Our aim in this paper is to give an overview of our work in building refactoring tools for

Haskell and Erlang, and to reflect on what we have learned and understood in the process,

not only about refactoring and refactoring tool building for these two languages but also

about refactoring for functional programs in general. In the process we have also made a

number of research contributions, and these are summarised too.

The paper will be of value to tool builders and designers, as it reflects on the difficulties

and design tradeoffs involved in building practical tools; to language designers, for the

reflection on the languages that it provides; to users of the tools, as it will explain not only

their design rationale but also what is going on ‘under the hood’; to theorists, who can

understand the forms of program analysis needed; and finally to researchers in software

re-engineering and refactoring in general.

We begin by discussing what is meant by refactoring, and by refactoring for functional

programs. This begs the question of whether we can say anything about refactoring for

functional programs in general? Our sample of two languages – Haskell and Erlang – shows

the breadth of the category ‘functional’; here we briefly recall the differences between these
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two. Haskell (Marlow, 2010) is a lazy, strongly typed, purely functional language featuring

higher-order functions, polymorphism, overloading via type classes and monadic effects.

Erlang (Armstrong, 2007) is a strict, weakly typed functional programming language with

built-in support for concurrency, communication, distribution, and fault-tolerance. The

concurrency primitives and others have side effects. Erlang has an integrated macro lan-

guage and processor.

Erlang has a single distribution which forms the de facto standard; the Haskell standard

has been through a number of iterations, but the Glasgow Haskell Compiler (GHC) is

itself a de facto standard for a superset of Haskell 2010. The standard Erlang distribution

comes with a number of libraries, including the Open Telecom Platform (OTP) as well

as more specialised libraries, including syntax tools, that gives an abstract interface to

the syntax trees produced by the compiler. Haskell is distributed as the Haskell Platform

(Haskell Platform, 2010) and this and other packages are available from Hackage (2010),

an online repository for open source Haskell projects.

We begin in Section 2 by introducing refactoring and discussing what it means for

functional programs in general, introducing along the way a couple of sample refactorings.

Section 3 complements this by presenting a larger case study of refactoring a functional

program, and discusses which of the refactorings mentioned might be implemented in

a tool. Section 4 then gives a high-level introduction to the refactoring tools HaRe and

Wrangler, including a brief overview of their design rationale.

Section 5 discusses the implementations of HaRe and Wrangler in more detail, including

how they are integrated with various editors and Integrated Development Environments

(IDEs); this is followed in Section 6 by an examination of how Wrangler is used in practice.

Reflecting on our work, Section 7 discusses a number of design choices we had to make in

implementing the refactorings in these tools. The various static analyses which underpin

the correctness of the tools are explained in Section 8.

We then turn to various ways in which the tools are enhanced. Section 9 explains how

the refactorings implemented in Wrangler are modified to respect the various conventions

of testing frameworks for Erlang as well as how refactoring tools can be tested. Section 10

gives an overview of clone detection in Wrangler and HaRe, which gives users reports on

the presence of code clones across projects; this is illustrated with case studies on clone

detection in an industrial project and the incremental clone detection facilities of Wrangler.

Section 11 describes the reports on problems in module structure as well as other code

‘bad smells’. Section 12 covers the definition of an Application Programming Interface

(API) to describe refactorings and a domain-specific language to ‘script’ composite refac-

torings; the API and Domain-Specific Language (DSL) are illustrated in a practical ex-

ample. Related work is discussed in Section 13, and in Section 14 we make a number of

general reflections on the projects and give an overview of their research contributions.

Finally, in Section 15 we draw some conclusions and look at future directions for work in

this area.

2 Refactoring functional programs

Refactoring is the process of changing how a program achieves a result without changing

what the result is. Refactorings are transformations to source code, and take place during
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program development, evolution and maintenance. The term ‘refactoring’ was popularised

by the book of the same name (Fowler, 1999), but this form of program restructuring has

surely gone on ever since programs have been written.

What is distinctive about refactoring functional programs? In order to answer this, we

first have to examine in a little more detail about what we mean by ‘functional program-

ming’ and ‘refactoring’ here.

Functional programming. The functional programming languages that we have worked

with in detail – Haskell and Erlang – have many differences, but at their core is computation

by expression evaluation, as exemplified by the λ -calculus. Refactorings at the λ -calculus

level consist of expression manipulations modulo βη-equality. An example, which sees

the elimination of a common sub-expression followed by an η-contraction, would be:

λx.z((λw.yw)x(λw.yw)) = (λ p.λx.z(pxp))(λw.yw) = (λ p.λx.z(pxp))y

However, to be of practical value, a language also needs to have data types, and to have the

ability to make definitions, so our working definition of functional programming (for the

purpose of the discussion in this section, at least) can be summarised as

functional programming = expressions + definitions + data types

Refactorings of a full functional language will affect all three aspects of the language.

Refactoring. In general, refactoring is a program transformation, but two other aspects

of the process are equally important. Many refactorings have non-trivial preconditions; for

example, renaming an object of some kind can disrupt the static semantics of the program,

and so it is necessary to check that this does not happen if the transformation is indeed

to be meaning preserving. These conditions are not simply syntactic, but can depend on

static semantics (for binding information), types, module structure and other features; this

is discussed in more detail in Section 8.

The need to apply a refactoring may well be indicated by a program ‘bad smell’, that

is some symptom of the refactoring being both applicable and desirable: smells can range

from the local – unnecessary use of the application operator $ in Haskell, say – to the

global – such as the presence of an import cycle in the module graph. Summing this up in

a slogan, we can say

refactorings = transformations + preconditions + bad smells.

To give a concrete example, consider the process of removing code clones. The ‘bad smell’

is the presence of duplicate code, and this is eliminated by transforming each clone into a

call to a common generalisation; such a transformation is only possible if the generalisation

can be defined so that the meanings of the various clones are consistent.1

Refactorings are different from the more traditional program transformations that appear

in compiler optimisations, for instance. These transformations are usually uni-directional,

improving (say) the efficiency of a program, whereas many refactorings are bi-directional:

1 This would include checking that bindings to free identifiers within the bodies are themselves consistent among
other conditions; we discuss this further below in Section 8.
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transformation pre-condition bad smell

local global

expression

definition

data type

Fig. 1. Classifying refactorings: ✓primary aspect, ✓secondary aspect.

a data type might be transformed into an ADT to allow flexibility in its implementation,

whereas the reverse transformation allows pattern matching to be used in definitions. More-

over, because they are transformations of the source code of programs, and their results are

expected to be intelligible to the programs’ authors, their implementation needs to be aware

of program layout and commenting.

2.1 Functional refactorings

With these characterisations in mind, we can analyse different kinds of refactorings that

are possible for functional programs, as shown in Figure 1, which we discuss in more

detail now. We use the black and grey tick symbols to indicate primary and secondary

characteristics of refactorings involving different syntactic categories so that ‘expression’

refactorings are typically local, and characterised by a particular ‘bad smell’; there may

also be preconditions on their application, but these are less significant in this case. The

distinction here between ‘local’ and ‘global’ transformations is reflected in the wider liter-

ature on refactoring: for instance, Murphy-Hill et al. (2009) use the terms ‘low-level’ and

‘high-level’ respectively.

Expressions. At this level, the effect of any single transformation will be localised to an

expression occurring within a particular definition. These refactorings are often charac-

terised by a ‘bad smell’, such as bad programming style or verbosity, which is removed by

the transformation.

The tools Tidier (Sagonas & Avgerinos, 2009) for Erlang and HLint (Mitchell, 2011)

for Haskell implement expression-level refactorings: Tidier implements a set of chosen

transformations, fully automatically, whereas HLint serves to point out bad smells that can

be eliminated by the user. Feedback from HLint takes the form of advice on the smell and

how it can be removed:

src\DateTester.hs:50:1: Warning: Use >>=

Found

do ms <- getMatchers d

putStr . unlines . map (showMatcher c) $ ms

Why not

getMatchers d >>= (putStr . unlines . map (showMatcher c))

and examples of the application of Tidier can be found in Sagonas & Avgerinos (2009). In

the HLint manual Mitchell ( 2011) discusses the reasons for not applying the transforma-

tions automatically, not least of which is the fact that it is difficult to use the existing Haskell
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front-end toolset to reformat code so that it looks similar to the untransformed code. On

the whole, the preconditions of these transformations are not onerous to compute, and in

many cases applying the transformation is simply a matter of matching syntactic patterns.

Definitions and data types. Turning to these, the characteristics of the refactorings are

different. The transformations tend to be global: a change in the name of an identifier

will have an effect in every module that uses that binding, for instance. Moreover, the

preconditions are non-trivial: checking that a renaming is meaning-preserving will depend

on a static semantic analysis of each client module for the renamed binding. In a similar

way, changing a data type from a concrete representation to an abstract type will affect

each use site of data of that type.

To give a concrete example, one of the most useful elementary refactorings is to gener-

alise a program item, typically a function, over some specific value ‘hard wired’ into the

definition so that it can be reused more easily. In an example from Erlang, the function

add_one, which adds one to every element of a list,

-module(test).

-export([f/1,add_one/1]).

add_one([H|T]) -> [H+1 | add_one(T)];

add_one([]) -> [].

f(X) -> add_one(X).

is generalised over the value 1 to yield this.

-module(test).

-export([f/1,add_one/2]).

add_one([H|T],N) -> [H+N | add_one(T,N)];

add_one([],_) -> [].

f(X) -> add_one(X,1).

Observe that the change here is not confined to the definition of add_one, but also every

call of add_one has to be changed too, not only in the test module but also in every

module that uses the definition. Finally, the list of exports needs to be updated, since arity

is significant in identifying a function in Erlang.2

Refactorings do not just apply to functions, but can also transform data type definitions

too. Moreover, a number of simple operations can be used to create a more complex

refactoring which transforms a concrete data type into an abstract version, as shown

in Figure 2. In this case the refactoring is the composition of number of simpler steps,

including the introduction of field names for algebraic types and the removal of pattern

matching.

2 Of course, now the function name is misleading, so we need to rename it to add int say.
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module Tree ( Tr(..) ) where

data Tr a = Leaf a

| Node (Tr a) (Tr a)

flatten :: Tr a -> [a]

flatten (Leaf x) = [x]

flatten (Node s t) = flatten s ++ flatten t

module Tree (Tr, leaf, left, right, isLeaf, isNode, mkLeaf, mkNode ) where

data Tr a = Leaf {leaf::a}

| Node {left,right::Tr a}

isLeaf (Leaf _) = True

isLeaf _ = False

mkLeaf = Leaf

isNode = ...

mkNode = ...

flatten :: Tr a -> [a]

flatten t

| isleaf t = [leaf t]

| isNode t = flatten (left t) ++ flatten (right t)

Fig. 2. A Haskell concrete data type of binary trees and its abstract equivalent.

These larger-scale refactorings are less likely to be characterised by clearly defined

smells: a name change is appropriate when the effect of (e.g.) a function is not properly

reflected by its name, but it is practically impossible to build an automated tool to spot

instances like this. On the other hand, some smells like ‘code duplication’ are only fully

detectable by means of automation.

In common with refactoring tools for other languages, in implementing our systems

HaRe and Wrangler we have concentrated on larger-scale refactorings, involving structural

elements and data types rather than expressions. We have done this because these refac-

torings are practically impossible without machine support, not only because of the global

nature of the transformations but also due to the complexity of checking side conditions in

many cases. Thus, our work is complementary to that in Tidier and HLint.

2.2 What is distinctively functional?

So, how is refactoring functional programs different from refactoring for other languages

and paradigms?

One difference lies in the nature of the languages. Because functional languages are

based on expression evaluation, the expression sub-language is much richer than in other

language paradigms. Tools like Tidier and HLint exploit this, and indeed even without
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these tools it is straightforward to implement this kind of transformation ‘by hand’ as a

matter of course during program development.

The nature of refactorings can be more general in a functional programming context;

we give two examples here. Firstly, the abstraction available in the languages allows

potentially side-effecting code to be wrapped in a closure: by means of this it is possible

to generalise a function over a side-effecting sub-expression in a meaning-preserving way.

Not every language supports the definition of closures in this way, whereas it would be

unusual for this not to be in a functional language. Secondly, the higher-order nature

of these languages allows any sub-expression of a function to be the subject of function

extraction or generalisation, say, whereas in other languages the types of arguments and

results may be limited.

In implementing larger-scale refactorings (and indeed smaller-scale too) there are further

differences. The semantics of functional languages, although not necessarily fully formally

defined, allow full checking of preconditions based on the static semantics of the language

in question. They can be decidable and not depend on calculations of control flow, aliasing

and so on.3

Finally, functional refactorings are potentially more trustworthy than for other paradigms.

For the pure subsets of languages at least, it is possible to test refactorings by randomly

generating programs in the languages, refactoring them randomly, and then testing the

results of old and new versions on randomly generated inputs.4 The relative simplicity

of the semantics of the languages makes implementation more straightforward, and also

admits the possibility, in principle at least, of proving the implementations of refactorings

correct, as discussed in Sultana & Thompson (2008).5

Other advantages apply only to particular languages. For example, laziness in Haskell

means that the result of a function call is always the same as inlining it: this will only be

true in a strict language if the instance of inlining still evaluates the function arguments.

3 Case study: refactoring for program comprehension

In this section we look at a case study of refactoring in practice, where we use refactoring

as a mechanism for program comprehension; the particular example is trying to make sense

of a student’s program to build a semantic tableau system for propositional logic in Haskell.

The purpose of this case study was to discover the kinds of refactorings that it makes

sense to automate in designing HaRe as well as to discuss the difficulties of implementing

other kinds. The candidates for refactoring are seen to be general (not only applicable in the

case study) and atomic (not capable of being broken down into simpler transformations).

