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Abstract

The identification of microplastics becomes increasingly challenging with decreasing particle size and increasing sample het-

erogeneity. The analysis of microplastic samples by Fourier transform infrared (FTIR) spectroscopy is a versatile, bias-free tool to

succeed at this task. In this study, we provide an adaptable reference database, which can be applied to single-particle identifi-

cation as well as methods like chemical imaging based on FTIR microscopy. The large datasets generated by chemical imaging

can be further investigated by automated analysis, which does, however, require a carefully designed database. The novel

database design is based on the hierarchical cluster analysis of reference spectra in the spectral range from 3600 to 1250 cm−1.

The hereby generated database entries were optimized for the automated analysis software with defined reference datasets. The

design was further tested for its customizability with additional entries. The final reference database was extensively tested on

reference datasets and environmental samples. Data quality by means of correct particle identification and depiction significantly

increased compared to that of previous databases, proving the applicability of the concept and highlighting the importance of this

work. Our novel database provides a reference point for data comparison with future and previous microplastic studies that are

based on different databases.
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Introduction

The pollution of aquatic systems with small plastic particles

called microplastics (MP) [1] is an emerging topic in environ-

mental and analytical science [2, 3]. These particles are de-

fined as < 5 mm in size and often further divided into subcat-

egories, e.g., large MP (5 mm–500 μm) and small MP (500–

1 μm) as described by Hidalgo-Ruz et al. [4]. Two

introduction pathways for MP into the environment are pos-

sible. The first is primary MP, to which the use and disposal of

microbeads in cosmetic and cleaning products largely contrib-

ute [5]. The second is secondary MP formed by fragmentation

of litter by mechanical or UV light-induced degradation. MP

are ubiquitous in the environment [6] and their reliable mon-

itoring is demanded within the European Marine Strategy

Framework Directive (MSFD) by descriptor 10 [7]. To inves-

tigate and monitor MP pollution, it is necessary to identify the

particles [2, 4]. One method is the visual identification without

further chemical identification, which has a high potential of

false counts. If MP are further investigated by chemical iden-

tification, up to 70% falsely assigned particles can be found

[4]. Therefore, chemical identification is necessary for moni-

toring and different analytical methods are already in use for

MP analysis.

To determine the mass of plastic within the sample, mass

spectrometry is combined with pyrolysis gas chromatography

(Py-GC) [8] or thermal extraction desorption gas chromatog-

raphy (TED-GC) [9]. Both allow the chemical identification

of the polymer types as well as the determination of mass of

MP in a sample. Nonetheless, through these processes, the
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sample is destroyed and particle sizes and numbers cannot be

calculated, which is a major drawback, for example, for eco-

toxicology studies.

In contrast, spectroscopic methods like Fourier transform in-

frared (FTIR) and Raman spectroscopy enable the measurement

of particle numbers and sizes as well as polymer identification.

Bothmethods identify theMP polymers through their molecular

vibrations in a complementary manner [10] and can be intro-

duced into microscopic setups, which allows chemical imaging

[11–13]. Single-element detectors, which are already frequently

applied inMP analysis [14], were used for first setups for chem-

ical imaging [15]. Their major drawback is the high measure-

ment time necessary for large field sizes. The application of focal

plane array (FPA) detectors enables fast measurements of large

field sizes with high resolution [11], called FTIR imaging.

Typically, the (in)organic matrix of environmental samples is

reduced prior to measurement by chemical or enzymatic treat-

ment and the residue concentrated onto filters [2, 16]. In earlier

studies [13, 17, 18], the complete filter areas were measured

followed by an analysis through integration of plastic polymer-

specific band regions for the generation of false color images.

The hereby pre-selected particles had to be compared via man-

ual comparison to reference spectra, which is a time-consuming

task [10, 11, 19] and prone to human bias.

Through the development of an automated analysis pipe-

line [20], it was shown that the expenditure of time and human

bias was reduced to a minimum, while large field sizes could

be measured. Further, it was found that small microplastic

particles, which were previously missed in manual analysis,

could now be successfully identified. The automated analysis

pipeline uses spectral correlation of the raw and first derivative

of vector-normalized spectra against a reference library for

chemical identification. Afterwards, both results are compared

and if an identical result is found, the pixel is counted as

identified. By image analysis, the size and number of particles

for each polymer are determined.

