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Abstract

We quantify reference dependence and loss aversion in the housing market us-
ing rich Danish administrative data. Our structural model includes loss aversion,
reference dependence, financial constraints, and a sale decision, and matches key
nonparametric moments, including a “hockey stick” in listing prices with nominal
gains, and bunching at zero realized nominal gains. Households derive substantial
utility from gains over the original house purchase price; losses affect households
roughly 2.5 times more than gains. The model helps explain the positive correlation
between aggregate house prices and turnover, but cannot explain visible attenuation
in reference dependence when households are more financially constrained.
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1 Introduction
How behavioral are households? In one of the most widely used behavioral economics

models of utility, Kahneman and Tversky (1979) posit that economic agents are reference
dependent, measuring utility in terms of gains and losses relative to a reference point,
and loss-averse, with losses reducing utility more than gains increase it. It is difficult to
assess whether and to what degree this is an accurate representation of human behavior;
convincingly answering this question requires detailed data about high-stakes household
choices. Correctly interpreting such field evidence also requires taking the richness of
households’ incentives and the broader features of their decision environment into account.

We quantify reference dependence and loss aversion in the Danish housing market, a
unique field setting where a range of household decisions leading up to house sales are
tracked with high precision over a long time span. Housing is the largest asset for the
vast majority of households (Campbell, 2006; Badarinza, Campbell and Ramadorai, 2016;
Gomes, Haliassos and Ramadorai, 2021), and selling a house is one of the largest personal
economic transactions that households undertake in their lifetimes. These high stakes
provide strong incentives for households to think carefully about their choices, making
this an important setting to assess whether preferences are non-standard (Levitt and List,
2009).

We pin down household preference parameters using a parsimonious structural model
of the house selling decision estimated on rich and detailed Danish administrative data.
The model includes loss aversion, reference dependence, household financial constraints,
and a sale decision. The data illuminate novel aspects of the choices that households make
when they sell houses: a “hockey stick” pattern traced out by list prices as nominal gains
vary, visible and sharp bunching of realized prices exactly at the original nominal house
purchase price, and lower listing propensities for properties facing nominal losses. The
estimated parameters reveal that households are strongly reference dependent, deriving
substantial utility from gains and losses relative to the original purchase price of their
homes, and that losses hurt households between 2 and 2.5 times more than gains contribute
to their utility.1

Our paper is not the first to use housing market decisions to study household be-
havioral biases. In a classic highly-cited paper, Genesove and Mayer (2001) compare
households that list houses of similar current value, but different original purchase prices.
They show that households facing nominal losses set list prices significantly higher, and

1This estimate of loss aversion is in line with early estimates which lie between 2 and 2.5 (e.g.,
Kahneman, Knetsch and Thaler, 1990; Tversky and Kahneman, 1992), and slightly higher than those
seen in more recent literature (e.g., Imas, Sadoff and Samek, 2017 put this multiple at 1.59).
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link this finding to loss aversion. Subsequent literature (see, e.g., Engelhardt, 2003; Einiö,
Kaustia and Puttonen, 2008; Anenberg, 2011; Bokhari and Geltner, 2011; Bracke and
Tenreyro, 2020) also investigates other aspects of housing sales through a behavioral lens.
However, as we later describe in detail, it is complicated to credibly identify the magni-
tude of preference parameters from reduced-form empirical evidence in this setting (online
appendix Table A.1 documents issues and maps them to a comprehensive review of the
literature). To achieve this task, we surmount important conceptual challenges, and bring
new data to our analysis.

Selling a house is a multi-layered process involving several choices which are influenced
by market conditions. We develop a structural model to capture the richness of this
environment. The model maps underlying preference parameters to the main decisions
that households make when selling their houses, while taking into account the market
factors and frictions that also affect these decisions.

The first decision that we model is whether or not a household lists their property
for sale. The second is the listing price that households set if they decide to put the
house on the market. When making these decisions, households anticipate the demand
conditions they will face in the local housing market, which we model in reduced form.
These include the effect of listing prices on the final sale price, and on the probability
that the transaction will complete swiftly. Sellers in the model also anticipate the degree
of control they have over final price realizations, which may be affected by noise arising
from bilateral negotiations with buyers.

We embed a flexible specification of household preferences into this setup, and predict
how different constellations of parameters affect final outcomes. The baseline model
considers a “rational” seller, who simply derives utility from the final sale price of the
house. A seller who is reference-dependent, in contrast, enjoys an additional boost to
utility on realizing a successful sale that delivers gains relative to a reference price, à la
Barberis and Xiong (2012) (throughout the paper, we assume that the reference price is
the original purchase price of the house). And a seller who is both reference dependent
and loss averse suffers a greater decrement to utility from a loss than the positive utility
boost derived from an equivalent gain.

Importantly, the model also embeds the effect of financial constraints on seller utility.
As Stein (1995) highlights, a household pays off its outstanding mortgage when selling a
house, and faces a mandatory down payment to take on a new mortgage for any subsequent
house purchase. If the home equity that they realize post-sale falls short of the mandatory
down-payment on the new house, households face either downsizing or costly unsecured
borrowing. To capture this, we include a penalty parameter for any shortfall in final
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realized home equity below the regulatory down-payment threshold.
To understand the model’s predictions, consider sellers who derive utility from the

final sale price of the house, as well as (symmetrically) from any realized gains or losses
relative to the reference price. In this case, sellers optimally set listing price “premia,” i.e.,
markups over a measure of “fair” or hedonic property value, that are linear and downward-
sloping in expected gains. The intuition is that sellers compare the potential gain/loss
utility they derive if they sell the house (their realization utility) to their reservation
utility from staying put. Higher expected realization utility creates incentives to lower
the listing price and increase the likelihood of a sale, and lower expected realization utility
generates the opposite incentive, to raise the listing price and effect a higher final price.
When losses and gains are viewed symmetrically, the marginal impact of this effect is
constant, leading to a linear relationship between the listing price and sellers’ potential
gains.

This linear relationship changes when sellers are loss averse and feel greater disutility
from realized losses than the utility enjoyed from realized gains. The asymmetry in
preferences in this case translates into an optimal listing premium profile which is also
asymmetric, sloping up more sharply when sellers face losses than when they face gains.
Moreover, loss averse sellers have an incentive to “fish” for higher prices that avoid the
discontinuity of the marginal loss at the reference point. In this case, the model also
predicts sharp bunching of final sales transactions quantities precisely at realized nominal
gains of zero.

These insights suggest an easy interpretation of the asymmetric listing price behavior
originally detected in Genesove and Mayer (2001), i.e., that it reflects underlying pref-
erence asymmetry. However, several key confounds can interfere with such simple infer-
ences. The first issue, mentioned earlier, is that down-payment constraints can manifest
similar effects as loss aversion. This creates an empirical confound, because the nominal
purchase price of the house (the assumed reference point for loss aversion) can be very
close in practice to the outstanding mortgage balance (the point at which down-payment
constraints kick in). To cleanly separate these forces, we harness significant independent
variation in the Danish data between sellers’ home equity position and their gains/losses
since purchase.

A second problem comes from the need to assess sellers’ gains/losses at the point
of their listing decisions. Measuring these “potential gains” requires an estimate of the
expected value of houses. As Genesove and Mayer (2001), Anenberg (2011), Clapp,
Lu-Andrews and Zhou (2018), and others note, unobserved property quality can cloud
assessments of house values. To deal with this issue, we first extend pre-existing empir-
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ical approaches to analyze how different sources of measurement error generate specific
biases in inferences about underlying structural parameters. This analysis leads us to
modify the standard hedonic model estimates of fair house value, in turn generating dif-
ferent data moments that we use to confirm structural parameter robustness. We also
employ a simulation-based approach to assess how inferences are affected when buyers
and sellers have information about quality that is invisible to the econometrician. As we
later describe, this exercise provides additional theoretical confidence that our setup can
accurately recover underlying structural parameters.

A third confound comes from the optimization frictions that sellers face in the market.
Guren (2018) shows that U.S. housing markets are characterized by “concave demand,”
where lowering list prices past a point does not boost sale probabilities, but does negatively
impact realized sale prices.2 We confirm this finding in Danish data, which also exhibit
strong demand concavity. Our model reveals that optimizing sellers who face concave
demand set asymmetric listing premium schedules even if their underlying preferences
are symmetric across gains and losses. We confront this challenge by harnessing regional
variation across housing markets in Denmark, and calculating moments in the model that
reflect regional variation in the strength of demand concavity. We assume that seller
preferences are consistent across locations, meaning that variation of listing behavior that
is unexplained by differences in demand concavity helps to pin down the degree of loss
aversion.3

Another important optimization friction arises because final sale price realizations
result from post-listing negotiations with buyers. Most sellers have only a limited ability to
control final negotiation outcomes, which dilutes the link between the elasticities observed
in the data—the observed listing, pricing, and selling decisions associated with particular
reference points—and their structural counterparts. To introduce greater realism, we
incorporate these optimization frictions into the model, and estimate the fraction of sellers
that can only imprecisely target final outcomes as an additional model parameter. This
“imprecise targeting” friction bears similarities to the imperfect ability to manipulate
income modelled in the public finance literature (see, e.g., Kleven and Waseem (2013);
Rees-Jones (2018); Anagol et al. (2022)).

2The paper attributes this to the search process in the housing market, where potential buyers are
less likely to visit a property if the initial listing price is unusually high, but they are not more likely to
visit it if the listing price is unusually low. One interpretation of this is that a low price can signal a
“lemon,” leading to a longer time-on-the-market for such properties.

3Intuitively, we find that this regional variation in the shape of demand is correlated with the degree
of homogeneity of the housing stock. Regions in which the housing stock is relatively homogeneous make
listed properties more easily comparable, leading to a steep decline in the probability of sale for houses
listed at large positive listing premia, as these properties are more obviously overpriced.
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In Danish data, as in US data, the listing price schedule has the characteristic “hockey
stick” shape first identified by Genesove and Mayer (2001), rising substantially as potential
losses mount, and virtually flat in potential gains. We find slopes of similar magnitude
to the Genesove and Mayer (2001) estimates despite the differences in location, sample
period, and sample size. We also see a similar “hockey stick” along the dimension of
potential home equity controlling for potential gains, consistent with the distinct effect of
down-payment constraints on seller listing behavior.

The data also show that the shapes of listing premia schedules vary across regional
housing markets in Denmark, mirroring the degree of demand concavity in these regions.
Listing premia with sharp responses to losses are evident in regional markets with weaker
demand concavity, and muted responses to losses are a feature of regional markets with
strong demand concavity, confirming the model-implied link between demand conditions
and sellers’ optimal listing decisions.

The distribution of final sales in the data exhibits sharp bunching of transactions at
realized gains of zero, diffuse bunching mass just to the right of zero, and a significant shift
in total mass from realized losses towards realized gains. The spike at precisely zero gains
is clear evidence of loss aversion, which is the only force in the model that can generate
this pattern. Fitting just the spike requires only a modest degree of loss aversion in a
model in which sellers can precisely target desired final realized prices. In a more realistic
model with optimization frictions inhibiting precise targeting, loss aversion is larger, to
account for the diffuse excess bunching mass visible just to the right of zero gains.

We also estimate listing propensities for the entire Danish housing stock using over
5.5 million property-year observations, and plot them against prospective sellers’ potential
gains. We see a mild but visible increase in the propensity for homeowners to list their
houses as potential gains rise, and the slope appears more pronounced over the potential
loss domain than the potential gain domain.

Collectively, these moments in the data allow us to structurally estimate sizable mag-
nitudes for both behavioral frictions and down-payment constraints. We converge on a
coefficient of reference dependence of 0.629 (s.e. 0.028), meaning that realized gains con-
tribute roughly 60% as much as final prices to household utility, and a coefficient of loss
aversion λ = 2.473 (s.e. 0.080), meaning that the disutility of losses is 2.473 times the util-
ity of gains. We also find that these behavioral effects coexist and interact with financial
frictions. In particular, sellers who are financially constrained appear “less behavioral” in
the sense that reference dependence and loss aversion are visibly less pronounced in the
listing prices that they set. We cannot rationalize this intriguing observation with our
model; we view this as an important avenue for future research.
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Using the model, we structurally decompose the positive correlation between aggre-
gate house prices and transaction volume routinely observed in housing market data.
Explaining this correlation was an important motivation for the early literature in this
space, including Genesove and Mayer (2001) and Stein (1995). In our model, changes
in fair house values change the distributions of both potential gains and potential home
equity. These changes affect listing behavior, which in turn translates into realized traded
volumes through the estimated concave demand mapping from listings to final sales. At-
tributing this correlation to the different economic channels, we find that the effect of
down-payment constraints is large, closely followed by the effects of reference dependence
and loss aversion.

The paper is organized as follows. Section 2 introduces our model of household list-
ing behavior. Section 3 discusses the construction of our merged dataset, and provides
descriptive statistics. Section 4 introduces the moments that we use for structural esti-
mation and uncovers new facts on listing prices and listing decisions. Section 5 describes
our structural estimation procedure, and reports parameter estimates. Section 6 describes
validation exercises, and highlights areas where the model falls short in explaining features
of the data. Section 7 concludes.

2 A Model of Household Listing Behavior
We develop a model in which a household (the “seller”), optimally decides the price

at which they list their house (the “intensive margin” decision of listing price), as well as
whether or not to list the house (the “extensive margin”). The model framework flexibly
embeds different preferences and constraints commonly used to explain patterns in listing
behavior. We describe the intuition of the model here; online appendix B provides a more
detailed discussion of model arguments and derivations of equations.

The market comprises a continuum of sellers and buyers of residential property. In
period 0 of the two-period model, the property owner receives a shock θ ∼ N(θm, θσ).
This “moving shock” θ can be thought of as a “gain from trade” (Stein, 1995), i.e., a
boost to lifetime utility which the seller receives in the event of successfully selling and
moving in period 1. It captures a variety of reasons for moving, including moves due to
labor market opportunities, or the desire to upsize or downsize.

Let L denote the listing price set by the seller, and P̂ the “fair” or “fundamental”
property value. Conditional on the chosen listing premium # = L − P̂ , the demand
function α(#) indicates the probability that a willing buyer is found in period 1, and
P (#) = P̂ + β(#) is the (uncertain) realization of the final sale price resulting from the
negotiation with that buyer. Analogously to the definition of the listing premium, β(#)
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is the final realized premium of the price over the hedonic value that the seller is able
to negotiate for in period 1. As in Chetty (2009) and Guren (2018), we assume that the
seller takes the distribution of potential outcomes of negotiations as given when optimizing
utility. This restricts their action space, and captures the basic tradeoff when deciding
on a listing strategy: a larger # can lead to a higher ultimate transaction price, but it
decreases the probability of quickly finding a willing buyer.

A typical seller’s decision in period 0 can then be written as:

max
s∈{0,1}

{
s×max

"
[α(#) (E [U (P (#), ·)] + θ) + (1− α(#))u− φ] + (1− s)× u

}
. (1)

The function U (P (#), ·) = u(P (#), ·)− κ(P (#), ·) has two separate components. The first
accommodates reference-dependent utility and loss aversion à la Kahneman and Tversky
(1979) and Kőszegi and Rabin (2006, 2007). The second is the penalty function for
violating down-payment constraints à la Stein (1995).

The seller decides on the extensive margin, i.e., whether (s = 1) or not (s = 0) to list,
and sets # to maximize the expected utility from the property sale. Once the property
is listed, the sale goes through with probability α(#). The seller receives utility and pays
any penalty associated with violating the down-payment constraint based on the realized
final price P (#), and also receives θ. The listing fails with probability 1− α(#), in which
case the seller falls back to their outside option level of utility u. Listing incurs a one-time
utility cost φ, sunk at the point of listing, which captures a range of frictions including
psychological “hassle factors,” and search, listing, and transaction fees.

In the model solution and estimation exercise, we normalize P̂ to 1. All model quanti-
ties are therefore simply expressed in units of P̂ . In this way, the calculated premia in the
model are easily mapped to log differences, consistent with the definitions of gains/losses
and home equity employed in our empirical work.4

2.1 Demand Functions
The functional mappings between listing premia, sale probabilities and final sale prices

simplify the characterization of the outcome of the bargaining process. In our estimation,
we define a period as equal to six months, meaning that α(#) captures the probability
that the transaction goes through within six months after the initial listing. In the online
appendix, we verify robustness to varying the length of this period.

To introduce greater realism into the formation of sale prices, we assume that sellers
4This relies on the usual approximation ln(1 + x) ≈ x. For example, the listing premium expressed

in units of P̂ equals L/P̂ − 1 in the model, and is estimated as the log difference between L and P̂ in the
data.
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vary in their ability to target a particular final price. We distinguish between two separate
types, according to their deal-making ability: a fraction π of sellers are able to precisely
steer the transaction towards their desired outcome; the remainder 1−π target final prices
only imprecisely, have limited bargaining power, and expect to settle for a random price
realization drawn from a distribution that we estimate in the data.

Both types of sellers solve the optimization problem laid out in equation (1), except
that precise targeters face a deterministic path of final prices P (#) = P̂ + β0 + β1#, while
imprecise targeters form rational expectations about the distribution of P (#):

P (#) = P̂ + β0 + β1#+ ε, ε ∼ B(0,σ(#)), (2)

with β0, β1 and σ(#) estimated in the data.5 The mixture distribution of precise and
imprecise targeters, weighted by the parameter π, allows us to calculate the final set of
aggregate model-implied moments.6

2.2 Reference Dependence and Loss Aversion
We model reference-dependent loss-averse preferences in a standard fashion (Kőszegi

and Rabin, 2006, 2007). The seller’s reference price level is denoted by R, and u(P (#), R)

is a piecewise linear function of realized nominal gains G(#) = P (#)−R:

u(P (#), R) =

{
P (#) + ληG(#), if G(#) < 0

P (#) + ηG(#), if G(#) ≥ 0
. (3)

The parameter η captures the degree of reference dependence. Sellers derive utility from
the final price realized from the sale as usual, but there is an incremental utility “bump”
from the realized nominal gain. η measures the extent to which realized gains augment
utility over and above the final utility of wealth arising from the sale.7

The parameter λ > 1 governs the degree of loss aversion. This specification assumes

5As we later discuss, the right-hand plot of Figure 4 shows that the variance of negotiation outcomes is
larger for large listing premia, and it flattens as listing premia approach zero. We capture this phenomenon
by explicitly estimating the function σ(") in the data; we find that the best fit is a third-degree polynomial
of ".

6This structure of the population is consistent with previous mixture models of behavioral frictions,
which originate in statistical theory with Pearson (1894), and have since been used to cluster sets of
continuous multivariate data for a wide variety of random phenomena (El-Gamal and Grether, 1995; Peel
and McLachlan, 2000; Harrison and Rutström, 2009; Andersen et al., 2020).

7In our empirical application, we set R to the original nominal purchase price of the property. While
this is a restrictive assumption, we find strong evidence to suggest the importance of this particular
specification of the reference point in our empirical work. We follow Blundell (2017), trading off a more
detailed description of the decision-making problem in the field against stronger assumptions that permit
measurement of important underlying parameters.
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that utility is piecewise linear in nominal gains and losses relative to the reference point,
with a kink at zero; a widely-used approach to study and rationalize results found in the
lab (e.g., Ericson and Fuster, 2011), as well as in the field (e.g., Anagol, Balasubramaniam
and Ramadorai, 2018). In online appendix Figure A.1, we graphically describe how both
η and λ affect utility, and below, we show how these parameters affect optimal listing
decisions in the model.

We set the outside option u = P̂ , which implies that absent reference dependence
(η = 0) or any additional reasons to move (θ = 0), and if listing is frictionless (φ = 0), the
seller is indifferent between staying in their home and receiving the hedonic value in cash.
This specification of the outside option is equivalent to the seller not receiving gains from
moving, but experiencing θ disutility in the event of a failed sale (i.e., the outside option
is then rewritten as u = P̂ − θ). We do not place any restriction on θ, simply recovering
it as a latent variable in structural estimation. In our model, as sellers only experience
utility from house price appreciation if they realize a sale, the case of linear reference
dependence with λ = 1 is essentially equivalent to the “realization utility” framework of
Barberis and Xiong (2012). In online appendix section B.7, we discuss this issue in detail.

2.3 Down-Payment Constraints
We now describe the financial penalty function κ(P (#), ·) for violating down-payment

constraints. Let M denote the household’s outstanding mortgage balance. The potential
home equity position of the household is then Ĥ = P̂ −M , and their realized home equity
position H(#) arises from the potential level Ĥ plus the realized price premium β(#), i.e.:

H(#) = Ĥ + β(#).

Assume γ to be the required down-payment fraction on a new mortgage origination
for a property of similar size and quality, with a hedonic value of P̂ . Based on the realized
home equity level H, we can then distinguish between constrained households, for which
H(#) < γP̂ , and unconstrained ones, for which H(#) ≥ γP̂ .

If down-payment constraints bind, only unconstrained sellers can move to another
property of the same or greater value. However, there are several ways in which Danish
households can relax these constraints despite legal restrictions on LTV at mortgage ini-
tiation (as we discuss later, the Danish Mortgage Act restrict the down-payment fraction
at issuance to a value of 20% or higher). The first way is for households to downsize to
a less expensive home than P̂ , or indeed, to move to the rental market—either decision
might incur a utility cost. The second is that households can engage in non-mortgage
borrowing to fill the gap γP̂ −H(#). A common approach in Denmark is to borrow from
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a bank, or occasionally from the seller of the property, to bridge funding gaps between
80% and 95% loan-to-value (LTV); this is typically expensive.

Taking these features into account, we assume that violating the down-payment con-
straint does not lead the seller to withdraw the sale offer, but instead that the seller incurs
a monetary penalty for levels of realized home equity below the constraint threshold. The
financial penalty function κ(P (#), ·) captures this monetary value:

κ(P (#)) =

{
µ(γP̂ −H(#))2, if H(#) < γP̂

0, if H(#) ≥ γP̂
. (4)

We choose a smooth quadratic penalty function to avoid a discontinuity at the threshold
level H(#) = γP̂ . Such a discontinuity would predict bunching in realized prices at 20%
home equity, which we can firmly reject in the data. Online appendix F contains a detailed
discussion and additional evidence on downsizing/upsizing, which has a dilutive effect on
the exact point at which the down-payment constraint becomes binding.

2.4 Structural Parameters
We next discuss selected predictions of the model to build intuition. This guides

the choices of the main moments of the data used to structurally estimate the model’s
parameters. Table 1 provides an overview of all model variables and structural parameters.

2.4.1 Optimal Listing Premia
Consider a simple version of the model without the extensive margin decision, listing

costs, or constraints κ(·), and assuming that all sellers can precisely target outcomes.8 In
this case, the maximization problem becomes:

max
"

[α(#) (u(P (#), ·) + θ) + (1− α(#))u] . (5)

The first-order condition determining the optimal listing premium in equation (5)
balances the marginal utility benefit arising from a higher realized premium in the event
of a successful sale against the marginal cost associated with an increased chance of the
transaction failing, which results in the outside option utility level.

To derive more intuition, we analytically solve this simple model under the additional
assumptions that α(#) = α0 − α1# and β(#) = β0 + β1# are linear and deterministic in #.
Figure 1 illustrates how the optimal listing premium varies in this version of the model.

8We provide a full solution of this model in online appendix sections B.1-B.3, and discuss it graphically
below.
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In the absence of reference dependence (η = 0), the figure shows that utility derives
purely from the terminal house price P . In this case, the left-hand plot (dashed line)
shows that, for any given level of P̂ , #∗ is unaffected by the reference price R. With
“linear reference dependence” (i.e., η > 0, λ = 1), holding P̂ constant, the plot shows how
different R values affect utility. In this case, there is a negatively-sloped linear relation-
ship between #∗ and Ĝ = P̂ −R, indicated with a dotted line. Here, R does not affect the
marginal benefit of raising #∗, but it affects the marginal cost by changing the distance
between u and the achievable utility level in the event of a successful transaction. If real-
ized gains and losses contribute symmetrically to household utility, optimal #∗ decreases
linearly with the magnitude of this distance.

In the case of reference dependence plus loss aversion (i.e., η > 0, λ > 1), indicated
with a solid line in Figure 1, the kink in the piecewise linear utility function leads to a
more complex piecewise linear pattern in #∗. This is because # controls the gains/losses
that sellers ultimately realize. The figure shows that there is a range of potential gain
values which map to realized gains of precisely zero (recall G(#∗) = Ĝ + β(#∗)). For all
Ĝ ∈ [Ĝ1, Ĝ0], the seller can choose a listing premium # such that β(#) = −Ĝ. Conditional
on a sale, the realized gain for this range of Ĝ values is G = 0. For sellers with potential
gains below Ĝ1, the expected costs associated with transactions failure probabilities be-
come unacceptably high, relative to the expected benefits of avoiding losses. It therefore
becomes sub-optimal to aim for realized gains of zero in this range. For levels of Ĝ < Ĝ1,
sellers have no choice but to accept losses, but still set marginally higher listing premia.

We also note that very similar intuition applies along the potential home equity dimen-
sion; the impact of potential home equity is modulated by the different penalty function
shown in (4).

2.4.2 Bunching around Realized Gains of Zero
Household preference parameters also have implications for transactions quantities.

Different parameter values result in shifts in mass in the distribution of completed trans-
actions along the G dimension. In our estimation approach, we use this insight to harness
an additional set of moments which help to pin down the preference parameters of the
model. The right-hand side diagram in Panel A of Figure 1 illustrates how the distribu-
tion of realized transactions varies with preference parameters in the simple version of the
model described just above. Detailed solutions associated with this figure are provided in
online appendix section B.2.

When η = 0, sellers choose a constant listing premium #∗, which results in a constant
realized premium β(#∗) of actual gains G over potential gains Ĝ. In the linear reference
dependence model (η > 0,λ = 1), sellers with Ĝ < 0 choose relatively higher #∗. This low-
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ers the likelihood that willing buyers are found, meaning that the likelihood of observing
transactions in this domain of Ĝ is lower. However, if these transactions do go through,
the associated G is then higher, shifting mass in the final sales distribution towards G > 0

(in the right-hand plot, the dashed line becomes the dotted line).
The mass shift is especially pronounced and distinctive if sellers are also loss averse,

i.e., when λ > 1. In this case the model predicts bunching in the final distribution of
house sales at G = 0, coming from a shift in mass from the area where G < 0 (in the
right-hand plot, the dotted line becomes the solid line).

In Panel B of Figure 1, we consider the effects of introducing imprecise targeting of the
final price. As mentioned earlier, in this case we assume that for a group of sellers β(#)

is known with certainty, whereas a fraction 1 − π imprecisely target the final price, i.e.,
they do not know β(#) with certainty at the time of listing. This inclusion of noise in β(#)

has a number of effects. First, because of the mixture of precise and imprecise targeters,
sharp kinks in the listing premium profile are smoothed out. Second, this force in the
model generates risk aversion, because sellers with positive but low potential gains also
worry about realizations of β(#) that push the final price below the reference point; this
pushes some sellers to list more aggressively. Finally, and importantly, sellers that face
uncertainty realize final prices that are close to, but often above the reference point. With
the introduction of imprecise targeting λ plays a dual role, generating strict bunching for
those precise targeting sellers who can anticipate and steer negotiation outcomes towards
their desired price, and diffuse bunching for those sellers who can only imprecisely steer
final outcomes.