The case study also demonstrates that machine-supported refactoring is typically only

one aspect of refactoring in general because many transformations are only applicable in

particular semantic contexts.

3 In practice, details of languages can undermine this. For example, it is possible in Erlang to convert strings
into identifiers, and so identifiers can be computed dynamically, preventing a watertight static analysis. On
the other hand, it is possible to identify the (potential) presence of such conversions statically, and to issue
appropriate warnings.

4 Work in this direction is reported in Drienyovszky et al. (2010).
5 This topic is also discussed at the end of Section 14.
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Fig. 3. A semantic tableau for the formula ¬((A ⇒C) ⇒ ((A∨B) ⇒C).

3.1 Semantic tableaux

Semantic tableaux provide a systematic search for all the models of a set of formulas. If

no such model can be found, then the set of formulas is unsatisfiable, and in particular

if the initial set is {¬φ} then φ is a tautology: semantic tableaux thus provide a decision

procedure for validity.

The tableau algorithm operates by successively decomposing formulas. In the case of

propositional logic, to satisfy a conjunction, such as A∧B, it is necessary to satisfy both A

and B, whereas to satisfy a disjunction C∨D it is sufficient either to satisfy C or to satisfy

D: this gives rise to a branch point in the tableau.

The tableau in Figure 3 explores all the models for ¬((A ⇒C) ⇒ ((A∨B) ⇒C)). The

top-level formula is a negated implication (¬(. . . ⇒ . . .)), which behaves as a conjunction

in that it is replaced by the formulas numbered 2 and 3 (as noted on the right-hand side

of the figure). By contrast, the decomposition of formula 3, an implication, gives rise to

a disjunctive split between ¬A and C (formulas 6 and 7). This decomposition process is

repeated until each compound formula has been broken down.

Each branch through the tree represents a potential model, but neither the leftmost

nor the rightmost branches corresponds to an actual model, since they each contain both

a formula and its negation, both of which cannot be satisfied. On the other hand, the

remaining branch does give rise to a model in which ¬A, B and ¬C are true, that is a

model in which B is true and A and C are false.

3.2 The solution

The program is written in a concrete, first-order style; functions are defined using recursion,

and few library functions are used. Propositions are represented by an algebraic type, and

the tree is represented by a list of branches, each of which is a list of propositions. This
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Filename LOC Change from previous version

v0.lhs 401

v1.lhs 409 Introduce type names: Branch for [Prop], Tableau for [[Prop]].

v2.lhs 415 Rename functions so that names reflect function behaviour and type,

e.g. removeBranch is re-named removeDuplicateBranches.

v3.hs 418 Change to non-literate form for ease of manipulation.

v4-0.hs 412 Introduce standard HOFs and function-level definitions.

v4-1.hs 419 Correct error introduced at previous stage.

v5-0.hs 394 Change form of ‘test’ functions to return Bool (rather than

the argument type), and introduce use of nub.

v5-1.hs 416 Correct to use the variant definition of nub.

v6.hs 402 Move function to library module.

v7.hs 392 Introduce standard functions, rename foo and bar,

and rename contra to notContra.

v8.hs 247 Major refactoring to change the flow of control, to allow the

merge of functions; requires mitigation of changes.

v9.hs 247 Replace lists by sets in implementation of Branch and Tableau.

Fig. 4. The refactoring sequence for the tableau case study.

has the advantage of representing the branches explicitly, rather than requiring them to be

derived from a different type of tree. The program is a literate script that is 401 lines long,

including comments.

The core of any tableau algorithm is an iteration where rules are applied successively

until all formulas are expanded; this program applies a single rule to each branch at every

iteration. Moreover, the rules are applied in a specified order, which is described in the

program by an Int; for each branch under consideration this value is calculated and then

passed to the iteration function to indicate the rule to be applied.

3.3 The sequence of refactorings

The exercise in program comprehension produced a sequence of twelve versions

of the program,6 and the steps are described in detail in Thompson & Reinke (2003).

The steps are summarised in Figure 4, where it can be seen that most stages keep the file

approximately the same size if not enlarging it due to the comments added to describe the

refactorings.

We can identify three different categories of refactoring in this exercise: Firstly, there is a

set of refactorings that are straightforward to describe, and which should be implemented to

ensure that they are performed without error, particularly across multiple-module projects.

• The most commonly used refactoring throughout the sequence was renaming: some

function names were uninformative – including foo and bar (really!) – or even mis-

leading: removeBranch was renamed removeDuplicateBranches and remove

became removeDuplicatesInBranches.

6 The full sequence of refactored versions of the program is available at http://www.cs.kent.ac.uk/
projects/refactor-fp/Tableau.zip.
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• Introducing type names, Branch for [Prop] and Tableau for [Branch], made type

declarations easier to read. This also supports changing the implementation type if

that is required.

• Some functions visible at the top level were in fact only used by a single definition,

and so demoting the definition to make it local unclutters the namespace and makes

the top-level call graph easier to comprehend.

• Definitions of auxiliary functions were moved between modules to separate applica-

tion code and (more general) library code.

The second class of refactorings replaces a re-definition of a common function by a call to

the corresponding library function.

• The programmer used explicit recursive definitions for a number of functions: these

could be replaced with library calls in many cases. These are calls to both higher-

order functions, including map and filter, and first-order operations such as

concat and elem.

This process can introduce subtle errors: for example, the library version of nub

preserves the first occurrence of each element, whereas the programmer had written

a version preserving the last. Since the particular algorithm was sensitive to the

ordering of elements in the lists, this led to the program failing in some cases.

However, it is more problematic to implement this set because of the number of different

ways it is possible to write equivalent definitions, particularly in Haskell. For example,

in this particular case study, the definition of a mapping function in the program used

[x]++xs instead of x:xs for list construction; moreover, in a number of cases []++ys

is used in place of ys (perhaps to emphasise symmetry with other cases). It is therefore

difficult completely to automate the process of recognising redefined library functions.

Finally, among the refactorings are larger-scale transformations which depend on the

semantics of the particular program for their correctness.

• A particular programming style used in the implementation disguised tests (f say)

over a particular type (e.g. Prop) as functions that return a Prop, but which are only

called in contexts of the form f x == x. These can be transformed into Boolean

functions, provided that the function is not called on the value of Prop used to

represent False.

• The particular design of the program consisted of functions splitX, removeX and

solveX for a X running through a number of combinations – one per rule, effectively.

This results in code duplication across the different instantiations. This was refac-

tored into three functions split, remove and solve, but needed further changes

(e.g. list sorting) to alleviate changes due to the sensitivity of the algorithm to list

(and list of list) ordering.

• It was always the case that the problem itself was based on sets rather than lists,

and as a final refactoring this was achieved, replacing functions in a list API with

the corresponding functions for sets (implemented as lists). The correctness of this

depends on particular algebraic properties of operations used over the sets, e.g.

commutativity and associativity of operations folded over a set.
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It would not make sense to implement these refactorings within a tool for a number of

reasons. Firstly, their sensitivity to the particular semantics of the program means that their

preconditions would be difficult if not impossible to define. Secondly, they are unlikely

to be useful in general, because they come out of a very specific scenario. However, it

might be possible for programmers to define refactorings of this kind using the extension

facilities discussed in Sections 12.1 and 12.2 below.

4 Systems

In this section we give an overview of the two refactoring tools, HaRe and Wrangler, before

describing their implementation in the next section.

4.1 HaRe

HaRe (HaRe, n.d.; Li, 2006; Brown, 2008) provides support for refactorings and covers

the full Haskell 98 standard (Hughes & Peyton Jones, 1999). It covers a range of structural

refactorings, module refactorings and data-type oriented refactorings.

Structural refactorings mainly concern the name and scope of the entities defined in a

program and the structure of definition. Structural refactorings supported by HaRe include

• renaming of variable, function and modules;

• deleting a definition that is not used;

• duplicating a function definition under a user-provided new name;

• promoting a definition from a local scope to a wider scope;

• demoting a definition which is only used within one definition to be local to that

definition;

• unfolding a definition by replacing an identified occurrence of the left-hand side of

a definition with the instantiated right-hand side;

• folding that replaces sub-expressions which are substitution instances of the right-

hand side of an identified definition with a call to that definition;

• generative folding as described in Burstall & Darlington (1975);

• folding/unfolding as patterns;

• conversion between a let expressions and a where clause;

• introducing a new definition to name a user-identified expression;

• generalisation of a function definition, as shown in Section 2.1;

• adding/removing an argument to/from a function definition; and

• simplification of case expressions.

Module refactorings concern the imports and exports of individual modules, and the relo-

cation of definitions among modules, and these refactorings include

• cleaning an import list to remove redundant import declarations and entities;

• adding to an import declaration an explicit list of all the imported entities that are

actually used by the module;

• adding an entity to the export list of a module;

• removing an entity from the export list; and

• moving a definition from one module to another.
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Fig. 5. (Colour online) Screenshot of HaRe within Windows Emacs.

Data-type refactorings affect the type definitions of a program, and also definitions, or

expressions, that make use of a type definition being refactored. Data-type-related refac-

torings supported by HaRe include

• from concrete to abstract data type, as shown in Figure 2, is a composite refactoring

consisting of a number of elementary refactoring steps;

• adding/removing a constructor to/from data-type definition;

• adding/removing a field to/from an identified data-type constructor; and

• introducing pattern matching over an argument of a function definition.

Apart from the various refactorings, HaRe also has some extensions, including the

functionalities for detecting and eliminating similar code (or ‘code clones’) (Brown &

Thompson, 2010) as well as functionalities for program slicing. HaRe has recently been

extended to include refactorings for the parallelisation of Haskell programs (Brown et al.,

2011).

HaRe is integrated with the editors Vim and (X) Emacs: see Figure 5. HaRe is available

from Hackage, as well as being downloadable from http://github.com/RefactoringTools.

4.2 Wrangler

Wrangler (Li & Thompson, 2006; Li et al., 2008) provides a set of structural refactorings

similar to those in HaRe. Specifically they include

• renaming of variables, functions and modules;

• function generalisation, as shown above;
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• function extraction: an identified expression is made for the body of a new function

definition;

• inlining or ‘unfolding’ a function application, and its dual, ‘folding’ an expression

into a function application;

• introduction of local variables to name an identified expression, and dually, to inline

variable definitions; and

• introduction of new macro definitions and to fold against macro definitions.

These refactorings are similar to those in HaRe, but are tuned to Erlang syntax and

semantics rather than Haskell; to take two examples,

• since Erlang expressions can have side effects, it is sometimes necessary to wrap the

argument to a generalised function in a closure;

• local functions can be introduced: not directly as local definitions (which do not

feature in Erlang) but as functional values stored in local variables.

Wrangler also provides a set of process-based refactorings, including the introduction

of process naming, instead of providing access to a process only through a dynamically

generated ‘process id’. Wrangler also contains a variety of refactorings which work with

Erlang QuickCheck, introducing and merging constructs such as ?LET and ?FORALL.

Transforming data types in Erlang can be difficult, as Erlang functions can take values

of any type, in principle. There are situations – particularly in implementing an Erlang

behaviour, which can be thought of as an interface for a set of callback functions – where

the types are more constrained, and where data transformations are possible. In particular,

we have implemented transformations for state data in various kinds of generic state

machines in both the OTP library and the QuickCheck.

In implementing Wrangler we have chosen to respect various features of the language

and related tools. Wrangler is able to process modules which use macros, including the

Erlang test frameworks that are in regular use. Wrangler also respects the naming conven-

tions in those test frameworks (Li & Thompson, 2009b).

Wrangler provides a portfolio of decision support tools. The code inspector highlights

local ‘code smells’, and a number of reports highlight issues in the module structure of

projects, including circular inclusions and other potential faults (Li & Thompson, 2010a).

The code clone detection facilities can be used on large multi-module projects to report on

code clones and how they can be removed; clone detection can be preformed incrementally

on larger code bases, for example, as part of a continuous integration approach to software

construction (Li & Thompson, 2009a, 2011b.

Wrangler is integrated within Emacs – including XEmacs – and also within Eclipse

as a part of the Erlang IDE or ErlIDE (ErlIDE, n.d.) plugin for Erlang. A screenshot of

the embedding within the Mac OS X variant of Emacs, Aquamacs, is shown in Figure 6.

The Emacs and Eclipse versions provide a preview of the effects of a refactoring and also

support multi-level ‘undo’ once refactorings have been performed.

Wrangler has been recently extended with a framework that allows users to define for

themselves refactorings and code inspection functions that suit their needs (Li & Thomp-

son, 2011a). These are defined using a template- and rule-based program transformation

and analysis API. Wrangler also supports a domain-specific language that allows users

to script composite refactorings, test them and apply them on the fly (Li & Thompson,
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Fig. 6. (Colour online) Screenshot of wrangler within Aquamacs Emacs.

2012a). User-defined refactorings and scripts are not ‘second-class citizens’: like the exist-

ing Wrangler refactorings, user-defined refactorings benefit from features such as results

preview, layout preservation, selective refactoring, undo and so on.

4.3 Design rationale

A major aim in building these tools was to make them attractive to users. The top-level

design of these refactoring tools was therefore guided by a number of principles, informed

by discussions with practitioners; we discuss these briefly here.

Target the full language. Working with a language subset can provide a ‘proof of con-

cept’ but only a complete implementation will be usable in practice. For this reason,

HaRe works with Haskell 98 and Wrangler with Erlang/OTP releases R11 onwards

(currently R16; see also the discussion of past and present obstacles in Section 14).

Produce readable results. The code that is produced needs not only to be comprehensible

but should also look like the original code. We therefore need to preserve code layout

as much as possible, and also to ensure that any new code that is generated has a

similar appearance too. We also need to ensure that comments are preserved (or indeed

refactored!) and moved with code when it is migrated.