For all described FTIR-based analyses, the underlying da-

tabase is crucial for the quality of the results. While different

methods are available for data handling [20–22], commercial

databases are unsuitable for these methods. Application of the

automated analysis on different samples made it clear that for

standardized analyses, a specialized database design is neces-

sary to distinguish between different materials in specific

spectral ranges [23–25].

In the case of the automated analysis, the spectra have to be

sorted into clusters, which are necessary, as no categorization

or too fine categorization would lead to errors in the assign-

ment process. Large gaps or several small particles instead of

one large particle would be assigned, falsifying the determined

particle abundance derived by image analysis. Especially in a

large database with several entries of similar materials, this is

likely to happen, as the same material can be assigned to

different database hits. For standardization of MP analysis,

the database should be designed with adaptability for future

research questions, while the original design can serve as a

reference point for future versions and different spectral

ranges and derivatives.

In this study, we present a detailed novel approach for an

adaptable database design (ADD) for the automated analysis

based on statistical methods followed by validation.

Therefore, we investigated the typical spectral range (3600–

1250 cm−1) for Anodisc [11] filter material regarding differ-

ences within the reference spectra by cluster analysis. Byman-

ual evaluation of the generated clusters and further validation,

an initial reference library in the spectral range 3600–

1250 cm−1 was determined for ADD and evaluated, which

can serve as a basis for future database adaptations.

Materials and methods

FTIR measurements

To set up a general spectral database, polymer samples from

different suppliers were measured via attenuated total reflec-

tion (ATR)-FTIR spectroscopy on a Bruker Tensor 27 System

(Bruker Optics GmbH) with a diamond platinum ATR-unit

(Bruker Optics GmbH). The spectra were recorded in absor-

bance mode within the range from 4000 to 400 cm−1 with a

resolution of 4 cm−1 and 32 scans were co-added. Each mea-

surement was performed in triplicate. Selected materials were

additionally measured in transmission mode via a μFTIR mi-

croscope (see below) at a resolution of 8 cm−1 with six co-

added scans.

The FTIR imaging measurements were performed on a

Bruker Tensor 27 spectrometer connected to a Hyperion

3000 μFTIR microscope (Bruker Optics GmbH) equipped

with a 64 × 64 FPA detector. The microscope is equipped with

a × 4 lens for the collection of visual images of the sample

surface and × 15 Cassegrain objectives for IR analysis. Data

collection was performed with the OPUS 7.5 (Bruker Optics

GmbH) software. All data shown was measured with 4 × 4

binning at a resolution of 8 cm−1 with six co-added scans in

accordance with literature [11]. The minimum detectable par-

ticle size with these parameters was 11 × 11 μm.

Spectral database design

The recorded ATR spectra were processed using the OPUS

7.5 software. Three spectra for each sample were averaged

and an infobox was created containing sample name, abbre-

viation, supplier, source ID, form, color, and method. The

spectra were baseline corrected using the concave rubberband

correction with 10 iterations and 64 baseline points. In the

case of black material, the spectra were subjected to an ex-

tended ATR correction beforehand. For entries based on

5132 Primpke S. et al.



transmission FTIR measurements, 20 single spectra were iso-

lated from each dataset and afterwards treated as described

above. However, a straight line was generated in the wave-

number range of 2420–2200 cm−1 to exclude the CO2 band.

All spectra were made compatible so they contain the same

number of wavenumber datapoints in the considered spectral

range (x axis). Spectra with a low signal-to-noise ratio were

excluded afterwards. The combined data is further provided as

a Microsoft Excel Sheet (ESM_2.xslx) within the Electronic

Supplementary Material (ESM). Samples of different types of

polymer-based fibers as well as of different plant types and all

animal furs were received from the Bremer Faserinstitut in

Germany.

Automated analysis and image analysis

The automated analysis and image analysis were conducted as

described in previous work [20]. Briefly, all spectral analyses

were performed on HP KP719AV computers equipped with

an Intel© Core 2 Duo™ processor, 8-GB RAM, AMD

Radeon HD 5450 graphic card, extra USB3.0 controller card,

and a SANDISK Extreme 64-GB USB stick. The library

searches were performed through a macro within the OPUS

7.2 software.

For image analysis, the raw data was analyzed by Python

Script and SimpleITK [26, 27] functions using Anaconda

(Anaconda, Inc.) and Spyder on a HP Z400 workstation with

an Intel© Core Xeon W3550 CPU, 12-GB RAM, NVIDIA

Quadro FX 1800 graphic card, and an additional CSL PCI

Express Card USB3.0 controller. The results of the image

analysis were further investigated using OriginPro2017G

(OriginLab Corporation).