These predictions are important for the structure of uncertainty in negotiation out-
comes in our model. We need to assume that targeting ability is a fixed feature of each
seller type, as opposed to simply reflecting the heterogeneity of final outcomes. This is
because, unlike in the public finance literature where manipulation amounts are not ob-
servable (see, e.g., Rees-Jones (2018); Anagol et al. (2022)), we observe seller decisions
made at the point of listing as well as final sale outcomes, and need to reconcile the two
with our model. On the one hand, we see evidence in the data that suggests extensive
negotiations between buyers and some sellers, with plausibly uncertain final outcomes.
This is consistent with evidence on negotiations from real estate (Han and Strange, 2014,
2016) as well as other markets (Backus et al., 2020). On the other hand, as we show below,
we also observe strict bunching precisely at the reference point in the data; this evidence
points to least a fraction of sellers being able to precisely anticipate market conditions
and steer transactions towards their desired final outcome.
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2.4.3 Concave Demand
The demand functions α(#) and β(#) are an important determinant of listing behavior,

and their functional form can affect the shape of the #∗ schedule in this model. In the
simple case of linear demand functions discussed thus far, when the probability of sale
α(#) is less responsive to #, the marginal cost of choosing a larger listing premium is
lower, and therefore the level of #∗ is higher. However, the literature has shown that α(#)
is nonlinear. In particular, it is “concave”.

A way to think of “concave” α(#) is that it remains constant for # below a level that
we denote as #. The optimal #∗ in a linear reference-dependent model (η > 0, λ = 1) when
demand is concave has a flatter slope in the domain Ĝ > 0, relative to the case of linear
demand. This is because lowering listing premia below # results in reductions in final sale
prices (since β(#) increases in #), but does not increase the sale probability. Even if the
seller is “linearly reference dependent” with no loss aversion (η > 0 and λ = 1) the logic
of optimization in this case will generate a graph of #∗ against Ĝ with a “hockey stick”
shape. This is an important confound for λ that has not previously been considered in
the literature.

More generally, the model predicts a tight link between the shape of α(#) and the
slope of #∗. A steep negative slope of α(#) for # above # leads to a gradual slope of #∗

in the loss domain, since the marginal cost of increasing the listing premium is higher in
this case, and vice versa. In the online appendix section B.5 we illustrate this mechanism,
positing a concave shape for α(#) and showing the effect of varying α(#) around # = 0,
i.e., the point at which L = P̂ .

Concave demand also has an effect on transaction volumes in the model. This shape
of α(#) predicts shifts of mass in final sales towards positive values of realized gains,
depending on the level of #, the point at which concavity “kicks in.” However, it is not
associated with sharp bunching of the type associated with loss aversion, as demand
concavity is assumed (and seen in the data to be) smooth.9

9A more subtle point here is that any change in the precise specification of the reference point R in the
presence of loss aversion will also change the location at which bunching is observed, and heterogeneity
in reference points will make it hard to observe the precise location of bunching. To complicate matters
further, variations in the level of " are a confound, potentially rendering it difficult to distinguish models
with heterogeneous reference points from models with spatial or temporal variation in ". We avoid this
complexity in our setup by simply taking the stance that R is the nominal purchase price of the property
and evaluating the extent to which we see bunching given this assumption. As we will later see, this
turns out to be a reasonable assumption—we observe significant evidence in the data of bunching using
this assumption about R, confirming its relevance to sellers.
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2.4.4 Extensive Margin
In the model, any force inducing a wedge between the expected utility from a successful

listing and the outside option u affects both intensive and extensive margins. In particular,
the model predicts that sellers with lower Ĝ are less likely to list at all. This prediction
points to the relationship between the propensity to list and Ĝ as an additional moment
to inform structural estimates of preference parameters.

Modelling the extensive margin decision also helps to account for selection effects
that can drive patterns of observed intensive margin listing premia in the data, an issue
that prior literature (e.g., Genesove and Mayer, 1997, 2001; Anenberg, 2011; Bracke and
Tenreyro, 2020) has been unable to control for as a result of data limitations. For example,
if sellers that decide not to list are more conservative (i.e., they set lower listing premia),
and those who decide to list are more aggressive (i.e., setting higher listing premia) the
resulting selection effect would lead to a higher observed non-linearity in listing premia
around reference points, which would bias parameter estimates and inferences conducted
only using the intensive margin.10

There are more subtle implications of the model linking the extensive and the intensive
margins. High realizations of θ affect the listing decision, and push the seller towards set-
ting higher listing premia. However, this force can move # into regions of concave demand
in which the response of buyers is more (or less) pronounced, because of non-linearities
in α(#). This in turn means that variation in θ can affect the observed magnitude of the
seller’s responses to Ĝ, another force which smooths and blurs kinks in the model-implied
#∗ profile. Online appendix section B.1 illustrates this analytically with a specific exam-
ple, showing how a smooth “hockey stick” average listing premium profile can result from
averaging the three-piece-linear listing premium profile (for λ > 1) across the distribution
of sellers with different θ.

Overall, the model provides clear guidance as to how the first three structural parame-
ters η,λ and µ can be separately identified in the data: (i) η > 0 leads to a negative slope
of the listing premium profile along the entire range of potential gains, (ii) λ > 1 leads
to excess bunching of transactions for realized prices at and above the nominal reference
point, and an additional contribution to the slope of the listing premium profile in the loss
domain, (iii) µ > 0 leads to a negative slope of the listing premium profile with respect
to potential home equity.

The remaining four parameters θm, θσ,π, and φ can be thought of as “fitting parame-
ters,” which allow us to pin down important quantities that are not the main focus of our
model. A simple characterization is that (i) θm mainly determines the average level of the

10We thank Jeremy Stein for useful discussions on this issue.
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listing premium, (ii) θσ drives the degree to which the kinks and non-linearities that our
assumptions on preferences and constraints imply are smoothed out in the data, (iii) π

pins down the relative magnitudes of strict and diffuse bunching of realized prices around
the reference point, and (iv) φ is a key determinant of the extensive margin probability
that a given property is listed for sale.

Beyond these simplified characterizations, there are complex interactions between dif-
ferent parameters which determine ultimate outcomes. We next describe the data and
key moments visible in the data as a precursor to a more rigorous structural estimation
of the model’s parameters using these moments.

3 Data
We obtain high-quality administrative data on Danish housing listings, transactions,

and the housing stock, as well as demographic and financial information about house
sellers. We briefly describe these data below, and online appendix C contains detailed
descriptions of data sources, data construction and filtering, and the process of matching
involved in assembling the final dataset.

3.1 Property Transactions and the Housing Stock
We acquire comprehensive administrative data on the ownership and hedonic charac-

teristics of the housing stock of all registered properties in Denmark between 1992 and
2016, as well as all transactions of these properties from the Danish Tax and Customs
Administration (SKAT) register and the Danish housing register (Bygnings-og Boligreg-
isteret, BBR). We also obtain the assessment values of each property. This information
is provided by SKAT, which assesses property values every second year.11

3.2 Property Listings Data
Property listings data from 2008 to 2016 are provided to us by RealView. We link

these transactions to the cleaned/filtered sale transactions in the official property registers;
79.6% of all sale transactions have associated listing data. We describe these data more
fully in the online appendix, noting here that unmatched transactions generally occur
off-market as direct private transfers.

11Tax-assessed property values are used for determining tax payments in Denmark. Online appendix
D.1 describes the property taxation regime in Denmark in greater detail including inheritance taxation;
we simply note here that there is the usual “principal private residence” exemption on capital gains on
real estate, and that property taxation does not have important effects on our inferences.
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3.3 Mortgage Data
We obtain data on any mortgages attached to each property from the Danish central

bank (Danmarks Nationalbank), which collects these data from mortgage banks. The data
are available annually for each owner from 2009 to 2016, cover all mortgage banks and all
mortgages in Denmark, and contain information on the mortgage principal, outstanding
mortgage balance each year, the LTV ratio, and the mortgage interest rate. If several
mortgages are outstanding for the same property, we simply sum them, and calculate a
weighted average interest rate and loan-to-value ratio for the property and mortgage in
question.12

Danish households can take up a mortgage covering up to 80% of the property price.
Banks require a cash down payment of 5% and households can bridge the remaining
80%-95% using bank loans or “Pantebreve” (debt letters) to bridge funding gaps above
LTV of 80%. Over the sample period, this was possible at spreads of between 200 and
500 bp over the mortgage rate. For reference, see categories DNRNURI and DNRNUPI
in the Danmarks Nationalbank’s statistical data bank. A third (typically unobservable)
possibility is that households can bring additional funds to the table by liquidating other
assets, or by borrowing from friends and family.

In Stein (1995), M represents the outstanding mortgage debt net of any liquid assets
that the household can put towards the down payment. The granular data that we employ
allow us to measure the net financial assets that households can use to supplement realized
home equity. In online appendix section K we verify using these data that our inferences
are sensible when taking these additional funds into account.

3.4 Owner/Seller Demographics
Demographic data on individuals and households come from the official Danish Civil

Registration System (CPR Registeret). Individual income and wealth data from the
official records at SKAT, which hold detailed information by CPR numbers for the entire
Danish population. In addition to each individual’s personal identification number (CPR),
the records also contain a family identification number that links members of the same
household. This allows us to aggregate individual data on wealth and income to the
household level.

12Online appendix D.2 provides a description of several features of the Danish mortgage market
including the conditions under which mortgages are assumable, as well as the effects of the Danish
refinancing system (studied in greater detail in Andersen et al. (2020)) on sale and purchase incentives.
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3.5 Final Merged Data
Our sample is restricted to transactions for which we can measure both nominal losses

and home equity. Transactions data are available from 1992 to the present, meaning that
we can only measure the purchase price (i.e., reference price) for properties that were
bought during or after 1992. The mortgage data run from 2009 to 2016, which further
restricts the sample to this time period. We also restrict our analysis to properties for
which we know both the ID of the owner, as well as that of the owner’s household, in
order to be able to match housing transactions to wealth and income data. We exclude
data from foreclosure transactions, properties with a registered size of 0, and properties
that are sold at prices which are unusually high or low (below 100,000 DKK and above
20MM DKK in 2015, or marked as having an extreme price by Statistics Denmark). For
listings that end in a final sale, we also drop within-family transactions, transactions that
Statistics Denmark flag as anomalous or unusual, and transactions where the buyer is the
government, a company, or an organization. We also restrict our analysis to residential
households, dropping summerhouses and listings from households that own more than
three properties in total, as they are more likely to be property investors than owner-
occupiers.13

In online appendix C.5, we describe the data construction filters and their effects on
our final sample in more detail. Once all filters are applied, the sample comprises 214,103
listings of Danish owner-occupied housing between 2009 and 2016, for both sold (70.4%)
and retracted (29.6%) properties, matched to mortgages and other household financial
information. Of these, 172,225 listings have an attached mortgage, and 41,878 listings
have no associated mortgage (i.e., are owned entirely by the seller).

The listings correspond to a total of 191, 507 unique households, and 178,933 unique
properties. Most households sell one property during the sample period, but roughly 9%

of households sell two, and roughly 1.5% of households sell three or more properties. As
mentioned, we also use the entire housing stock, filtered in the same manner as the listing
data. These data comprise 5,538,052 observations of 807,345 unique properties. This
enables us to capture the determinants of the propensity to sell, i.e., the extensive margin
decision in the model.

13We apply these filters because transactions involving a registered corporation, a government entity or
a foreclosed property are often conducted at non-market prices. This is, for example, for tax efficiency or
avoidance purposes in the case of corporations, and for eminent domain reasons in the case of government
purchases. Moreover, the market for such properties is extremely thin, meaning that predicting the price
using a hedonic or other model is particularly prone to error. As concerns investment homes, we note
that Genesove and Mayer (2001) separately estimate loss aversion across groups of owner-occupiers and
speculators, but we choose to focus our parameter estimation in this paper on owner-occupiers.
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3.6 Hedonic Pricing Model
To calculate listing premia #, potential gains Ĝ and potential home equity Ĥ, we need

to measure the expected house value P̂ for each property-year in the data. We do so by
estimating a standard hedonic pricing model on our sample of sold listings, and predicting
prices for the full sample of listed properties, including those that are not sold.

The model predicts the log of the sale price Pit of all sold properties i in each year t:

ln(Pit) = ξtm + βft i=f + βxXit + βfx i=fXit + Φ(vit) + i=fΦ(vit) + εit, (6)

where Xit is a vector of time-varying property characteristics (these characteristics are
recorded and updated each year), namely ln(lot size), ln(interior size), number of rooms,
bathrooms, and showers, a dummy variable for whether the property was unoccupied
at the time of sale or retraction, ln(age of the building), dummy variables for whether
the property is located in a rural area, or has been marked as historic, and ln(distance
to the nearest major city). ξtm are year cross municipality fixed effects (there are 98
municipalities in Denmark), and i=f is an indicator variable for whether the property is
an apartment (denoted by f for flat) rather than a house. Finally, Φ(vit) is a third-order
polynomial of the previous-year tax assessor valuation of the property, which also includes
a square-root term. Online appendix E.1 discusses the hedonic model in greater detail.
We later on also check robustness to a range of different cases, variation in the hedonic
model.

The R2 of the model equals 0.88 in the full sample, a high degree of accuracy which
we verify in various ways in online appendix E.14

An important confound when structurally estimating model parameters is noise or
bias in the estimation of P̂ , arising from factors such as time-varying unobserved house
quality (see e.g., Genesove and Mayer, 1997, 2001; Anenberg, 2011; Clapp, Lu-Andrews
and Zhou, 2018). We describe our approach to dealing with these issues later in the paper.

4 Reduced-Form Facts
As a precursor to full-blown structural estimation, we document patterns in the data,

primarily focusing on listing premia and sales transactions volumes in relation to measured
G and Ĝ. We informally discuss how these patterns relate to the predictions of the model,
with a specific focus on our main parameters of interest, η and λ. We also explore how

14Briefly, when we estimate the model in levels rather than logs, we obtain an R2 of 0.85. The
R2 when we eliminate the tax assessor valuation from the hedonic characteristics is 0.77. We achieve a
similarly high fit when estimating the model on random 50% samples of the data and fitting the remainder
out-of-sample to address overfitting concerns.
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the patterns in the data change when we account for (i) sellers’ down-payment constraints
(i.e., Ĥ), (ii) concave demand, and (iii) robustness to changes in measurement. We also
discuss how these changes might influence parameter estimation.

4.1 Fact 1: Listing Premia and Potential Gains (“Hockey Stick”)
We compute listing premia as # = lnL − l̂nP , where L is the reported initial listing

price observed in the data, and l̂nP is estimated using the hedonic model. We focus on
listing premia, as listing prices move virtually one-to-one with hedonic values, akin to
Genesove and Mayer (2001) (see online appendix Table A.3). Mean # is 12.1%, and # is
greater than zero for 74% of the sample.

We compute potential gains as Ĝ = l̂nP−lnR, where R is set to the nominal purchase
price of the property. Mean Ĝ estimated in this way is 38%, and 23% of property-
years exhibit negative gains. Online appendix Figure A.2 plots the distributions of these
variables.

Figure 2 plots the average listing premium on the y-axis associated with each level of
potential gains on the x-axis. The figure shows that prospective sellers of properties that
have appreciated since the initial purchase choose lower listing premia, while the reverse
is true for those facing potential losses. The downward slope of the listing premium along
Ĝ is visible throughout the domain, including when Ĝ > 0. This downward slope is
consistent with the predictions of a model with reference dependence η > 0. Moving
from the gain to the loss domain, the slope becomes much more pronounced, i.e., listing
premia react more aggressively to every unit decrease in potential returns when Ĝ < 0,
and a kink is visible at Ĝ=0. This “hockey stick” pattern is seemingly consistent with
the predictions of a model with loss aversion λ > 1. In the piecewise linear formulation
of preferences, however, loss aversion also predicts a flattening out of the listing premium
profile deeper into the loss domain, which is not visible in the plot.

While these patterns seem to be consistent with reference-dependent and loss-averse
preferences, the model tells us that various other parameters could also be at work. We
continue our investigations below.

To see the effects of home equity constraints, for all observations in the data, we
calculate Ĥ = l̂nP − lnM , where l̂nP is estimated using our hedonic model as before,
and M is the outstanding mortgage balance reported by a given household’s mortgage
bank each year. The average level of potential home equity is Ĥ = 41%, with a median
level of Ĥ = 37%. Across the full sample of property × year observations, 35% of sellers
potentially face a binding financial constraint (i.e., Ĥ < 20%). The modal Ĥ conditional
on having a mortgage is around 18%, which is consistent with the Danish constraint on
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the issuance of mortgages—the Danish Mortgage Act specifies that LTV at issuance by
mortgage banks is restricted to be 80% or lower.15

Ĝ and Ĥ are jointly dependent on l̂nP , but there are multiple other factors that can
influence the correlation of these variables, including the LTV ratio at origination (i.e.,
variation in initial down payments), and households’ post-initial-issuance remortgaging
decisions. In online appendix Figure A.4, we plot the joint distribution of Ĝ and Ĥ, and
show that there is substantial variation in the four regions defined by Ĝ ≶ 0 and Ĥ ≶ 20,
which permits identification of their independent impacts on listing decisions. In online
appendix Figures A.4 and A.5, we also show that this variation is not confined to one
particular part of the sample period—there is substantial mass in all four quadrants of
the joint distribution defined by thresholds in Ĝ ≶ 0 and Ĥ ≶ 0, and the relative mass
remains fairly stable over the sample period. This alleviates concerns that identification
simply comes from different time periods in the data; identification is likely to arise mainly
from the large cross section rather than the relatively more limited time series. We also
confirm that the inclusion of cohort and cohort-cross-municipality fixed effects in the
hedonic model does not materially affect our inferences.

Figure 3 shows a 3-D representation of # against both Ĝ and Ĥ in the data, averaged
in bins of 3 percentage points. # declines in both Ĝ and Ĥ, and there is evidently
both independent and interactive variation along both dimensions. Quantitatively, the
conditional variance of Ĝ given Ĥ is 0.256, and of Ĥ given Ĝ is 0.121. To better see
the independent variation of # along both dimensions, the dotted lines on the 3-D surface
indicate two cross-sections in the data corresponding to G = 0% and H = 20%. These
“marginals” reveal that the “hockey stick” profile of # along the Ĝ dimension survives,
controlling for Ĥ, and there is also a pronounced downward slope in # along the Ĥ

dimension, controlling for Ĝ. In terms of the interactive variation, Figure 10 (left plot)
shows how the “marginals” of the listing premium along the Ĝ dimension vary as we vary
the level of Ĥ; we discuss this and the other marginal again at the end of the paper, where
we evaluate the extent to which we can match these interactive relationships using the
model.

15This constraint does not change over our sample period. The online appendix table A.3 documents
the changes in the Danish Mortgage Act over the 2009 to 2016 sample period. While the constraint does
not move during this period, there are a few changes in the wording of the act, a change in the maximum
maturity of certain categories of loans in February 2012 from 35 to 40 years, and the revision of certain
stipulations on the issuance of bonds backed by mortgage loans. None of these changes materially affect
our inferences.
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4.2 Fact 2: “Hockey Stick” and Optimization Frictions
The left-hand plot in Figure 4 shows the probability of a house sale within six months,

which we map to α(#) in the model on the y-axis, as a function of # on the x-axis. These
probabilities are derived from underlying data on the time-on-the-market (TOM) that
elapses between sale and listing dates for the properties in the sample.16 To smooth the
average point estimate at each level of #, we use a simple nonlinear function which is
well-suited to capturing the shape of α(#), namely, the generalized logistic function or
GLF (Richards, 1959; Zwietering et al., 1990; Mead, 2017).17 The solid line corresponds
to this set of smoothed point estimates.

The right-hand plot in Figure 4 shows how lnP (#)− l̂nP , i.e., the “realized premium”
of the final sales price over the hedonic value varies with #. This “conversion” of listing
prices to sale prices is the function β(#) = β0 + β1(#) in the model. The plot shows
that the average β(#) rises close to one-for-one with #, corresponding to the estimated
coefficients β0 = −0.068 and β1 = 0.835. The dotted lines in the plot show percentiles of
the distribution of price realizations B(#) around the average β(#) in the data, i.e., the
distribution B(#). As discussed in the model section, we use this distribution to capture
the range of possible price outcomes for each level of the listing premium.

The two plots together reveal that in Denmark low list prices appear to reduce seller
revenue with little corresponding decline in time-on-the-market, a virtually identical pat-
tern to that in Guren (2018), who studies three U.S. markets.18 This “concavity” of
demand is a confound for estimating λ, because the model predicts two distinct possible
drivers for the differential slopes of #∗ across gains and losses. When λ > 1, there are kinks
in #∗ around Ĝ = 0, which can be smoothed into a “hockey stick” pattern by variation in
θ. The other possibility is buyer sensitivity to #, captured by the shape of α(#).

How plausible is the second channel? To check, we exploit regional variation across
sub-markets of the Danish housing market. We separately estimate the slope of # in

16Mean (median) TOM in the data is 35 weeks (24 weeks). We pick six months in the computation
of α(") to match the median TOM observed in the sample, but the shape is robust to using other
windows such as 3, 9, or 12 months. Online appendix Figure A.2 shows the distribution of TOM, which
is winsorized at 200 weeks, meaning that we view properties that spend roughly 4 years on the market
as essentially retracted.

17We describe the GLF in more detail in online appendix G. It is useful for our purposes as it is
(i) bounded both from above and below, and it (ii) allows us to easily capture the degree of concavity
observed in the data in a convenient way, through a single parameter. In our estimation of the parameters,
we restrict the lower bound of the GLF to be equal to zero, to impose that the probability of sale
asymptotically converges to 0 for arbitrary high levels of ".

18These plots also show that Danish sellers who set high " suffer longer time-on-the-market, but
ultimately achieve higher prices (i.e., high realized premia) on their house sales, confirming the original
finding of Genesove and Mayer (2001), who analyze the Boston housing market between 1990 and 1997.

21

Electronic copy available at: https://ssrn.com/abstract=3396506



the domain Ĝ < 0, as well as separate α(#) functions (in particular, the slope of α(#)

when # ≥ 0) in different municipalities of Denmark.19 The left-hand plot of Panel B
of Figure 2 shows how α(#) varies with # for municipalities ranked on the magnitude
of the slope of α(#) when # ≥ 0. This slope has a value between −1.4 and −1.2 for
the 5% of municipalities with strong demand concavity, between −1.2 and −0.3 for the
middle group, and between −0.3 and −0.1 for the 5% of municipalities with weak demand
concavity. The corresponding right-hand plot of Panel B shows the relationship between
# and Ĝ for municipalities grouped in this fashion. Consistent with the predictions of the
model, in areas with weak demand concavity, a relatively steeper slope is visible in the
listing premium schedule, and vice versa.

To better pin down the “pass through” of demand concavity to listing premia, we
later calculate moments in the model that reflect variation of demand concavity across
these three municipality groups. We assume that seller preferences are consistent across
locations, meaning that the variation of listing behavior that is unexplained by differences
in demand concavity helps to pin down the degree of loss aversion. We also note here
that the degree of demand concavity should vary with the ease of value estimation and
hence price comparison in a given market. If comparable properties are readily available
in a local area, buyers in that area should be quick to penalize unusually high premia
with sharp declines in the probability of a quick sale. Conversely, if the market is less
homogeneous, buyers face a more difficult inference problem to discern whether high listing
premia are indeed warranted for specific properties. In support of this logic, we show in
Figure 5 that geographic variation in demand concavity is strongly positively related to
the homogeneity of the local housing stock, as measured by the share of apartments and
“cookie cutter” row houses listed in a given sub-market. An IV strategy confirms that
instrumented demand concavity predicts variation in the listing premium slope across
different regions of Denmark.20

4.3 Fact 3: Bunching in Realized Sales
The left-hand panel in Figure 6 plots the frequency distribution of property sales across

the dimension of realized gains (lnP − lnR). Each dot shows the empirical frequency of
sales (y-axis) occurring in each 1 percentage point bin of realized gains (x-axis). Observing

19Municipalities are a natural local market unit—there are 98 in Denmark, with 60,000 inhabitants
and roughly 1,800 listings on average. We also re-do this exercise using shires, which are a smaller
geographical delineation covering 80 listings on average as a cross-check. For computational efficiency, we
group municipalities in three categories, when we incorporate local variation in the structural estimation.

20Row houses in Denmark are houses of similar or uniform design joined by common walls, and
apartments have less scope for unobserved characteristics such as garden sheds and annexes than regular
detached houses (we show pictures of typical row houses in Denmark in online appendix H). We discuss
the IV strategy in detail in online appendix H.
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a counterfactual for this distribution is difficult, as in other settings which attempt to
estimate loss aversion using bunching estimators. Our approach is to overlay on this
plot (as a dotted line) the empirical frequency of realized sales (i.e., the same y-axis)
occurring in each 1 percentage point of potential gains l̂nP − lnR (i.e., a different x-axis),
as a counterfactual distribution. The counterfactual shows the shape of the realized sales
distribution that would result if households were to sell their properties at their model-
implied hedonic values.

Using this counterfactual, we see clear evidence of both reference dependence and loss
aversion in Figure 6. First, as in the theory-implied right-hand panel of Figure 1, the
distribution of sales around the reference point is shifted to the right when compared
to the counterfactual distribution. This is consistent with η > 0 in the model. Second,
the precise position of the pronounced jump in the distribution at G = 0%, and the
distribution of mass to the left and right of this point relative to the counterfactual are
also informative about λ. In the theory-implied right panel of Figure 1, when λ > 1,
the model predicts a jump in the final distribution of house sales precisely at G = 0,
additional mass in this distribution just to the right of this point, and relatively lower
mass in the loss domain, to the left of G = 0.

The pronounced bunching that we observe precisely at the point G = 0 offers empirical
support (which is non-parametric, since it does not require reliance on a hedonic or other
model) for the choice of R as the nominal purchase price (see Kleven, 2016, for a discussion
of bunching at reference points). The plot also clearly reveals two important additional
features of the data: sizeable “diffuse bunching” excess mass just to the right of zero, which
we discuss in greater detail below, and a small but visible “hole” just to the left of G = 0,
which we also later attempt to rationalize by adding a “notch” to seller preferences.21

An appealing feature of this counterfactual is that the hedonic model (or a very similar
variant) is widely used in this market setting for valuation, and can be verified using real-
ized prices. The standard polynomial counterfactual approach would not allow us to gauge
the extent of shifts in mass which are predicted in the presence of reference-dependent loss-
aversion, as that approach by definition fits the observed empirical distribution up to the
range over which the counterfactual is extrapolated.22 In this sense, our approach is more

21The online appendix Figure A.3 shows the distribution of listing prices around the nominal reference
point. The model predicts an agglomeration of mass at listing prices above the reference price, coming
from loss-averse sellers with potential gains between Ĝ0 and Ĝ1 who set listing premia to arrive at gains
G = 0, and take β(") into account when optimizing. We do see this in the data, consistent with the
model. We also see clear evidence of listing prices bunching precisely at the reference price, which is not
predicted by the model, but which suggests a separate, additional role for the salience of the reference
point in some sellers’ listing decisions.