Workflow integration. The system should be integrated with the user’s usual workflow,

and so we have chosen to integrate with appropriate environments, including Vim, Emacs

and Eclipse. Each system is implemented in the host language, and refactoring com-

mands are simply function calls. This allows refactorings to be invoked from the com-

mand line, and also supports the integration of the tools in other editors and IDEs.
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Support incomplete code. Sometimes we want to refactor code that does not (fully) com-

pile. For example, in Wrangler we can parse modules function by function, and so

rename a function that parses, irrespective of parse errors elsewhere in the module.7

Support user decisions. Users wish to understand the effect of a refactoring before com-

mitting it: this is done by supporting a preview option, and also allowing refactoring

steps to be ‘undone’. Users are also keen to get decision-support assistance in finding

potential refactorings and in applying them: we address this in Sections 10 and 11.

Support user-driven extension. It is impossible to provide all the facilities that users

might require, and so in Wrangler we provide the facility for users to write new refac-

torings (Section 12.1) and a DSL for scripting complex refactorings (Section 12.2). The

tools are also open source, and have attracted external contributions.

Integrate with other tools. Program code does not exist in a vacuum, but is part of a

wider system of tools, such as configuration and build systems, documentation and

testing tools. Wrangler has been designed to support integration with test frameworks

(Section 9) and provides a set of hooks into source code repositories. In general, inte-

gration with tools is made easier in an IDE, which may well integrate the tools already,

rather than in an editor like Emacs.

5 Implementation

The high-level architecture of HaRe and Wrangler is the same, and forms the skeleton

of the diagrams in Figure 7. Program text is parsed into an abstract syntax tree, which

is then augmented with additional semantic information. Walking this tree allows the

computation of the preconditions for the refactoring, and if these conditions hold then

the tree is transformed; it is finally rendered back into program source code.

5.1 General approach

Each tool is implemented in its own language: HaRe in Haskell and Wrangler in Erlang;

this allows us to take advantage of existing toolkits and infrastructure written in each lan-

guage. Refactoring support is supplied by a separate process performing the refactorings:

these are initiated by messages sent from the host editor, and performed on the file system.

Refactoring interactions and so forth are provided by the host editor, using whichever

language that editor supports: Elisp in the case of Emacs, and Java within Eclipse.

Programs are represented internally within a refactoring tool by abstract syntax trees,

augmented with additional information, including static semantics, type information, mod-

ule information and so forth. The parse trees can be supplied by a parser for the language,

and other information can be gathered from the front end of a compiler for the language,

or computed by the tool itself.

Information about program semantics, data to use in precondition checking and also

the program transformations are achieved by walking the trees that represent the abstract

syntax of the program. Typical of the operations is a generic tree walk, which is the identity

7 There is a question about whether this transformation preserves meaning, but we claim that it does since an
unparsable function must be formally meaningless. Wrangler also generates a warning message about the
presence of any parse errors.
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Fig. 7. (Colour online) The architecture of HaRe (above) and Wrangler (below).

except for different ad hoc behaviour at particular types or constructors. For instance, a

function renaming will affect only those tree nodes which reference the function being

renamed. Traversals of this form are easily accomplished using strategic programming

in the style of Stratego (Bravenboer et al., 2008), which provides an untyped approach

which carries across directly into Erlang. Haskell currently supports a plethora of different

approaches to generic programming; at the time of design, Strafunski (Lämmel & Visser,

2003) gave the best support for this style of traversal in a typed environment.

Finally, the modified syntax tree needs to be rendered back into code: formatting this

can be guided by layout information in the tree itself (or within the token stream), but it

is also necessary to pretty print parts of the code which are synthesised by the refactoring

transformation.

While the top-level designs of the two systems are similar, they differ in a number of

important details; we examine these now.

5.2 HaRe

HaRe was designed to reuse existing systems whenever possible, and when it was designed

in 2002 the most appropriate choices were to use Programatica (Hallgren, 2003) for the
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front-end processing and Strafunski (Lämmel & Visser, 2003) to support precondition

checking and transformation. For efficiency reason, we used the type checker from GHC,

instead of Programatica, to derive type information. In HaRe, we use both the AST and

the token stream as the internal representation of source code. Layout and comment infor-

mation is kept in the token stream, and some layout information is kept in the AST. The

refactorer carries out program analysis with the AST, but performs program transformation

on both the AST and the token stream, that is whenever the AST is modified, the token

stream will also be modified to reflect the changes. After a refactoring, the new source

code is extracted from the transformed token stream.

5.3 Wrangler

Wrangler is built on top of the syntax tools library from the Erlang/OTP release. This li-

brary provides an extended version of the standard Erlang parser that accepts pre-processor

directives and macro applications as well as an abstract interface to the syntax trees pro-

duced by the parser. In addition to that, syntax tools also provides functionalities for

reading comments from Erlang source code and for inserting comments as attachments

to AST nodes at correct places as well as the functionality for pretty-printing of Erlang

ASTs decorated with comments. Traversing an Erlang AST generated by syntax tools

is straightforward since all the non-leaf nodes in the AST have the same type.

We have extended the syntax tools library with functionalities for adding static se-

mantic and location information to the AST. For example, the binding structure of identi-

fiers is stored in the AST by annotating each identifier occurrence with its defining location;

each node in the AST is annotated with its start and end locations within the program source

in terms of line and column numbers as well as its syntax context information etc.

Wrangler’s layout preservation is achieved in a different way from HaRe. Instead of

consistent updating of both the AST and the token stream, Wrangler only updates the AST.

A modified version of the pretty-printer is used to layout the code after a refactoring. The

pretty-printer is modified in such a way that the original program layout information is

used to guide the pretty-printing process whenever possible.

With Erlang as the implementation language of Wrangler, reusing and incrementally

updating existing information are easily achievable using Erlang concurrent processes, and

that is the approach we have adopted. For example, a gen server process, called AST

server, is dedicated to the AST management. If the AST of an Erlang file is needed, the

refactorer will ask the AST server for it. Within the AST server, an Erlang module is parsed

only when its AST does not exist or is out of date. The refactorer also informs the AST

server whenever a module has been refactored, which will then update its AST repository

in the background. In a similar way, there is also an Erlang process in charge of maintaining

the module/function callgraph in the background.

5.4 Describing refactorings

Communication between the front end (Emacs etc.) and the refactoring server uses a textual

protocol to describe particular refactoring commands. A typical command is described by

a combination of the following elements:
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refactoring: The name of the refactoring to be performed.

paths: Details of the paths describing the scope of the project under refactoring.

names: A new name for a function or module, for instance.

focus: The current focus in the editor, a single position, determines the object of a refac-

toring, e.g. the function to be renamed.

selection: The current selection, which is described by a pair comprising the start and

end positions, is needed to describe the object of other refactorings, such as function

extraction.

choices: In the case where choices are gathered interactively, these results are collected

into a list of Y/y/N/n values.

tab key: The number of spaces per tab key, which is necessary for the tool to resolve

locations correctly.

This form of description requires the least computation within the front end so that, for

example, the resolution of the cursor position with the AST is performed at the server.

While this interface works well internally, other options provide a better API to the

programmer. Rather than using the position within a text file, the position of the object of a

refactoring could be indicated by name, or by a path within the AST, for instance. Textual

position does not provide a robust description of position, since it will be changed by

applying a refactoring transformation. The alternatives make it easier to describe a series

of refactorings, since the logical position or name of an object will be unchanged, or at least

will be changed in a more predictable way than textual position. This increased robustness

makes it easier for series of refactorings to be scripted.

Currently, a refactoring is applied by directly modifying the source files affected. We

can then extract the differences between the old and new files to show the effect of a

transformation. Alternatively, our implementation could generate diffs or patches directly,

and these could then be applied to the project files. This approach might have the advantage

that commuting the application of refactorings could more easily be supported in this

model than under the ‘change the whole file’ approach.

A higher-level approach to describe refactorings is provided by the API and the DSL

provided by Wrangler; these are described in more detail in Sections 12.1 and 12.2.

5.5 Workflow integration

Workflow integration means that programmers can use intrinsicthese refactoring tools with-

out leaving their favourite editor. Wrangler and HaRe are integrated into Emacs, Eclipse

and Vim through their mechanisms for communication with externally running processes.

Each is more than just an editor, and particularly Emacs and Eclipse provide plugin func-

tionality to perform a variety of tasks, including showing file diffs, displaying graphs in

‘dot’ (graphviz) format as well as the integration with version control systems.

Emacs and Vim. Gnu Emacs is programmable in Elisp (Chassell, 2004) and this makes

extension relatively straightforward. It is portable across different OS platforms, but with

variants that localise, e.g. Aquamacs for Mac OS X. Emacs has well-developed modes for

Haskell and Erlang, and also provides front end functionality for other tools such as Quviq

QuickCheck. We are able to use the ediff plugin to show the diffs between the file before
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and after a refactoring, and we can provide reports with links back into the code by using

compilation-minor mode.

Emacs has no intrinsic notion of a project (although the Emacs Development Environ-

ment, EDE, add-on provides some IDE-like extensions), and so it only ‘knows about’ the

files that it is currently editing. This is a problem if we wish to undo the effect of a project-

wide refactoring, since this can then only be done by putting the ‘undo’ functionality in the

refactorer, rather than embedding it within Emacs.

By contrast, it is more difficult to program extensions to Vim, and some aspects of Vim

are not platform-independent: for example, the mechanism for calling external processes

is different on Windows and Unix systems. It also shares the disadvantages of Emacs vis à

vis Eclipse, which we discuss now.

Eclipse. Eclipse is a fully featured programming IDE written in Java, providing support

for development in Java and a number of other programming languages. We build on top

of ErlIDE (ErlIDE, n.d.), an Erlang plugin for Eclipse.

Eclipse is programmable in Java, and moreover provides an interface for refactorings to

implement. Refactorings that meet this API will be treated as refactorings by Eclipse so

that they appear in the menu that users expect, they automatically have preview function-

ality, their ‘undo’ is integrated with the Eclipse ‘undo’ and so forth (Li et al., 2008). The

downside of this is that the workflow these refactorings are expected to follow is limited

and required modification of our original implementations to achieve.

Eclipse brings three other advantages. It has a notion of project which naturally delimits

the scope of a refactoring; this also means that there are stronger links with the testing and

build processes than within Emacs. Because it is a graphical IDE, choices (e.g. of which

instances to refactor) can be made in a declarative way by presenting the user with a list

of all instances from which the user can select a subset by direct manipulation, rather than

through an interactive dialogue. Finally, Eclipse serves a quite different set of developers

than Emacs, and those coming to Erlang or Haskell from the Ruby or .NET communities,

for example, will expect good IDE support.

6 Case study: wrangler in action

Figure 8 presents information about how Wrangler has been used in practice in two case

studies during the period January 2010 to July 2011. Data for these were gained by in-

strumenting the system to log refactoring calls and their results.The first data come from

the use by the Wrangler team on Wrangler itself, and the second come from a staff team

at LambdaStream on an Erlang-based product. We can see some similarities and some

differences in the data.

• Function extraction – in which a highlighted code fragment becomes the body of a

new function – is the most used refactoring in the LambdaStream study, while it is

heavily used in Wrangler too, it is only the fourth most popular. Use of this can be

accompanied by folding against the newly introduced function, and the data do not

contradict that.

• We see generalisation in use in both case studies: This can be for itself, or can con-

tribute to a higher-level refactoring, such as (manual) clone extraction and removal.
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Fig. 8. Wrangler refactoring usage in two case studies.

• Simple structural refactorings – renaming variables and functions, and moving func-

tions between modules – are the most used in the Wrangler study. We attribute

this to the use of Wrangler on itself to tidy up the system periodically, while the

principal use of Wrangler at LambdaStream was during development, when function

extraction can contribute directly to the code being written.

• Finally, we note that module renaming was used heavily in Wrangler. This is imprac-

tical for refactoring ‘by hand’ in Erlang, since calls to functions in external modules

contain the external module name, and so require changes throughout the code base.

Automation makes it feasible.

Efficiency. Refactoring tools are supposed to be used in an interactive way, therefore the

response time should be short enough to be bearable for users. Various techniques have

been used in the tools to reuse and incrementally update existing information such as the

AST, module graph, call graph etc. For typical refactoring tasks performed during inter-

active program development, the system is able to provide adequate interactive responses

within a small number of seconds.

Looking at larger-scale refactorings, which would only be undertaken with some thought,

in a typical example it takes Wrangler 51 seconds to rename the standard module lists to

some other name across the Erlang standard library stdlib, which contains 78 Erlang files

and 72.9k lines of code. This refactoring not only renames the module itself but also all of

the references in this module across the stdlib library. As a result of this refactoring, 59

out of the 78 Erlang modules are changed. The 51 seconds discussed here applies when all

the modules are already loaded into the system; the first run during which all modules are

parsed, analysed and stored in the AST server for future use takes 123 seconds.

As a final example, it takes 36 seconds (94 seconds for the first run) to use Wrangler’s

incremental clone detection facility to report 78 sets of clones from a codebase, of size
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244.4k lines of code, including the application and testing code of both the Erlang compiler

and the Erlang stdlib.8

7 Design experience

Implementing the tools led us to see that there are often design choices to be made in

the way that particular refactorings are implemented. These choices reflect general options

which the implementer needs to resolve. We discuss four examples in more detail in this

section.

7.1 What do you mean?

Suppose that we implement a refactoring to generalise a definition over a sub-expression

occurring within the body of the definition. As a concrete example, suppose we are to

generalise the following definition over the indicated sub-expression, namely 1.

-module (setup).

-export([port/1]).

port() ->

PortId = 1,

SessionId = 127+ 1 ,

Version = 1,

{PortId,SessionId,Version}.

Three eventualities suggest themselves:

Single occurrence. We can generalise over the single indicated occurrence, giving:

port(N) ->

PortId = 1,

SessionId = 127+N,

Version = 1,

{PortId,SessionId,Version}.