Cluster analysis with PRIMER 6

To generate clusters, spectra were subjected to a hierar-

chical cluster analysis using the Primer 6 software

equipped with the Permanova+ package (PRIMER-E).

For this, all negative values in the spectra were set to

0. To exclude effects from different concentrations and

varying contacts between diamond crystal and material

during the ATR measurement, all data was normalized

to percentage. For the analysis, the Hellinger distance of

the different spectra was calculated and subsequently

subjected to cluster analysis.

For further investigations of the cluster analysis, the simi-

larity profile (SIMPROF) routine, a permutation procedure

that tests for the presence of sample groups, was used [28].

When applying it to the analysis of dendrograms generated via

hierarchical cluster analysis, it can provide stopping rules for

further fractionation of samples into subgroups.

Reference samples

Ref7P: For preparation of a reference sample with known

content, synthetic polymers as well as natural materials (seven

in total, see Table S1, ESM_3.pdf) with a size range from

approx. 150 μm down to a fewmicrons were mixed. In a glass

bottle with a ground joint and stopper, eachmaterial was given

into MilliQ (30 mL, 0.22 μm, Merck Millipore) and the spat-

ula was washed afterwards thrice with 30% ethanol (3 × 1mL,

filtered over 0.2 μm) each time. A Teflon-coated stirring bar

was added. Prior to filtration, the mixture was stirred for

30 min on a magnetic stirrer and 1 mL of the mixture was

filtered onto an Anodisc filter (0.2 μm, GE Whatman). The

filter was washed with 30% ethanol (5 mL) and dried for 24 h

at 30 °C. The sample was placed under the μFTIRmicroscope

and measured via FTIR imaging in the range of 3600–

1250 cm−1.

Reference filters RefA to RefD: For each reference filter

(see Tables S2–S5 and Figs. S1–S4 for details, ESM_3.pdf),

small particles were either produced by cutting from polymer

foils or fine-grinded polymer samples were directly applied. In

each case, up to 11 materials were placed manually under a

stereomicroscope (SZX16, Olympus) onto an Anodisc

(0.2 μm) filter. The position and shape of the particles were

determined via an overview image prior to FTIR measure-

ment. The FTIR imaging measurements were performed in a

spectral range of 3600–1250 cm−1.

RefEnv1: To make the results comparable to those of our

previous study [20], the therein analyzed environmental sam-

ple H18_21 was used as reference for the automated analysis.

As the original measurement was only conducted in the spec-

tral range of 3200–1250 cm−1, the sample was re-measured

via FTIR imaging with a range of 3600–1250 cm−1, as de-

scribed above.

Environmental sample RefEnv2: The environmental sam-

ple was chosen from a previous study [25] of samples from

waste water treatment plants. It was collected at waste water

treatment plant Oldenburg on 13 August 2015 in front of a

post-filtration unit. The (in)organic matrix was removed via

enzymatic digestion [16, 17]. For comparison, the sample was

re-measured in the spectral range of 3600–1250 cm−1 (original

study 3200–1250 cm−1) [25], as described above. Prior to

image analysis, the data belonging to the polypropylene sup-

port of the Anodisc filter was removed.

All reference datasets are available in the ESM as JCAMP-

Dx files (see ESM_4.zip).

Spectral validation

To determine the data quality, the identified spectra were ad-

ditionally analyzed manually by expert knowledge. For this,

the spectra were opened with the OPUS 7.5 software and

compared to the assigned reference spectra. The measured
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spectra were visually compared to the assigned reference

spectra regarding the presence/absence of essential and addi-

tional bands. The categorization of the data quality was per-

formed in accordance with literature [20]. Each spectrum was

labeled with a number of either 1, 0.75, 0.5, 0.25, or 0.01 in

dependence of the number of minor or major differences: 1 =

no difference, 0.75 = one minor difference, 0.5 = two minor

differences, 0.25 = three minor or one major difference,

0.01 ≥ three minor differences, or > one major difference.