22We also implement this approach in the online appendix Figure A.7, following Chetty et al. (2011)
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similar to Rees-Jones (2018), who extracts evidence of loss aversion from U.S. tax returns
data, and employs a model to gauge expected tax avoidance costs and benefits—which
would otherwise be difficult to measure.

In the right-hand panel of Figure 6 we calculate a measure of excess mass relative
to the counterfactual in each bin of realized gains. This allows greater precision on the
exact magnitude of bunching. For example, for realized gains of zero, we find that the
observed frequency of realized gains is 69% higher than under the counterfactual, with
a bootstrap standard error of 7.6%. In the one-percentage point bin immediately to the
left of zero, the observed frequency is 24% lower than under the counterfactual, with a
bootstrap standard error of 3.8%.

Online appendix Figure A.6 reports sale transaction frequencies which show the degree
of bunching in a similar 3-D fashion. We confirm that regardless of the level of Ĥ, there
is a visible shift of mass from the Ĝ < 0 domain to the Ĝ > 0 domain.

4.4 Fact 4: Extensive Margin: Probability of Listing
To understand the decision to list, we turn to data on the total housing stock in

Denmark, using 5, 538, 052 property-years in the data. We compute that the unconditional
average annual listing propensity is 3.87% of the housing stock. This corresponds to
between 3% and 4.5% of the housing stock listed across sample years.

A model-consistent explanation for the average propensity to list is beyond the scope
of the paper, because it would require us to take a strong stance on the factors that drive
the moving decision, which we currently summarize using our estimates of θ. Instead, we
focus on the variation of listing behavior around the reference point. Figure 7 plots the
listing propensity at each level of Ĝ, which comes from estimating l̂nP for all properties
in Denmark for which we have data on the nominal purchase price R.23 The figure shows
a mild increase in the probability of listing as Ĝ increases, which is consistent with η > 0,
and potentially, λ > 1.

4.5 Robustness
4.5.1 Unobserved Quality and Measurement Error

The measured relationship between # and Ĝ as well as that between α(#) and # can
be spuriously affected by measurement error in the underlying model for P̂ . To pro-
vide a specific example, consider the case of unobserved property quality that causes
and Kleven (2016). When doing so, we exclude bins near the threshold, and extrapolate the fitted
distribution to the threshold, excluding one bin on each side of the zero gain bin, i.e. j ∈ {−1%, 1%},
with a polynomial order of 7. The results are robust to other polynomial orders and to variations of the
excluded range, and generate similar results on the excess bunching mass at zero.

23In online appendix Figure A.9 we report a residualized version of the listing probability across
potential gains, controlling for the level of home equity.
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underestimation of P̂ for a group of properties. In this case, potential gains for these
properties would also be underestimated, leading to Ĝ < 0 and overestimated listing pre-
mia # = L − P̂ . This could spuriously generate the hockey-stick shape that we observe
when plotting # against Ĝ.

We make a concerted effort to address these measurement error concerns, outlining
in online appendix I how different sources of measurement error conceptually affect our
inferences about underlying structural parameters, and proposing specific fixes for each
particular case. Following Genesove and Mayer (2001), we differentiate between two types
of measurement error, namely, (potentially time-varying) unobserved quality (νit), and id-
iosyncratic over- or under-payment by the seller at the point of purchase (ωit). We outline
how these sources of error can bias estimated moments and yield misleading inferences
about true underlying relationships. We outline assumptions under which alternative em-
pirical models of P̂ can unwind these biases in inferences, permitting recovery of clean
estimates of true underlying relationships. As we discuss in greater detail below and in
online appendix I, we also simulate the effects of varying degrees of unobserved quality
and recover parameter estimates from this exercise, which provides further theoretical
confidence in the robustness of our structural estimation approach.24

We apply these concepts by comparing how key data moments vary when we i) employ
a standard hedonic model; ii) employ repeat sales models to difference out time-invariant
unobservable components; iii) use as regressors time-varying hedonic characteristics and
novel tax exemption data on home renovation expenses to narrow in on time-varying
changes in unobservable quality, and iv) combine all of these features in a single he-
donic model. The important patterns in the data, including the hockey stick in listing
premia over potential gains, and the relationship between sale probabilities and listing
premia (i.e., concave demand) are robustly visible across these different models of P̂ , and
quantitatively similar.

Perhaps more importantly, we later show that the internal consistency provided by
structural estimation leads our identification of parameters to be robust to estimation error
in P̂ .25 Unobserved quality continues to bias the slope of the “hockey stick” upwards in

24We thank an anonymous referee for suggesting that we pursue this.
25We also verify that the asymmetric shapes of the listing premium hockey stick and demand concavity

are not driven by non-linearities in observables by checking that property-and household-specific char-
acteristics including renovation expenses are balanced across the domains of potential gains and listing
premia, and smooth around Ĝ = 0 and " = 0. This is similar to verifying the identifying assumptions
behind a regression kink design (RKD) for a discontinuous increase in the slope along a forcing variable,
originally suggested by Card et al. (2015b) and implemented e.g., by Landais (2015), Nielsen, Sørensen
and Taber (2010), and Card et al. (2015a). We also implement the RKD for the listing premium hockey
stick in online appendix I.6, with the caveat that we do not predict a sharp kink due to the blurring
factors described earlier, and that we use zero for the kink threshold, even though the listing premia slope
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our setup, and when viewed through a reduced-form lens, a steeper slope can mistakenly
be interpreted as evidence for a high degree of reference dependence. In the model,
however, listing premia are not directly informative about underlying preferences; the
identification of preference parameters also depends on the extent to which “fishing” for a
higher price pays off in the market, captured by the demand function β(#). Interestingly,
it turns out that unobserved quality leads to offsetting bias in estimated listing premia and
the estimated β(#) function. This is because while unobserved quality can affect sellers’
listing premia, it countervailingly affects the prices that buyers will be willing to pay for
properties. This provides insight into why structurally recovered underlying preference
parameters from the model remain robust to unobserved quality.

4.5.2 Bunching: Round Numbers, Holding Periods and Reference Price
We show in online appendix J.1 that the bunching patterns documented in Figure 6

are robust to a number of issues previously identified in this literature (e.g., Kleven, 2016;
Rees-Jones, 2018). The spike in sales volumes at G = 0 and the patterns of excess mass
relative to the counterfactual distribution do not appear to be driven by bunching at round
numbers, remaining striking and visible when we exclude up to 20% of all observations.
We also show that these bunching patterns are robust when we split the sample into
five groups based on the time between sale and purchase, i.e., the holding period of the
property. Except for the sub-sample with the longest holding period (> 12 years, 20% of
the data), we find strong evidence of bunching at G = 0. Finally, we find strong evidence
of bunching in all cases when we split the sample into quintiles based on the level of
R, with quintile cutoffs ranging from around 658, 000 DKK to 1.9MM DKK. Together,
these checks assuage concerns that bunching could result purely from these differences in
underlying properties.

We now turn to describing our structural estimation approach.

5 Structural Estimation
5.1 Moments

To transparently map the patterns in the data back to underlying parameters, we use
the binscatter “dots”, i.e. binned averages visible in Figures 2 to 7 as our moments. This
choice avoids the need for additional parametric assumptions about the data that might
not be directly consistent with the model. We enumerate these moments below.

First, we use the average listing premium #(Ĝ) computed in each 1-percentage point bin
of potential gains Ĝ using all listed properties with potential gains in the interval between

increase begins at Ĝ > 0.
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-40% and +40% (79 moments visible in Figure 2 Panel A, and denoted by “Hockey stick”
in Table 2).

Second, we use the average listing premium #(Ĥ) in 1-percentage point bins of potential
home equity Ĥ for listings attached to a mortgage, covering the same -40% to +40%
interval (79 moments, integrating along one dimension of Figure 3, “Home equity” in
Table 1).

Third, we use the frequency fsale(G) of realized sales in each 1-percentage point bin
of realized gains G in the full sample (79 moments, Figure 6, “Bunching” in Table 1).

Fourth, we use the frequency of listings flist(Ĝ) which fall in any given 1-percentage
point bin of potential gains in the full sample of listings, and the frequency fstock(Ĝ)

of property × year observations in our housing stock dataset for which the potential
gain (repeatedly updated each year for each property) falls within each 1-percentage
point bin. Dividing these two quantities, we calculate the probability of listing s(Ĝ) =

flist(Ĝ)/fstock(Ĝ) for each bin of potential gains in the same interval (79 moments, Figure
7, “Extensive margin” in Table 1).

Finally, for each 1-percentage point bin of potential gains in the full sample of listings,
we calculate the average listing premium #k∈{High,Mid,Low}(Ĝ) in three municipality groups,
distinguishing between the top 5% locations where the slope of demand decreases most
sharply (“high” demand concavity), the 5% of locations where this slope is flatter (“low”
demand concavity), and the locations where the slope of demand lies between the 5%-95%
percentiles (79× 3 moments, Figure 2 Panel B, “Cross-sectional variation” in Table 1).

We collect all 79× 7 = 474 empirical moments obtained in this way in the vector Md:

Md =





#(Ĝ)

#(Ĥ)

fsale(G)

s(Ĝ)

#k∈{High,Mid,Low}(Ĝ)





5.2 Moments in the Model
To establish notation, let Mm (x) with x =

[
xs,xc,xd

]
denote the vector of model-

implied moments. xs collects the six structural parameters to be estimated, xc = γ = 20%

is a calibrated parameter which captures the level of the down-payment constraint in the
Danish mortgage market, and xd collects quantities (e.g., demand concavity parameters)
that are exogenous to the sellers’ decisions in the model, and are estimated from the data.

For computational reasons, we need to place restrictions on the distribution of the
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moving shock θ. Only a small fraction (around 4%) of the property stock is listed for sale
every year. Solving the model for the full range of θ′s in the population is computationally
burdensome, so we re-interpret the distribution of θ′s as a conditional version of the full
population. To facilitate this, we make the identifying assumption that the marginal value
θmin which corresponds to the 1st percentile of the conditional distribution of θ comes from
an expected utility of 0, experienced by a financially unconstrained seller with potential
gains equal to Ĝ+ = 40%. Moreover, since a model of the unconditional listing probability
is outside the scope of this work, we normalize the listing probability for this potential
gains level of Ĝ+ to equal its observed value in the data.

We compute the solution to the seller’s problem numerically on a three-dimensional
grid, for each 1-percentage point bin of potential gains and potential home equity, and
for each realization of the moving shock θ. We solve the model for both precise and
imprecise targeters, using the formulation of expected utility described in equation (1).
The aggregate model-implied moments Mm(x) are calculated according to the mixture
distribution of the seller population, where a fraction π of sellers are precise targeters,
and the remainder are imprecise targeters.

5.3 Estimation
We use a variant of classical minimum distance estimation to recover structural pa-

rameters from the data. Defining a vector of estimation errors:

g(xs) = Mm(xs)−Md,

we seek to estimate the structural parameters xs, by minimizing the objective function:

x̂s = argmin
xs

g(xs)′Wg(xs)︸ ︷︷ ︸
F (xs)

,

conditional on a choice for the weighting matrix W. Online appendix section B.8 describes
our numerical optimization procedure in greater detail.

We compute standard errors for the structural parameters using a bootstrap procedure
in which we draw random samples (clustered at the shire level) from the underlying data
(including the housing stock data). Using these samples, we re-estimate the hedonic price
P̂ , the associated potential gains and home equity, and all values of the moments. In each
bootstrap draw, we also re-estimate α(#) and β(#). We then re-estimate the structural
parameters for each such vector of bootstrapped moments.

We first employ an equal-weighting scheme in which W is the identity matrix. To en-
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sure that the scale of the moments does not influence their relative weights, we normalize
each binned value for each moment by its average value across all bins, i.e., we evaluate
the model fit in terms of relative prediction errors. In model versions in which we use
cross-sectional moments, we assign a weight of 1/3 to each municipality group. This rel-
ative over-weighting of the municipality groups with extreme levels of demand concavity
is an attempt to force the model to explain variation in the listing premium after ap-
propriately accounting for the “pass-through” of local market conditions. We later check
the robustness of our inferences to inverse-variance-weighting, i.e., we use the bootstrap
draws to construct a diagonal matrix of moment variances V, and set W = V−1.

5.4 Results
The model is complex, and there are many different patterns in the data. To under-

stand the forces in the model and the sources of parameter identification, we therefore
approach full structural estimation gradually. We build up from more simple model vari-
ants with fewer parameters to more complicated models, and adding subsets of moments
as we go along. This culminates in estimating the entire set of model parameters using
the full set of empirical moments. Table 2 shows the 8 model variants that we estimate,
listed in rows. The columns labelled “Parameters” show the specific subsets of parameters
estimated in each model along with associated bootstrap standard errors, the columns la-
belled “Optimization frictions” indicate whether or not we allow for concave demand and
imprecise targeting, and the remaining columns indicate the subset of moments used to
estimate the parameters in each row.

Model variant 1 only uses the “hockey stick” moments in Figure 2. We match these
moments using a stripped-down version of the model involving a representative seller with
no financial constraints, in a market with linear demand and all sellers able to precisely
target outcomes (i.e., π = 1).26 In this special case, we solve analytically for the optimal
# (see online appendix section B.1), and find that η drives the listing premium slope when
Ĝ > 0; λ generates a difference in slope in the domain Ĝ < 0; and the level of # is driven
by both η and θm, the level of the moving “shock” in this simple case. The first row of
Table 2 shows that this model delivers η = 0.340, λ = 2.256 and θm = 0.525, all of which
are highly statistically significant using the bootstrap.

We next check how correctly modelling demand using the concave α function estimated
in the data and visible in Figure 4 affects parameter estimates. When we incorporate this
feature, Model 2 in Table 2 shows that η = 0.848 is estimated higher, loss aversion
λ = 1.468 is lower, and the fitting parameter θm adjusts upwards to a level of 0.774.27 As

26The slope of β(") that we assume in this case is plotted as a straight dotted line in Figure 4.
27When η adjusts upwards, this generates a rotation in the listing premium—which now has a steeper
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surmised, accounting for concave demand substantially decreases estimated loss aversion
(which nonetheless remains statistically significantly greater than 1), but it also increases
measured reference dependence. This is because the relative “flattening out” of # when
Ĝ > 0 (and thus, the asymmetry between the slopes in the gain and loss domains) can
partly be explained by optimal responses to demand concavity in addition to loss aversion.
This in turn increases the degree of reference dependence needed to explain the negative
slope of # when Ĝ < 0.

Listing premia are ex-ante choices by sellers. An alternative ex-post measure is offered
by bunching in the distribution of realized prices in actual transactions. Model 3 estimates
reference dependence and loss aversion parameters using bunching and the hockey stick
moments together. Using this additional moment increases the precision of the λ estimate,
but the point estimate λ = 1.142 is now lower, tightly controlled by the bunching seen
precisely at zero gains. This tight control comes from the assumption of precise targeting,
i.e. π = 1. The lower estimated λ decreases the fit to the slope of # when Ĝ < 0. This
means that a higher η = 0.998 is now required to match the hockey stick (i.e., the curve
rotates, giving up fit in the domain Ĝ > 0 to better match the domain Ĝ < 0).

Model 4 adds imprecise targeting as an additional optimization friction, meaning that
a fraction 1− π of sellers are unable to either anticipate or precisely control the outcome
of price negotiations in the market. This allows the diffuse mass observed to the right of
G = 0 to be used to pin down λ. However, as illustrated in Panel B of Figure 1, imprecise
targeting generates an identification problem. More specifically, the parameter π is not
uniquely identified by the hockey stick pattern when π < 1. To understand this, consider
the fact that a purely downward-sloping straight line can be obtained in two cases. The
first is when π = 0 with linear reference dependence, and the second is when π > 0 and
λ > 1. We therefore allow the fraction π to be estimated jointly by the listing premium
profile (“Hockey stick”) and the pattern of mass shifts in the distribution of realized gains
(“Bunching”). With π > 0, some sellers who would otherwise bunch at the reference point
now do not have an ability to precisely target this point, and therefore the relatively low
magnitude of strict bunching at the reference places less of a restriction on the magnitude
of loss aversion in the model. With this assumption, we find a higher value of λ = 2.169,
consistent with a significantly lower value of π = 0.106, and a lower degree of overall
reference dependence η = 0.512.

Model 5 in Table 2 adds down-payment constraints into the model, and simultane-

slope. Over the relevant domain, this also manifests in a measured higher level of the listing premium.
To reduce this level to fit the average listing premium, θm must rise. The analytical solution in the online
appendix section B.1 provides more detail on this mechanism.
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ously adds in the variation of the listing premium along the home equity dimension as
additional moments. This change slightly reduces the estimated η to 0.403, since re-
sponses to down-payment constraints can explain some of the variation in listing premia
previously attributed solely to potential gains. Moreover, estimated λ = 2.596 rises in
this case, as the model attempts to match the observed slope of listing premia in the
loss domain, but with a lower level of reference dependence overall. Model 5 shows that
the estimated penalty parameter for the home equity constraint is µ = 2.764, which is
empirically realistic.28

An unrealistic feature of all model variants considered thus far is the assumption of
a representative seller, with a single value of the moving “shock” θ = θm. This is very
restrictive, because it does not allow for an extensive margin decision of whether to list
or not, and any resulting selection effects. If we were to assume just φ > 0, without
heterogeneity in θ, either all owners would list (for a low enough value of φ), or no owner
would list (for a high enough value of φ). The extensive margin allows us to jointly identify
the two parameters θσ and φ, through the level and the slope of the listing probability
profile. Model 6 adds in the extensive margin moments seen in Figure 7 to the set, to help
estimate these parameters. Estimated θm = 1.345 in this model variant, and heterogeneity
θσ = 0.711. To interpret magnitudes, note that this is normalized relative to the hedonic
value of the house, meaning that the lifetime contribution to utility discounted back to
the present is 1.345 of the hedonic value of the house, or equivalently 7.5% per year,
assuming a discount rate equal to 3.80%, i.e., the average return to long-term mortgage
bonds between 2009 and 2016, and a holding period of 30 years. Additionally, we find
search costs equal to φ = 0.050, i.e., 5% of the property price, which is once again
empirically realistic.29 This is accompanied by a slightly lower λ = 2.319, while both the
estimated degree of reference dependence and the down-payment constraint increase. To
understand this, note that the effect of higher dispersion in θ is to smooth the observed
listing premium slopes, which means that an overall higher level of reference dependence
is necessary to match the data. The higher η now also increases the magnitude of strict
bunching generated by the model, leading the loss aversion parameter λ to decrease.

Figure 6 also exhibits a small but clearly evident volume of missing mass for realized
gains in the one-percentage point bin just below zero. In the bottom two rows of the

28This coefficient provides an important validation opportunity for the model. In online appendix
section B.9, we show that the penalty implied by the estimated value of µ is consistent with its counterpart
in the data.

29We note here that the magnitude of the “fitting parameters” θ and φ also embeds the effect of
dynamic features such as time discounting and the sequential bargaining process between buyers and
sellers, as well as other soft factors like the hassle of allowing visitors in the house, the value of regret,
and any other drivers of the option value of the listing.
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table, we extend the model with an additional feature, a “notch” in seller preferences
around zero. This is modelled as a discontinuous jump of magnitude ζ for realized gains
just below zero, i.e.:

u(P (#), R) =

{
P (#) + ζ + ληG(#), if G(#) < 0

P (#) + ηG(#), if G(#) ≥ 0
. (7)

Using this augmented model, we find that the parameter ζ = −0.006 is quite imprecisely
estimated, despite the very clearly visible effects in the distribution of realized gains in
the data. This is consistent with the observation of Kleven and Waseem (2013) that
small magnitudes of notches can be observed to have large effects on the observed shifts
of mass. To show how the model fits the data, Figure 8 shows the moments and the model
predictions together.

Finally, Model 8 additionally considers the set of cross-sectional (i.e., regional) mo-
ments, i.e., it uses “local” demand conditions across the three groups of municipalities.
Here, estimated λ = 2.473 increases slightly. In the data, listing premia in municipalities
in which demand is very close to linear do not show significant variation in slopes across
gain and loss domains; and in municipalities in which demand is highly concave, the listing
premium is non-linear and precisely consistent with the non-linearity of demand in those
locations. Figure 9 shows that the model is well able to capture this pattern. Moreover,
as before, the strong rejection of λ = 1 arises from the sharp bunching seen in Figure 6.
With the inclusion of cross-municipality moments the model is better able to separate the
role of concave demand from the impact of heterogeneity in moving shocks. This leads to
lower estimated dispersion of θ, and a slightly higher estimate for the search cost, with
all other parameters only being marginally affected.

Overall, the model is well able to capture the broad contours of the data, with an
average prediction error of 6.95%.30 In the next section, we dig deeper into validating the
model, and identify where it is unable to match the data. We also consider the usefulness
of model extensions, and discuss what we learn from any gaps that remain between the
model and the rich patterns observed in the data.

30In online appendix Table A.4, we report prediction errors for a wider set of moments. In online
appendix section F we show that an alternative concave formulation for the financial penalty function
allows us to match listing premia along the home equity dimension better, but it also entails a more
computationally burdensome parameterization, without any material impact on the identification of the
main structural parameters.
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6 Validating the Model
6.1 Measurement Error and Robustness

We earlier discussed measurement error and unobserved quality. The top rows of
Table 3 alter the estimation of P̂ to account for different sources of measurement error,
recompute all affected moments using the re-estimated P̂ , and then re-estimate structural
parameters on the new moments. Model ‘Renovations’ augments the baseline hedonic
model in equation 6 with lagged information on tax exemptions sought by owners for
renovation expenses to capture time-varying unobserved quality changes occasioned by
renovations. Model ‘Repeat Sales I’ is a pairwise repeat sales model which includes both
time-varying hedonic characteristics and lagged renovation expenses. The model includes
the lagged pricing residual from the same house’s previously traded price as a right-hand
side variable, a strategy similar to Genesove and Mayer (2001). Model ‘Repeat Sales II’
generalizes the repeat sales approach, and additionally includes the average of all past
pricing residuals available since 1992 for each house where available, to use information
from all past repeat sales observed. A more comprehensive discussion of the rationalization
for and implementation of these models is in the online appendix section I.3.

Through simulation, we also check robustness of the estimated model parameters to
information about property quality known by the seller, and embedded in their choice
of list price, but hidden from the econometrician, and therefore not reflected in P̂ . We
simulate the extent of this bias, re-construct the empirical moments based on de-biased
values of P̂ , and report estimated structural parameters using this set of adjusted moments
in rows 4-6 of Table 3. Across different plausible levels of such unobserved quality, we
find that the structural parameters we recover are robustly of similar magnitudes to our
baseline estimates, except for the “fitting parameter” θm, which adjusts to capture a
downward shift of the average listing premium.

This exercise also provides deeper insights into how unobserved quality affects param-
eter identification. Sellers that are asymmetrically informed about property quality will
exhibit steep listing premia that contain the wedge between true quality and measured
quality, but the insight is that the same factor strengthens the correlation between listing
prices and final outcomes. When we de-bias the listing premium to account for unobserved
quality, its average level decreases, and the “hockey stick” flattens out, but the very same
bias correction also leads to a flatter slope of β(#). A lower β(#) reduces the “fishing”
incentive of sellers, meaning that even without any adjustment of preference parameters,
sellers optimally choose lower listing premia.31 This line of reasoning explains why we

31If unobserved quality is at play, sellers will have an informational advantage relative to the econo-
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do not find substantial changes in preference parameters in this simulation, and suggests
that the internal consistency provided by structural estimation can help to deal with the
contaminating effects of unobserved quality. Online appendix section I.7 discusses this
issue in more detail.

Finally, the bottom row of Table 3 shows values of estimated structural parameters un-
der an alternative inverse-variance weighting matrix for empirical moments. Reassuringly,
across all robustness checks, relative to Model 8 in Table 2, the point estimates of most
parameters remain similar, with no material changes to the qualitative interpretations
from that model.32

6.2 Interactions Between Preferences and Constraints
The three-dimensional patterns of listing premia observed in Figure 3 suggest that

there is considerable variation in the slope of the relationship between #̂ and Ĝ as Ĥ

varies. It appears as if the effects of losses and constraints interact with one another,
and that the factors affecting household behavior are neither one nor the other variable
viewed in isolation.

The left-hand plot in Panel A of Figure 10 compares the model predicted and observed
listing premium profiles along the Ĝ dimension, as the potential home equity position of
the seller varies. The important new fact is that less constrained sellers are likely to
respond more strongly in their listing decision to their gain/loss position, while uncon-
strained households exhibit seemingly greater levels of reference dependence.33

The corresponding plot in Panel B of the figure reports more formal estimation results
from a regression of listing premia on potential gains, conditioning the coefficient on
the level of potential home equity. This new fact on the interaction of preferences and
constraints appears to require a more intricate model of preferences and/or constraints
than the literature has thus far proposed. Our model cannot rationalize this feature of

metrician, but this information is revealed to the buyer during property inspection, and will be reflected
in prices negotiated between buyers and sellers. This means that final transaction prices are more tightly
linked to listing prices. In contrast, α(") is determined both by buyer arrival rates as well as by post-
inspection buyer offers, meaning that this function is relatively less affected by unobserved property
quality.

32One visible change concerns the estimated magnitude of down-payment constraints. Compared to
Model 8 in Table 2, the estimated values of the parameter µ in the case of hedonic models “Repeat Sales
I” and “Repeat Sales II” appear slightly lower. We can attribute this to the fact that the repeat sales
sample is restricted (it contains only properties for which multiple past sales are observed), and happens
to have a greater number of younger, urban households with high net financial assets—consistent with
lower down-payment constraints for this sample.

33The only real way to justify this interaction in the model is that constrained households already
choose higher listing premia, thus leaving less room to react in the face of demand concavity. However,
the quantitative magnitude that this line of logic can generate is very modest, meaning that virtually all
of the interaction effect cannot be explained by our canonical model.
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the data, even though it includes many of the forces proposed in the literature. With a
view towards motivating theoretical work on a broader class of preference and constraint
specifications, we conjecture that the luxury of being unconstrained appears to allow more
psychological motivations such as loss aversion to come to the fore. We discuss this further
in the conclusion to the paper.

In contrast, the two right-hand plots of Figure 10 compare the model predicted and
observed listing premium profiles along the Ĝ dimension, as the potential home equity
position of the seller varies. The reaction of sellers to changes in their potential home
equity position seems to be independent of the realization utility associated with their
accumulated nominal gains, an observation that the model captures well.