All occurrences. Dually, we could generalise over all occurrences of 1, with the result:

port(N) ->

PortId = N,

SessionId = 127+N,

Version = N,

{PortId,SessionId,Version}.

Some occurrences. Finally, we might want to have the choice of generalising over a

selection of the occurrences, as shown here:

8 These measurements were run on a laptop with a 2.27-GHz Intel(R) processor, 4-GB RAM and running
Windows 7.
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port() ->

PortId = 1,

SessionId = 127+ 1 ,

Version = 1 ,

{PortId,SessionId,Version}.

This choice between one, all and some is repeated in a number of other situations, and

tools need to be designed to reflect this. Within an editor like Emacs or Vim, we step

interactively through the options, offering the user a chance at each stage to choose yes or

no to the current option, and also to all the remaining options.

Within an IDE with a graphical user interface we can open a window, within which we

can present a clickable list of (links to) all the occurrences of the clone. A user can then

select a subset of these by clicking, thus giving them a chance to survey all the occurrences

before making a choice rather than having to make a sequence of decisions instance by

instance. A choice like this can be complicated in a number of ways.

Polymorphism. Given a Haskell definition of the form

f :: (Num t) => [t] -> [Bool] -> [t] -> Int

f x y z = length ((2:x) ++ [] ) +

length ((True:y) ++ []) +

length ((3:z) ++ [])

suppose that the first empty list is selected as the expression over which to generalise.

We still have options here, since we may also generalise over the third occurrence of

[], but since arguments to Haskell (Haskell 2010) functions cannot be forced to be

polymorphic, it is not possible to generalise over the second [] since it is an empty list

of Booleans rather than numbers, and generalising over both occurrences would force

the argument to be of type ∀a.[a].

To conclude, the set of possible occurrences is governed not just by the expression but

also by its type. Any refactoring tool will therefore need to be type aware.

Multiple arities. Erlang functions are determined not just by their name but also by their

arity, and so it is not unusual to see Erlang functions with the same name but different

arity: a common example is the reverse/1 function where reverse/2 is the tail-

recursive auxiliary function which does the work of shunting elements from one list

to another. In generalising

reply(start) ->

dest ! {self(),start}

reply(skip) ->

ok.

over the destination dest we have a choice: we could just generalise the first clause, or

both the clauses. The first option would give rise to functions reply/2 and reply/1,

and the second just to reply/2.
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7.2 Compensate or reject?

Suppose we want to lift the local definition of g in

h x = x + g x

where

g x = x + con

con = 37

to the top level. Since g depends on the local definition of con, the simplest option is to

reject this attempted refactoring, and to expect the user to take the appropriate remedial

action before the definition can be lifted.

The alternative is to perform some automatic compensation to allow the refactoring to

take place. In this particular case there are (at least) four distinct options:

• We can lambda lift the definition so that con becomes a formal parameter to the

definition with the actual value being passed in at the call site. This maintains the

local definition of con in its original scope,

h x = x + g con x

where

con = 37

g con x = x + con

• We could also argue that as well as lifting g we should also lift all its dependents so

that here both con and g are lifted. This changes more scopes, but preserves the arity

of g in contrast to the lambda-lifted version,

h x = x + g x

g x = x + con

con = 37

• In this particular example there is a third possibility that only adds g to the top-level

scope, and also preserves its arity: we first make con local to g before lifting the

definition,

h x = x + g x

g x = x + con

where

con = 37

Since con is only used in g, it can be removed from h; in the general case it would

have to remain as a local definition to h as well as being added to g.

• Finally, we could unfold the definition of con before lifting g, giving

h x = x + g x

g x = x + 37
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In making a choice of how to implement this lifting operation, there is a tension between the

simplicity of making no compensation and the greater ease of use that some compensation

gives. We have chosen to lambda lift in this case, but we note that this does not preclude

users from performing other compensations manually should they so wish.

7.3 Backwards compatibility?

Suppose that we are to generalise the Erlang function add one from the test module over

the expression 1.

-module (test).

-export([add_one/1]).

add_one([H|T]) -> [H+1 | add_one(T)];

add_one([]) -> [].

Our refactoring tools are able to survey all the modules in the project to hand, and to modify

all calls add one(L) to the corresponding calls to add one(L,1).

The closed world assumption – that we have access to all calls to add one/1 – is maybe

not tenable. Some modules may only be available in binary form, or clients may use our

code without disclosing how it is used. So there is a question of whether we should include

a legacy version of add one, as shown by the slanted code here:

-module (test).

-export([add_one/1,add_one/2]).

add_one([H|T],N) -> [H+N | add_one(T,N)];

add_one([],N) -> [].

add_one(L) -> add_one(L,1).

The argument for doing this is that it preserves code compilability; the disadvantage is

the invisibility of this compensation. Arguably, the best option is to raise a warning when

legacy calls are made, but the Erlang philosophy would simply be to ‘let it fail’ and for the

problem to be fixed at the point of failure.

Another case to consider is the use of the Erlang primitive built-in function (or BIF)

list to atom which turns a text string into an atom. Since module and function identi-

fiers are themselves atoms, this means that identifiers can be created dynamically. While

this sort of programming might be discouraged in general, it is not uncommon in meta-

programming examples. Since names are created dynamically by this BIF, it is impossible

to detect instances of names generated by this BIF when, for instance, a renaming refactor-

ing is performed. One form of mitigation would be to wrap all calls to list to atom to

check and dynamically apply refactorings as appropriate. Our approach has been to warn

the programmer about uses of list to atom, but not to take any mitigating action, and

instead to leave the program to fail under such circumstances.
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7.4 90% or nothing?

In some situations – such as the data-flow analysis of variables in Section 8.6 – it may

well not be possible to decide all cases where an action – replace a Pid by a name, say –

should take place. In this particular example we are trying to replace a dynamic artefact by

a static one, and so there are fundamental obstacles to performing all and only the required

changes.

One option would be to leave the system unchanged, because we may not be exhaustive;

the other option is to warn the user that there might be cases that she should look at, and

for the system to make a conservative estimate of these. This is precisely what we do in the

running example, since it delivers a transformation that is almost complete, and points the

user to ways of completing it, rather than simply ‘bottling out’ for reasons of correctness.

The point here is that our pragmatic choice is more useful than providing nothing and

expecting the user to complete the transformation by hand herself.

8 Analysis

Program analyses of various kinds are needed not only for computing preconditions of

refactorings but also for effecting refactoring transformations themselves. This section

surveys the different analyses that are used.

8.1 Static semantics

It goes without saying that it is necessary to use the static semantics of the language to

resolve bindings of identifiers, since this sort of analysis underlies the conditions and

implementation of almost all refactorings. A renaming refactoring should not affect the

binding structure of a program, while function extraction and generalisation should also

preserve the bindings in code that is moved in some way within the AST.

It is interesting to note how the binding structures of Haskell and Erlang differ in a

number of small but substantial ways. In Haskell any occurrence of a bound variable in a

pattern is a binding occurrence, whereas in Erlang bound variables can be used in patterns,

as in the example of Pid here.

receiveFrom(Pid) ->

receive

{Pid,Payload} -> ...

... -> ...

end.

Erlang also allows multiple binding occurrences of a variable: for example, in all the arms

of a conditional statement, as here for X,

foo(Z) ->

case Z of

{foo,Foo} -> X=37;

{bar,Bar} -> X=42

end,

X+1.
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The subtle differences that we see between the two languages make it difficult to imagine

that a fully generic tool for refactoring functional programs could be built; we take up this

question again in Section 14.

8.2 Types

Many refactorings require a type analysis to be performed. A Haskell example is given by

the generalisation of the function process over the indicated value [],

process xs =

zip (True:xs ++ [] , [1,2,3]++[])

The empty list has a polymorphic type, and in this example its first use is as a list of

booleans, while its second use is as a numeric list. It is therefore not possible to generalise

over both the lists at once, since this would force the new argument to be polymorphic, and

this is not permitted in Haskell 98. So a simple syntactic analysis is not sufficient here, and

it is necessary to know the types of expressions when performing generalisation. A related

example is given by

quantize x = round (x / 10) * 10

which when generalised over both instances of 10 gives the function

quantize2 :: (RealFrac a, Integral a) => a -> a -> a

quantize2 y x = round (x / y) * y

There is no numeric type that is an instance of both the classes, RealFrac and Integral,

and so this function cannot in fact be applied to any concrete numeric arguments.

Many Haskell programmers include type declarations for all their definitions as a matter

of course, and these need to be refactored too. One mechanism for doing this is to use

type inference to infer the type of the new function, for instance, after generalisation. This

will give a valid typing for a function, but may not be ideal. It will not involve any type

synonyms which were used in the original declaration, and it will also give the most general

type which may have been overridden to something more specific by the original type

declaration. For these reasons it is preferable to use the type of the new parameter together

with the original declaration to produce the type of the generalised function. Type inference

may also fail in the case of polymorphic recursion, thus requiring type annotation.

Erlang is a weakly typed language, but types do play a role in refactorings. For instance,

Erlang supports record types, which are implemented by syntactic sugar based on tuples,

and records are often introduced to replace tuples. A typical function manipulating a tuple

foo({Pid,Payload}) -> Payload+1.

would be replaced by this record syntax

foo(Z) -> Z#msg.payload+1.

but because Erlang types are weak, it is not clear whether this is a sufficient replacement,

or whether the original, tuple-manipulating definition needs to be retained to catch any

instances which had not been transformed.
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8.3 Modules

Our refactorings are designed to work across projects, rather than simply to work over

single files. Eclipse has a notion of project, but for other front ends, we need to specify

projects by sets of directories in which code will belong. If the focus of a refactoring is in

module M say, then it is necessary to know the modules on which M depends – for instance,

to gather type or side effect information – and also the modules which depend on M, as

these are the modules that will potentially change because of a refactoring.

Information about dependencies is conveyed in different ways in different languages. In

Haskell it is necessary to import modules in order to use definitions,

module Server(processMsg) where

import Messaging

processMsg z = format(msg(z))

While import is possible in Erlang, the strongly held convention is that external calls should

be fully qualified, and so explicitly indicate the module to which they refer,

-module(server).

-export([processMsg/1]).

processMsg(Z) ->

format(messaging:msg(Z)).

Module graph and call graph information remains relatively stable across refactorings, and

so it makes sense for this data to persist. The Erlang concurrency model makes this par-

ticularly easy to achieve: we spawn a ‘module graph server’ which maintains information

during a refactoring session, updating the dependency graph only when a potential change

has occurred.

8.4 Side effects

Side effects in Haskell code are handled by wrapping them in monadic computations, and

so these effects only happen when a computation is explicitly run. On the other hand, any

Erlang expression can potentially cause a side effect, and this impacts on some refactorings.

For example, naively generalising over an expression that has side effects will not be sound.

Consider the example,

printList(0) -> true;

printList(N) ->

io:format("*") ,

printList(N-1).

example() -> printlist(3).

If we simply pass in the expression io:format("*") as an argument, then a single star

will be printed when the argument is evaluated, rather than when it should. The solution

for this is to wrap the side-effecting expression up as a closure, like this:
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printList(F,0) -> true;

printList(F,N) ->

F(),

printList(F,N-1).

example() ->

printlist(fun()->io:format("*") end,3).

It would be possible to wrap all generalisation parameters as closures, but this is unnec-

essarily defensive and also obscures the program code. In order to avoid this, we need to

analyse the side effects of all programs. We know that side effects are due to communica-

tion (but not to single assignment), and combining this with tabulated information about

the side-effecting behaviour of all the built-in functions allows us to perform a conservative

side effects analysis, and only to wrap expressions in closures when we cannot guarantee

that a side effect will not happen.

8.5 Atom analysis

Consider the following (legal) Erlang module

-module(foo1).

start() ->

Pid = spawn(foo1,foo2,[foo4]),

register(foo3,Pid) ...

foo2(X) ->

foo3 ! foo4,

...

The atom foo is used here as a module name (superscript 1), a function name (2), a process

name (3) and simply as an atom (4).

So what happens when we want to rename the module foo, for instance? We will have

to analyse for each occurrence of an atom to which of the four categories it belongs.

Some uses can be read from the syntax, such as the module and function declarations.

Other uses can be deduced from the atom being an argument to particular functions spawn,

which takes a module, function and argument list as arguments, and register, which

takes a process name and a process id. Other uses need to be traced through analysis of

variable use, which we discuss next.

8.6 Process structure

An Erlang process is created by spawning it, an action that runs the function forming the

body of the process and creates a process id or Pid. The Pid is needed to send messages

to the process, and so the Pid will be passed around the program to facilitate access. In

general, the Pid is the only way of referring to the process, but a process may also given a

name through calling the register function.
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Suppose that we want to refactor a program and name a particular process: this requires

that we identify all the places in which the Pid is used. Take the concrete example of the

process spawned in the start() function here:

-module(foo).

start() ->

Pid = spawn(foo,foo,[foo]),

foo(Pid).

foo(Pid) ->

... Pid ...,

bar(Pid),

....

Data about the Pid flow into the Pid variable in foo, it is used in the body of foo and

also passed to bar. We use a data-flow analysis to track all uses of the Pid, and in places

where we cannot be sure about use or we do not warn the user that they need to check these

variable uses themselves. As we said in Section 7.4, this is preferable to not performing

the transformation at all.

8.7 Macros

Erlang has an integrated macro pre-processor, epp, and Erlang macros are in relatively

common use. For example, the testing frameworks EUnit (Carlsson & Rémond, 2006)

and Quviq QuickCheck (Claessen & Hughes, 2000) both use macros. Because we refactor

source code, it is not sufficient to work with pre-processed code, and so when it is necessary

for our analysis we use a combination of processed and non-processed codes, the latter

being provided by the epp dodger module. As an example, we need to use this to infer

the precise binding information of variables used within a macro invocation.