Results and discussion

Data quality and modifications

For the design of the ADD, it has to be considered that the

achieved spectral quality for FTIR imaging is generally lower

than that for ATR measurements. Therefore, ATR spectra that

feature only minor differences needed to be grouped into clus-

ters. After the collection of all database spectra, it was found

that the ATR data showed a systematic artifact of the crystal in

the region from 2475 to 1970 cm−1. The influence of the

artifact was tested with a small dataset of eight polymer types

including low-density polyethylene (LDPE) and high-density

polyethylene (HDPE). Both materials only showed small dif-

ferences between the spectra (see Fig. S5, ESM_3.pdf). When

the artifact was replaced with a straight line (see Fig. S6,

ESM_3.pdf), it was possible to distinguish between HDPE

and LDPE, while it was impossible if the artifact was present.

All further materials could be well separated by cluster anal-

ysis independent of the artifact. As no decisive information

can be measured within the region of the artifact by ATR-

FTIR [29], the data in this region was replaced with a straight

line for the subsequent statistical cluster analysis.

Cluster generation

First, it was evaluated whether SIMPROF is suitable to auto-

matically generate clusters from the obtained dendrogram by

calculating which spectra belong to the same statistical sub-

group. In Fig. S7 (ESM_3.pdf), the red dashed lines in the

dendrogram show clusters that SIMPROF determined as be-

longing to the same subgroup. Hence, according to

SIMPROF, most spectra in Fig. S7 (ESM_3.pdf) belong to

different subgroups and clusters respectively. When the sig-

nificance level was lowered to 1% or increased to 10%, the

findings did not change significantly. Apparently, SIMPROF

is not a suitable method to determine the clusters. Even though

the spectra all belong to different subgroups according to

SIMPROF, they cannot be left as individual spectra for the

automated analysis, as explained above.

The alternative was the manual generation of clusters. In

this case, spectra were grouped into clusters if (1) they were

positioned on the same branch of the dendrogram and (2) the

spectra were identical or showed only minor differences by

expert knowledge. Spectra of the same polymer were also

grouped when greater differences between the spectra were

present but only if (1) was still fulfilled. Consequently, clus-

ters had to be generated manually based on expert knowledge.

Figure 1 shows the dendrogram that was obtained when

319%-normalized spectra from the ATR database were sub-

jected to a hierarchical cluster analysis. In total, 107 clusters

were generated manually. They usually consisted of more than

five and up to 29 spectra. In contrast, 56 clusters only

contained one spectrum. The latter ones were spectra of rather

unconventional polymers and other substances, of which only

one sample could be provided. Numbers were assigned to all

generated clusters and a library with 107 database entries was

created.

Cluster optimization by reduction of clusters

In a first approach, reference samples RefEnv1 and Ref7P

were applied for performance tests of the initial library. The

analysis results were compared against the already-validated

results obtained with the database used in Primpke et al. [20].

Required modifications were evident when (1) individual par-

ticles consisted of different database entries or (2) expected

particles did not get detected at all. The first case was caused

when the different pre-processing routines of the automated

analysis yielded the same database entry but found different

entries on the same particle. When the different routines

yielded different database entries and no match was found at

all, the second case ensued.

Figure 2 shows image analysis pictures that include exam-

ples of single particles from filters RefEnv1 and Ref7P, which

showed matches with two or more different database entries.

The polyurethane (PUR) particle from Fig. 2a gave matches

with four different clusters: PUR 2, PUR varnish, polyester

urethane (PESTUR) 2, and alkyd varnish. This shows that

within the given spectral region and quality, it is not possible

to distinguish between polyurethanes and acrylic or alkyd var-

nishes. This is understandable, as the urethane group structur-

ally resembles the ester groups present in alkyd varnishes or

acrylic polymers. In a similar manner, it was not possible to

separate animal fur (keratins) from zein, a protein material

extracted from corn (Fig. 2b). Figure 2c, d shows further ex-

amples for polypropylene (PP), where one pixel was assigned

to polybutene/polypentene and a cellulose particle, where it

was impossible to distinguish between cellulose from different

plant sources. All clusters that were found to interfere with

others were checked for structurally similar substances and

merged at this step.