6.3 Price-Volume Correlation
Housing market volume is significantly lower in falling than in rising housing markets,

a finding which originally motivated the investigations in Genesove and Mayer (2001)
and Stein (1995). Reference dependence explains this finding by households listing their
houses at levels that depend on the reference point. This can make housing markets
sluggish when house values decline—making list prices unrealistically high—and more
active when markets rise. Down-payment constraint-based explanations posit that when
households are faced with down-payment constraint-imposed adjustments when housing
markets fall, they may set higher listing prices and be prepared to tolerate longer times-
on-the-market, or decide not to list at all, generating the price-volume correlation.

A positive correlation between prices and volumes arises endogenously in our model,
for both of these underlying reasons, and we can use the model to evaluate the magnitudes
of these two forces. Consider a positive shock to housing “fair value,” say as a result of a
demand shock for housing. This increases the mean of the distribution of sellers’ potential
gains relative to their reference points. There are two ways that higher potential gains
lead to increases in selling activity in the model. First, along the intensive margin (i.e.,
conditional on listing), it is rational for reference-dependent (and loss-averse) sellers to
react to the increase in potential gains by decreasing listing premia #. This in turn
leads to higher sale probabilities through α(#), thus increasing the number of realized
transactions. Second, along the extensive margin, more properties will be listed for sale;
even homeowners with low values of the moving shock θ who did not find it optimal to list,
now seek to list and benefit from the higher price they expect to realize from a successful
transaction.

A similar effect operates through down-payment constraints, since the same shock
increases the mean of the distribution of sellers’ potential home equity relative to their
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constraint points—once again leading to effects on listing premia and transaction volumes.
Formally, consider one-percentage point bins i of potential gains Ĝi = P̂i − Ri and

potential home equity Ĥi = P̂i −Mi, for which the number of properties in the housing
stock is given by Nstock,i. Given the model-implied optimal probability s(Ĝi, Ĥi) that any
such property will be listed for sale, and the probability α(#(Ĝi, Ĥi)) that conditional on
listing, an actual transaction will get realized, the number of observed realized transactions
Ni equals:

Ni = s(Ĝi, Ĥi)× α(#(Ĝi, Ĥi))×Nstock,i. (8)

For any given distribution of potential gains and potential home equity in the property
stock, equation (8) allows us to calculate average transaction volumes N =

∑
i Ni, and a

model-implied mapping between hedonic valuations and transaction volumes.
In Denmark, aggregate prices and volumes declined prior to the start of our sample

window in 2009, remained relatively flat until 2014, and then rose until the end of our
sample window in 2016 (see appendix Figure A.8). To check whether our model can
capture this price-volume correlation in the data, we first estimate the coefficient ρ from
the following regression:

∆ lnNm,t = µ+ ρ∆ ln P̂m,t + εm,t, (9)

where Nm,t are the numbers of transaction in municipality m in year t, and P̂m,t is the
corresponding average hedonic price level in municipality m in year t. The empirical
correlation between prices and volumes measured this way is reported in the left-most
column of Panel A in Table 4, and equals ρ = 0.515.

We then use the observed change in valuations ∆P̂m,t to calculate model-implied
changes in transaction volumes implied by equation (8), and re-estimate the model-implied
correlation coefficient in equation (9).34 We use the set of structural parameters estimated
in row 8 of Table 2, with η = 0.629 and λ = 2.473. This delivers a price-volume correla-
tion equal to ρ = 0.465, which is a modest under-prediction of the value of ρ identified in
the data.

In the bottom rows of Table 4, we then decompose this model-implied correlation
into the different model ingredients. First, we confirm that in a frictionless version of
the model with no financial constraints (µ = 0) and no reference dependence (η = 0),
transaction volumes are completely independent of price movements in the model. We
then augment the model, and find that down-payment constraints account for 57.3% of

34We assume that the parameterization of the model is representative for all municipalities and time
periods. This is consistent with our estimate of a common coefficient ρ in the data.
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the co-movement, with reference dependence and loss aversion accounting for 20.5% and
22.1%, respectively.

The important role of down-payment constraints for the aggregate dynamics of prices
and volumes over the sample period that we consider is not surprising, given that con-
strained sellers are very prevalent in the data. They account for a large share (44%) of all
sellers with an outstanding mortgage, which is 35% of the entire sample. For comparison,
a much lower share of 23% of sellers in the data face the possibility of realizing a loss.
Perhaps more importantly, we also find that in the data constrained sellers respond more
strongly to an improvement in their home equity position than loss-averse sellers do to
the possibility of realizing a loss. On average, the listing premium decreases by 0.37% in
response to a 1% increase in potential home equity, and by only 0.26% for a 1% increase
in potential gains.

7 Conclusion
We structurally estimate a new model of house selling decisions on comprehensive

Danish housing market data, and acquire new estimates of key behavioral parameters and
household constraints from this high-stakes household decision. Our parameter estimates
are consistent with a high degree of reference dependence in house sellers: they appear
to care greatly about nominal gains and losses relative to the original purchase price. We
also find strong evidence of loss aversion in this important field setting, complementing
previous field evidence in the literature (Camerer et al., 1997; Fehr and Goette, 2007;
Farber, 2008; Crawford and Meng, 2011; DellaVigna et al., 2017; Allen et al., 2017), with
a point estimate for the disutility contribution of losses equal to 2.473 times the utility
contribution of gains.

We use these estimated parameters to quantify the relative contributions of down-
payment constraints and reference dependence to housing market turnover, helping to
pin down the sources of the asymmetric effects of house price changes on house selling
decisions. This provides more precise answers for why property owners appear “locked in”
to their houses during market downturns (Ferreira et al., 2012; Schulhofer-Wohl, 2012),
thus aiding a better understanding of labor mobility, and informing mortgage market
design and policy (Campbell, 2012; Piskorski and Seru, 2018).

Perhaps most intriguingly, our model cannot completely match new facts that we
bring to light in the high-quality administrative data that we employ. We view these
facts as a new target for behavioral economics theory and structural behavioral economics
(DellaVigna, 2018). We find that nominal losses and down-payment constraints interact
with one another, in the sense that reference dependence and loss aversion are less evident
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when households face more severe constraints, but quite pronounced when households are
relatively unconstrained. In micro terms, this interaction between reference dependence
and constraints could have implications for the way we model behavior. We tend to assume
that agents optimize their (potentially behavioral) preferences subject to constraints, and
in numerous models, agents may also wish to impose constraints on themselves to “meta-
optimize” (Gul and Pesendorfer, 2001, 2004; Fudenberg and Levine, 2006; Ashraf, Karlan
and Yin, 2006; DellaVigna and Malmendier, 2006). However, if constraints affect the
incidence of behavioral biases, or if being in a zone that is more prone to bias affects the
response to constraints, our models may need to become richer to predict such behavior.

References
Allen, Eric J, Patricia M Dechow, Devin G Pope, and George Wu. 2017.

“Reference-dependent preferences: Evidence from marathon runners.” Management Sci-
ence, 63(6): 1657–1672.

Anagol, Santosh, Allan Davids, Benjamin B. Lockwood, and Tarun Ramado-
rai. 2022. “Diffuse Bunching with Optimisation Frictions.”

Anagol, Santosh, Vimal Balasubramaniam, and Tarun Ramadorai. 2018. “En-
dowment effects in the field: Evidence from India’s IPO lotteries.” Review of Economic
Studies, 85(4): 1971–2004.

Andersen, Steffen, John Y Campbell, Kasper Meisner Nielsen, and Tarun
Ramadorai. 2020. “Sources of Inaction in Household Finance: Evidence from the
Danish Mortgage Market.” American Economic Review, 110(10).

Anenberg, Elliot. 2011. “Loss aversion, equity constraints and seller behavior in the
real estate market.” Regional Science and Urban Economics, 41(1): 67–76.

Ashraf, Nava, Dean Karlan, and Wesley Yin. 2006. “Tying Odysseus to the mast:
Evidence from a commitment savings product in the Philippines.” Quarterly Journal of
Economics, 121(2): 635–672.

Backus, Matthew, Thomas Blake, Brad Larsen, and Steven Tadelis. 2020. “Se-
quential bargaining in the field: Evidence from millions of online bargaining interac-
tions.” Quarterly Journal of Economics, 135(3): 1319–1361.

Badarinza, Cristian, John Y Campbell, and Tarun Ramadorai. 2016. “Interna-
tional Comparative Household Finance.” Annual Review of Economics, 8(1).

Barberis, Nicholas, and Wei Xiong. 2012. “Realization utility.” Journal of Financial
Economics, 104(2): 251–271.

Bokhari, Sheharyar, and David Geltner. 2011. “Loss aversion and anchoring in
commercial real estate pricing: Empirical evidence and price index implications.” Real
Estate Economics, 39(4): 635–670.

Bracke, Philippe, and Silvana Tenreyro. 2020. “History dependence in the housing
market.” Bank of England Working Paper.

38

Electronic copy available at: https://ssrn.com/abstract=3396506



Camerer, Colin, Linda Babcock, George Loewenstein, and Richard Thaler.
1997. “Labor supply of New York City cabdrivers: One day at a time.” Quarterly
Journal of Economics, 112(2): 407–441.

Campbell, John Y. 2006. “Household finance.” Journal of Finance, 61(4): 1553–1604.
Campbell, John Y. 2012. “Mortgage market design.” Review of Finance, 17(1): 1–33.
Card, David, Andrew Johnston, Pauline Leung, Alexandre Mas, and Zhuan

Pei. 2015a. “The effect of unemployment benefits on the duration of unemployment
insurance receipt: New evidence from a regression kink design in Missouri, 2003-2013.”
American Economic Review, 105(5): 126–30.

Card, David, David S Lee, Zhuan Pei, and Andrea Weber. 2015b. “Inference on
causal effects in a generalized regression kink design.” Econometrica, 83(6): 2453–2483.

Chetty, Raj. 2009. “Sufficient statistics for welfare analysis: A bridge between structural
and reduced-form methods.” Annual Review of Economics, 1(1): 451–488.

Chetty, Raj, John N Friedman, Tore Olsen, and Luigi Pistaferri. 2011. “Ad-
justment costs, firm responses, and micro vs. macro labor supply elasticities: Evidence
from Danish tax records.” Quarterly Journal of Economics, 126(2): 749–804.

Clapp, John M, Ran Lu-Andrews, and Tingyu Zhou. 2018. “Controlling Unob-
served Heterogeneity in Repeat Sales Models: Application to the Disposition Effect in
Housing.” University of Connecticut School of Business Research Paper, , (18-16).

Crawford, Vincent P, and Juanjuan Meng. 2011. “New York City cab drivers’ labor
supply revisited: Reference-dependent preferences with rational-expectations targets
for hours and income.” American Economic Review, 101(5): 1912–32.

DellaVigna, Stefano. 2018. “Structural behavioral economics.” National Bureau of Eco-
nomic Research Working Paper.

DellaVigna, Stefano, and Ulrike Malmendier. 2006. “Paying not to go to the gym.”
American Economic Review, 96(3): 694–719.

DellaVigna, Stefano, Attila Lindner, Balázs Reizer, and Johannes F
Schmieder. 2017. “Reference-dependent job search: Evidence from Hungary.” Quar-
terly Journal of Economics, 132(4): 1969–2018.

Einiö, Mikko, Markku Kaustia, and Vesa Puttonen. 2008. “Price setting and the
reluctance to realize losses in apartment markets.” Journal of Economic Psychology,
29(1): 19–34.

El-Gamal, Mahmoud A, and David M Grether. 1995. “Are people Bayesian?
Uncovering behavioral strategies.” Journal of the American statistical Association,
90(432): 1137–1145.

Engelhardt, Gary V. 2003. “Nominal loss aversion, housing equity constraints, and
household mobility: evidence from the United States.” Journal of Urban Economics,
53(1): 171–195.

Ericson, Keith M, and Andreas Fuster. 2011. “Expectations as endowments: Ev-
idence on reference-dependent preferences from exchange and valuation experiments.”
Quarterly Journal of Economics, 126(4): 1879–1907.

39

Electronic copy available at: https://ssrn.com/abstract=3396506



Farber, Henry S. 2008. “Reference-dependent preferences and labor supply: The case
of New York City taxi drivers.” American Economic Review, 98(3): 1069–82.

Fehr, Ernst, and Lorenz Goette. 2007. “Do workers work more if wages are high?
Evidence from a randomized field experiment.” American Economic Review, 97(1): 298–
317.

Ferreira, Fernando, Joseph Gyourko, Joseph Tracy, et al. 2012. “Housing busts
and household mobility: an update.” Economic Policy Review, , (Nov): 1–15.

Fudenberg, Drew, and David K Levine. 2006. “A dual-self model of impulse control.”
American Economic Review, 96(5): 1449–1476.

Genesove, David, and Christopher J Mayer. 1997. “Equity and time to sale in the
real estate market.” American Economic Review, 87(3): 255.

Genesove, David, and Christopher Mayer. 2001. “Loss aversion and seller behavior:
Evidence from the housing market.” Quarterly Journal of Economics, 116(4): 1233–
1260.

Gomes, Francisco, Michael Haliassos, and Tarun Ramadorai. 2021. “Household
finance.” Journal of Economic Literature, 59(3): 919–1000.

Gul, Faruk, and Wolfgang Pesendorfer. 2001. “Temptation and self-control.” Econo-
metrica, 69(6): 1403–1435.

Gul, Faruk, and Wolfgang Pesendorfer. 2004. “Self-control and the theory of con-
sumption.” Econometrica, 72(1): 119–158.

Guren, Adam M. 2018. “House price momentum and strategic complementarity.” Jour-
nal of Political Economy, 126(3): 1172–1218.

Han, Lu, and William C Strange. 2014. “Bidding wars for houses.” Real Estate
Economics, 42(1): 1–32.

Han, Lu, and William C Strange. 2016. “What is the role of the asking price for a
house?” Journal of Urban Economics, 93: 115–130.

Harrison, Glenn W, and E Elisabet Rutström. 2009. “Expected utility theory
and prospect theory: One wedding and a decent funeral.” Experimental economics,
12(2): 133–158.

Imas, Alex, Sally Sadoff, and Anya Samek. 2017. “Do people anticipate loss aver-
sion?” Management Science, 63(5): 1271–1284.

Kahneman, Daniel, and Amos Tversky. 1979. “Prospect theory: An analysis of
decision under risk.” Econometrica, 263–291.

Kahneman, Daniel, Jack L Knetsch, and Richard H Thaler. 1990. “Experimental
tests of the endowment effect and the Coase theorem.” Journal of Political Economy,
98(6): 1325–1348.

Kleven, Henrik Jacobsen. 2016. “Bunching.” Annual Review of Economics, 8: 435–464.
Kleven, Henrik J, and Mazhar Waseem. 2013. “Using notches to uncover optimiza-

tion frictions and structural elasticities: Theory and evidence from Pakistan.” Quarterly
Journal of Economics, 128(2): 669–723.

Kőszegi, Botond, and Matthew Rabin. 2006. “A model of reference-dependent pref-
erences.” Quarterly Journal of Economics, 121(4): 1133–1165.

40

Electronic copy available at: https://ssrn.com/abstract=3396506



Kőszegi, Botond, and Matthew Rabin. 2007. “Reference-dependent risk attitudes.”
American Economic Review, 97(4): 1047–1073.

Landais, Camille. 2015. “Assessing the welfare effects of unemployment benefits using
the regression kink design.” American Economic Journal: Economic Policy, 7(4): 243–
78.

Levitt, Steven D, and John A List. 2009. “Field experiments in economics: The past,
the present, and the future.” European Economic Review, 53(1): 1–18.

Mead, Roger. 2017. Statistical methods in agriculture and experimental biology. Chap-
man and Hall.

Nielsen, Helena Skyt, Torben Sørensen, and Christopher Taber. 2010. “Esti-
mating the effect of student aid on college enrollment: Evidence from a government
grant policy reform.” American Economic Journal: Economic Policy, 2(2): 185–215.

Pearson, Karl. 1894. “Contributions to the mathematical theory of evolution.” Philo-
sophical Transactions of the Royal Society of London. A, 185: 71–110.

Peel, David, and Geoffrey J McLachlan. 2000. “Robust mixture modelling using the
t distribution.” Statistics and computing, 10(4): 339–348.

Piskorski, Tomasz, and Amit Seru. 2018. “Mortgage market design: Lessons from
the Great Recession.” Brookings Papers on Economic Activity, 2018(1): 429–513.

Rees-Jones, Alex. 2018. “Quantifying loss-averse tax manipulation.” Review of Eco-
nomic Studies, 85(2): 1251–1278.

Richards, FJ. 1959. “A flexible growth function for empirical use.” Journal of Experi-
mental Botany, 10(2): 290–301.

Schulhofer-Wohl, Sam. 2012. “Negative equity does not reduce homeowners’ mobility.”
Federal Reserve Bank of Minneapolis Quarterly Review, 35(1): 2–15.

Stein, Jeremy C. 1995. “Prices and trading volume in the housing market: A model
with down-payment effects.” The Quarterly Journal of Economics, 110(2): 379–406.

Tversky, Amos, and Daniel Kahneman. 1992. “Advances in prospect theory: Cumu-
lative representation of uncertainty.” Journal of Risk and Uncertainty, 5(4): 297–323.

Zwietering, MH, Il Jongenburger, FM Rombouts, and K Van’t Riet. 1990.
“Modeling of the bacterial growth curve.” Appl. Environ. Microbiol., 56(6): 1875–1881.

41

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure 1
Reference Dependence and Loss Aversion

The figure illustrates how each specification of the utility function is reflected in the seller’s optimal choice
of listing premia (left-hand side panel) and distribution of realized gains (right-hand side panel). The
interval delimited by Ĝ0 and Ĝ1 illustrates the incentive of loss averse sellers to bunch at realized gains
of exactly zero. Sellers with potential gains Ĝ ∈ [Ĝ1, Ĝ0] choose listing premia " such that β(") = −Ĝ

and thus, conditional on a sale, their realized gain is equal to G = 0. We plot a stylized version of listing
premium profiles, for the case in which demand functions α(") and β(") are linear, the household is not
facing financing constraints, and property prices are increasing on average. This generates greater mass
in the nominal gain relative to the nominal loss domain, even in the case with no reference dependence
(η = 0). In the online appendix, we describe and solve an analytical version of this model.
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Figure 2
Listing Premia and Potential Gains

Panel A reports binned average values (in 1 percentage point steps) for the listing premium (") for different
levels of potential gains (Ĝ). The solid line corresponds to a polynomial fit of order three. Panel B shows
demand concavity (left-hand side panel), i.e. the probability of sale within six months with respect to the
listing premium, and the listing premium over gains (right-hand side panel), when sorting municipalities
by the degree of demand concavity, using municipalities in the top, middle range, and bottom 5% of
observations. The degree of demand concavity is estimated as the slope coefficient of the effect of the
listing premium on the probability of sale within six months, for positive listing premia (" ∈ [0, 40]).

Panel A

Panel B
Cross-Sectional Variation
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Figure 3
Listing Premia Across Gains and Home Equity

The figure reports binned average values (in steps of 3 percentage points) for the listing premium (")
along both levels of potential gains and home equity.

Figure 4
Optimization Frictions in the Data

The left-hand side figure reports the average probability of sale within six months α(") across 1 percentage
point bins of the listing premium in the sample. The right-hand side of the figure shows the average
realized premium β(") across 1 percentage point bins of the listing premium.
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Figure 5
Geographic Variation in Concave Demand and Housing Stock Homogeneity

The figure plots the estimated degree of demand concavity, measured as the slope coefficient of the effect
of an increase in the listing premium on the probability of sale within six months, for positive listing
premia (" ∈ [0, 40]) on the y-axis, against the degree of homogeneity of the housing stock, measured as
the share of apartments and row houses, across municipalities in Denmark.

Figure 6
Bunching Around Realized Gains of Zero

The left-hand panel reports binned frequencies of observations (in 1 percentage point steps) for different
levels of realized gains (G). The dotted line shows the counterfactual corresponding to the distribution
of potential gains (Ĝ) in the sample of realized sales. The right-hand panel reports frequencies of obser-
vations of realized gains relative to the level of the counterfactual. Dotted lines indicate 95% confidence
intervals based on bootstrap standard errors.
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Figure 7
Extensive Margin

The figure reports the average annual probability of listing a property for sale. We first calculate the
potential gain level for each unit in the stock of properties in Denmark, for each year covered by our
sample of listings, using the same hedonic model used to calculate potential gains in the sample of listings.
We then divide the number of properties which have been listed for sale by the number of total property
× year observations in the stock of properties, for each 1 percentage point bin of potential gains. Dotted
lines indicate 95% confidence intervals based on bootstrap standard errors.
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Figure 8
Overview of Model Fit

The figure reports our set of moments in the data and in the model, evaluated at the set of parameters
which correspond to the complete version of the model and the complete set of empirical moments, as
indicated in line 7 of Table 2. Dotted lines show 95% confidence intervals based on bootstrap standard
errors.

“Hockey stick” Home equity

Bunching Extensive margin
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Figure 9
“Hockey Stick” across Municipalities

The figure reports binned average listing premia by potential gains, distinguishing between three different
municipality groups, according to their concavity of demand: bottom 5%, middle 90%, top 5%. The
degree of demand concavity is measured as the slope coefficient of the effect of an increase in the listing
premium on the probability of sale within six months, for positive listing premia (" ∈ [0, 40]), for each
municipality. Dotted lines indicate average listing premium levels in the data, calculated for 1-percentage
point bins, and the solid line their counterparts implied by the model. We adjust the average level of
the model prediction to correspond to the data, since the level of the listing premium depends on other
parameters, most notably the average size θm of the moving shock, which may be heterogeneous across
locations. We evaluate the model fit at the set of parameters which correspond to the complete version
of the model, and the set of empirical moments indicated in the bottom row of Table 3.
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Figure 10
Out-of-Sample Fit: Independent and Interactive Variation

The figure reports the model fit for conditional listing premia profiles, conditioning on different levels
of home equity and potential gains. The model is evaluated at the set of parameters estimated for the
complete set of empirical moments, as indicated in row 8 of Table 2. In Panel A, individual dots indicate
average levels of listing premia in the data, and solid lines with corresponding markers are their model-
implied counterparts. Interactive effects between home equity and the degree of reference dependence
are visible in the left-hand plot, where we observe that, in the data, the slope of the listing premium
along the potential gains dimension varies greatly with the level of home equity. This is a feature that
is not matched by the corresponding model-implied moments. In Panel B, we report the estimated slope
of the listing premium along the potential gains and home equity dimension, respectively, measured in
sub-samples that correspond to the interval of the conditioning variable shown on the horizontal axis.
Error bars indicate 99% confidence intervals for each point estimate.

Panel A
Listing premia by potential gains and home equity

Panel B
Conditioning on home equity and potential gains
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Table 1
Variables and parameters in the model

State variables: R Nominal reference price (observed)
M Outstanding value of the mortgage (observed)
P̂ Property value (estimated)
Ĝ Potential gain (estimated, P̂ −R)
Ĥ Potential home equity (estimated, P̂ −M)
θ Magnitude of the moving shock (unobserved)

Exogenous market conditions: α(#) Concave demand (estimated)
β(#) Realized premium (estimated)

Endogenous model variables: # Listing premium
s Listing decision (extensive margin)
P Realized price (observed)
G Realized gain (observed, P −R)
H Realized home equity (observed, P −M)

Calibrated model parameters: γ Down-payment constraint (set at 20%)
Structural model parameters: η Reference dependence

λ Loss aversion
π Fraction of precise targeters
µ Financial constraint
θm Average value of the moving shock
θσ Standard deviation of the moving shock
φ Magnitude of the search and listing cost
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Table 2
Estimated Parameters

The table reports structural parameter estimates obtained through classical minimum distance estimation. We recover concave demand α(") and β(")

from the data and set the down-payment constraint γ = 20%. Each row corresponds to a different model variant (1-8). We report the parameters
estimated, for different model structures and moments used in the estimation. The “hockey stick” and “home equity” moments refer to the pattern
of listing premia by potential gains and potential home equity, respectively. “Bunching” refers to the distribution of realized gains. The “extensive
margin” refers to the variation of the probability of listing in the housing stock by potential gains. In the specifications in which we seek to exploit
cross-municipality variation, we distinguish between three different municipality groups, according to their concavity of demand: bottom 5%, middle
90%, top 5%. In parentheses, we report standard errors based on re-estimating the model across bootstrap draws, clustered at the shire level.

Parameters Demand Moments used in estimation

Model Reference Loss Average Fraction of Financial S.d. of Search Preference Concave Imprecise Hockey Bunching Home Extensive Cross-sect.
variant dependence aversion moving shock targeters constraints moving shock cost notch demand targeting stick equity margin variation

η λ θm π µ θσ φ ζ

1 0.340 2.256 0.525 × × " × × × ×
(0.027) (0.066) (0.025)

2 0.848 1.468 0.774 " × " × × × ×
(0.061) (0.125) (0.035)

3 0.998 1.142 0.760 " × " " × × ×
(0.149) (0.049) (0.074)

4 0.512 2.169 0.698 0.106 " " " " × × ×
(0.073) (0.133) (0.053) (0.033)

5 0.403 2.596 0.816 0.127 2.764 " " " " " × ×
(0.044) (0.173) (0.040) (0.028) (0.111)

6 0.668 2.319 1.345 0.159 4.925 0.711 0.050 " " " " " " ×
(0.032) (0.056) (0.096) (0.030) (0.106) (0.079) (0.014)

7 0.640 2.317 1.353 0.154 4.938 0.730 0.042 -0.005 " " " " " " ×
(0.028) (0.049) (0.093) (0.022) (0.078) (0.080) (0.013) (0.007)

8 0.629 2.473 1.335 0.138 4.972 0.672 0.064 -0.006 " " " " " " "
(0.028) (0.080) (0.109) (0.019) (0.108) (0.097) (0.015) (0.005)
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Table 3
Alternative Model Specifications

The table reports structural parameter estimates obtained through classical minimum distance estimation. We recover concave demand α(") and
β(") from the data and set the down-payment constraint γ = 20%. In parentheses, we report standard errors based on re-estimating the model
across bootstrap draws, clustered at the shire level. We re-estimate the model version in row 8 of Table 2, using alternative ways to recover empirical
moments, or to weight them in estimation. We consider three alternative specifications for the hedonic model of P̂ . First, we include information
on renovation expenses to proxy for potentially time-varying unobserved heterogeneity. Second, we estimate a pairwise repeat sales model with
time-varying hedonic characteristics and lagged renovation expenses, by including the lagged past pricing residual, similar to Genesove and Mayer
(2001). Third, we generalize the repeat sales approach and include the average of all past pricing residuals to use information from all past repeat
sales observed, plus lagged renovation expenses.