It might be thought that Haskell was in a better position here, but paradoxically it is not

the case. Haskell does not have an integrated macro mechanism, yet macros are needed for

conditional compilation (e.g. of tracing) and for localisation of different architectures. The

C pre-processor is therefore used instead, and this is substantially less tractable, not only

because of its generality and power but also because there is no support in the Haskell front

end for unexpanded macro calls (as there is for Erlang).

8.8 Conventions, frameworks and callbacks

Naming conventions are used to make programs easier to understand, but also they can

have semantic significance in the context of Erlang libraries and frameworks; we give two

examples here.

Within EUnit, any function with a name ending test will be a single test, while

one ending with test is a test representation. Changing these suffices will change the

behaviour of the test suite. It is also assumed that tests for functions in the module foo will

be contained in the module foo tests. Finally, EUnit contains a number of predefined
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macros which should not be modified. If refactorings are not to break test code, then these

conventions need to be observed, and foo tests should be renamed bar tests when

foo is renamed bar, for example.

The OTP is a set of libraries embodying generic behaviours of various kinds. In order to

instantiate one of these behaviours, it is necessary to implement a set of callback functions:

in this example of a generic server they are shown in slanted font:

init(FreqList) ->

Freqs = {FreqList, []},

{ok, Freqs}.

terminate( , ) -> ok.

handle_cast(stop, Freqs) ->

{stop, normal, Freqs}.

Any refactoring should not change the names or the arity of these functions, and so, for

example, this must be taken into account in implementing the renaming and generalisation

refactorings.

9 Testing and refactoring

The discussion of refactoring in this paper has so far been confined to refactoring program

code, but programs or systems exist in a wider infrastructure: typically a program is

built and deployed using some configuration scripts and make files (or equivalent), and

is tested using some sort of test framework. As the program is refactored, and functions

or modules change their names, for example, these changes need to be reflected in the

wider infrastructure. We have investigated one particular aspect of this: how refactoring

and testing interact for Erlang programs, and this is the main topic of this section. We also

make some remarks about testing refactoring tools themselves in Section 9.4.

The most commonly used testing tools for Erlang include the OTP Test Server

(TestServer) and Common Test (Common Test), EUnit (EUnit) and QuickCheck

(Quviq). A common aspect of these frameworks is that the testing code is itself Erlang

program text, albeit code that is idiomatic in its use of particular naming conventions,

callback functions, meta-programming and the like.

Refactoring and testing interact in two distinct and complementary ways:

Extending existing refactorings. An existing refactoring, like renaming, will apply to

test code as well as to the code under test; the refactoring should be extended to deal

with this, in the context of the naming convention, for instance.

Refactorings of the tests themselves. Apart from those general refactorings, most testing

frameworks also suggest a set of testing-framework-specific refactorings.

In early releases of Wrangler, testing frameworks were not taken into account. Therefore,

when a program containing test code was under refactoring, things could easily go wrong

without even a warning. For example, in EUnit functions with arity zero and names ending

in test represent test generator functions; carelessly renaming a function whose name

ends in test to one with a different suffix would break the test code.
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Wrangler now takes into account the conventions of the common testing frameworks

as well as supporting some refactorings that are specific to these testing frameworks. In

the rest of this section we survey the idioms required by the testing frameworks, and then

explain how Wrangler is extended to support consistent refactoring of test code when appli-

cation code is refactored. We also briefly discuss testing-framework-specific refactorings.

Although we concentrate here on testing and on one specific programming language, it

should be clear that the lessons apply equally well to other aspects of infrastructure, and to

other programming languages, functional or not.

9.1 Testing tools for Erlang

In this section, we give a short overview of the commonly used systems supporting testing

for Erlang, concentrating on the idioms that they require to achieve their effect.

9.1.1 Erlang/OTP test server and common test

In the Erlang/OTP Test Server and Common Test, a test suite is an Erlang module that

contains test cases, and with a name of the form * SUITE.erl; a collection of callback

functions must be implemented in each such module. A test suite consists of a number of

test cases, and test case is written as an Erlang function using a special coding pattern:

each test case has generally three parts, describing the documentation, specification and

execution of the test.

These parts are implemented as three clauses of the same function. The documentation

clause matches the argument atom doc and returns a list of strings describing the test case.

The specification clause matches the argument suite and returns the test specification for

the test case. The execution clause implements the actual test case. It takes one argument,

Config, which contains configuration information.

9.1.2 EUnit

EUnit is a lightweight unit testing framework for Erlang. Within EUnit the tester adds test

functions or test-generating functions to a module as well as including the eunit.hrl

header file. Test code can coexist with the application code in the same module, but it is

also possible to put test code into a separate module. EUnit assumes that a module named

m tests.erl represents the test module for module m.erl.

A test function will have a name of the form * test, and a test-generating function a

name like * test . Symbolic representation of test data is used by test-generating func-

tions to generate test objects. For example, the tuple {generator, Module, Function}

is used to represent the test objects generated by calling the function Module:Function(),

where Module and Function are module and function names respectively. A collection of

predefined macros is provided to abbreviate the test code.

9.1.3 QuickCheck

QuickCheck (Quviq) is a property-based testing tool for Erlang. Programs are tested by

writing properties (in Erlang syntax) and test case generators in the source code.
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QuickCheck tests these properties with automatically generated test cases to see whether

the system under test satisfies them. By default, any function with arity zero of the form

prop * is assumed to be a property.

When using QuickCheck to test, it is important to separate the testing of pure and impure

functions. An impure function can modify the global state of the system, while a pure

function will not. Impure operations are tested using an Abstract State Machine (ASM).

ASM test cases are lists of symbolic commands, each of which binds a symbolic variable

to the result of a symbolic function call.

For example, {set,{var,1},{call,erlang,whereis,[a]}} is a symbolic command

to set the variable 1 to the result of the function call erlang:whereis(a). The use of an

ASM also requires the tester to implement a set of callback functions of the ASM.

9.2 Extension of existing refactorings

Since each of the three testing frameworks uses Erlang as the programming language for

writing test code, much of the extension is achieved by existing functionality; the rest

needs to address the particular idioms of the frameworks. This extension affects all the

refactorings that change function and module interfaces.

In Wrangler the refactorings affected by this extension include Rename function/module,

Generalise function definition, Function extraction, Tuple function arguments and Move

function definition to another module. We now give a summary of the different aspects that

needed to be addressed when extending these refactorings.

The testing framework(s) used. Checking which testing frameworks are used by the

program under refactoring is trivial, since each testing framework requires a different

header file to be included in the program.

Naming conventions. When a naming convention is enforced by a testing framework, the

refactorer must ensure that this naming convention is observed. For example, when EUnit

is used, renaming of a function ending in test() or test () to a name with a different

ending (or vice versa) should generate a warning message; renaming the module m to some

other name should also check whether there is a test module named m tests, and if so, the

test module should also be renamed.

Callback functions. Both Erlang/OTP Test Server and QuickCheck abstract state ma-

chines require the tester to implement certain callback functions. A callback function has

a specified function interface that governs both the function name and the parameters

accepted by the function. A refactorer should be aware of those callback functions, and

always warn the user when the refactoring to be applied would turn a callback function

into non-callback function (or vice versa).

Meta-programming. Each of the testing frameworks uses meta-programming to some

extent. For example, symbolic function calls of the form

{call, ModuleName, FunctionName, Args}
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are used by QuickCheck abstract state machines, and EUnit makes use of symbolic test

data representation as mentioned earlier. Note that meta-programming is not restricted to

testing frameworks, and the same format of symbolic function call as used by QuickCheck

could also be used by normal application code in Erlang; however, inferring whether meta-

programming is used by normal Erlang applications need deep data-flow analysis, and is

not decidable in general.

Take {call, ModuleName, FunctionName, Args} as an example: Ideally a refac-

torer should be able to modify the module name, function name or the argument list when-

ever the module name or the function interface referred to is modified by a refactoring.

However, given the fact that in Erlang atoms have multiple roles – syntactically module

name, function name, process name are all atoms – and an atom could also act as a literal,

it is also possible that the same tuple format is used to mean different things in different

contexts.

Given this uncertainty, Wrangler takes a rather conservative approach. For refactor-

ings like renaming, when Wrangler cannot infer whether an atom represents the mod-

ule/function name to be named from syntactic information, it will check the context in

which the atom is used. If the context indicates a high probability that the atom represents

the module/function name to be renamed, it will rename it; otherwise it will leave it

unchanged. In both the cases a warning message asking for the manual inspection from

the user is given.

For refactorings that change a parameter of a function, Wrangler will try to keep the

original function interface in the program, although its function body will be replaced with

an application of the new function introduced. This is possible due to the fact that the

Erlang allows the same function name to be redefined with a different arity.

Macros. Refactoring programs containing macros are generally supported by Wrangler,

but early releases of Wrangler did not look into the actual definition of macros, and this

turned to be a problem when refactoring QuickCheck code where macros are used very

heavily. In fact, most of the QuickCheck library functions for writing properties are pro-

vided via macros; consider the example of the FORALL macro in

prop_gcd()->

?FORALL(X, nat(),

?FORALL(Y, nat(),

ex:gcd(#rec{num1=X,num2=X*Y) == X)).

where it is used to represent universal quantification in a way that allows tests to be

generated for the property.

The heavy use of macros and the complexity of macro definitions make it sometimes

impossible to resolve the binding structure of variables without looking into the actual

macro definitions, as the above example function shows. The study of QuickCheck has led

us to improve the way in which macros are handled in Wrangler. Two kinds of ASTs are

kept during the refactoring process, one with all macro applications expanded and another

with macro expansion bypassed. The former is used to infer the accurate binding structure

of variables, which is then passed on to the latter.
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Coding patterns. The Erlang/OTP Test Server and Common Test framework ask testers

to write test cases following a special coding pattern. For example, a test case generally

takes one parameter, has three function clauses representing the documentation part, the

specification part and the execution part, and each function clause takes a specific pattern

to match. In this context the refactorer should make sure that this coding pattern is not

violated during the refactoring process.

Take the Generalisation refactoring (as described in Section 2.1) as an example. This

refactoring certainly changes the function interface, and generalisation of a test case func-

tion will make it no longer a test case. With Wrangler, this kind of violation is again avoided

by keeping the original function in the program, but its function body will become an

application instance of the new function.

9.3 Testing-framework-specific refactorings

To make Wrangler testing-framework-aware, we aim to make Wrangler not only be able to

refactor application code and test code consistently but also be able to support testing-

framework-specific refactorings. Our study of the three testing frameworks shows that

different refactorings will supplement different testing frameworks.

9.3.1 Erlang/OTP test server and common test

Test code written under the Test Server and Common Test framework has a rather con-

strained top-level structure because of the coding pattern followed; however, our case stud-

ies show that most test cases have very similar structure, and the copy, paste, then modify

style of editing is very heavily used, which results in substantial amount of duplicated code.

Tool support for duplicated code detection and elimination would help to provide better

abstraction of some repeatedly used functionalities, improve the code structure, reduce the

size of the code and make it much easier to understood. Together with our project partner

from Ericsson, Sweden, we have used Wrangler’s support for duplicated code detection

and elimination (Li & Thompson, 2010b); the results are discussed in Li et al. (2009).

9.3.2 EUnit

EUnit code could also be helped by refactoring. The following refactorings could be added

to Wrangler:

• Convert tests written in plain Erlang into EUnit tests.

• Group a set of EUnit tests into a single test generator.

• Move EUnit tests in an application module to a separate test module.

• Normalise EUnit tests to a standard pattern.

• Extract common setup and tear-down code into fixtures.

9.3.3 QuickCheck

With QuickCheck, our research has been focused on refactorings that create properties,

and refactorings that change the structure of the existing properties. For example, using
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the techniques of similar code detection and elimination discussed in the next section, it

is possible to turn a set of common test cases into a number of calls to a single function.

From these calls it is possible to extract a QuickCheck property by the following steps:

• Firstly, identify all the calls to a particular function, and extract their arguments into

a list of tuples, each tuple representing one call to the function.

• The tests can then be turned into a property by choosing oneof the list of test data,

with the tuple chosen becoming the arguments to the call of the test function. Here

oneof is a simple example of a QuickCheck generator.

We have presented our experience of extending Wrangler to accommodate testing frame-

work programming idioms, and discussed our ongoing work to support testing-framework-

specific refactorings. While this research focuses on Erlang and Wrangler, the same prob-

lem should apply to other programming language domain and refactoring tools as well.

9.4 Testing refactoring tools

While building refactoring tools we have become aware that they can be particularly prob-

lematic to test. One aspect of this problem is that we need to test two quite different

aspects of the systems. Firstly, we have to ensure that refactoring does indeed preserve

the semantics of programs, but secondly, we also have to ensure that the appearance of

the results is acceptable to the programmer. In practice we have tended to concentrate on

the former, while feedback from users has helped us to substantially improve the layout of

refactored code; in fact, we use QuickCheck in testing Wrangler (Li & Thompson, 2007).

More recently we have conducted an experiment using random testing of refactoring

tools. Our approach is to generate random programs using a simple attribute grammar-

based generator within QuickCheck. We then refactor with a random refactoring, generate

program inputs randomly and test whether the old and new programs agree on these inputs.

The experiment was successful to the extent that it identified bugs in Wrangler. More

details are reported in Drienyovszky et al. (2010).

10 Clone detection

While it has been our aim to provide the fundamental refactoring support for Haskell and

Erlang, users have asked for help in applying the refactorings. To do this, we have devel-

oped a variety of decision support tools that help users to identify and apply refactorings.

These include tools to report on code clones within projects (which we discuss further in

this section), in subsequent sections we describe tools to identify potential problems in

the module structure of projects as well as detecting more localised ‘bad smells’ within

modules. We concentrate here on describing the facilities in Wrangler; details of clone

detection in HaRe can be found in Brown & Thompson (2010).