Based on the information gathered via the analysis of data

from filters RefA, RefB, RefEnv1, and Ref7P, a number of

similar changes were made, which are summarized in Fig. 1,
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marked in red. Nonetheless, the overall approach of evaluating

the whole set of clusters at once and trying to identify all

interferences was found to be unsuitable. A number of

problems could be correctly identified and solved, but it be-

came more and more evident that a large amount of modifi-

cations was necessary to create an applicable database. Hence,

Fig. 1 Dendrogram of manually

generated clusters. For lucidity,

the spectra were grouped and the

number of contained spectra

written in brackets behind the

cluster name. All merged clusters

(see text for details) were

connected by green lines; for all

later excluded clusters, the lines

are marked red (reduction of

clusters) and orange (cluster

categories)

Fig. 2 Image analysis pictures of

single particles with different

assigned database entries

Reference database design for the automated analysis of microplastic samples based on Fourier transform... 5135



evaluating the full set of clusters proved to be too complex and

time consuming. To further investigate the clustering for

ADD, the approach was changed at this point.

Cluster optimization based on cluster categories

In order to find a more suitable approach, the remaining 58

clusters were sorted into four categories according to their im-

portance for microplastic analysis. Aspects like produced poly-

mer amounts per year, water solubility, fields of application,

and, in relation to that, the expected abundance in environmen-

tal MP samples were considered for the categories. The full list

of remaining clusters and their assigned categories is provided

in the ESM (see Table S6, ESM_3.pdf). The first category

contained clusters with the most abundant plastic polymers

(polyethylene (PE)/rubber, PP, polystyrene/styrene-

acrylonitrile (PS/SAN), polycarbonate (PC), polyamide (PA),

polyvinylchloride (PVC), polyester/polyethylene terephthalate/

polybutylene terephthalate (PES/PET/PBT) and PUR/varnish),

silicone, and three common natural substances: cellulose, ani-

mal fur, and quartz sand. These materials were categorized as

Bvery important^ for microplastic analysis and used for a basic

library. For the verification process, the reference samples RefA

to RefDwere used, which consisted of materials of the different

remaining clusters. This basic library was verified and all suit-

able clusters from categories 2 (Bimportant^) and 3 (Bless

important^) were introduced stepwise into the library. The clus-

ters from category 4 were marked Bnot important^ for

microplastic analysis at this stage and were excluded. During

the process, it was evaluated for any added cluster whether all

reference particles were identified, whether they were assigned

the correct database entry, and whether they disturbed the as-

signment of any other particle.

Figure 3 illustrates how interferences with other substances

were detected. It depicts the closed image of the same cellulose

particle in absence/presence of the cluster silica gel within the

library (Fig. 3a–d). It is evident that with silica in the database,

the edges of the particle were not detected anymore, and thus

the depiction of the particle was smaller. All observed interfer-

ences were evaluated in a similar manner. However, the benefit

of having a substance in the database was always weighed

against the deficit that was caused by the interference. For ex-

ample, Bchitin 1^ was found to slightly hinder the detection of

cellulose but since it is a very common component of marine

samples, it was kept in the library nonetheless.

All changes that were made during optimization based on

cluster categories are summarized in Fig. 1, marked in orange.

Upon examining the dendrogram in Fig. 1, it was striking that

not all mergings of clusters that were performed during the

optimization process were in unison with the structure of the

dendrogram. For example, the PUR/varnish cluster consisted

of two groups of clusters, which were located on different

branches of the dendrogram. This showed that, while the clus-

ter analysis was a helpful tool to sort the spectra, it was not

capable of completely predicting the necessary clusters for the

automated analysis. This underlines the fact that the conduct-

ed cluster optimization process was vital for the development

of a functioning ADD.

During the optimization process, 20 clusters of in total 27

could be verified without constraints. To test the performance

of this preliminary database, obtained results from the analysis

of RefEnv1 were manually reanalyzed by expert knowledge.

The data quality determination was performed as described

previously in literature [20]. It was discovered that the clusters

PC, polymethyl methacrylate (PMMA), polysulfone (PPSU),

PS/SAN, PA, and PVC were assigned correctly within the

95% con f i d ence i n t e r v a l . Fo r PP, po l yace t a l /

polyoxymethylene (POM), and PUR/varnish, error values be-

tween 10 and 50% were found. On the contrary, the clusters

PE/rubber and silicone yielded a high number of false assign-

ments at this stage. This showed that the ADD still required

improvement. While the cluster silicone was removed, the re-

separation of the PE/rubber cluster into the separate PE, chlo-

rinated PE, and rubber 2 clusters substantially reduced the

amount of misassignments and improved particle identifica-

tion and depiction. A second change that became evident from

Fig. 3 Photograph (a), unclosed

image (b), and closed image (c) of

a piece of cellulose foil. Closed

image (d) of the same particle

when silica gel is present in the

adaptable database design
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the manual reanalysis was the merging of the acrylates and

PUR/varnish cluster. These materials could not be distin-

guished from one another in the considered spectral region.