Parameters

Model Reference Loss Average Fraction of Financial S.d. of Search Preference
variant dependence aversion moving shock targeters constraints moving shock cost notch

η λ θm π µ θσ φ ζ

Alternative valuation models
Renovations 0.622 2.316 1.318 0.154 4.979 0.707 0.054 -0.006

(0.024) (0.085) (0.075) (0.015) (0.156) (0.065) (0.011) (0.002)
Repeat sales I 0.676 2.331 1.423 0.138 4.150 0.655 0.053 -0.006

(0.033) (0.074) (0.092) (0.016) (0.165) (0.071) (0.013) (0.004)
Repeat sales II 0.659 2.348 1.332 0.138 4.075 0.663 0.055 -0.006

(0.034) (0.080) (0.107) (0.019) (0.203) (0.089) (0.106) (0.004)

Controlling for unobserved quality
Conservative 0.633 2.362 1.344 0.134 4.785 0.682 0.066 -0.006

(0.033) (0.079) (0.101) (0.017) (0.182) (0.096) (0.012) (0.003)
Moderate 0.646 2.360 1.552 0.138 4.289 0.799 0.078 -0.005

(0.037) (0.094) (0.182) (0.022) (0.314) (0.122) (0.014) (0.005)
Aggressive 0.672 2.346 1.809 0.141 4.268 0.865 0.085 0.001

(0.067) (0.095) (0.421) (0.021) (0.306) (0.182) (0.023) (0.010)

Inverse-variance 0.640 2.285 1.332 0.145 5.256 0.807 0.054 -0.007
weighting (0.031) (0.053) (0.067) (0.035) (0.205) (0.045) (0.012) (0.004)
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Table 4
Price-Volume Correlation in the Data and the Model

The table reports the estimated coefficient ρ from the following regression specification:

∆ lnNm,t = µ+ ρ∆ ln P̂m,t + εm,t,

where Nm,t are transaction volumes and P̂m,t is the average hedonic price level in municipality m in
year t. *, **, *** indicate statistical significance at the 10%, 5% and 1% confidence levels, respectively.
We repeat the calculation of the model-implied value of ρ, starting with a frictionless version of the
model (η = µ = 0 and λ = 1), and sequentially adding structural ingredients. The column labeled
“Cumulative” reports the magnitude of the price-volume correlation for the respective model version. In
the column labeled “Marginal”, we report the share of the model-implied price-volume correlation that
can be attributed to the respective structural ingredient.

Data Model

Price-volume correlation (ρ) 0.515∗∗∗ 0.465
(0.183)

Decomposition of effect in the model Cumulative Marginal (%)
Frictionless version 0.000 −
+ Reference dependence (η > 0) 0.096 20.5%
+ Loss aversion (λ > 1) 0.198 22.1%
+ Financial constraints (µ > 0) 0.465 57.3%
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A Additional Tables and Figures for the Paper

Figure A.1
Reference Dependence and Loss Aversion

The top plot illustrates the seller’s utility function for three cases. The first (η = 0)
corresponds to the utility from terminal value of wealth. The second (η > 0, λ = 1)
captures linear reference dependence and the third (η > 0 and λ > 1) reference-
dependent loss aversion. The bottom plot illustrates the mapping between potential
gains on the horizontal axis, and realized gains on the vertical axis that result from
the optimal choice of listing premia.
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Figure A.2
Graphical Summary Statistics:

Potential Gains, Potential Home Equity, Listing Premium and Time-on-the-Market

This figure shows four histograms of main variables of interest. The potential gain (Ĝ) is computed
as the log difference between the estimated hedonic price (P̂ ) and the previous purchase price (R),
i.e. Ĝ = ln P̂ − ln R, in percent. Potential home equity (Ĥ) is computed as the log difference
between the estimated hedonic price and the current mortgage value (M), i.e. Ĥ = ln P̂ − ln M ,
in percent. Ĥ is winsorized at 100 in order to avoid small mortgage balances leading to log
differences greater than 100. The listing premium (#) measures the log difference between the ask
price and estimated hedonic price, in percent. Time on the market (TOM) measures the time in
weeks between when a house is listed and recorded as sold. Each listing spell is winsorized at 200 weeks.

Panel A

�
��
�

��
�

��
�

��
�

��
�

'
HQ
VLW
\

���� ��� � �� ��� ��� ��� ���
*DLQ����

�
��
�

��
��
�

��
��
�

'
H
Q
V
LW
\

���� ��� � �� ���

+RPH�(TXLW\����

Panel B

�
��
�

��
��
�

��
'
HQ
VLW
\

� �� ��� ��� ���
7LPH�RQ�WKH�PDUNHW��ZHHNV�

�
��
�

��
��
�

'
HQ
VLW
\

���� ��� � �� ���
/LVWLQJ�3UHPLXP����

5

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure A.3
Bunching of Listing Prices around Reference Point

This figure reports the distribution of listing prices relative to the reference point (Glist =
L−R) in bins of 1 percentage points. The dotted line shows the counterfactual corresponding
to the distribution of potential gains (Ĝ) across listings.
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Figure A.4
Joint Distribution of Gains and Home Equity and Regions with Ĝ ≶ 0 and Ĥ ≶ 20

This figure plots the joint distribution of the potential gain and home equity position of households,
at the time of listing. The color scheme refers to the relative frequency of observations in gain
and home equity bins of 10 percentage points, where each color corresponds to a decile in the joint
frequency distribution. The darker shading indicates a higher density of observations. Gain-home
equity bins that did not have sufficient observations are shaded in white. The dotted blue lines sep-
arate the joint distribution in four groups: (1) unconstrained winners (Ĥ ≥20% and Ĝ ≥0) covering
55.7% of the sample, (2) constrained winners (Ĥ <20% and Ĝ ≥0) with 21.4%, (3) unconstrained
losers (Ĥ ≥20% and Ĝ <0) with 9.0%, and (4) constrained losers (Ĥ <20% and Ĝ <0) accounting
for 13.9% of the sample.
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Figure A.5
Seller Groups - Listed (Relative Shares)

This figure shows the relative share of each seller group over time. The four groups are defined as follows: (1)
unconstrained winners (Ĥ ≥20% and Ĝ ≥0), (2) constrained winners (Ĥ <20% and Ĝ ≥0), (3) unconstrained
losers (Ĥ ≥20% and Ĝ <0), (4) constrained losers (Ĥ <20% and Ĝ <0).
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Figure A.6
Realized Gains vs. Realized Home Equity:

Bunching

The figure reports binned average values (in 3% steps) for the observed excess
bunching of sales along levels of realized gains and home equity. We calculate the
measure of excess bunching as the difference between the frequency of sales in a
given bin of realized gains and home equity, and the frequency of sales in the same
bin of potential gains and home equity. The dotted lines show the binned values for
two cross-sections, where we condition on a home equity level of 20%, and a level
of gains of 0%, respectively.
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Figure A.7
Bunching around Realized Gains of Zero:

Polynomial Counterfactual

The figure reports binned frequencies of observations (in 1 percentage point steps)
for different levels of realized gains (G). The dotted line shows the counterfac-
tual distribution using a 7th-order polynomial fit, with the excluded range of [-1%,1%].
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Figure A.8
Price-Volume Correlation

This figure shows quarterly average realized house sales prices (in DKK per square meter)
on the right-hand axis, and the number of houses sold in Denmark on the left-hand axis,
between 2004Q1 and 2018Q2. The sample period for our analysis covers the years 2009 to
2016. Aggregate housing market statistics are provided by Finans Danmark, the private
association of banks and mortgage lenders in Denmark.
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Figure A.9
Extensive Margin - Residualized

This figure reports the average annual probability of listing a property for sale across bins of potential gains,
partialling out the effect of home equity. We calculate the potential gain and home equity level for each unit
in the stock of properties in Denmark, for each year covered by our sample of listings, using the same hedonic
model used to calculate potential gains in the sample of listings. We then divide the number of properties which
have been listed for sale by the number of total property year observations in the stock of properties, for each 1
percentage point bin of potential gains and home equity, yielding the probability of listing across bins, and run a
regression of the probability of listing on each bin of potential gains and home equity. The dots shown reflect the
bin fixed effect for each gain bin, while controlling for home equity bin fixed effects.
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Table A.1
Literature Overview

Paper Summary Data Model with ref. dependence Bunching evidence Estimate of λ

Genesove and Mayer (2001) Sellers facing nominal losses set higher listing
prices, attain higher realized sales prices and
exhibit a lower sell hazard.

Boston condominium market (1990-
1997), N=5,785

× × ×

Engelhardt (2003) Nominal loss aversion, rather than down-
payment constraints, decreases household mo-
bility.

National Longitudinal Survey of Youth
and matched metro-level house price
data (1985-1996), N=6,461

× × ×

Einiö et al (2008) Find evidence for aversion to realize losses in
real estate transactions.

Helsinki (1987-2003), N=79,483 × "** ×

Anenberg (2011) Both down-payment constraints and loss aver-
sion affect final sales prices, using a repeat-
sales estimator for prices.

San Francisco Bay Area (1988-2005),
N=27,467

× × ×

Bokhari and Geltner (2011) Study the role of loss aversion, anchoring, and
seller experience in the commercial real estate
market.

RCA data on large US commercial
property sales in the US (2001-2009),
N=6,767

" × ×

Bucchianeri and Minson (2013) Find evidence for anchoring effects in residen-
tial home sales, and that higher listing prices
lead to higher realized sales prices.

DE, NJ and PA (2005-2009), N=14,616 × × ×

Hayunga and Pace (2017) Study the determinants of listing price and the
trade-off with time on the market, and find
that expected losses matter.

NAR Survey (2010-2012), N=3,302 ×* × ×

Liu and van der Vlist (2019) Sellers set higher initial list prices and revise
their list price downward when facing an ex-
pected loss.

MLS data, Randstad area of the
Netherlands (2008-2013), N=319,609

× × ×

Hong et al. (2019) Properties with a capital gain have higher sell-
ing propensities and lower final sales prices.

Singaporean condominium market
(1998-2012), N=1,964,907

× × ×

Bracke and Tenreyro (2020) Sales prices and selling propensities are af-
fected by past house prices, in line with loss
aversion and home equity constraints.

UK price (1995-2014) and listing
data (2008-2014), matched dataset
N=2,610,073

× × ×

*Model to set optimal list price, but no reference dependence
**Show frequency distribution of realized gains

13

E
lectronic copy available at: https://ssrn.com

/abstract=
3396506



Table A.2
Genesove and Mayer (2001) Replication

This table replicates Table 2 from Genesove and Mayer (2001) using our main dataset (with a small
reduction in the total number of observations because we cannot measure the pricing residual from
the last sales price for all observations). The dependent variable is the log ask price. LOSS is the
previous log selling price less the expected log selling price, truncated from below at 0, and LOSS
(squared) is the term squared. LTV if ≥ 80 is the current LTV of the property if the LTV is greater
equal to 80 and 0 otherwise. Estimated value is the value of the property implied by the hedonic
model, and estimated market index captures time-series variation in aggregate house prices. Residual
from last sales price is the pricing error from the previous sale and months since last sale counts the
number of months between the previous and current sale.

(1) (2) (3) (4) (5) (6)
Ask (log) Ask (log) Ask (log) Ask (log) Ask (log) Ask (log)

LOSS 0.565∗∗∗ 0.471∗∗∗ 0.519∗∗∗ 0.350∗∗∗ 0.587∗∗∗ 0.494∗∗∗

(0.016) (0.015) (0.026) (0.024) (0.016) (0.015)
LOSS (squared) 0.001∗∗ 0.003∗∗∗

(0.001) (0.000)
LTV if ≥ 80 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Estimated value 0.994∗∗∗ 0.991∗∗∗ 0.994∗∗∗ 0.990∗∗∗ 0.995∗∗∗ 0.991∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Estimated price index 0.991∗∗∗ 0.988∗∗∗ 0.991∗∗∗ 0.987∗∗∗

(0.003) (0.003) (0.003) (0.003)
Residual from last sales price -0.096∗∗∗ -0.098∗∗∗ -0.093∗∗∗

(0.003) (0.003) (0.003)
Months since last sale -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.410∗∗∗ 0.444∗∗∗ 0.411∗∗∗ 0.448∗∗∗ 76.406∗∗∗ 76.169∗∗∗

(0.021) (0.021) (0.021) (0.021) (0.179) (0.180)
Year-Quarter FE " "
Observations 192665 192665 192665 192665 192665 192665
R2 0.888 0.889 0.888 0.889 0.891 0.892
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Table A.3
Amendments to the Danish Mortgage-Credit Loans and Mortgage-Credit Bonds Act Between

2009 and 2016

May 2009 Allows a bankruptcy estate to make changes to fees in special circumstances.
A bankrupt mortgage-credit institution can now adjust administration fees
(bidragssats) paid by borrowers, but only if justified by market terms and
if at the same time further resources for administration of the bankrupcy
estate is required. Changes must be announced in writing at least three
month in advance of implementation.

June 2010 Amends how a mortgage-credit institution that has filed for bankruptcy (or
is under suspension of payments) can fund payments to mortgage bond own-
ers. Allows a mortgage-credit institution that has filed for bankruptcy (or
is under suspension of payments) to, under specific circumstances, transfer
series of bonds to other financial institutions. Introduces the option for the
FSA to provide dispensation from certain requirements when a bankruptcy
estate is converting covered mortgage bonds into uncovered.

June 2010 Change of wording
December 2010 Change of wording
February 2012 Maximum maturity for loans to public housing, youth housing, and private

housing cooperatives is extended from 35 to 40 years
December 2012 Elaboration of the rules on digital communication with the FSA
December 2012 Elaboration on the opportunity for mortgage credit institutions to take up

loans to meet their obligation to provide supplementary collateral.
March 2014 Establish the terms under which the mortgage-credit institution can initiate

sale of bonds if the term to maturity on a mortgage-credit loan is longer
than the term to maturity on the underlying mortgage-credit bonds.

March 2014 Implements EU regulation. Change of wording on the definition of market
value.

December 2014 Small additions to the terms under which the mortgage-credit institution
can initiate sale of bonds if the term to maturity on a mortgage-credit loan is
longer than the term to maturity on the underlying mortgage-credit bonds.

April 2015 Changes to the terms under which the mortgage-credit institution can initi-
ate sale of bonds if the term to maturity on a mortgage-credit loan is longer
than the term to maturity on the underlying mortgage-credit bonds.
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Table A.4
Goodness of fit

The table reports root mean squared differences between the level of each moment in the model and the data,
relative to the level in the data. This prediction error is interpretable in percent terms, as reported below for each
moment separately, as well as jointly for the full set of moments.

Hockey stick Bunching Home equity Extensive margin Full model

4.29% 7.74% 13.06% 2.73% 6.95%

B Details on Model Framework
B.1 Derivation of Ĝ0 and Ĝ1

We now derive the potential gain levels Ĝ0 and Ĝ1 discussed in Figure 1 in the paper, for a
simple case where utility is assumed to feature reference dependence and no loss aversion, and
the demand functions are assumed to be linear: α(") = α0 − α1" and β(") = β0 + β1".

In this case, the maximization problem is given by:

U∗(Ĝ) = max
!

(α0 − α1")



P̂ + β0 + β1"︸ ︷︷ ︸
P (!)

+η (Ĝ + β0 + β1")
︸ ︷︷ ︸

G(!)

+θ



+ (1 − α0 + α1")P̂ . (1)

The first-order condition for the choice of "∗ is then:

α0(1 + η)β1 − α1
[
P̂ + (1 + η)β0 + ηĜ + θ − P̂

]
− 2(1 + η)α1β1"∗ = 0, (2)

which implies the optimal solution:

"∗(Ĝ) =
α0(1 + η)β1 − α1

[
(1 + η)β0 + ηĜ + θ

]

2(1 + η)α1β1

= 1
2

(
α0
α1

− β0
β1

− 1
β1

θ

1 + η
− 1

β1

η

1 + η
Ĝ
)

. (3)

For a model with loss aversion and reference dependence, the maximization problem is given by:

U∗(Ĝ) = max
!

(α0 − α1")



P (") + η (Ĝ + β0 + β1")
︸ ︷︷ ︸

G(!)

(
λ1

Ĝ+β0+β1!<0 + 1
Ĝ+β0+β1!≥0

)
+ θ





+ (1 − α0 + α1")P̂ . (4)

To understand the solution to this optimization problem, we distinguish between three types of
sellers: “Winners” (G("∗(Ĝ)) > 0) choose an optimal listing premium equal to the one given in
equation (3), “Bunchers” (G("∗(Ĝ)) = 0) choose a listing premium exactly as large as necessary
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to realize a gain of zero:
"∗

B(Ĝ) = −β0
β1

− 1
β1

Ĝ,

and “Losers” choose a listing premium corresponding to equation (3), but with a higher degree
of overall reference dependence (λη):

"∗
λ(Ĝ) = 1

2

(
α0
α1

− β0
β1

− 1
β1

θ

1 + λη
− 1

β1

λη

1 + λη
Ĝ
)

. (5)

The expression of the optimal listing premium, which is piecewise linear, is then given by:

"∗(Ĝ) =






1
2

(
α0
α1

− β0
β1

− 1
β1

θ
1+η

)
− 1

2β1
η

1+η Ĝ, if Ĝ ≥ Ĝ0

−β0
β1

− 1
β1

Ĝ, if Ĝ ∈ (Ĝ1, Ĝ0)
1
2

(
α0
α1

− β0
β1

− 1
β1

θ
1+λη

)
− 1

2β1
λη

1+λη Ĝ, if Ĝ ≤ Ĝ1.

(6)

where Ĝ0 and Ĝ1 are the threshold levels of potential gains which determine the two limits of
the bunching interval, with Ĝ0 + β0 + β1"∗(Ĝ0) = 0 and Ĝ1 + β0 + β1"∗

λ(Ĝ1) = 0. Equation
(6) shows that if demand is linear, the solution to the seller’s optimal listing premium profile
is piecewise linear. If demand is concave, this will be reflected accordingly in the shape of
the listing premium. In addition, note that the magnitude of the moving shock θ implicitly
determines the values of Ĝ0 and Ĝ1, i.e., the location of the kink(s) in the listing premium along
the potential gains dimension. This implies that the characteristic smooth “hockey stick” shape
of the average listing premium profile can result from averaging the three-piece-linear form of
the listing premium profile across the distribution of θ.

B.2 Mapping Between Potential and Realized Gains
Realized gains result from a markup over potential gains, depending on the chosen optimal
listing premium:1

G(Ĝ) = Ĝ + β0 + β1"∗(Ĝ). (7)

Defining γ0 = β0 + β1
2

(
α0
α1

− β0
β1

− 1
β1

θ
1+η

)
and γ1 = 1− 1

2
η

1+η , we can simplify the expressions
for the relationship between realized gains and potential gains:

G(Ĝ) = γ0 + γ1Ĝ (8)

With loss aversion, realized gains are then given by a step function:

G(Ĝ) =






γ0 + γ1Ĝ if Ĝ > Ĝ0,
0 if Ĝ ∈ [Ĝ1, Ĝ0],

γλ,0 + γλ,1Ĝ if Ĝ < Ĝ1.

(9)

Here, we have:
Ĝ0 = −γ0

γ1
and Ĝ1 = −γλ,0

γλ,1
, (10)

1Note that G = Ĝ+β(#∗(Ĝ)) = β0+β1γ̃0+(1−β1γ̃1)Ĝ if we define #∗(Ĝ) = γ̃0−γ̃1Ĝ, and #∗
λ(Ĝ) = γ̃λ,0−γ̃λ,1Ĝ.
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with γλ,0 and γλ,1 defined analogously to γ0 and γ1. The plot below shows the realized gains
given the optimal choice of listing premia:
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B.3 Extensive Margin Decision
When evaluated at the optimal level of the listing premium "∗, expected utility is given by:

U∗(Ĝ) = P̂ +
[
α0 − α1"∗(Ĝ)

] [
ηĜ + (1 + η)

(
β0 + β1"∗(Ĝ)

)
+ θ

]
(11)

In the absence of search costs, a sufficient statistic to capture the extensive margin decision is a
cut-off level of the moving shock θ̃ for which:

U∗(Ĝ) = P̂︸︷︷︸
u

, i.e.:

θ̃(Ĝ) = −ηĜ − (1 + η)
(
β0 + β1"∗(Ĝ)

)
(12)

Assuming that the moving shock is normally distributed:

θ ∼ N(θm, θσ),

the listing probability s is given by:

s(Ĝ) = 1 − FN (θ̃(Ĝ)).

Substituting out equation (3), expressed in simplified form: "∗(Ĝ) = γ̃0 − γ̃1Ĝ, in equation (12),
we get:

θ̃(Ĝ) = −(η − (1 + η)β1γ̃1)Ĝ − (1 + η)(β0 + β1γ̃0)
= −η

2 Ĝ − (1 + η)(β0 + β1γ̃0)
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We then have:
ds(Ĝ)

dĜ
=

d
(
1 − FN (θ̃(Ĝ))

)

dĜ
> 0.

B.4 Realization Utility
We assume that households do not receive utility from simply living in a house that has appreci-
ated relative to their reference point R. They exhibit “realization utility”, i.e., they do not enjoy
utility from passive “paper” gains until they are realized. If this condition does not hold, the
model is degenerate in that R is irrelevant both for the choice of the listing premium (intensive
margin) and the decision to list (extensive margin). Consider the following utility function:

U =α(")



P (") + P (") − R
︸ ︷︷ ︸

G(!)



+ (1 − α("))



P̂ + P̂ − R︸ ︷︷ ︸
Ĝ





=2α(")P (") + 2(1 − α("))P̂ − R.

In this case, R is a simple scaling factor. It does not affect either marginal utility or marginal
cost.

B.5 The Role of Concave Demand
Figure L.1 graphically illustrates the role of concave demand, positing a concave shape for α(")
and considering the effect of varying α(") around " = 0, i.e., the point at which L = P̂ .

When Ĝ > 0, the seller’s incentive is to set "∗ low, since they are motivated to successfully
complete a sale and capture gains from trade θ. However, in the presence of concave demand (i.e.,
as illustrated in the right-hand plot, horizontal α(") when " < "; combined with P (") = β0+β1"),
lowering " below " does not boost the sale probability α("), but doing so does negatively impact
the realized sale price P ("). It is thus optimal for "∗ to “flatten out” at the level ".

The tradeoff faced by sellers facing losses Ĝ < 0 is different—raising "∗ helps to offset ex-
pected losses, but lowers the probability of a successful sale. When demand concavity increases,
i.e., α(") is more steeply negative, the probability of a successful sale falls at a faster rate with in-
creases in ". Figure L.1 illustrates this force—moving from the dashed α(") schedule to the solid
α(") schedule in the right-hand plot in turn leads to dampening of the slope of "∗ in the left-hand
plot. In the extreme case in which concave demand has an infinite slope around some level of
the listing premium, rational sellers’ "∗ collapses to a constant—which would be observationally
equivalent to the case in which sellers are not reference dependent at all (η = 0).

B.6 State Variables: Listing Premia and Potential Gains
In this section, we explain why the listing premium " and the potential gain Ĝ are sufficient to
characterize the control variable ln L and the state space spanned by the exogenous variables
ln P̂ and ln R. Consider first a simple version of the model in which the seller chooses the listing
price L directly, and there is no reference dependence (η = 0):

The optimization problem is:

max
L

α(L − P̂ )
(
P̂ + β(L − P̂ ) + θ

)
+
(
1 − α(L − P̂ )

)
P̂ , (13)
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where concave demand α(L − P̂ ) = α0 − α1(L − P̂ ) and β(L − P̂ ) = β0 + β1(L − P̂ ) and
P (L) = P̂ + β(L − P̂ ) are defined over the listing premium, as in Genesove and Mayer (2001)
and Guren (2018).2

The first-order condition is:

α0β1 − α1β0 + 2α1β1P̂ − α1θ = 2α1β1L∗, (14)

which implies that:

L∗ = P̂ + α0β1 − α1β0
2α1β1

− θ

2β1
(15)

The main message of equation (15) is that the listing price is chosen as a markup over P̂ , i.e.,
in the model, the coefficient of L on P̂ is equal to one. Put differently: the listing premium "
is uncorrelated with P̂ . So we can work with the listing premium " ≡ L − P̂ and the potential
gains Ĝ ≡ P̂ − R both in the data and in the model.

For completeness, note that the optimization problem with η > 0 becomes:

max
L

α(L − P̂ )
(
P̂ + β(L − P̂ ) + η(P̂ + β(L − P̂ ) − R) + θ

)
+
(
1 − α(L − P̂ )

)
P̂ , (16)

and the optimal solution is:

L∗ = P̂ + α0β1 − α1β0
2α1β1

− η(P̂ − R) + θ

2(1 + η)β1
, (17)

so these conclusions carry through to a setup with reference dependence. Table L.11 validates
these observations in the data.

B.7 The Role of the Outside Option
To better understand the role of the outside option u in the model, we first look at the case in
which it is independent of the reference point R. In this case, the decision of the seller is uniquely
determined by the wedge between u and the magnitude of the search cost ϕ (if the listing fails),
and the moving shock θ (if the listing succeeds). The choice of u is therefore immaterial for
seller decisions or outcomes, and only affects the estimated magnitude and the interpretation of
the search cost and moving shock ϕ and θ, respectively.

Choosing the normalization u = P̂ seems most reasonable, because it implies that absent
any additional reasons to move (θ = 0) and with a zero cost of listing (ϕ = 0), the seller will be
indifferent between staying in their home and getting the hedonic value in cash.

We do not need to impose any further restriction on the level of the outside option, but we
note that for a listing to be optimal, we have: u < u(P ("∗)) + θ − ϕ.

Alternatively, it is possible that the reference level R is linked to the outside option. For
example, a simple assumption is that η = 0 (i.e., sellers derive utility exclusively from the value
of terminal wealth) while the outside option is u = R, e.g. because the purchase price R is the
seller’s current estimate of house value. In this case, the optimal listing premium is a generic
function: "∗ = f(P̂ − R) = f(Ĝ), which is identical to a model with u = G. However, there

2This assumption on β implies that the resulting realized price from the negotiation is a weighted average of
the hedonic value P̂ and the listing price L. To see this, note that: P = P̂ +β0 +β1(L−P̂ ) = β0 +β1L+(1−β1)P̂ .
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is little support for this specification in the data: In this case (i) the magnitude of reference
dependence and the degree of loss aversion do not affect the slope of the listing premium with
respect to Ĝ; this slope is uniquely pinned down by the demand “markup” functions (according
to a set of implausible restrictions, which are inconsistent with the data), (ii) loss aversion leads
to a discrete jump at G = 0 and cannot generate the “hockey stick” pattern observed in the
data, (iii) this model cannot explain the patterns of bunching at R that we observe.

More generally, the case where R enters the outside option because it is rationally used
to determine P̂ corresponds to one of the valuation models that we consider, namely a stan-
dard repeat-sales approach. Following on from the analytical results described in the previous
subsection, (i.e. a simple model with linear demand and linear reference dependence), we have:

P̂ = R + δt − δs, (18)

where δt is the aggregate price index at the time of the listing, and δs is the price index at the
time of initial purchase, which implies that:

L∗ = R + δt − δs + α0β1 − α1β0
2α1β1

− η(!!R + δt − δs −!!R) + θ

2(1 + η)β1
, (19)

and therefore:

L∗ − P̂ = α0β1 − α1β0
2α1β1

− η(δt − δs) + θ

2(1 + η)β1
. (20)

The parameter η can therefore be identified empirically by variation in δt − δs, and the precise
way in which R enters the valuation model is irrelevant.