We characterise a software clone as two or more fragments of code – expressions or

sequences of expressions – that share a non-trivial common generalisation. As shown in

Figure 9, we report on all such clone sets, and for each clone show

• the common generalisation, in the form of a function definition, and
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Fig. 9. (Colour online) Clone detection and elimination in Wrangler.

• the instances of the clone, including the parameters which embody how it instantiates

the generalisation.

To take a concrete example for the code

loop_a() -> loop_b() ->

receive receive

{msg, _Msg, 0} -> ok; {msg, _Msg, 0} -> ok;

{msg, Msg, N} -> {msg, Msg, N} ->

io:format("ping!~n"), io:format("pong!~n"),

b ! {msg, Msg, N-1}, a ! {msg, Msg, N-1},

loop_a() loop_b()

end. end.

we report the clone identified above by slanted code as this function

new_fun(Msg,N,New_Var1,New_Var2) ->

io:format(New_Var1),

New_Var2 ! {msg, Msg, N-1}.

and the two calls giving the two clones like this

new fun(Msg,N,"ping!~n",b) new fun(Msg,N,"pong!~n",a)

In a project of any size – and we are able to report on clones within projects containing

hundreds of KLOC – there will potentially be large numbers of clones to report, and so

we have to specify threshold parameters for reporting. These include the size of the clones

(in number of expressions and number of tokens), and the size of the clone class, i.e. the
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numbers of duplicates. We can also measure how much generalisation has gone on by

comparing the size of the new fun with its instances (this ratio we call the similarity) and

also by the number of New Vars introduced by the generalisation, each of which represents

a position in which the clone instances differ.

Search for clones can take two forms: It is possible to produce a report which identifies

all clones in a project, or it is possible to identify all the clones of a particular code frag-

ment. The former report allows clone exploration, the latter is a more fine-tuned approach

to eliminating precisely the clone that makes sense within a particular context.

Our reports give decision support data to the user, and on the basis of this the user

can decide which clones to eliminate, and in which order. The user will also have to give

meaningful names to the new fun and New Vars, and so this cannot be a ‘push button’

operation, but instead needs the insight of a programmer to apply clone elimination.

Clone identification is made both fast and accurate through a hybrid clone detection

mechanism. Clone candidates are identified by means of a string matching algorithm

operating over strings generalised from the program code. The candidates are then checked

using an AST matching, which supports analysis of static semantics of the program. While

the AST algorithm would be too slow to be practical on its own, it can be used efficiently

on the candidates only.

Incremental clone detection is supported by caching results and identifying where pro-

grams have changed since the previous check; this allows clone detection to be performed

regularly – e.g. as part of a nightly build process – without incurring too heavy a burden;

it also makes interactive clone detection more efficient in larger projects. Further details of

the implementation, including how it is implemented efficiently and incrementally, can be

found in Li & Thompson (2009a, 2010b, 2011b).

10.1 Case study: clone detection

.

The clone detection tool was piloted in a case study undertaken at Ericsson AB, together

with the engineers Adam Lindberg and Andreas Schumacher. The purpose of the case

study, which examined a file of some dozen tests written in Erlang, was to allow the

engineers to understand the test code and to make it more maintainable. The existing

tests were typically straight-line code, with some use of simple macros; clone detection

allowed the engineers to identify common code patterns, which were candidates for clone

elimination through introducing appropriate functions.

The clone elimination process went through 12 steps; the sizes of the file versions are

given in Figure 10. The initial report shows 42 clones, with the most common one being

cloned 16 times; a summary of this report is in Figure 11, and more details in Li et al.

(2009). The initial report uses the default threshold parameters, namely minimum length

of expression sequence: 5; minimum tokens: 40; minimum appearances: 2; maximum

new parameters: 4 and minimum similarity: 0.8. The case study was terminated after 12

iterations, but clone detection on version 13 still shows a variety of clones, and it would be

possible to further reduce the size of the file by hundreds of lines.

A key lesson coming out of the case study is that it is necessary to work with domain

experts when eliminating clones for the following reasons.
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Version LOC Version LOC Version LOC

1 2658 6 2218 10 2149

2 2342 7 2203 11 2131

3 2231 8 2201 12 2097

4 2217 9 2183 13 2042

5 2216

Fig. 10. File sizes in the clone detection and elimination case study.

Size (LOC) Occurrences Total parameters New parameters

Median 17 2 4.5 2

Mean 19.1 3.4 4.8 2.3

Maximum 89 16 11 4

Minimum 7 2 0 0

Largest clone 89 2 2 2

Second largest 61 3 3 3

Most occurring clone 7 16 0 0

Second most occurring 9 14 1 1

Most parameterised 21 2 11 4

Number of clones 42

Fig. 11. Initial clone data for the case study, using default threshold parameters.

• A clone as identified by the tool may not be meaningful within the application

domain. It might, for example, be made up of two sub-clones, each of which is

meaningful. Also, it might be that some code is ‘accidentally’ attached to the begin-

ning or end of the actual clone, simply because of the context in which the clone

appears. In both of these cases, which occurred in the case study, the engineer needs

to identify the specific code to be extracted into a function.

• Once a clone is identified and becomes a function, it needs to be named; moreover,

the parameters of the new function also need to be named. This can only be done by

someone with domain knowledge.

• It is also a matter of choice as to how much to generalise. Is it meaningful to

introduce a function with four new parameters, or would two similar functions with

two parameters each be easier to name and understand? There is also a question of

whether it is better to introduce a number of layers of generalisation, one parameter

at a time or a single generalisation with N parameters. In both the cases it is an

engineering decision.

Other conclusions from the case study were as follows:

• As a general principle we found it more useful to replace clones bottom up, rather

than top down; for instance, in the first step we chose to eliminate the most com-

monly occurring clone rather then the largest one. One reason for this is that it is

easier to understand the operation of a smaller code fragment, and so to name it

https://doi.org/10.1017/S0956796813000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000117


Refactoring tools for functional languages 331

appropriately. Once smaller clones are replaced by appropriately named function

calls it becomes easier to name larger clones.

• It was important to provide users with the two modes of clone detection: initial

exploration identified some clones, but examining these led to others being elim-

inated. That was because the identification mechanism might have included some

spurious code, or because a clone has not been listed due to the choice of threshold

parameters; in either case it is necessary to search for clones of a specified code

fragment before performing elimination.

• As with general refactoring, it is usually the case that clone eliminations are in-

terspersed with manual refactorings that enable, for example, a larger clone to be

identified.

Finally, we observe that version 13 is 23% smaller than version 1, and further reductions

are clearly possible. The result is not just a more compact representation of the test code

but also better structured code with which it will be easier to construct new tests.

10.2 Case study: incremental clone detection

In a long-running project, it would be typical to perform a set of checks on a regular basis,

and one of these could be clone detection. For a large project, the cost of detection can

be substantial, and so an incremental approach is desirable. We report on this in detail in

Li & Thompson (2011b), where we show that in a number of large projects we can cut

clone detection time periods by up to 85%. Figure 12 shows the time taken to detect clones

in three ongoing projects: Wrangler itself, and test codes for a telecoms application and

Erlang itself. The reduced time periods for later versions come from applying incremental

detection leveraging results for earlier versions.

11 Module bad smells

One of the fundamental refactorings we provide in Wrangler is to move a group of func-

tions from one module to another. If the target module does not exist already, then it is

created by this move. Such a refactoring allows us to change the module dependency

structure of a system in an incremental way. We believe that this is the right way to go

about restructuring a system, rather than trying to achieve a one off wholesale change

which would be difficult to document or comprehend.

The question is, then, which functions to move? We provide information of different

kinds.

• Reports on cycles in module dependencies; these are of two kinds:

— Intra-layer dependencies: Here a cycle in the module graph reflects a strongly

connected component which spans more than one module. These can be ame-

liorated by grouping the SCC in a single module, or will simply be accepted as

they stand.

— Inter-layer dependencies: Here a cycle does not reflect mutual recursion, but

instead can stem from a crossing of layers in a layered architecture. A typical

example is a function which is a client of a library which by its utility is itself
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KLOC Files Incremental Standalone

Changed Total Time Clones Time Clones

Wrangler

0.8.7 42.5 70 70 15 18 15 18

0.8.8 44.2 59 80 10 21 15 21

0.8.9 47.4 44 83 8 26 16 26

0.9.0 48.0 9 84 2 26 16 26

0.9.1 48.1 3 84 3 26 17 26

Test Suite

V0 24.0 26 26 560 371 560 371

V1 23.9 3 26 90 361 550 361

V2 23.9 1 26 54 357 550 357

V3 23.8 2 26 90 346 550 346

V4 23.7 2 26 80 338 540 338

Erlang

R13B-03 244.3 306 306 94 78 94 78

R13B-04 245.5 71 311 36 79 97 79

R14A 250.8 108 327 40 82 95 82

R14B 251.9 39 321 28 81 94 81

Fig. 12. Incremental versus Standalone clone detection.

used by other library functions: the solution is to move this from the client to the

library.

• Improper inter-module dependencies, under which a function whose dependency

analysis suggests that it should not be exported is nevertheless exported.

• Partitioning of the set of functions exported by a module into clusters of functions

which share an affinity.

We applied this to our own system, Wrangler-0.8.7, made up of 56 modules, with 40k

lines of code. The structure of the Wrangler code is that each refactoring is implemented

in a separate module, with shared functionality contained in library modules. We found a

number of improper dependencies where distinct refactorings were directly sharing imple-

mentation code (that was not in a library).

We also identified some inter-layer cyclic dependencies which were solved by splitting

up modules. Finally, we found that the refac syntax lib library contained seven clus-

ters, suggesting that we should split it up.

As was the case in Section 10, we are not suggesting that any of these transformations

could be done automatically: for example, the library was split into fewer than seven

clusters, each representing a different functionality, rather than splitting it as the report

might have suggested.
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Details of the implementation of the dependency checks and further examples are con-

tained in Li & Thompson (2010a).

11.1 Other ‘bad smells’

We also report on local properties of modules such as the depth of nesting of receive or

case statements; instances of variables (definition and use), non-tail-recursive functions

used as process bodies and so forth.

This mechanism is used in the Erlang Solutions e-learning system (Erlang E-learning,

2011) to provide feedback on the style of solutions submitted for online assessments. For

example, based on the kinds of pattern used in a pattern-matching definition, Wrangler can

suggest alternative ways that the student might solve the problem in question.

The extensions described in Sections 12.1 and 12.2 provide the user with the mechanism

to describe ‘bad smells’ for themselves, and this is of particular value in a pedagogical

application like this, where a user might wish to tune automated feedback question by

question.

12 Extensibility

As Wrangler was initially developed – and throughout the development of HaRe – someone

wanting to add a new refactoring to the system would need to learn a whole collection

of internal APIs as well as the concrete representation of Erlang or Haskell within the

tool. This had the practical consequence that new refactorings were only added by the

developers.

Recent releases of Wrangler have included an API designed to make implementations of

new refactorings substantially easier as well as a domain specific language (DSL) for de-

scribing complex composite refactorings. We describe these in more detail in this section,

and conclude by presenting a case study of their use.

The work described in this section gives extension points for Wrangler accessed by

writing Erlang programs using the API and DSL; by contrast, our work in embedding

Wrangler in Eclipse (ErlIDE) (ErlIDE, n.d.) is supported by the Eclipse plug-in framework

that enables extensions to Eclipse to be added, written in Java; in our case that Java

code happens to call out to a separate Erlang refactoring process, but plays no part in

the implementation of that process, which is pure Erlang.

12.1 An API for describing refactorings

Wrangler contains an API to describe new refactorings (Li & Thompson, 2011a). To make

the API easier to use for an experienced Erlang programmer, we hide the details of syntactic

and semantic representations, and instead allow the syntax to be represented by Erlang

concrete syntax, augmented with meta-variables that are Erlang variables ending with

the ‘@’ symbol. Using these, which we call code templates, we are then able to describe

transformations by rules giving the ‘old’ and ‘new’ codes, together with preconditions for

the refactoring and a description of how the rules are to be applied across the syntax tree.

These are illustrated in more detail in the case study in Section 12.3.
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We specify what it is to be a refactoring by defining an OTP behaviour that encapsulates

the generic part of a refactoring process so that the user only has to implement the call-

back functions that embody the functionality that is particular to the refactoring under

consideration. This means that the new refactorings are ‘first-class citizens’ in that users are

able to invoke the newly defined refactorings within Emacs and ErlIDE (ErlIDE, n.d.), and

so preview and undo changes that their transformations make, just as for the refactorings

built into Wrangler.

In contrast, the API available in HaRe is of lower level, and requires users to understand

and manipulate the syntax representation of Haskell within Programatica, and the semantic

information contained therein.

12.2 A domain-specific language for refactoring

In their recent study on how programmers refactor in practice, Murphy-Hill et al. (2009)

point out that ‘refactoring has been embraced by a large community of users, many of

whom include refactoring as a constant companion to the development process’. However,

following the observation that about 40% of refactorings performed using a tool occur

in batches, they also claim that existing tools could be improved to support batching

refactorings together.

Complementing the API, we have also built an embedded, domain-specific language

in Wrangler (Li & Thompson, 2012a) for describing composite refactorings: refactorings

that are composed from a number of primitive refactorings. The DSL is implemented using

Erlang macros that make DSL programs straightforward to read and write. The DSL gives a

powerful and easy-to-use framework that allow users to script their own reusable composite

refactorings to carry out large-scale batch refactorings in an efficient way. As for the API,

these scripts can be run through the Emacs interface, and so the results can be previewed

and undone. (Doing this in ErlIDE is more problematic due to the workflow required for

refactorings; it remains a future work.)