No further improvements regarding the results for filters RefA

to RefD could be achieved (see Fig. S8, ESM_3.pdf).

Optimization with transmission FTIR data

While the ATR spectra yielded a suitable database for polymer

identification, larger particles were often not targeted well.

This is caused if total absorbance occurs during transmission

measurements. If one datapoint reaches the limit of detection,

the measured values will be independent of the rest of the

spectrum and characteristic bands get lost. Based on filters

RefA to RefD, the respective transmission spectra were col-

lected and added to the distinct clusters manually without

further analysis. This further allowed the reintroduction of

the clusters polycaprolactone and ethylene-vinyl-acetate

(EVA). All materials introduced as transmission FTIR data

are summarized in Table S7 (ESM_3.pdf).

Afterwards, the particle identification of reference samples

RefA to RefD (see Fig. S9, ESM_3.pdf) improved and most

particles could be identified. In conclusion, the introduction of

transmission FTIR data in ADD was found to be a necessary

database extension.

Introduction of new materials into ADD

As a last step for the setup of ADD, it was exemplarily inves-

tigated how to introduce further materials into the database. In a

recent study [24], large amounts of black particles were found

in deep sea sediments, which were presumed to consist of coal.

Table 1 Polymer clusters derived

for the adaptable database design

for the automated analysis via

FTIR imaging including their

cluster number for image analysis

and number of spectra assigned

Cluster name Cluster number adaptable database design Number of contained spectra

Polyethylene 1 30

Polyethylene oxidized 2 2

Polyethylene-chlorinated 3 3

Polypropylene 4 15

Polystyrene 5 11

Polycarbonate 6 7

Polyamide 7 23

Polyvinylchloride 8 6

Cellulose chemical modified 9 8

Nitrile rubber 10 2

Polyester 11 31

Acrylates/polyurethanes/varnish 12 27

Animal fur 13 27

Plant fibers 14 33

Sand 15 2

Polysulfone 16 4

Polyetheretherketone 17 2

Polychloroprene 18 2

Chitin 19 3

Polyisoprene chlorinated 20 1

Polylactic acid 21 4

Polycaprolactone 22 3

Ethylene-vinyl-acetate 23 3

Polyimide 24 2

Polyoxymethylene 25 3

Polybutadiene 26 1

Acrylonitrile-butadiene 27 2

Rubber type 1 28 3

Rubber type 2 29 1

Charcoal 30 2

Coal 31 4

Rubber type 3 32 3
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To include these newmaterials, six spectra of coal (charcoal and

conventional coal) were measured via ATR-FTIR and the data

was handled as described above. After extending the dataset, an

analogous cluster analysis was performed.

The coal spectra were included in the dendrogram as new

clusters (see Fig. S10, ESM_3.pdf), while the overall dendro-

gram structure did not change significantly. The new dataset

was manually binned into two new clusters for the automated

analysis (charcoal, 2 spectra and coal, 4 spectra) afterwards.

This process highlights the ability to add new spectra/

materials to the existing ADD by a combination of cluster anal-

ysis and manual clustering. With this data included, the final

reference design for ADDwas determined with 32 clusters (see

Table 1) and is available in the ESM (see ESM_5.xslx).

Performance of the ADD

The overall performance of the ADD was benchmarked

against two reference samples (RefEnv1 and Ref7P) and an

environmental sample (RefEnv2). Results from the analysis of

RefEnv1 with the ADD are depicted in Fig. 4. For a better

overview, each polymer was highlighted with a different RGB

value (see Table S8 for details, ESM_3.pdf). In general, many

small particles and one large particle that was assigned to the

acrylates/PUR/varnish cluster were detected. High loads of

plant fiber (gray), rubber type 3 (yellow), PP (brown), and

PPSU (light blue) were found. The particle size distribution

(see Fig. S11, ESM_3.pdf) had a maximum at the size class of

11 μm, representing 35% of the determined polymer particles,

while 85% had a smaller size than 50 μm. The majority of the

plastic particles were assigned to PP with 39%, PPSU with

26%, and rubber with 18%. Similar to the previous study for

the automated analysis [20], the ADDwas further validated by

expert knowledge via manual reanalysis (see Table S9,

ESM_3.pdf), and results between both studies were

compared.