For completeness, we note that in the case of reference dependence and loss aversion, the
optimal solution is:

L∗ =






P̂ + α0β1−α1β0
2α1β1

− η(P̂ −R)+θ
2(1+η)β1

, if P̂ − R > Ĝ0

P̂ − β0
β1

+ P̂ −R
β1

, if P̂ − R ∈ [Ĝ1, Ĝ0]
P̂ + α0β1−α1β0

2α1β1
− ηλ(P̂ −R)+θ

2(1+λη)β1
, if P̂ − R < Ĝ0

(21)

and with repeat sales:

L∗ − P̂ =






α0β1−α1β0
2α1β1

− η(δt−δs)+θ
2(1+η)β1

, if P̂ − R > Ĝ0
−β0

β1
+ δt−δs

β1
, if P̂ − R ∈ [Ĝ1, Ĝ0]

α0β1−α1β0
2α1β1

− ηλ(δt−δs)+θ
2(1+λη)β1

, if P̂ − R < Ĝ0

(22)

All conclusions from above also carry through to this case.
Another possibility is that R enters the seller’s estimation of value in a more refined form,

indexed by a weighting factor κ, in addition to a (potentially mis-specified) hedonic value P
estimated by the econometrician: P̂ = (1 − κ)P + κR. To understand this case, note that
the property’s estimated value P̂ enters the model in two ways: First, it affects the final price
P (") = P̂ + β(") realized in the market. Second, it affects the seller’s outside option.

If the reference point R enters P̂ in the same way that it enters the outside option, R will
drop out in the value comparisons that the seller makes and we infer. We can of course strongly
reject this case, because of the strong impact of the reference point R on the intensive margin
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(i.e. the observed “hockey stick” in the data), the excess bunching of realized sales prices exactly
at R, and the extensive margin effects, which demonstrate an influence of R on the probability
of listing.

However, if R enters the seller’s property value estimate (denoted by P̂ Seller below) differently
from how it enters P̂ we can distinguish between three cases: First, the seller correctly uses
R when valuing the property, but we don’t. This is possible, but we believe unlikely, given
that our results hold strongly and robustly across a large number of alternative models for P̂ ,
including repeat sales. But even if our hedonic model may miss relevant price variation coming
from R, this only affects estimated effects in terms of potential gains Ĝ, and such a model
cannot be reconciled with the evidence of excess bunching in realized gains G exactly around
observed prices P = R. Second, sellers misperceive the importance of R, i.e. they weight it
differently: P̂ seller = (1 − κ)P̂ + κR. The optimal listing premium function is then given by
"∗ = f((η + κ)(P̂ − R)) = f((η + κ)Ĝ). In this case, reference dependence and irrational over-
weighting of R have observationally equivalent effects on the average slope of the listing premium
with respect to potential gains, but such a model of misspecified seller beliefs cannot explain
the variation in slopes (“kinks”), and the bunching of realized prices around the reference point.
Third, if both the econometrician and the seller incorrectly use R (and in different ways), we still
extract the behaviour of interest, albeit potentially with considerable noise. More importantly,
such a version of the model is also unable to explain the observed bunching of prices around the
reference point.

B.8 Structural Estimation
B.8.1 Overview of Parameters and Moments

Structural parameters (xs)
Reference dependence η

Loss aversion λ, ζ

Distribution of moving shocks θm, θσ

Financial constraints µ

Listing/search cost φ

Fraction of perfect targeters π

Calibrated parameters (xc)
Down-payment constraint γ = 20%
Exogenous inputs from the data (xd)
Density of observations fstock(Ĝ, Ĥ), flist(Ĝ, Ĥ)
Demand α("), β(")
Cross-sectional variation of demand αk∈{High,Med,Low}("), βk∈{High,Med,Low}(")
Normalization of listing probability s(Ĝ+)
Endogenous moments in the model Mm (x)
“Hockey stick” "∗(Ĝ, x)
Variation of listing premia by potential home equity "∗(Ĥ, x)
Bunching of realized sales fsale(G, x)
Extensive margin decision s∗(Ĝ, x)
Cross-sectional variation of listing premium "∗

k∈{High,Med,Low}(Ĝ, x)
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B.8.2 Numerical Optimization

The algorithm that allows us to find an estimate for the set of structural parameters x̂s can be
expressed as: x̂s = κ (F (xs), xs

0). To avoid a situation in which ad hoc initial starting values xs
0

influence the convergence point, we start with a grid search approach that allows us to solve an
exact system of 8 equations in 8 unknowns.

We find the set of parameters:

(η, λ, θm, θσ, µ, π, φ, ζ)

to match the following moments:

1. The average level of the listing premium in the interval Ĝ ∈ [−40%, 20%], equal to 9.6%
in the data.

2. The average level of the listing premium in the interval Ĝ ∈ [20%, 40%], equal to 28% in
the data.

3. The slope of the home equity listing premium profile in the interval Ĥ ∈ [−20%, 20%],
equal to -0.42 in the data.

4. The magnitude of missing mass at G = −1%. In the model, the missing mass below zero
has an upper bound equal to π. This is achieved under the assumption that the missing
mass at G = −1% calculated just in the sample of precise targeters is equal to -100%. Our
identifying assumption is therefore that the missing mass is equal to -100% for a seller
that precisely targets the final price.

5. The magnitude of excess mass at G = 0, equal to 69.6% in the data.

6. The magnitude of the spike excess mass relative to the total diffuse mass in the interval
G ∈ [0, 40%], equal to 22% in the data.

7. Expected utility of a seller with potential gains equal to Ĝ+ = 40%. The identifying
assumption here is that this expected utility is equal to zero.

8. The slope of the extensive margin listing decision by potential gains across the domain
G ∈ [−40%, 40%], equal to 0.003 in the data.

In the plot below, we report a decomposition of the magnitudes of these model-implied
moments by the set of parameters:
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Finally, the local optimization algorithm takes the form of a gradient search method, which
starts from the initial guess xs

0, calculates the gradient vector for each parameter and adjusts
the step size according to the direction of the gradient. (In a previous version of the paper,
we have also approximated an annealing procedure by first running a Monte Carlo technique,
with a set of N = 50, 000 draws of parameters xs

i=1,...,N and evaluating the function F (xs
i=1,...,N )

at each draw, choosing as a starting point xs
0 for the optimization the parameter combination

which delivers the best overall model fit across all draws.)
To assess the empirical fit quantitatively, we compute the root mean squared difference

between the level of each moment in the model and the data, relative to the level in the data.
In this way, the prediction error is interpretable in percent terms, as reported in Table A.4 for
each moment separately, and for the full model jointly.

B.9 Magnitudes of Financial Constraints
Consider a loan with size M , maturity T , and an effective interest rate i. The monthly payment
for this loan is:

A(M, i) = M × i

1 − (1 + i)−T

For an individual with discount rate r, this monthly payment has the following present value:

NPV (M, i) = A(M, i) × 1 − (1 + r)−T

r
= M × i

1 − (1 + i)−T
× 1 − (1 + r)−T

r

= M × 1 − (1 + r)−T

1 − (1 + i)−T
× i

r

To capture the utility penalty in the data, let P = 1 be the value of the house. M expressed in
units of the house is therefore:

M = P × LTV = LTV
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We can then have an expression for the additional NPV cost of borrowing, for a general LTV
level:

κdata(LTV ) = NPV (LTV, i1) − NPV (LTV, i0)

= LTV ×
(

1 − (1 + r)−T

1 − (1 + i1)−T
× i1

r
− 1 − (1 + r)−T

1 − (1 + i0)−T
× i0

r

)

where i0 is the not-penalized interest rate on the loan, and i1 is the penalized one. Figure L.2
shows the average interest rate profile in the data, for different levels of the LTV ratio. The
plot below reports the utility penalty calculated in the data based on this interest rate profile,
alongside the utility penalty in the model, corresponding to the estimated value of µ in row 8
of Table 2 in the main text:
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C Detailed Data Description
Our data span all transactions and electronic listings (which comprise the overwhelming majority
of listings) of owner-occupied real estate in Denmark between 2009 and 2016. In addition to
listing information, we also acquire information on property sales dates and sales prices, the
previous purchase price of the sold or listed property, hedonic characteristics of the property,
and a range of demographic characteristics of the households engaging in these listings and
transactions, including variables that accurately capture households’ financial position at each
point in time. We link administrative data from various sources; all data other than the listings
data are made available to us by Statistics Denmark. We describe the different data sources
and dataset construction below.

C.1 Property Transactions and Other Property Data
We acquire administrative data on property transactions, property ownership, and housing
characteristics from the registers of the Danish Tax and Customs Administration (SKAT). These
data are available from 1992 to 2016. SKAT receives information on property transactions from
the Danish Gazette (Statstidende)—legally, registration of any transfer of ownership must be
publicly announced in the Danish Gazette, ensuring that these data are comprehensive. Each
registered property transaction reports the sale price, the date at which it occurred, and a
property identification number.

The Danish housing register (Bygnings-og Boligregisteret, BBR) contains detailed charac-
teristics on the entire stock of Danish houses, such as size, location, and other hedonic char-
acteristics. We link property transactions to these hedonic characteristics using the property
identification number. We use these characteristics in a hedonic model to predict property
prices, and when doing so, we also include on the right-hand-side the (predetermined at the
point of inclusion in the model) biennial property-tax-assessment value of the property that is
provided by SKAT, which assesses property values every second year.3 SKAT also captures the
personal identification number (CPR) of the owner of every property in Denmark. This enables
us to identify the property seller, since the seller is the owner at the beginning of the year in
which the transaction occurred.

In our empirical work, we combine the data in the housing register with the listings data to
assess the determinants of the extensive margin listing decision for all properties in Denmark
over the sample period. That is, we can assess the fraction of the total housing stock that
is listed, conditional on functions of the hedonic value such as potential gains relative to the
original purchase price, or the owner’s potential level of home equity.

Loss aversion and down-payment constraints were originally proposed as explanations for
the puzzling aggregate correlation between house prices and measures of housing liquidity, such
as the number of transactions, or the time that the average house spends on the market. In
Figure A.8 we show the price-volume correlation in Denmark over a broader period containing
our sample period. The plot looks very similar to the broad patterns observed in the US.

C.2 Property Listings Data
Property listings are provided to us by RealView (http://realview.dk/en/), who attempt to
comprehensively capture all electronic listings of owner-occupied housing in Denmark. RealView

3As we describe later, this is the same practice followed by Genesove and Mayer (1997, 2001); it helps improve
the fit of the hedonic model, but barely affects our substantive inferences when we remove this variable.
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data cover the universe of listings in the portal www.boligsiden.dk, in addition to additional
data collected directly from brokers. The data include private (i.e., open to only a selected set
of prospective buyers) electronic listings, but do not include off-market property transactions,
i.e., direct private transfers between households. Of the total number of cleaned/filtered sale
transactions in the official property registers (described below), 79.56 percent have associated
listing data.4 For each property listing, we know the address, listing date, listing price, size and
time of any adjustments to the listing price, changes in the broker associated with the property,
and the sale or retraction date for the property. The address of the property is de-identified by
Statistics Denmark, and used to link these listings data to administrative property transactions
data.

C.3 Mortgage Data
To establish the level of the owner’s home equity in each property at each date, we need details
of the mortgage attached to each property. We obtain mortgage data from the Danish central
bank (Danmarks Nationalbank), which collects these data from mortgage banks through Finance
Denmark, the business association for banks, mortgage institutions, asset management, securities
trading, and investment funds in Denmark. The data are available annually for each owner from
2009 to 2016, cover all mortgage banks and all mortgages in Denmark and contain information
on the mortgage principal, outstanding mortgage balance each year, the loan-to-value ratio, and
the mortgage interest rate. The data contain the personal identification number of the borrower
as well as the property number of the attached property, allowing us to merge data sets across all
sources. If several mortgages are outstanding for the same property, we simply sum them, and
calculate a weighted average interest rate and loan-to-value ratio for the property and mortgage
in question.

C.4 Owner/Seller Demographics
We source demographic data on individuals and households from the official Danish Civil Regis-
tration System (CPR Registeret). In addition to each individual’s personal identification number
(CPR), gender, age, and marital history, the records also contain a family identification number
that links members of the same household. This means that we can aggregate individual data
on wealth and income to the household level.5 We also calculate a measure of households’ edu-
cation using the average length of years spent in education across all adults in the household.
These data come from the education records of the Danish Ministry of Education.

Individual income and wealth data also come from the official records at SKAT, which hold
detailed information by CPR numbers for the entire Danish population. SKAT receives this
information directly from the relevant third-party sources, e.g., employers who supply statements
of wages paid to their employees, as well as financial institutions who supply information on their
customers’ balance sheets. Since these data are used to facilitate taxation at source, they are of
high quality.

4We more closely investigate the roughly 20% of transactions that do not have an associated electronic listing.
10% of the transactions can be explained by the different (more imprecise) recording of addresses in the listing
data relative to the registered transactions data. The remaining 10% of unmatched transactions can be explained
by: (a) off-market transactions (i.e., direct private transfers between friends and family, or between unconnected
households); and (b) broker errors in reporting non-publicly announced listings (“skuffesalg”) to boligsiden.dk.
We find that on average, unmatched transactions are more expensive than matched transactions. Sellers of more
expensive houses tend to prefer the skuffesalg option for both privacy and security reasons.

5Households consist of one or two adults and any children below the age of 25 living at the same address.
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C.5 Final Merged Data
Our analysis depends on measuring both nominal losses and home equity. This imposes some
restrictions on the sample. We have transactions data available from 1992 to the present,
meaning that we can only measure the purchase price of properties that were bought during
or after 1992. Moreover, the mortgage data run from 2009 to 2016. In addition, the sample
is restricted to properties for which we know both the ID of the owner, as well as that of the
owner’s household, in order to match with demographic information, and to listings for which
the listing price and date is registered correctly.6

To restrict data to prices to regular market transactions, we exclude within-household trans-
actions and transactions that Statistics Denmark flag as anomalous or unusual. We also drop
foreclosures (both sold and unsold) and transactions where the buyer is the government, a
company, or an organization.7,8

To ensure validity of the hedonic model, we exclude houses with a registered size of 0 or
other missing hedonic characteristics. We also drop properties that are sold or listed at prices
which are unusually high or low (below 100,000 DKK and above 20MM DKK in 2015-prices, or
for other reasons marked by Statistics Denmark as having an extreme price).9

In addition, we restrict our analysis to residential households, in our main analysis dropping
summerhouses and listings from households that own more than three properties in total, as
they are more likely property investors than owner-occupiers.

We start from 615,040 observations in the raw listings data and once all filters are applied, the
sample comprises 214,103 listings of Danish owner-occupied housing in the period between 2009
and 2016, for both sold (70.4%) and retracted (29.6%) properties, matched to mortgages and
other household financial and demographic information.10 These listings correspond to a total
of 191, 507 unique households, and 178, 933 unique properties. Most households that we observe
in the data sell one property during the sample period, but roughly 9% of households sell two
properties over the sample period, and roughly 1.5% of households sell three or more properties.
In addition, we use the entire housing stock, filtered in the same manner as the listing data,
comprising 5, 538, 052 observations of 807, 345 unique properties to understand sellers’ extensive
margin decision of whether or not to list the properties for sale.

Table L.1 documents the cleaning and sample selection process from the raw listings data to
the final matched data.

6This implies that we drop listings for which the price is missing, as well as listings that are dated before the
previous purchase date.

7The Section D.5 describes the Danish foreclosure process in detail.
8We apply this filter as company or government transactions in residential real estate are often conducted

at non-market prices—for tax efficiency or evasion purposes in the case of corporations, and for eminent domain
reasons in the case of government purchases, for example.

9We apply this filter to reduce noise for our predicted hedonic prices, because the market for such unusually
priced properties is extremely thin, meaning that predicting the price using a hedonic or other model is particularly
difficult. In practice we drop 4,663 properties that Statistics Denmark mark as extremely priced, 207 properties
with a listing or selling price below 100K DKK, and 629 properties with a listing or selling price above 20M DKK.

10The data comprises 172, 225 listings that have a mortgage, and 41, 878 listings with no associated mortgage
(i.e., owned entirely by the seller).

28

Electronic copy available at: https://ssrn.com/abstract=3396506



D Institutional Background in Denmark
D.1 The Search and Matching Process in the Housing Market
Most Danish homes are sold via a real estate agent and the majority of listings are posted online,
although some listings are sold to the real estate agent’s network of potential buyers before being
posted online (“skuffesalg”). Seller and the real estate agent set an initial listing price. Potential
buyers then make offers, which can be both lower or higher than the listing price. By default,
bids are subject to two weeks’ bank and legal provisos, but they can be waived as part of the
negotiation. The seller accepts or rejects the offers. If there are no bids the seller may choose
to adjust the price downwards or eventually retract the home from the market.

Sellers employ a real estate agent, who works as the seller representative. The agent advises
the seller in setting the listing price and is responsible for marketing, legal work, and getting
third-party inspection reports on the house. Third-party inspection reports are mandatory and
has to be available before a transaction can take place. Although not as common, buyers can
have a buyer agent representing them in the search, negotiation and legal phases.

The average costs of selling a typical home is around 120,000 DKK with about 75,000 DKK
paid as broker fees. It also includes inspection reports, marketing, insurance, and official doc-
uments.11 Buying a house cost around 5 to 6 percent of the price. This includes stamp fees
(on the deed, on the mortgage, and on a potential bank loan), several different bank fees, legal
assistance, cost for construction experts, insurance, moving costs, and renovation costs.12 For
comparison, the typical seller fee in the U.S. ranges from 5 to 6 percent and the typical buyer
fee from 2 to 5 percent, also including appraisal, inspection, taxes, insurance and loan-related
fees. (Mateen et al, 2021)

D.2 The Taxation Regime for Residential Property
SKAT assess the property value to determine the amount of property tax due. The exact
rate of property taxation varies across municipalities, but the assessed value is set centrally.
In addition, in Denmark there is no tax on realized capital gains if the owner “has lived” in
the house/apartment, under the condition that the house must not be extremely large (lot sizes
smaller than 1400 sqm). It is not necessary for the owner to live in the property at the time of the
sale, but she needs to establish that the property was not used under a different capacity, such as
renting to a public authority, prior to the sale. The “substantial occupation requirement” used
to be two years, but now requires only documentation of utilities use, registration etc. Capital
gains that do not fall under this exception are taxed like other personal income. Taxation on
gifts to family members stands at 15% above 65,700 DKK (as of 2019). However, home owners
can also give the property to a child with an interest-free, instalment-free debt note terminated
at the time of sale. Heirs can inherit houses and any associated tax exemptions for the sale in
the event of death of the principal resident.

D.3 The Cost of Borrowing
Danish home buyers can take up a mortgage covering up to 80% of the sales price. On top of
the interest rate, borrowers are paying fees to the bank, the mortgage bank, and the state. The
banks charge administration fees at issuance of the mortgage. They vary, but are in the range

11Source: https://www.bolius.dk/saa-meget-koster-det-at-saelge-sit-hus-8664
12Source: https://www.bolius.dk/omkostninger-ved-at-koebe-bolig-18145
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of 9,000 DKK.13 The mortgage banks charges administration fees, (bidragssats), which is to be
added the interest rate payment each term. The rate increases stepwise with LTV.14 In addition,
mortgage banks charges brokerage for issuing bonds (kurtage) and a spread price (kursskæring)
of 0.15% and 0.20% respectively. The Danish state requires stamp fees on the mortgage. They
consist of a fixed amount of 1,750 DKK plus 1.45 percent of the loan size, both to be paid out
at issuance.

Home buyers are required to provide a down-payment of at least 5%. Bridging the remaining
15%, buyers can take up a bank loan, usually at much higher interest rates than the mortgage.
In 2018 interest rates on bank loans varied from 3% to 11% in the 12 largest banks. In addition
to higher interest rates, borrowers pay fixed fees to the bank and stamp fees to the state when
borrowing from the bank. In 2018 bank fees ranged from 0 to 14,000 DKK. Stamp fees are 1,660
DKK plus 1.5% of the loan value.15 See Table L.2 for an overview of fees and Figure L.2 for an
illustration of average costs over LTV.

D.4 Assumability, Refinancing, and Unsecured Mortgages
Mortgages in Denmark are generally assumable, i.e. sellers can transfer their mortgage to the
buyer at sale (Berg et al. 2018). Borrowers also have the option to repurchase their fixed-rate-
mortgage from the covered bond pool at market or face value. Both market features alleviate
potential seller lock-in, in particular in a rising rate environment (Campbell 2012). In our sample
period, over 2009-2016, rates are broadly decreasing, which generates incentives to refinance.

Another question is if the assumability of mortgages can relax down-payment constraints,
and hence generate additional benefits by purchasing a house with a specific mortgage value.
In general, any mortgage assumption needs the approval from mortgage lenders, who enforce
the 20% down-payment constraint for the assumed debt. For instance, if a household sells a
house with value P = 90 and mortgage balance M = 80 to buy a house with value P = 90
and mortgage balance M = 80, the household can only assume M = 0.8 × 90 = 0.72 and hence
requires an additional down payment. It is very rare (but possible) to assume a mortgage with
an LTV > 80 after negotiation with the lender. Another benefit of assuming the mortgage is to
save the 145bp stamp duty due on new mortgage debt, with a maximum 120 basis point benefit
at 80% LTV, which households would need to trade off against the potential increase in search
cost to find a house with high assumable debt, given time, location, and preference constraints.

To some extent any down-payment gap (to bridge funding gaps between 80% and 95% loan-
to-value) can be financed using normal bank/consumption debt lent to the buyers by their
financial institution or occasionally from the seller of the property, but this additional mortgage
tends to be expensive. Danish households can borrow using “Pantebreve” or “debt letters” to
bridge funding gaps above LTV of 80%. Over the sample period, this was possible at spreads of
between 200 and 500 bp over the mortgage rate. For reference, see categories DNRNURI and
DNRNUPI in the Danmarks Nationalbank’s statistical data bank.

D.5 The Foreclosure Process
Home owners who cannot pay their mortgage or property tax may benefit from selling their home
-– even if they have negative home equity –- to pre-empt being declared personally bankrupt

13https://www.bolius.dk/omkostninger-ved-at-koebe-bolig-18145
14https://www.mybanker.dk/sammenlign/bolig/bidragssatser/
15https://www.bolius.dk/boliglaan-i-banken-find-det-billigste-18078
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by their creditors. If declared personally bankrupt, the property will be sold at a foreclosure
auction. Foreclosures in most cases result in sales prices significantly below market prices.
Selling in the market thus potentially allows home owners to repay a bigger fraction of their
debt. This provides a rational for “fishing” behavior as mentioned in the main text, as home
owners even with negative home equity may find it optional to pick a point on the right of the
demand concavity trade-off, i.e. choose a high listing premium at the expense of decreasing the
probability of sale prior to the foreclosure process.

A foreclosure takes place if a home owner repeatedly fails to make mortgage or property
tax payments. After the first failed payment, the creditor (the mortgage lender or the tax
authorities) first send reminders to the home owners, and after approximately six weeks, send
the case to a debt collection agency. If the home owner still fails to pay the creditor after two to
three months, the creditor will go to court (Fogedretten) and initiate a foreclosure. The court
calls for a meeting between the owner and the creditor to guide the owner in the foreclosure
process. At the meeting the owner and creditor can negotiate a short extension of four weeks to
give the owner a chance to sell the property in the market. If that fails, the court has another
four weeks, using a real estate agent, to attempt to sell the property in the market. After the
attempts to sell in the market, the creditor will produce a sales presentation for the foreclosure,
presenting the property and the extra fees that a buyer has to pay in addition to the bid price.
The court sets the foreclosure date and at least two weeks before, announces the foreclosure
in the Danish Gazette (Statstidende), online, and in relevant newspapers. At the foreclosure
auction, interested buyers make price bids and the highest bid determines the buyer and the
price. If the buyer meets financial requirements, the buyer takes over the property immediately
and the owner is forced out. However, the owner can (and often will) ask for a second auction
to be set within four weeks from the first. All bids from the first auction are binding in the
second, but if a higher bid appears, the new bidder will win the auction.

The entire process from first failed payment to foreclosure typically takes six to nine months.
At any point, the owner can stop the foreclosure process by selling in the market and repaying
the debt. Selling in the market may be preferred to foreclosure auctions by buyers as well, as they
have fewer opportunities to assess the house and have to buy the house “as seen”, without the
opportunity to make any future claims on the seller. In addition, buyers have to pay additional
fees of more than 0.5 percent of the price.
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E Hedonic Pricing Model and Alternative Models of P̂

The following section describes the role of the tax-assessted value in the estimation of the baseline
hedonic pricing model, and discusses alternative models in more detail.

E.1 Hedonic Model and the Tax-assessed Value
The tax-assessed value stems from a very comprehensive model, developed by the Danish tax
authorities (SKAT). Relative to our data, the model for tax assessment utilizes some further
information such as the distance to local amenities such as schools and public transport. In
addition, in some cases (prior to 2013), the assessment is manually adjusted and verified by the
tax authorities if the mechanically predicted value from the model is challenged by owners or if
the property is in the right tail of the price distribution.

Between 2009 and 2013, the tax authority re-evaluated properties every second year. The
assessment, which is valid from January 1st each year, is established on October 1st of the prior
year. In the years between assessments, the valuation is adjusted by including local-area price
changes. In 2013, the tax assessments were frozen at 2011 levels in anticipation of a new model of
assessment. However, in case of significant value-enhancing adjustments to a house or apartment,
a re-assessment took place. Figure L.5 panel (b) and (c) illustrate the shortcomings of the tax
assessment in our sample period in particular. The figures show how the tax assessment is slow
to incorporate more recent price developments, and as a result lags behind realized prices in the
housing market boom prior to the financial crisis and in the subsequent bust.

Figure L.6 and L.7 show that the relationships between listing premia over potential gains
and home equity, and demand concavity, are preserved when using just the tax assessment prior
to 2013, with a higher level of the listing premium, reflecting the inaccuracy introduced through
the lag between assessed and realized prices.

The accuracy of the hedonic model is improved by including the pre-determined tax-assessed
value and in addition adjusting for the current local price development, using municipality-year
fixed effects. However, the hedonic model excluding the tax-assessed value performs well in
its own right. Table L.3 decomposes the hedonic model and shows the R2 contribution from
each component. By itself, the tax-assessed value explains around 80 percent of the variation in
sales prices, and municipality-year fixed effects explain around 48 percent. Our baseline hedonic
model without the tax-assessed value explains 77 percent of the variation in sales prices, and
including the third degree polynomial of the tax-assessed value raises the explanatory power to
88 percent.

E.2 Repeat Sales Models
We estimate a simple repeat sales model which does not rely on hedonic estimation, by adjust-
ing the previous purchase price based on changes in the shire-level annual price index (“Simple
Repeat”). The price index is the shire-year specific mean square meter price,16 based on traded
properties filtered to match the filtering of the municipality indices provided by Finance Den-
mark.17 That is, ln P̂SimpleRepeat = ln(R · indext/indexs), where R is the previous purchase
price, t refers to the listing year, and s to the previous purchase year.