This facility is a language rather than simply an API as it allows control of a number of

different dimensions of the refactoring.

• Refactorings in the core Wrangler implementation take arguments to describe what is

to be done. For example, this specific function is to be renamed in this way. The DSL

allows for refactorings such as renaming to be paramterised instead by conditions

that identify the functions to be renamed, and functions that supply the renaming

itself. These more abstract descriptions generate collections of concrete refactorings

for Wrangler to execute.

• It is possible to control the granularity of composite refactorings, and this is essential

for preserving correctness in many cases. For example, suppose that a sequence of

renamings depends on each other, since we might want to generalise the functions

foo/3, foo/2 and foo/1 in that order; if the first fails, the rest should fail too,

and we make this a transaction. On the other hand, if we want to make a batch

transformation of names from ‘camel case’ to ‘camelCase’ across a project, the

refactoring will still be successful (pin not breaking the semantics of the program)

even if one of the component renamings fails: we therefore do not make this a

transaction.
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• We can also choose to make refactorings described by the DSL interactive, that is

taking user input during their execution, and also iterative, that is applied repeatedly

under user control. An example of this would be in removing instances of code

clones, where it should be possible to query the user at each instance of the clone

whether or not it should be removed.

Examples of use of the DSL are discussed in more detail in Li & Thompson (2012c) as

well as in the next section.

12.3 Case study: removal of error macros

As a case study of the API and DSL together, we have worked with Quviq AB to develop

a refactoring to assist their testing work. Quviq tests systems using the QuickCheck tool

for property-based testing. In testing state-based systems, a state machine model is written

in Erlang, and the actual system (which may be written in another language like C) is

taken through randomly generated test cases for the model. Once a fault in the system has

been discovered, it is not useful to keep identifying the same fault, and so testers modify

the model by adding calls to macros, such as ?system bug 007, to bypass the erroneous

code, as in the statement

case ?system_bug_007 of

true -> ... known_failure ...;

false -> ... usual_behaviour ...

end

On shipping the model to the customer, this fault avoidance code needs to be removed, and

so, for example, the case statement above needs to be replaced by the usual behaviour.

This is not simply a matter of replacing ?system bug 007 by false: the resulting code

can often be simplified substantially afterwards, and the automated refactoring was re-

quired to do that. Prior to automation this was a tedious exercise for the tester: for example,

one of the files that we examined contained 43 uses of these macros, in a number of

different contexts. In the most complex of these our refactoring reduces a 14 line nested

case statement containing two macro calls to five lines of code.

We use the API and DSL together to achieve the automation. The simplest way to

achieve the required simplification is to replace macro invocations like ?system bug 007

by false, but this still leaves the code cluttered. In the earlier example, the case statement

needs to be collapsed from

case false of

true -> ... known_failure ...;

false -> ... usual_behaviour ...

end

to the usual behaviour by a simple case of symbolic execution. Other tidying up is also

possible, e.g. by removing concatenation with an empty list. This is all implemented in the

refactoring refac bug cond shown in Figure 13.

• At the top level we implement the callback function transform that specifies the

transformation to be done: this specifies that a list of rules is applied to the full
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transform(_Args=#args{search_paths=SearchPaths})->

?FULL_BU_TP([replace_bug_cond_macro_rule(),

logic_rule_1(),

.....

if_rule_1()], SearchPaths).

replace_bug_cond_macro_rule() ->

?RULE(?T("Expr@"), ?TO_AST("false"),

is_bug_cond_macro(Expr@)).

logic_rule_1() ->

?RULE(?T("not false"),?TO_AST("true"),true).

if_rule() ->

?RULE(?T("if Conds1@@, false,Conds2@@ -> Body1@@;

true -> Body2@@

end"), Body2@@, true).

is_bug_cond_macro(Expr) ->

api_refac:type(Expr) == macro andalso

is_bug_cond_name(?PP(Expr)).

is_bug_cond_name::string()-> boolean().

is_bug_cond_name(Str) -> ..check the macro name....

Fig. 13. Eliminating bug preconditions: key aspects of refac bug cond.erl.

program tree (FULL) in a bottom-up way (BU), emitting another program tree (TP, for

‘type preserving’). Note that here we use the terminology of strategic programming

(Lämmel & Visser, 2003; Bravenboer et al., 2008).

• At each node of the tree we attempt to apply the rules in the list in turn, until one is

applied successfully.

• The principal rule is replace bug cond macro rule which replaces any expres-

sion that is a bug condition macro by the literal false.

• Rules are signalled by the three argument macro RULE: the first argument is the

code to be replaced, the second is its replacement and the final argument is the

precondition for the rule to be applied. Note in the example that we use meta-

variables ending with ‘@’ in the templates matching the old code, and have access to

these in the new code and precondition.

• The most complicated rule shown here is the rule for simplifying if statements,

if rule. Here the variables ending @@ will match sequences of expressions so that

the pattern Conds1@@, false,Conds2@@ will match any sequence of expressions

in which one of the expressions is the literal false (note that a comma-separated

sequence of conditions in Erlang is interpreted as the conjunction of the values).

• In a general refactoring there are also callbacks to handle interactivity (how the

user is prompted etc.), selection of focus in the editor and a precondition for the

refactoring itself. In this case these all have the default definition.
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composite_refac(_Args=#args{current_file_name=File,

search_paths=SearchPaths}) ->

Refacs=?refac_(inline_var, [File,

fun({_F,_A}) -> true end,

fun(MatchExpr) ->

?MATCH(?T("Var@=Expr@"),MatchExpr),

api_refac:type(Expr@)==variable

end, SearchPaths]),

?non_atomic(Refacs).

Fig. 14. Using the DSL to give a generator for inlining all redundant variables.

• In total, the rule list contains 14 rules, each implemented in a few lines of code, and

each being clearly semantics-preserving. Together with the callback functions and

auxiliary definitions, the file consists of some 160 lines.

The refactoring presented in Figure 13 will drastically simplify code, but can still leave

further work to be done, as in the case of

route_data_next(S,_, [{{SrcKind,SrcId}, Dst, Val}], _) ->

NewS = set_gateway_pending(S, SrcKind, SrcId, false),

S2 = NewS,

copy_to_destination(S2, Dst, Val).

where the simplification has resulted in code with a redundant variable introduction (S2).

In this case we want to inline that definition, replacing all instances of S2 by NewS. This

can be described by a composite refactoring in the DSL, and specifically by means of a

generator, as shown in Figure 14.

The function composite refac returns a generator, which is signalled by the assign-

ment

Refacs = ?refac_(...)

The macro ?refac generates instances of inline var according to the functions in the

second argument. The first argument gives the file in which the transformations take place,

the second describes which functions it should be applied to (in this case all of them) and

the third gives the criterion for application: an assignment of the form Var@=Expr@ in

which the Expr@ is itself a variable. The result of the function, ?non atomic(Refacs)

means that the refactoring is not treated as a transaction: the failure of any of the particular

refactorings does not lead to the failure of the whole.

We now have two refactorings, and these two can be put together into a single one

using the DSL. This final composite gives a ‘push button’ solution to the bug precondition

problem, and thus simplifying the work of Quviq test engineers.

Another use of the API and DSL is to assist in the ‘API upgrade’ problem: when an

API evolves, it is necessary to upgrade code using it. The simplest way of doing this is to

provide an adapter module that implements the old API in terms of the new: using the DSL

and API we have built a system that transforms the adapter module into a set of refactorings

that transforms the client code to work with the new API; this is reported in detail in Li &

Thompson (2012b).
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13 Related work

Refactoring. The term ‘refactoring’ was first coined in the early 1990s in two PhD theses

(Griswold, 1991; Opdyke, 1992), and was brought to wider prominence by Fowler’s (1999)

eponymous book; a broad survey of the first decade of the development of refactoring and

refactoring tools is provided by the survey (Mens & Tourwé, 2004). A series of workshops

on refactoring tools, including WRT’12 (Sommerlad, 2012), have brought together re-

searchers and engineers building tools to refactor languages, and in papers and discussions

there have been developments and observations complementing ours here.

Refactoring has received a lot of attention in the OO programming community, with

tools produced for Java, not only in Eclipse (Gallardo, n.d.) but also in other IDEs (Net-

Beans, n.d.; Lahoda et al., 2012); C# (ReSharper, n.d.) and Smalltalk (Roberts et al., 1997)

among others. The applicability and use of these and other tools are compared in Katić

& Fertalj (2009) and the general uptake and application of refactoring ideas and tools are

evaluated in Ge et al. (2012) and Vakilian et al. (2012).

Program transformation for functional programs. Despite the fact that one of the found-

ing works of the area (Griswold & Notkin, 1993) addressed LISP, there has been rela-

tively little work on refactoring functional programs; there is, however, a substantial her-

itage of program transformation for functional programs, beginning with the seminal work

of Burstall & Darlington (1975) surveyed in Darlington (1982). More recently, Lämmel

(2000) has used Strafunski to describe generic and functional refactorings; this work has

tended to focus on principles of program transformation rather than on tooling for specific,

complete languages. Strafunski (Lämmel & Visser, 2003) is a tool for strongly typed

transformation written in Haskell, and is itself inspired by Stratego (Bravenboer et al.,

2008), which is untyped.

What the majority of the functional transformation tools have in common is the fact that

they are not designed to work with concrete syntax, and so it is difficult, if not impossible,

for the tools to preserve layout and comments. Others, such as PATH (Tullsen, 2002),

support Haskell program transformation for program derivation or for optimisation: in both

the cases these improve systems locally, whereas the refactorings that we target are large-

scale, not least because these are the transformations most in need of automated support.

Refactoring functional programs. Turning to work that does address refactoring func-

tional programs, the team at Eötvös Loránd University, Budapest, have built the Refactor-

Erl tool (Horváth et al., 2008) for Erlang refactoring. Their approach differs from ours in

a number of ways:

• Their tool has a dedicated lexical analyser and parser, in contrast to our reuse of the

facilities of the syntax tools library. This has the advantage of allowing the team

complete control of syntax analyses, but requires maintenance to follow any changes

to the existing distribution.

• Their system stores the program information in a database rather than our choice of

using syntax trees with annotations for semantic information. This has the advantage

of supporting a series of static analyses (Tóth & Bozó, 2012), but the disadvantage of
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making the tool more heavyweight: startup time can be longer than the correspond-

ing time for Wrangler.

• We have added a number of higher-level decision analysis tools to our system,

including clone detection and module ‘bad smell’ identification, and linked these

with the appropriate refactorings to support the correction of identified faults.

• The RefactorErl team has developed tools to analyse and remodularise (Lövei et al.,

2008; Lövei, 2009) systems. These have tended to automate under user guidance.

Our systems instead provide users with reports on the basis of which users decide

to make certain changes; we do this because, in practice, it is often impossible

automatically to determine the appropriate remodularisation, say, fully automatically

without any user input.

• In contrast with our approach of allowing users to use Erlang concrete syntax in

writing new refactorings (Li & Thompson, 2012c), the RefactorErl team’s support

for user access to the syntax (Kitlei et al., 2008) requires users to understand the

details of the internal representation to describe syntactic fragments.

The projects can be seen as complementing each other. Our tool has been designed for

interactive work, while the higher overhead of populating the database in RefactorErl could

potentially pay off when working with larger code bases. More recent developments to

RefactorErl, as reported in Tóth & Bozó (2012), concentrate on its facilities for analysis

rather than transformation.

Tidier (Sagonas & Avgerinos, 2009) is another refactoring tool for Erlang; however, it

differs from Wrangler and RefactorErl both in the kind of refactorings supported and the

design philosophy. Firstly, the refactorings in Tidier are more limited in scope (currently,

they are mostly clause-local); secondly, Tidier is designed to be run fully automatically

and requires no interaction from user; since layout is not preserved, the tool is better suited

for use during the ‘make’ process, rather than to produce source code recognisable to the

original author. HLint (Mitchell, 2011) is a similar tool for Haskell that also identifies

‘local’, expression-level refactorings; HLint is highly user-configurable, but at the time of

writing HLint requires users to perform transformations for themselves.

Papers of ours on more specific topics – such as clone detection and elimination – have

more detailed literature reviews.

Testing and refactoring. There is little other work on automated testing of refactoring

tools. The most prominent example is Daniel et al. (2007), a similar study to ours, but

done for refactoring engines integrated in IDEs for mainstream languages. This also uses

program generation, but the program generator described is specific to the language they

use and it can be parametrized by code fragments, so it would be difficult to adapt to other

domains, rather than our more general approach. They test the results of refactorings in

a different way too: they test handwritten structural properties as opposed to behavioural

equivalence, and do this by testing the results of two different refactoring engines against

each other, rather than testing the old and new code directly.

Building on this work, Soares (2012) provides a system whose main contributions are

‘its technique for generating input programs and its test oracles for checking behavioral

preservation based on dynamic analysis’. Our earlier work in Li & Thompson (2007)
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describes using QuickCheck for testing Wrangler. This did not use random program gen-

eration, refactoring a static code-base instead, but generating random refactorings of that

code-base; we then check successful compilation as a property of all refactorings, as was

the case for Daniel et al. (2007) as well as other properties of individual refactorings.

While there is an established literature on refactoring test code written in the ‘xUnit’

style (Meszaros, 2007), we are not aware of xUnit-awareness having been implemented

in any existing refactoring engines. The analysis we perform requires knowledge of the

Erlang pre-processor, and similar work to this is reported in Kitlei et al. (2010).

Clone detection. We have introduced a mechanism which combines the speed of string

matching with the accuracy of AST-based detection; for larger projects it is important to

check the clones added by changes rather than rechecking the whole project: a method for

this is outlined in Li & Thompson (2011b).