With the ADD, a higher amount of particles (1221 herein

versus 1097 before [20]) was detected. The relative share of

certain assignments increased from 82.1 to 82.8% while

misassignments decreased from 3.1 to 1.6%. The general data

quality, especially of PE and PVC, was several times better than

that in the previous study, which shows the necessity of a well-

determined database design. However, the overall number of

plastic particles decreased from 733 to 195. One possible ex-

planation would be particle loss between the measurements,

which could be excluded by visual inspection of the overview

images. It was found that only one prominent particle was

missing and several slightly changed their position. The major

difference between the present study and previous ones [20, 25]

is that the range for the library search was broadened by

400 cm−1 to 3600–1250 cm−1. Diatom shells, which were still

abundant in this extracted sediment sample, have a weak band

(–Si–O–H bonds) in the range from 3200 to 3600 cm−1. It can

be assumed that this band, which was present as background

signal over almost the complete filter (see Fig. S12,

ESM_3.pdf), hampered the identification success of plastic

polymers. To test the hypothesis, the database from the previous

study [20] was applied to the re-measured dataset RefEnv1

(larger wave number range). In total, 701 particles could be

identified, of which 281 were made of plastic. This result is

much closer to what was achieved with ADD in this study

and thus confirmed the hypothesis. The second main difference

between the results from previous and present database was a

reduction in the amount of detected varnish particles. This is

Fig. 4 Polymer-type-dependent

false color image of the sample

RefEnv1 after automated analysis

with the adaptable database

design
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reasonable, as one particular reference varnish spectrum was

not included into ADD, as the material was no longer available.

In the following, sample Ref7P was analyzed (see Figs.

S13 and S14, ESM_3.pdf) to prove the ability of ADD to

distinguish polymers at high sample loads with different poly-

mers present in close proximity to each other. In total, 96.4%

of the particles were assigned to the correct polymer cluster.

Only in the case of copolyamide, a higher amount of

misassignments (8.7%) was found, mainly to the cluster

polycaprolactone. All other polymers were assigned correctly

to their respective clusters for over 95% of the database hits.

The results show that ADD is capable of assigning polymers

even from complex mixtures and is therefore suitable for fur-

ther application on environmental samples.

For this, a sample of treated waste water (RefEnv2)

was chosen. When applying ADD to this dataset, differ-

ent types of particles, mainly PE, PP, varnish, EVA, and

rubber, could be successfully identified (Figs. 5 and 6),

Fig. 5 Polymer-type-dependent

false color image of the sample

RevEnv2 after automated

analysis with the adaptable

database design

Fig. 6 Size distribution and

polymer composition for plastic

particles derived via automated

analysis for the sample RevEnv2.

The region for particles with a

size > 50 μm was highlighted for

a better overview
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demonstrating the high variability of polymers present in

treated waste water. In the sample, 90% of plastic particles

were smaller than 50 μm in size, while 53% of the overall

particles were found in the smallest size class of 11 μm. The

analysis of RevEnv2 highlights the performance of ADD on

complex samples. Nonetheless, the previously discussed re-

sults from RefEnv1 showed that a background signal from

diatom shells in extracted sediment samples can hinder poly-

mer identification, which is currently a limitation of the

method and has to be addressed during sample treatment.

All in all, however, the chosen approach of combining sta-

tistical methods, expert knowledge, and manual validation

proved to have produced a versatile database for the analysis

of MP in environmental samples. Furthermore, the chosen

approach is also suitable for Raman spectra (data not shown).

First studies based on the combination of automated analysis

and ADD have already been published [23–25].

Conclusion

It could be shown that through the statistical analysis and

manual clustering of reference spectra, the basis for an adapt-

able reference database for the analysis of MP can be provid-

ed.While the final clustering had to be based on expert knowl-

edge, the general scheme allowed a straightforward assign-

ment of new materials to existing entries or as entirely new

entries. The generated database was benchmarked against six

reference datasets and it was confirmed that the chosen setup

can identify particles of various sizes and materials. Through

the exemplary test on an environmental sample, it could be

proven that the database is applicable to complex sample ma-

terial. Moreover, the ADD can be expanded with new spectra

in the future, allowing the harmonization of the FTIR analysis.

In addition, by providing a reference dataset with five refer-

ence samples and an environmental sample for validation and

comparison, new and old databases can be referenced to the

ADD. This significantly increases the comparability of FTIR

studies for past and future publications.
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