16This price index is not available for all observations, which reduces the number of observations slightly.
17In calculating their indices, Finance Denmark first exclude all transactions with a square meter price below

1,000 or above 20,000 1992-level DKK, a transactions price below 100,000 or above 25 million 1992-level DKK,
and transactions of properties smaller than 25 square meters or bigger than 750 square meters.
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Next, we estimate a combined repeat sales models which uses information from time-varying
hedonic characteristics, as well as information from repeat sales by adding the (average) pricing
residual from previous sales to the baseline hedonic model (as described above). The lagged
residuals are ln(Pl) − ˆln(Pl) for lags l up to thirteen past sales. We estimate four variants of
the combined repeat sales model: the residual from the last sale, utilizing all pairs of repeat
sales (‘Repeat Sales (T = 2)”); average residuals from all existing previous sales, but only for
properties with at least two repeat sales (three sales in total) (“Repeat Sales (T ≥ 3)”); average
residuals from all existing previous sales, but only for properties with at least three repeat sales
(four sales in total) (“Repeat Sales (T ≥ 4)”), and average residuals from all existing previous
sales (“Repeat Sales (T ≥ 2)”).

We provide further motivation for the use of these repeat sales models in section I.

E.3 Repeat Sales Model with Renovations Data
We extend the baseline hedonic model to also include recent renovations of the property. Since
our repeat sales models are able to account for the time-invariant component of unobserved
quality νit, the renovation expense data are a way to proxy for the potentially time-varying
unobserved component. We take advantage of the tax-deductability of renovations from 2011
and include controls for deducted amounts by the seller, and the data is further described in
section E.3.1 below. We add r̄it ≡ rit + rit>0 + rit + i=f rit + i=f rit>0 + i=f · rit to the
baseline hedonic model, where rit is an indicator for renovations data being available, rit>0
indicates that the seller has deducted a positive amount, and rit is the logarithm of the deducted
amount. Everything is also interacted with the apartment dummy, i=f , letting the effect of
renovations differ across different property types, i.e. detached houses or apartments.

We estimate model variants that aggregate the renovations data differentially, to reflect that
property maintenance and renovation expenses accrue and add to unobserved quality over time.
We use one-year lagged renovation deductions, available for the years 2012-2016. We also use
three-year lagged cumulative deductions, leaving us with data for 2014-2016, and five-year lagged
cumulative deductions, which we can only estimate for observations in 2016.

Lastly, we estimate composite models that add both past past residuals and one-year lagged
renovation deductions to the baseline hedonic model, combining the advantages of all three
sources of information (“Repeat Sales 1” for pair-wise repeat sales, and “Repeat Sales 2” for all
repeat sales). For an overview of all models, see Table L.4.

E.3.1 Renovations Data Description

As a proxy for property maintenance and renovation expenses, we merge administrative data on
tax exemptions on services done as part of the property. From 2011, Danish households have been
able to deduct expenses for these service works done from the tax bill (“Boligjobordningen”).
The initiative was introduced as a measure to reduce tax avoidance and to incentivize private
consumption following the 2008/2009 recession, but has later been made permanent. Exemptions
apply to incurred labor cost, conducted by external service providers in the home or summer
house of the household, but not material cost. Services include property maintenance and
renovations, but also other services such as cleaning. From 2011 to 2015, the maximum tax-
deductable amount was 15,000 DKK per adult household member. Between 2016 to 2018 the
maximum amount was split into 12,000 DKK for maintenance and renovations and 6,000 DKK
for other services.
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Data on claimed deductions by individuals is obtained from the Danish Tax Authorities and
is made available to us by Statistics Denmark. We aggregate the deductions data by households
and link them to the seller of a property. In most cases the services will have been conducted
in the property for sale, but in some cases it may relate to a summer house or another property
by the seller, which we cannot distinguish. From 2011 to 2016, about a quarter of listings are
associated with owners claiming some tax deduction for renovation expenses. 40 percent of
claims were at the maximum amount and the average claimed exemption per listing was 14,852
DKK, conditional on claiming a positive amount. To get a sense of magnitudes, 14,852 DKK
is about one percent of the average list price of around 1,572,000 DKK. It is difficult to get
a sense of how much the all-in renovation cost would be as these vary substantially by type
of renovation. But to give an example, estimates of the labor cost of a kitchen renovation are
between 10,000 to 15,000 DKK, with estimates for the full cost including material at 40,000
to 150,000 DKK18 (around 6,400 to 24,000 USD), which implies a multiple of between 3 to 10
to get an estimate of the all-in renovation cost, translating to about 3 to 10% of the average
list price. We caveat that these are very rough estimates, but they illustrate that we should
be able to proxy for a significant source of time-varying unobserved property quality, by simply
assuming that the value of the renovation capitalizes into the new market value of the property.

We also show binned averages of the renovation expense variable across potential gains
and listing premia, cumulated in different ways as described above, in Figure L.8. Renovation
expenses are broadly flat across potential gains and listing premia by looking at current and
lagged 1-year expenses, assuaging concerns that the hockey stick shape in the listing premium
when sellers face negative potential gains, or the shape of demand concavity, is driven primarily
by time-varying maintenance expenses. At longer horizons, cumulative renovation expenses
appear slightly lower for negative listing premia, which may suggest that listing premia that we
estimate as very negative may in fact be less so, i.e. they sell at less of a true discount because
it reflects the lower degree of maintenance over a longer period, and we directly account for this
in our robustness checks by including these variables in the pricing model.

E.4 Out-of-Sample Testing
The large number of controls and fixed effects in the hedonic model could give rise to concerns
about overfitting. To assess this, we conduct out-of-sample testing of the model. Table L.5
reports mean Rs from 1000 iterations of sampling 50, 75 and 100 percent of the data, respectively,
estimating the model on that sample, and fitting the model to the remaining sample, and Figure
L.9 show distributions of the Rs from these 1000 iterations. The model performs well out of
sample even for models estimated on small samples.19 Figure L.10 and L.11 show that the listing
premium over gains and home equity relationships, as well as the pattern for demand concavity

18As for instance obtained from https://www.designa.dk/inspiration/koekkenguiden/hvad-koster-et-nyt-
koekken.

19We note that we would expect the out-of-sample fit of our model to be quite high, given that one of the
observable variables is the tax-assessed value of the house, which included by itself has an R2 of 0.8. Excluding
the tax-assessed value from the model reduces the R2, but the fit is not greatly impaired, see Table L.6. The
exercise further suggests that the remaining hedonic model coefficients appear relatively stable. As an alternative,
we also conduct an out-of-sample test by estimating the model only on one year of the data (e.g. 2009), and
fitting it to the remaining observations (e.g. 2010-2016). The difference between in-sample and out-of-sample R2

for any estimation year and out-of-sample window combination lies between 6 to 9 percentage points, e.g. the
in-sample R2 for 2009 is 0.85, and the OOS R2 for 2010-2016 is 0.76, a more noticeable drop, but which given the
small and disparate in-sample window, likely represents a lower bound on the out-of-sample predictive ability of
the model.
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are preserved when the hedonic price is predicted out-of-sample.

F Functional Form of Down-Payment Constraints
F.1 Alternative Formulation of Penalty Function
In the model, we assume that violating the down-payment constraint leads the seller to incur
a monetary penalty for levels of realized home equity below the constraint threshold. Figure 8
in the paper show that the model of down-payment constraints that we use does not perfectly
fits the data; in particular, the nonlinearity of the listing premium below potential home equity
levels of −20% looks different than the pattern that our model is able to capture. To address this
issue, we verify the implications of the model using a concave version of the penalty function:

κ(P (")) =
{

µ(γ − H("))1/2, if H(") < γ
0, if H(") ≥ γ

. (23)

Figure L.3 shows that the smoothing at the bottom of the home equity profile is better fitted
with this formulation, for a set of preference parameters that are very similar to the ones used
in the main analysis. However, equation 23 implies a sharp discontinuity and therefore sharp
bunching at Ĥ = γ, which is not observed in the data. Addressing these two issues together
entails a more heavily parameterised model of home equity constraints, with a significant increase
in the computational burden, and without a material impact on the identification of the main
structural parameters.

F.2 Downsizing Aversion and Interaction Effects
One possible rationalization for the interaction effects between preferences and constraints in
the data is that households facing nominal losses feel constrained at levels of home equity (i.e.,
H = 20%) that would force them to downsize, while those expecting nominal gains may have in
mind a larger “reference” level of housing into which they would like to upsize (or indeed, a larger
fraction of home equity in the next house). To achieve this larger reference level of housing,
they begin “fishing” at levels of H > 20% in hopes of achieving the higher down payment on a
new, larger house.

To provide suggestive evidence on this story, Figure L.12a uses a subsample of the data for
which we have information on the households’ subsequent down payment (N = 15, 981). For this
limited subsample, we show a binned scatter plot of the listing premium " on the subsequently
sold listing against the realized down payment on the subsequent house, controlling for the level
of Ĥ on the subsequently sold listing. We find evidence that the down payment on the new
house is correlated with ", which, given our evidence of Ĝ predicting ", is consistent with the
idea that households shift their reference level of housing on the basis of expected gains.

In addition, for a subsample of the data for which we have information on households’
subsequent house purchase price (N = 36, 770), we show in Figure L.12b that this price (in 2015
DKK) lies almost always above the previous purchase price, suggesting that households “trade
up” their real house value on average, and that downsizing aversion may hence factor into their
decision making.
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G Functional Form of Measured Concave Demand
Figure A.2 shows the distribution of time-on-the-market (TOM) in the data. We winsorize
this distribution at 200 weeks, viewing properties that spend roughly 4 years on the market as
essentially retracted. Mean (median) TOM in the data is 36 weeks (24 weeks). This is higher
than the value of roughly 7 weeks reported in Genesove and Han (2012).

We next inspect the inputs to the function α(") in the data. The top plot in Figure L.13
shows how TOM relates to the listing premium " in the data using a simple binned scatter plot.
When " is below 0, TOM barely varies with "; however, TOM moves roughly linearly with "
when " is positive and moderately high. Interestingly, we also observe that the relationship
between " and TOM flattens out as " rises to very high values above 40%. This behavior is
mirrored in the bottom panel of Figure L.13, which shows the share of seller retracted listings,
which also rises with ". Here we also see more “concavity” as "̂ drops below zero, in that the
retraction rate rises the farther "̂ falls below zero.

In the paper, we simply convert the two plots into a single number, which is the probability
of house sale within six months (i.e., α("̂)) on the y-axis as a function of "̂ on the x-axis. To
smooth the average point estimate at each level of the listing premium, we use a generalized
logistic function (Richards, 1959, Zwietering et al., 1990, Mead, 2017) of the form:

α(") = A + K − A

(C + Qe−B!)1/ν
. (24)

H Demand Concavity and Housing Stock Homogeneity
In the main text, we document how regional variation in demand concavity correlates with
regional variation in the shape of the listing premium schedule. This relationship could be driven
by a number of different underlying forces. For instance, demand may respond to primitive
drivers of supply rather than the other way around—i.e., some markets may be populated by
more loss-averse sellers, and buyer sensitivity to "∗ might simply accommodate this regional
variation in preferences. Another possibility is that this regional relationship simply captures
the different incidence of common shocks to demand and market quality.

Our model is partial equilibrium, and describes a different underlying mechanism for this
correlation, namely, that sellers are optimizing in the presence of the constraints imposed by
demand concavity. In order to understand whether the right-hand plot of Panel B of Figure
2 (in the main text) is potentially consistent with sellers responding to such incentives, we
implement an instrumental variables (IV) approach. Our IV approach is driven by the intuition
that the degree of demand concavity is related to the ease of value estimation and hence price
comparison for buyers. Intuitively, a more homogeneous “cookie-cutter” housing stock can make
valuation more transparent, and should therefore increase buyers’ sensitivity to ". That is, this
intuition predicts that markets with high homogeneity should exhibit more pronounced demand
concavity.

For instance, for a block of identical apartment buildings, we would expect buyers to penal-
ize sellers much more strongly for a given increase in the listing premium, as there is limited
uncertainty surrounding the fair valuation of the property. On the other hand, if the housing
stock is much less homogeneous, buyers may be more willing to tolerate listing premia as they
would be willing to pay for variation in quality and less standard property characteristics. This
can be micro-founded in a search and matching framework as done in Guren (2018), in which
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buyers do not know the true quality of a property ex ante, and decide to view and verify at a
search cost, guided by initial listing prices, resulting in high listing premia being more viable in
markets in equilibrium where the source of the listing premium is more likely to stem from non-
standard property characteristics. Hence we use different measures of the homogeneity of the
housing stock in a given geographic market to instrument for the degree of demand concavity.
The degree of homogeneity of the housing stock may affect the level of the listing premium, but
there is no obvious mechanism to link it to the degree of loss aversion, i.e. no obvious reason
to believe that it should affect the slope of the listing premium schedule over potential gains
other than through demand concavity. In other words, our identifying assumption is that we
believe that variation in the homogeneity of the housing stock relates to differences in the slope
of demand concavity, rather than innate differences in loss aversion across sub-markets.

Our main instrument is the share of apartments and row houses listed in a given sub-market.
Row houses in Denmark are houses of similar or uniform design joined by common walls, and
apartments have less scope for unobserved characteristics such as garden sheds and annexes
than regular detached houses.20 As an alternative, we also use the distance (computed by
taking the shire-level distance to the closest of the four cities, averaged over all shires in a given
municipality) to the four largest cities in Denmark (Copenhagen, Aarhus, Odense, and Aalborg)
as a measure of how rural a given market is, and how far away from cities people live on average.
This alternative relies on the possibility that homogeneous housing units are more likely to be
built in suburbs or in cities, rather than in the countryside.

To account for cross-market differences in model-predicted demand-side factors affecting the
slope of " with respect to Ĝ and Ĥ, we also include a specification which controls for the average
age, education length, financial assets, and income of sellers in a given sub-market.

We find strong evidence of the “first-stage” correlation, i.e., demand concavity on the y-axis
against homogeneity measured by the share of apartments and row-houses in a given munici-
pality on the x-axis in Figure L.15 Panel A, with each dot representing a municipality, with
more homogeneous municipalities exhibiting stronger demand concavity, i.e. a more sharply
decreasing probability of sale for any given increase in the listing premium. And similarly in
Panel B, we find that stronger, i.e. more negative values of, demand concavity are correlated
with a flatter, i.e. less negative, slope of the hockey stick. Table L.7 reports the results of the
more formal IV exercise. Column 1 shows the simple OLS relationship between the slope of "
for Ĝ < 0 on demand concavity slope (slope of α(") for " ≥ 0) across municipalities,21 with a
baseline level of −0.422. Column 2 uses the apartment-and row-house share as an instrument for
demand concavity, and the just identified two-stage least squares (2SLS) specification yields a
coefficient estimate of −0.569. With both instruments (i.e., including the distance to the largest
cities as well), the overidentified 2SLS specification gives a result of −0.548 without, and −0.428
with controls for average household characteristics in the municipality.

20In Figure L.14, we show pictures of typical row houses in Denmark.
21Municipalities are required to have at least 20 observations where Ĝ < 0, leaving 96 out of 98 municipalities,

but results are robust to keeping all municipalities.

37

Electronic copy available at: https://ssrn.com/abstract=3396506



I Unobserved Quality
An important concern in the literature is that the “true” P̃ is imperfectly observed. Following
Genesove and Mayer (2001), we differentiate between two types of measurement error, namely,
(potentially time-varying) unobserved quality, and an idiosyncratic over- or under-payment by
the seller at the point of purchase.

In this section, we show that (i) the simple repeat sales model eliminates the bias coming
from time-invariant unobserved quality, (iii) time-varying observables that capture information
from the tax-assessment value, time-varying hedonic characteristics and time-varying valuation
of hedonics, together with data on property renovations, attenuate the bias coming from time-
varying unobserved quality, (iii) a novel generalized repeat sales approach, where we average
valuation residuals from all available past sales, attenuates the residual bias (not already cap-
tured by the hedonic estimation across all observations) coming from the past history of over-
or under-payment.

I.1 A General Formulation of Unobserved Quality
Before considering the more general case with loss aversion in section I.4 below, we discuss the
role of unobserved quality in a version of our structural model with linear reference dependence.
In the context of this model, let List denote the listing price chosen by the seller of property i
listed for sale in period t, P̃it the “true” hedonic value of the property at the time of listing and
"̃ist the “true” listing premium, Ris the price of the property when initially purchased in period
s, and G̃ist the “true” potential gain.22

This implies the following “true” relationship between listing premia and potential gains:

List − P̃it︸ ︷︷ ︸
!̃ist

= µ0 + m(P̃it − Ris)
︸ ︷︷ ︸

G̃ist

+εist. (25)

When bringing this model to the data, the problem is that the “true” P̃ is imperfectly ob-
served. Let P̂ be the “feasible” valuation model, and ξit the potentially time-varying estimation
error:

P̃it = P̂it + ξit. (26)
The observed listing premia and potential gains are affected by estimation error in opposite
directions:

Ĝist = P̂it − Ris

= G̃ist − ξit,
(27)

"̂ist = List − P̂it

= "̃ist + ξit.
(28)

Assuming that the shocks εit and ξit are uncorrelated with “true” potential gains G̃ist, the

22In the main part of the paper, we use P and R without time subscripts to differentiate between prices related
to current time t, and previous purchase time s, while here we maintain R to denote the reference price for
consistency, but note that Ris ≡ Pis.
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estimated coefficient m̂ is then given by:

m̂ = Cov(Ĝist, "̂ist)
V ar(Ĝist)

= Cov(G̃it − ξit, "̃ist + ξit)
V ar(G̃ist − ξit)

= Cov(G̃it − ξist, µ0 + mG̃it + εit + ξit)
V ar(G̃ist − ξit)

= m
V ar(G̃ist)

V ar(G̃ist) + V ar(ξit)︸ ︷︷ ︸
Classical measurement

error

− V ar(ξit)
V ar(G̃ist) + V ar(ξit)︸ ︷︷ ︸

Over-estimation bias
(because m < 0)

. (29)

Equation (29) shows that in the vein of Genesove and Mayer (2001), unobserved heterogeneity
such as unobserved property quality can cause measurement error, and a hockey stick slope
estimate that is potentially over-estimated, i.e. too steeply negative.

I.2 Sources of Estimation Error
Following and expanding on Genesove and Mayer, 2001, we specify two sources of estimation
error which affect the “feasible” valuation model: (i) Time-varying property unobserved qual-
ity23 (which could have an average component as well as a time-varying component arising, for
example, from home improvements), and (ii) Over- and under-payment by buyers in the market
at different points in time.

Formally, we start by assuming that realized prices in the market have the following compo-
nents:

Pit = Xiβ + δt + νit︸ ︷︷ ︸
“True” hedonic value

of property (=P̃it)

+ ωit︸︷︷︸
Idiosyncratic over-
or under-payment

, (30)

where Xi are property characteristics, δt is the aggregate price index, νit is the (potentially time-
varying) unobserved quality of the property, and ωit is an idiosyncratic over- or under-payment
component relative to the “true” hedonic value of the property. We can write this true hedonic
value using the expression:

P̃it = Xiβ + δt + νit. (31)
We assume that both sources of error νit and ωit are uncorrelated with the observable prop-

erty characteristics Xi and with the predictable time-varying component of prices δt. Moreover,
we assume that both the unobserved quality and the over- or under-pricing components of real-
ized prices are distributed randomly across properties, such that, when estimated in sufficiently
large samples, they have an expected value of zero:

lim
N→∞

1
N

N∑

i=1
νit = 0, and lim

N→∞

1
N

N∑

i=1
ωit = 0. (32)

In addition, the over- and under-pricing error is assumed to be distributed randomly through
time, i.e. it has an expected value of zero if a sufficiently large number of periods is observed:

lim
T →∞

1
T

T∑

t=1
ωit = 0. (33)

23In Genesove and Mayer (2001), this component is assumed to be time-invariant, and we relax this assumption
and discuss the implications further below.
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Note that this assumption may not be plausible for νit, for instance because permanent property
improvements cause trends in νit over time, and assumptions on the distribution of νit and ωit

over time directly inform which model of prices should be preferred, as discussed further below.

I.3 Alternative Estimation Methods
We can use several different approaches to estimate hedonic values in the data. In this section,
we explore the implications of each of these approaches for the accurate estimation of m.

I.3.1 Model Descriptions

1. Standard hedonic regression:

a. Time-invariant observables
P̂it = Xiβ + δt. (34)

The hedonic value in the above equation is obtained from a regression of the actually
realized transaction prices Pit on a set of property characteristics Xi and time fixed
effects.

b. Time-varying observables

P̂it = Xitβ + δt. (35)

Equation 34 easily generalizes to a model with time-varying observables, examples
for this type of information that we capture are e.g. the tax assessment value of
the property, any time-varying valuation of hedonic characteristics, and changes in
hedonic characteristics of the property over time.

2. Repeat sales models: Repeat sales models contain information from past transactions,
including on unobserved quality, and are widely used to generate aggregate price indices,
as proposed by e.g. Case and Shiller (1987). We apply this intuition to estimate prices for
individual properties, using the formulation:

P̂it = Xiβ + δt + ν̄itτ<t + ω̄itτ<t , (36)

where ω̄it is the average value of past idiosyncratic over- or under-payments, and ν̄itτ<t is
the average value of past unobserved quality components, i.e. averaged over periods for
which τ < t, prior to current period t.
Denote with T the total number of repeat transactions observed for a given property. For
T = 2 (one repeat sale), the model simplifies to

P̂it = Xiβ + δt + νis + ωis, (37)

which is equivalent to estimating current price levels as the previous purchase price scaled
by changes in the aggregate house price index since purchase, dt/ds (and analogous to how
the aggregate Case-Shiller house price index is implemented):

P̂ level
it = Rlevel

is · dt

ds
. (38)
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To see this, we can use previous notation and express the model in logs:

P̂it = Ris + δt − δs.

= Xiβ + δs + νis + ωis + δt − δs

= Xiβ + δt + νis + ωis, (39)

which is equivalent to equation (37).

3. Combined repeat-sales model with time-varying observables: Suppose realized prices are
characterized by a time-varying observable component Xitβ

Pit = Xitβ + δt + νit + ωit. (40)

As noted above, this term could capture changes in hedonic characteristics of the property,
or changes in the valuation of these characteristics over time. A more general way to write
the repeat sales model and augment it with time-varying observables is to note that for
T = 2:

νis + ωis = Ris − P̂is︸ ︷︷ ︸
Hedonic model pricing residual at time s

(41)

And more generally:

ν̄itτ<T + ω̄itτ<T = 1
T − 1

∑

τ<T

Riτ − P̂iτ

︸ ︷︷ ︸
Average of the hedonic model pricing

residuals across repeat sales for which τ < T

(42)

So the T = 3 repeat sales model with time-varying observables requires to estimate

P̂it = Xitβ + δt + νis + νis′

2 + ωis + ωis′

2 , (43)

where s′ refers to the purchase time prior to s, which can be implemented as

P̂it = Xitβ + δt︸ ︷︷ ︸
Hedonic model with time-varying observables

+ 1
T − 1

∑

τ<T

Riτ − P̂iτ

= Xitβ + δt + Ris − P̂is + R′
is′ − P̂is′

2
= Xitβ + δt + Xisβ + δs + νis + ωis − (Xisβ + δs) + Xis′β + δs′ + νis′ + ωis′ − (Xis′β + δs′)

2
= Xitβ + δt + νis + νis′

2 + ωis + ωis′

2 . (44)

This flexible formulation can accommodate other variations of the hedonic model such as
including location-time fixed effects and information on renovations, which we implement
in our robustness checks. Note that this model only requires us to estimate the baseline
model, and collect the residuals, i.e. is estimated in a single step.

4. Renovations as a proxy for unobserved quality: we can include additional information on
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renovations (in the form rit as described in section E.3),

P̂it = Xiβ + δt + rit, (45)

assuming that Cov(rit, νit′) (= 0, ∀t′, i.e., most importantly, Cov(rit, νit) (= 0, i.e. these
additional time-varying covariates are informative of potentially time-varying unobserved
quality.

I.3.2 Model Estimation

We compare coefficient estimates from these four types of feasible models.

1. The standard hedonic regression:

P̂it = Xiβ + δt, (46)

implies that the potential gain estimated on the set of observables is:

Ĝist = P̂it − Ris

= Xiβ + δt − (Xiβ + δs + νis + ωis)
= δt − δs − νis − ωis

= G̃ist − νit. (47)

When using the observable potential gain Ĝist to estimate equation (25), two biases arise
in m. As above, we can replace ξit = νit, and unobservable quality nuit causes noise
(biassing m towards zero), and a downward bias in m (over-estimation of the hockey stick
slope). For completeness, the estimated coefficient is:

m̂ = Cov(Ĝist, "̂)
V ar(Ĝist)

= Cov(G̃ist − νit, νit + "̃ist)
V ar(G̃ist − νit)

= Cov(G̃ist − νit, νit + µ0 + mG̃ist + εist)
V ar(G̃ist − νit)

= m
Cov(G̃ist − νit, G̃ist)
V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸
Classical measurement error

− V ar(νit)
V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸

Over-estimation bias
(because m < 0)

(48)

2. The simple repeat sales approach with T = 2 (one repeat sale) is:

P̂it = Xiβ + δt + νis + ωis. (49)
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Recall, the true gain is:

G̃ist = P̃it − Ris

= Xiβ + δt + νit − (Xiβ + δs + νis + ωis)
= δt − δs + νit − νis − ωis (50)

The potential gain is:

Ĝist = P̂it − Ris

= δt − δs

= G̃ist − νit + νis + ωis (51)

Hence the coefficient estimate is:

m̂ = Cov(Ĝist, "̂)
V ar(Ĝist)

= Cov(G̃ist − νit + νis + ωis, νit + "̃ist)
V ar(G̃ist − νit)

= Cov(G̃ist − νit + νis + ωis, νit + µ0 + mG̃ist + εist)
V ar(G̃ist − νit)

= m
Cov(G̃ist − νit + νis + ωis, G̃ist)

V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸
Classical measurement error

− V ar(νit)
V ar(G̃ist) + V ar(νit)

+ Cov(νis, νit)
V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸

if (=0, bias
(52)

If νit = νis, the last two terms cancel out, and assuming Cov(ωis, νit) = 0, this type of
repeat sales model would be unbiased. Note that the simple repeat sales model hence deals
well with time-invariant unobserved property quality (νit = νi), but otherwise relies on
the assumption that unobserved quality does not change much between the previous and
the current purchase. In order to relax this assumption, we use the two following models
which capture time-varying information on property value.