A survey by Roy et al. (2009) provides a qualitative comparison and evaluation of the

current state of the art in clone detection techniques and tools. Overall, there are text-based

approaches (Baker, 1992), token-based approaches (Baker, 1995; Li et al., 2006), AST-

based approaches (Jiang et al., 2007; Bulychev & Minea, 2008; Evans et al., 2008; ) and

program dependency graph-based approaches (Komondoor & Horwitz, 2001). AST-based

approaches in general are more accurate, and could report more clones than text-based

and/or token-based approaches, but various techniques are needed to make them scalable.

Closely related work to ours is by Bulychev & Minea (2008), who also use the notion

of anti-unification to perform clone detection in ASTs. Our approach is different from

theirs in three ways: firstly, our hybrid approach is more efficient and scalable, but still

accurate; secondly, we report clone classes, while they only identify clone pairs; finally,

their language-independent approach means that they cannot reflect the particular static

semantics of a particular language like Erlang.

In Brown & Thompson (2010) an AST-based clone detection and elimination tool for

Haskell programs is described; their approach works on small Haskell programs, but scal-

ability is a problem that the authors do not address.

ClemanX is an incremental tree-based clone detection tool developed by Nguyen et al.

(2009). Their approach measures the similarity between code fragments based on the

characteristic vectors of structural features, and solves the task of incrementally detecting

similar code as an incremental distance-based clustering problem. Göde & Koschke (2009)

describe a token-based incremental clone detection technique, which makes use of the

technique of generalised suffix trees.

Extension. We have introduced a template-based API for describing new refactorings

and a domain-specific language for scripting refactorings. Rather than introducing a new

language, these are integrated with Wrangler and use Erlang concrete syntax and data

structures, which will be familiar to Wrangler users.

Others have made progress in this area, including Leitão (2002), who describes a ‘pattern

language’ in LISP syntax designed to assist the description of transformations, and Kitlei

et al. (2008), which supports the description of nodes of the AST by means of an Erlang-

style syntax. While each leverages the support of the host language, neither supports

concrete syntax description of fragments, nor do they directly support the collection and
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collation of context data needed to describe refactoring preconditions as we do in Li &

Thompson (2011a).

Recent versions of NetBeans include a facility to define custom ‘declarative’ refac-

torings (Lahoda et al., 2012), and these can be described by concrete syntax templates;

what the system currently lacks is the ability to make new refactorings interactive and

selective (as well as transactional), as provided by our DSL (Li & Thompson, 2012a).

Another approach to specifying refactorings in a high-level way is given by Schaefer &

de Moor (2010), where simpler micro-refactorings are put together subject to constraints

to define whole refactorings. In some ways this approach resembles our DSL, but it also

allows description of refactorings from scratch: it would be interesting to see how this

approach adapts to a functional language. Hills et al. (2012) give an example of ‘scripting’

refactorings in the Rascal system in a way similar to our DSL approach.

14 Reflection

Reflecting on the experience of building HaRe and Wrangler leads us to draw some conclu-

sions. We begin by noting that implementing refactoring tools for particular programming

languages gives us a perspective on the languages themselves.

Haskell. In managing imports and exports it is useful to be able to hide particular bindings,

and indeed Haskell allows us to hide bindings on import. Unfortunately, the dual operation

of hiding a binding on export is not in the language, and so explicitly hiding one of a large

number of exports is impossible. Instead, it is necessary to export all but that one binding,

which is neither readable nor easily maintainable.

We showed the example of turning a data type into an abstract data type, and that is

supported by Haskell. As a part of that we use field names as selectors, and it would be

useful for those field names to be a part of definition of the standard types such as lists,

since this facilitates the transformation. Without this we need to be able to recognise that

head and tail are indeed the functions that we need.

There are also complexities introduced by two of the more esoteric (and controversial)

aspects of the Haskell-type system: The monomorphism restriction and defaulting. The

former puts restrictions on the application of eta-reduction and expansion, and combining

both can result in the meaning of a program changing when an unused definition is removed

after unfolding, for example.

Layout of Haskell programs is significant, but also idiosyncratic: Program layouts of

different programmers can be very different, and so ensuring that the layout is preserved

as much as possible is very important for the output to be acceptable to the author of the

program being refactored. The Haskell standard does specify that a tab stop should be

interpreted as eight characters, removing one cause of problems for other languages.

Erlang. The Erlang tradition has been not to give types to programs, but this has changed.

Previously there were two notations for types, -spec as used by the Dialyzer tool (Sagonas,

2007), and @spec as used in the Edoc documentation system; the latest releases of R14

have unified this notation to -spec. We expect that this will provide a tipping point after

which we can expect that stating types will become the norm, and this will significantly aid
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tool writers. For a refactoring tool, in cases such as that in Section 8.2 it should be much

clearer from the type declared for a function whether or not a catch-all is needed; indeed,

use of a type synonym in a context like that will signal the scope of a wider transformation

of types within a whole set of functions. Type information will also aid implementers of

other tools, such as QuickCheck, which generates random data of particular types.

Dynamic languages make the tool writer’s job more difficult, and this is spelled out

in detail for refactoring Erlang in Section 8. Given that this is central to the ethos of the

language, we do not expect to see changes to Erlang in this respect. Neither do we see any

imminent changes to the way in which the same atoms can be used for multiple roles in

Erlang: enforcing some sort of lexical separation between these different categories would

be too disruptive a change.

Do it yourself? Our aim in writing HaRe and Wrangler was to reuse other frameworks

as much as possible. This led us to choose Programatica and Strafunski for HaRe, and

syntax tools for Erlang. The experience of HaRe was that this got us started quickly

when we began the project in 2002, but both frameworks were not supported soon after

that point. An alternative choice were we to begin again now would be to use GHC itself,

and in particular to exploit the API for the GHC front end (GHC API, n.d.) which is now

available. With GHC we would ensure that the infrastructure would persist, but there could

still be maintenance issues if the GHC-API or the underlying representation of programs

were to change.

The syntax tools package for Erlang provides a very attractive solution for the tool

writer because it gives an abstract interface to the underlying syntax trees which means

that programs can be independent of the particular representation of the tree. It is also

extensible in allowing additional attributes to be attached to AST nodes, and we use this to

record detailed position and static semantic information.

An alternative would have been to build a framework for ourselves, as has been done

by the RefactorErl group (Horváth et al., 2008). This gives them complete control of the

representation and processing of information, but comes with a maintenance cost: each

time there is a change to the language then you need to upgrade the framework. It also

has the disadvantage that some extensions to the language, such as the macro-processing

system, either have to be reimplemented or worked around.

What should a tool support? Our tools aim to automate the application of a set of basic

refactorings, and feedback and data gathered from usage suggests that this is a sensible

approach. Of the refactorings supported, renaming and function extraction have proved to

be the most commonly used ones.9

On the other hand, we have had requests from users to have help in directing refactoring

effort, and this led to the developments reported in Sections 10 and 11. These give the user

information – such as the presence of a clone and how it can be refactored away – which

could be found by inspection but which would simply not be done that way because of the

degree of details involved. Nevertheless, the underlying support for the transformations

9 We are reminded of the 1980s debate about ‘RISC versus CISC’ for microprocessor instruction sets: we
definitely take the ‘RISC’ approach here.
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is in the basic refactorings, and we see this as confirmation of the appropriateness of our

approach.

Past and present obstacles. Obstacles in the past have included over-complicated or non-

standard installation mechanisms and dependencies on other systems, such as cygwin on

Windows platforms. Wrangler is now available with a Windows installer on Windows and

makefiles on Unix systems. HaRe is available from the Hackage database.

The fact that we have not provided support for particular editors, such as XEmacs and

Vim, has been seen as an obstacle to adoption. We have had to take pragmatic decisions

about the cost/benefit of supporting particular editors, and Wrangler is now supported in

XEmacs but not in Vim.

For a Haskell refactoring tool to be adopted widely, it must support GHC Haskell:

whether or not this is desirable, it is plainly the case. At the time that HaRe was first

designed using the internals of GHC was not seen as a sensible route to take, but clearly

now this makes the best sense. We have looked at ‘porting’ HaRe to GHC (and the GHC-

API), but the degree to which HaRe depends on the details of the Programatica front end

makes this a delicate and difficult task. Instead, it makes more sense to reimplement HaRe

in GHC, using the experience gained in building it and Wrangler.

Principles versus engineering. Our initial aim in investigating refactoring for functional

languages was to understand more clearly what refactoring means in this context. However,

we have found that much of our work has not focussed on principles but rather on the ef-

fective engineering of these systems to embody the aspirations of Section 4.3. Particularly

time-consuming have been integration with Eclipse, building scalable and incremental

clone detection infrastructure and dealing with layout and formatting in the tools.

Refactoring and testing. We have found particularly fruitful links between refactoring

and testing in our work with Wrangler. Test code is particularly prone to contain code

clones, and we have had success in applying Wrangler’s clone detection and removal in

this area (Li et al., 2009). One of the key problems in using QuickCheck-style tools is to

find properties of systems. Our work builds on clone detection to identify properties from

existing test suites (Li et al., 2011). Finally, we see much scope for refactoring tests within

test frameworks like EUnit (Carlsson & Rémond, 2006).

Trust and verification. For a program transformation tool to be used in practice, it must

be trustworthy, and not to break existing code. The state of the art in the OO world (Fowler,

1999) is to expect the user to verify each instance of a refactoring by regression testing code

before and after the refactoring is applied as well as to test refactoring tools as outlined in

Section 9.4. Is it possible to do better for functional programming languages?

We can answer this in a number of ways. Firstly, if we write our tools in a functional

language, then we can make the general claim that because functional languages are par-

ticularly well suited to manipulating language data structures and constructs, then our

refactoring programs are more amenable to informal verification by inspection. (This kind

of evidence might well be used in support of compilers written in functional languages,

too.)
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Secondly, we could argue that formal verification of refactorings for functional lan-

guages is itself possible. We have indeed shown how to formalise refactorings in Li &

Thompson (2005) and investigated the foundations of formal verification of refactorings

(Sultana & Thompson, 2008). In the latter case we modelled a renaming refactoring in a

lambda calculus with name capture, and showed that under the appropriate preconditions

the binding structure was not changed (and so, in particular, no capture took place). While

this and other works, e.g. Garrido & Meseguer (2006), Carvalho Júnior et al. (2007),

Ubayashi et al. (2008) and Yin et al. (2009), show that verification is possible in principle,

practical verification of refactoring engines for Haskell or Erlang remains some way off,

and is predicated on the mechanisation of the static and dynamic semantics as well as the

module structure and type systems of the languages in question.10

A generic general-purpose refactoring tool? We have the experience of building general-

purpose refactoring tools for two quite different functional languages, and so a natural

question to ask is whether these two tools could be replaced by a single generic, general-

purpose tool which works with a range of languages. Our answer is ‘yes and no’: ‘yes’ to

the idea that generic tools such as StrategoXT (Bravenboer et al., 2008) can be used very

effectively to implement particular transformations for particular languages (as was done,

for example, with the Y2K problem some years ago), but ‘no’ to the idea that general-

purpose tools like Wrangler and HaRe could be subsumed as part of a single, generic and

general-purpose system. Why do we take this negative position?

For a tool to be acceptable to users of a set of programming languages, the tool needs

to cover all aspects of each of the languages, including their syntax, static semantics, type

system, module structure, pre-processor, layout and comment conventions. For this to be

effective, we need to be able to build a generic front-end for a compiler: not just a parser

generator, but a fully featured representation of static semantics and types. This in turn

will require internal representations that are flexible and powerful enough to represent

concepts from different languages. To give a couple of illustrations from our experience,

this will include modelling the multiple binding occurrences of Erlang variables, Haskell’s

extensions in GHC, including type-level programming, as well as the syntactic peculiarities

of the two languages.

Despite the promise of attribute grammar and other formalisms, there has been no

progress in building a single compiler for all programming languages (for the reasons

above and more), and we anticipate equally large obstacles to it happening for refactoring

engines. Moreover, in building tools for Haskell and Erlang we have been able to reuse

substantial parts of the language infrastructure written in the languages themselves; this

would not be possible in the generic case where all would have to be built from scratch in

the ‘brave new world’ of the generic representation.

15 Conclusions

We have presented an overview of refactoring functional programs, and shown how dif-

ferent the process – and its implementation – can be for two representative functional

10 See Alglave et al. (2011) for another perspective on this from the C verification community.
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languages, Haskell and Erlang, and seen that because of the differences of the languages

the tools are substantially different.

A number of refactorings that we have implemented – particularly the structural ones –

are similar to OO refactorings; other OO refactorings which move methods and attributes

around the inheritance hierarchy do not have direct equivalents in the functional paradigm.

Finally, some refactorings of concurrent systems are supported more easily in a functional

context.

Our work with Wrangler has underlined that it is important not only to implement the

basic refactorings but also to provide decision support tools, such as clone detection and

module analysis, that can guide the application of the tool. This was particularly evident in

case studies with working software engineers (Li et al., 2009).

Wrangler’s API and DSL give users the ability to write refactorings themselves without

having to become familiar with the intricacies of Wrangler’s implementation. We see this

as the way of the future, particularly when users begin to use online repositories to share

their refactorings with each other.

We are continuing to work on refactoring for functional languages, and would identify

the following challenges:

• Build a tool for refactoring GHC Haskell programs based on the GHC-API and other

aspects of the GHC toolchain.

• Identify and implement a set of high-level data refactorings. A challenging problem

here would be transform a list-processing program into a ‘Hughes list’ version,

in which lists are represented by functions, and where concatenations are more

efficiently implemented. What makes this question a challenge is that it is not clear

what the scope of the transformation should be: are all lists in the system to be thus

transformed, say?

• Identify and implement further decision support tools for Wrangler and HaRe users.
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Li, H., Thompson, S., Orosz, G. & Töth, M. (2008) Refactoring with wrangler, updated. In ACM

SIGPLAN Erlang Workshop 2008, Victoria, British Columbia, Canada.
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