3. Combined repeat-sales model with time-varying observables:
Similar to the above, we get

m̂ = m
Cov(G̃ist − νit + ν̄itτ<T + ω̄itτ<T , G̃ist)

V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸
Classical measurement error

− V ar(νit)
V ar(G̃ist) + V ar(νit)

+ Cov(ν̄itτ<T , νit)
V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸

if (=0, bias
(53)

First, if time-varying observables are informative for prices, this information will be par-
tialled out from νit and the bias from the unobserved heterogeneity component is reduced
compared to the simple repeat sales model. Second, equation (53) shows that the bias in
m is decreasing with the magnitude of the explanatory power of ν̄itτ<T for νit. The choice
of repeat sales model hence also depends on what we believe most accurately captures the
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data-generating process behind νit - we should use T = 2 if we believe νit ≈ νis, but we
should use T = 3 if we believe that νit ≈ (νis + νis′)/2 etc. If time-varying observables
or lagged average residuals perfectly capture time-varying unobserved quality, then this
model generates a bias-free approach. Third, the term on average idiosyncratic over-or
under-payments (ω̄itτ<T ), and hence this component of the measurement error, decreases
with T . In our implementation of the models, we hence include different models for T = 2,
T ≥ 2, T ≥ 3, and T ≥ 4.

4. Time-varying information on renovations:

P̂it = Xiβ + δt + rit, (54)

implies that the potential gain estimated on the set of observables is:

Ĝist = G̃ − (νit − rit), (55)

and hence the estimated coefficient is

m̂ = m
Cov(G̃ist − νit + r̄it, G̃ist)

V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸
Classical measurement error

− V ar(νit)
V ar(G̃ist) + V ar(νit)

+ Cov(r̄it, νit)
V ar(G̃ist) + V ar(νit)︸ ︷︷ ︸

if (=0, bias

(56)

We can think of the inclusion of rit as including a direct proxy variable of time-varying
unobserved quality into the set of observables Xit. Hence the intuition is similar to 3., the
bias in m is decreasing with the magnitude of the explanatory power of rit for νit. If the
renovations variable perfectly captures time-varying unobserved quality, then this model
also generates a bias-free approach.

I.3.3 Discussion

We implement these different models and compare them below.24 Table L.4 provides an overview
of all the models that we implement. Figures L.16, L.17 and L.18 provide a graphical overview
of the predictive ability of the main models, and a comparison using binned scatter plots for
a) the listing premium over potential gains, and b) the probability of sale within six months
and the listing premium, respectively. Table L.8 provides a quantitative comparison of the
main models, by estimating summary statistics of the moment relationships that we use to
estimate our structural model. In particular, we estimate piecewise linear slopes for the listing
premium over negative (row 2) and positive (row 3) potential gains, and for the probability
of sale within six months for positive listing premia (row 6), using the same support as we
use for the individual moments. Our main models are: the baseline model (Ia), the baseline
model augmented with lagged 1-year renovation expenses (Ib), a simple repeat sales model
based on shire-level house price changes (II), the combined baseline hedonic and repeat sales

24Note that in the case of any repeat sales model, the estimation requires at least one repeat transaction of
the property (T = 2), and more for T > 2. Our sample contains at least one repeat sale in the transaction
register data between 1992 and 2016 by definition, as we need to observe the previous purchase price. For more
than one repeat sale within this time window, however, the properties that get traded more often may become
less representative of the overall sample. Hence the optimal number of repeat transactions is ambiguous, and we
estimate models for properties where T = 2, T ≥ 3 and T ≥ 4, as well as using the maximum number of repeat
sales available for each property (“all”, i.e. T ≥ 2).
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model with renovation expenses and the lagged pricing residual for one repeat sale (IIIa), and
the equivalent for any number of repeat sales and average lagged residuals (IIIb). Table L.9
provides the concomitant comparison for variants of the repeat sales models, and sub-samples
for which we observe renovation tax expenses.

Focusing on the main models in Table L.8, we find that that the level of the listing premium
around zero potential gains is between 12 to 15 percent across our preferred models, but quite
high (27 percent) for the simple shire-level repeat-sales model (II) together with a low R2 of
0.57 (while all other models have R2s between 0.87 and 0.88), suggesting that it is indeed the
least precise model as it does not include time-varying information from observables. Figure L.4
documents average prediction errors. The hockey stick of listing premia over negative potential
gains is between -0.45 to -0.54 across main models, and between between -0.87 to -0.93 for
demand concavity (row 6, slope of probability of sale with respect to positive listing premia),
but is almost half as steep for the simple repeat sales model (-0.49) which we discuss further
below. Column Ic provides an out-of-sample estimation of the baseline model, by estimating
the model on a random 50% sample of the data, and fitting prices on the other half, and using
these to generate listing premia, potential gains and home equity. The results show averages and
standard errors from 100 bootstrap draws (starting from the extensive margin). It demonstrates
that the moment statistics are very robust to the data used when fitting the model, with an
average 0.873 out-of-sample R2.

In Table L.9, columns IVa to IVc show the combined hedonic and repeat sales model split
by the number of repeat sales observed (2, 3 or more, and 4 or more, respectively), with broadly
similar results, a slightly decreasing hockey stick and increasing demand concavity with the
number of repeat sales observed, as well as a higher propensity to list for a given potential gain
(row 7) - illustrating that conditioning on higher number of repeat sales also conditions on a
subset of possibly more selected and more liquid properties. Column IVd shows the model with
any number of repeat sales. Moving from 2 to 4 or more repeat sales increases the model R2

from 0.881 to 0.895, as the sample is increasingly selected on more liquid and frequently traded
properties, improving valuation accuracy using our model, but most moments, in particular the
demand concavity slope in row (6), only varies between -0.91 to -0.99, assuaging concerns that
unobserved quality causes a substantial bias in demand concavity.

Our preferred models for comparison are IIIa and IIIb, which combine the repeat sales
approach with time-varying observable hedonics and information on renovation expenses. IIIa
is based on pairwise repeat sales (T = 2) and includes the lagged pricing residual to the hedonic
model with time-varying observables and renovation expenses, which is similar in spirit to the
approach used in Genesove and Mayer (2001). We further generalize the repeat sales approach
to also include average lagged pricing residuals for any number of repeat sales observed in IIIb
(T ≥ 2).

In sum, we implement each one of the feasible approaches that we discuss above. None
of these approaches invalidates the basic moments that we detect in the data, despite being
subject to potentially different sources of underlying error. We also implement different versions
of the repeat sales model by varying T , and results remain broadly robust. That should provide
some reassurance that our main estimates are not being generated solely by the sources of error,
but rather, by the deeper structural forces that make sellers set listing premia in response to
underlying potential gains and losses.

45

Electronic copy available at: https://ssrn.com/abstract=3396506



I.3.4 Comparison to Genesove and Mayer (2001) Bounding Approach

The pairwise repeat sales model, i.e. including the last pricing residual to the baseline model,
in model IVa (Repeat Sales (T = 2)) is most comparable in spirit to what Genesove and Mayer
(2001) propose. With only time-invariant unobserved heterogeneity, they show that including
the pricing residual from the previous sale (as a noisy proxy for unobserved quality) likely
provides a lower bound estimate of the relationship between ask prices and losses and ask
prices. We replicate Table 2 in their paper in Table A.2 to compare our results and data directly
to theirs. Comparing column (2) and (1), the effect from a 10% increase in potential losses is
between a 4.7 to 5.7% increase in list prices, compared to their 2.5 lower bound and 3.5% upper
bound estimate. In addition to this approach, our combined repeat sales models (IIIa and IIIb)
use time-varying hedonic characteristics and renovation expense data to capture the remaining,
possibly time-varying, unobserved heterogeneity, and our results are broadly robust. We hence
propose additional model components to narrow in on the remaining variation that could be
explained by unobserved quality.

I.4 Reference Dependence with Loss Aversion
In the more general case, in which the seller also exhibits loss aversion, our structural model
implies the following data-generating process for listing premia:

List − P̃it = µ0 + f(η, λ, (P̃it − Ris)
︸ ︷︷ ︸

(G̃)

) + εit, (57)

where f is either a piecewise linear function with two kinks somewhere in the neighbourhood of
zero, or a convex function which is steeper in the loss domain and flatter in the gain domain.

If we can approximate this smooth function by a series of piecewise linear segments, we
can assess the impact of unobserved quality locally analogously to our discussion above. For
example, consider an (erroneous, but utilized in the literature earlier) two-piece piecewise linear
specification with a kink at a potential gains level of zero:

List − P̃︸ ︷︷ ︸
!̃ist

= µ0 + m0 (P̃it − Ris)−
︸ ︷︷ ︸

G̃−
ist

+m1 (P̃it − Ris)+
︸ ︷︷ ︸

G̃+
ist

+εit, (58)

where a −/+ superscript indicates that the value of the respective quantity is negative or
positive, respectively.

Focusing on listing premia over negative potential gains, and assuming that εit and ξit are

46

Electronic copy available at: https://ssrn.com/abstract=3396506



uncorrelated with “true” potential gains G̃ist, our estimated coefficient of interest is:

m̂0 = Cov(Ĝ−
ist, "̂ist)

V ar(Ĝ−
ist)

= Cov((G̃it − ξit)−, "̃ist + ξit)
V ar((G̃ist − ξit)−)

(59)

= Cov((G̃it − ξist)−, µ0 + m0G̃−
it + m1G̃+

it + εit + ξit)
V ar((G̃ist − ξit)−)

= m0
Cov((G̃ist − ξist)−, G̃−

it)
V ar((G̃ist − ξit)−)

︸ ︷︷ ︸
Measurement

error/Smoothing

− Cov((G̃ist − ξist)−, ξist)
V ar((G̃ist − ξit)−)

︸ ︷︷ ︸
Over-estimation bias

(because m < 0)

(60)

Equation (60) shows that in the vein of Genesove and Mayer (2001), unobserved quality can
cause measurement error, and a hockey stick slope estimate that is potentially over-estimated,
i.e. too steeply negative.

I.5 Regression Kink Design (RKD)
In order to verify that our approach is robust to measurement error not only in η (as shown
above), but also that there is a significant slope change as predicted by λ > 1, we employ a
regression kink design (RKD), first suggested by Card et al. (2015b) and implemented e.g.,
by Landais (2015), Nielsen et al. (2010), Card et al. (2015a). We employ this method with
the caveat that the model does not predict a sharp kink exactly at Ĝ, due to the smoothing
factors described in the main text, and that we use zero for the kink threshold, even though the
listing premia slope increase starts at Ĝ > 0. We complement this robustness check with our
non-parametric evidence on bunching around zero realized gains.

Note that while the realized gain is an outcome of household decision making, households
only have imperfect control over potential gains Ĝ which we use as the running variable V ,
with a kink point at zero (v = 0): as long as households can only imperfectly manipulate on
which side of the threshold they are, the resulting differences in behavior above and below the
threshold can be interpreted as causal.25

The identifying assumption relies on other confounds being smooth around the threshold,
e.g. in our case, that unobserved property quality should not have a significant kink precisely
at the threshold. We show indirect evidence for this by plotting binned averages of observable
property characteristics and household characteristics (Figure L.20). We also show that the
distribution of the running variable is smooth around the threshold (no bunching in potential
gains) (Figure L.19).

Following Card et al. (2017), we compute the RKD estimate of a given running variable V
as follows:

τ = lim
v→v+

dE["it|Vit = v]
dv

∣∣∣∣
Vit=v

− lim
v→v−

dE["it|Vit = v]
dv

∣∣∣∣
Vit=v

, (61)

25For instance, while households can spend money to renovate their house to achieve a higher market price,
they cannot control aggregate house price movements that will also affect the house value.
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based on the following RKD specification (Landais 2015):

E["it|Vit = v] = κm + κt + ξXit +




p∑

p=1
γp(ν − ν)p + νp(v − v)p

V ≥v



 . (62)

where |v − v| < b. (63)

We estimate versions with and without controls (time (κt) and municipality (κm) fixed effects,
home equity, and net financial assets), as well as the previous purchase year, which we include to
ensure that households are balanced along the dimension of housing choice, and is predetermined
at the point of inclusion in this specification. V is the assignment variable, v is the kink threshold,

V ≥v is an indicator whether the experienced property return is above the threshold, and b is
the bandwidth size.

Table L.10 reports results across different bandwidths within which we fit a local linear
function on each side of the threshold. Figure L.21 provides further robustness checks on using
local quadratic estimation and bandwidth choice.26

The estimate of the increase in (absolute) slope at zero is about 0.2, which is broadly con-
sistent with our baseline moment summary statistics in which the listing premium slope over
positive potential gains is around -0.1, and around -0.5 around negative gains, despite using
additional controls and restricting to a narrower estimation range around the threshold.

I.6 Demand Concavity
I.6.1 Estimation

Building on previous notation, let α("̃) denote the probability of a quick sale, which is decreasing
in the true listing premium "̃. Again using a piecewise-linear formulation, we have

αist("̃) = µ1 + n0(List − P̃it︸ ︷︷ ︸
!̃−

ist

)− + n1(List − P̃it︸ ︷︷ ︸
!̃+

ist

)+ + εist, (64)

where the coefficient n1 measures the decrease in the probability of sale αist for a given increase
in the listing premium, and αist is an indicator variable taking the value 1 if a sale was completed
in six months, and 0 otherwise.

With observed listing premia

"̂ist = List − (P̂it + ξit) = "̃ist + ξit, (65)

the feasible regression is

αist("̂) = µ1 + n0("̃ist + ξit)− + n1("̃ist + ξit)+ + εist, (66)

26The precision but not the size of the estimate for unconstrained households depends on the use of a local linear
compared to a local quadratic function. Hahn et al. (2001) show that the degree of the polynomial is critical in
determining the statistical significance of the estimated effects. In particular, the second-order polynomial needed
to identify derivative effects leads to an asymptotic variance of the estimate that is larger by a factor of 10 relative
to the first-order polynomial. We verify that the qualitative patterns that we detect are broadly unaffected by the
use of either polynomial order, but that the standard errors, consistent with Hahn et al. (2001), are substantially
higher for the second-order polynomial, reported in Figure L.22.
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with estimated main coefficient of interest

n̂1 = αist("̂), ("̃ist + ξit)+)
V ar("̃ist + ξit)+

= Cov(µ1 + n0"̃−
ist + n1"̃+

ist + εist, ("̃ist + ξit)+)
V ar("̃ist + ξit)+

= n1
Cov("̃+

ist, ("̃ist + ξit)+)
V ar("̃ist + ξit)+

︸ ︷︷ ︸
Measurement error

+ Cov(εist, ("̃ist + ξit)+)
V ar("̃ist + ξit)+

︸ ︷︷ ︸
0 if ξit⊥εit

(67)

Equation 67 shows that the presence of ξit may cause measurement error. Depending on
assumptions about the error term εit, there is not neccessarily a bias when estimating the slope
of the probability of sale for positive listing premia. Sources of such correlation could be local
housing market conditions that affect local probabilities of sale and could be correlated with e.g.
renovation expenses. We deal with this concern by estimating demand concavity across different
geographic markets, to isolate the relationship between demand concavity and the hockey stick
in listing premia within a given sub-market.
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I.7 Simulation Approach to Bounding Unobserved Quality Effects
To show model robustness to unobserved quality that is correlated with the list price, we first
assume that a portion of the listing premium can be attributed to unobserved quality, i.e., the
“true” listing premium "̃ist is equal to:

"̃ = " − ζ, (68)

with ζ ∼ N (0, σ2
ζ ). Second, under the assumption that the same error affects the estimation of

P̂ , we de-bias P̂ , and all variables affected by it, by the same amount:

P̃ = P̂ − ζ, G̃ = Ĝ − ζ, H̃ = Ĥ − ζ. (69)

Third, we re-construct the demand function, the distribution of final price realizations and
the probability of listing based on the de-biased value of P̂ . Finally, we re-estimate values of
structural parameters using the set of adjusted empirical moments.

The reason why we opt for a simulation approach here, as opposed to a rescaling of the
observed level of the listing premium, is that we want to avoid the assumption that the listing
premia for all properties are subject to exactly the same fixed adjustment factor. Instead, it
seems more likely that the prediction error (i.e., the degree to which the seller has an informa-
tional advantage relative to the econometrician) is idiosyncratically distributed across the set of
properties.

One decision that we needed to take is whether the prediction error is symmetric around
zero, and we don’t see a strong reason to believe otherwise. We also thought about whether we
should simulate a correlation between the prediction error and the level of potential gains Ĝ,
for example, because we underpredict prices of low-priced properties and overpredict high-price
properties, which would lead to an artificial negative slope of the “hockey stick”. Again, we
don’t see a justification for this, because in the data the effect goes in the opposite direction,
i.e., we slightly overpredict prices of lower-value properties and underpredict those at the top
(see online appendix section E.1 and Figure L.4.)

Finally, what is a reasonable value of σζ for the calibration of the magnitude of unobserved
quality? To answer this question, we thought harder about the nature of the prediction error
at work here. By the logic described earlier, if the seller has a true informational advantage
over the econometrician, this should be evident in the final transaction price. By estimating
the marginal predictive power of listing prices for final prices beyond the hedonic model, we can
recover one possible upper bound for this informational advantage.

More formally, let ε = P − P̂ be the estimated residual from the hedonic model and εL

the estimated residual from a hedonic model augmented with the listing price as an additional
explanatory variable. A natural upper bound for the variance σ2

ζ is then given by the variance
σ2

∆ε of ε−εL. Now, σ2
∆ε can stem from two sources: the first is unobserved quality, as discussed,

and the second is the equilibrium link between listing prices and realised outcomes stemming
from negotiations and bargaining between buyers and sellers. Since there is a strong relationship
between observed listing premia and the probability of sale, we infer that this second component
has a material effect. This seems reasonable, since assuming that all such variation comes
from unobserved quality is tantamount to shutting down the possibility of any “fishing” and
subsequent negotiations. Put differently, if all is unobserved quality, de-biasing generates flat
β("), sellers have no incentive to vary listing premia at all, and this totally shuts down the
intensive margin decision in reality. We therefore consider three possible cases in our simulation,
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allowing unobserved quality to account for 10%, 25% and 50% of the variation of σ2
∆ε.

The plots below give an overview of the effects of the de-biasing procedure, implemented by
running 500 bootstrap samples and adjusting the empirical moments as indicated in equations
(68) and (69) above, with ζ drawn from a normal distribution with mean 0 and variance σ2

ζ . We
distinguish between three cases σζ ∈ {0.044, 0.075, 0.105}, labeled as ‘Conservative’, ‘Moderate’
and ‘Aggressive’. In each plot, we report the average value of each binned moment, across the
set of simulated samples.

The structural parameters implied by the three alternative magnitudes of unobserved quality
variation are reported in Table 2 in the paper.

J Bunching Estimation
J.1 Robustness
We conduct several robustness checks for bunching in realized gains at 0, where the realized sales
prices is equal to the reference point of the previous sales price. First, we show the prevalence
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of sales at round numbers in Figure L.23. We then show the distribution of realized gains by
excluding sales at rounded prices of 10,000; 50,000; 100,000 and 500,000 DKK (Figure L.24),
respectively. We further show that bunching is present across all quintiles of the previous sales
price (Figure L.25) and when splitting into quintiles by holding period (Figure L.26), except for
the sub-sample with holding periods of greater than 12 years (top quintile).

Lastly, in Figure L.28, we show that the estimate of excess mass is robust when using a
hedonic pricing model with cohort (i.e., previous purchase year) fixed effects.

Overall, the degree of bunching seems to be declining with the holding period. However, a
primary reason for this observation is the fact that property prices have trended upwards over the
sample period, and longer holding periods are associated with valuations that are increasingly
farther away from the reference point. This decreases the mass of all realized prices at or close
to the reference point, even in the counterfactual distribution.

When we take this into account, we find that the magnitude of the relative mass (i.e., the
excess mass relative to the counterfactual, which is the basis for the identification of reference
dependence and loss aversion) remains remarkably stable, even for holding periods up to 12
years.

In the left-hand plot of Figure L.27, we show the robustness of excess mass for different
holding periods, measured exactly at the reference point (i.e., the “spike”, which is equal to
69% in the full sample). The error bands indicate 95% confidence intervals, calculated across
bootstrap samples. Analogously, in the right-hand plot, we show the robustness of the missing
mass immediately below the reference point (i.e., the “notch”, equal to -24% in the full sample).

J.2 Bunching of Listing Prices around Nominal Purchase Price
Figure A.3 reports the distribution of listing prices around the nominal reference point. In our
model, listing prices will also be more likely to be located above the reference point, as a result
of loss aversion. Loss averse sellers will aim to realize gains in the positive domain. To do so,
they must set listing prices above their reference point, because they take into account market
conditions that translate listing premia into realized premia (the β(") function). But this does
not imply bunching of listing prices exactly at the reference point. Indeed, when we solve for the
distribution of the differences between listing prices and reference prices predicted by the model,
we find that there is an interval to the right of the reference price in which sellers set listing
prices which are quite close to one another. However, when we inspect Figure A.3, while we do
see that there is such behaviour in a region between roughly 7% and 10% above the reference
price, there is also another region visible in the plot. Contrary to the model, there is some
bunching of listing prices precisely at the reference price. This suggests a separate, additional
role for the salience of the reference point in sellers’ listing decisions.

K Household Demographics
K.1 Liquid Financial Wealth
Figure L.29 Panel A shows the distribution of liquid financial assets in the sample. The wealthiest
households in the sample have above 2 million DKK, which is roughly US$ 300,000 in liquid
financial assets (cash, stocks, and bonds). The median level of liquid financial assets is 88,000
DKK and the mean in the sample is 327,000 DKK. When we divide gross financial assets by
mortgage size, we find that households, at the median, could relax their constraints by around

52

Electronic copy available at: https://ssrn.com/abstract=3396506



6.22 percent if they were to liquidate all financial asset holdings. However, the right-hand side of
the top panel of the figure shows that this would be misleading. Looking at net financial assets,
once short-term non-mortgage liabilities (mainly unsecured debt) are accounted for, substantially
changes this picture. The median level of net financial assets in the sample is -86,000 DKK and
the mean is -99,000 DKK, and the picture shows that households’ available net financial assets
actually effectively tighten constraints for around 60 percent of the households in our sample.
When we divide net financial assets by mortgage size we find, for households with seemingly
positive levels of financial assets, that the constraints are in fact tighter by 7.9% at the median.
Put differently, if households were to liquidate all financial asset holdings and attempt to repay
outstanding unsecured debt, at the median, they would fall short by 7.9%, rather than be able
to use liquid financial wealth to augment their down payments.

K.2 Age and Education
Given the natural reduction in labor income generating opportunities as households approach
retirement, we might also expect that mortgage credit availability reduces as households age.
And both age and education have been shown in prior work to affect the incidence of departures
from optimal household decision-making (e.g., Agarwal et al., 2009, Andersen, et al., 2018),
meaning that we might expect preference-based heterogeneity across households along these
dimensions. Figure L.29 Panel B shows the age and education distributions of households in the
sample. As expected, home-owning households with mortgages are both older and more educated
than the overall distribution of households. In Figure L.30 and Table L.10 we therefore control
for the amount of net financial assets, age, and education, to ensure that we accurately measure
the impact of these constraints on household decisions. Figure L.31 shows the listing premium
“hockey stick” in the sample of sellers with no mortgage outstanding. This part of the analysis
addresses measurement concerns that have affected prior work in this area.
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L Additional Appendix Material

Figure L.1
Concave Demand

This figure illustrates the link between concave demand and the choice of optimal listing premia. We plot
a stylized listing profile resulting from a case of pure reference dependence with no loss aversion (η > 0 and
λ = 1). Since the probability of sale does not respond to listing premia set below a certain level #, it is
rational for sellers to not respond to the exact magnitude of the expected gain. A steeper slope of demand
translates into a general flattening out of the listing premium profile.
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Figure L.2
Cost of borrowing

This figure shows the average cost of borrowing as percentage of loan size for each level of loan-to-value for a
house price of 3 million DKK. The range from 0 % to 80% LTV is covered by a 2% mortgage. The solid line
shows the cost when bridging the 80% to 95% with a 6% bank loan and the dashed line shows the hypothetical
case where the full 95% is funded by a mortgage. Costs include interest rates, fees and other payments to the
bank, mortgage bank, and the state.
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Figure L.3
Listing premia by home equity: Alternative parameterization

This figure shows the fitted listing premium profile for a version of the model with a concave penalty function
for violating the down-payment constraint. The model is evaluated at the same set of parameters as in row 8 of
Table 2, with θmu = 1.475 and µ = 1.125.
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Figure L.4
Actual vs. Predicted Price of Sold Properties

This figure shows a binned scatter plot of the estimated log hedonic price ln(Pit) versus the realized log sales
price, for the sample of listings that resulted in a sale (N = 114, 303). The hedonic model is as follows:
ln(Pit) = ξtm + βft i=f + βxXit + βfx i=f Xit + Φ(vit) + i=f Φ(vit) + εit, where Xit is a vector of property
characteristics, namely ln(lot size), ln(interior size), number of rooms, number of bathrooms, number of showers,
a dummy variable for whether the property was unoccupied at the time of sale or retraction, ln(age of the
building), a dummy variable for whether the property is located in a rural area, a dummy for whether the
building registered as historic, and ln(distance of the property to the nearest major city). i=f is an indicator
variable for whether the property is an apartment (denoted by f for flat) rather than a house. Φ(vit) is a
third-order polynomial of the previous-year tax assessor valuation of the property. The R2 of the regression is 0.88.

�
�
��

�
�
��

�
�
��

+
H
G
R
Q
LF
�S
U
LF
H
��
OR
J
�

� ��� � ��� � ���

5HDOL]HG�VDOHV�SULFH��ORJ�

���GHJUHH�OLQH

63

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure L.5
Accuracy of Tax-Assessed Value

Panel (a) shows the tax-assessment relative to the realized sales price as well as the distribution of prices.
Panel (b) compares the tax-assessed value to realized sales prices over the full period of time for which we
have data. Panel (c) zooms in on our sample period. Data in (a) is the final data set of listings from 2009 to 2016.

(a) Hedonic Price vs. Tax-Assessed Value
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Figure L.6
Listing Premia across Potential Gains and Tax-Assessed Value

This figure compares the listing premium to potential gains relationship for the baseline hedonic model and the
tax-assessed value, with data restricted to 2010-2012, when the standalone tax-assessment is most up to date.

(a) Standard hedonic model
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Figure L.7
Probability of Sale by Listing Premia (Concave Demand) and Tax-Assessed Value

This figure compares demand concavity for the baseline hedonic model and the tax-assessed value, with data
restricted to 2010-2012, when the standalone tax-assessment is most up to date.
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Figure L.8
Renovation Expenses across Potential Gains and Listing Premia

Ĝ and #̂ These figures show binned averages of different variants of the renovation expense variable, across potential
gains Ĝ, and listing premia #̂. Bands reflect 95% confidence intervals.
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Figure L.9
Distribution of R2s from Out-of-Sample Estimation of the Hedonic Model

These figures show the distribution of R2 from 1000 regressions of realized price on out-of-sample-predicted
hedonic prices.

(a) 25 percent sample
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Figure L.10
Listing Premia across Potential Gains - Out-of-Sample Predictions

This figure compares the listing premium - potential gains relationship for out-of-sample predictions using different
out-of-sample size cut-offs. Dots are averages of 1000 iterations

(a) 25 percent out of sample
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(b) 50 percent out of sample

�
��

��
��

��
/,
67
,1
*
�3
5(
0
,8
0
��O
Q�
/�
��O
Q�
3B
KD
W

��� ��� � �� ��
*$,1��OQ�3BKDW���OQ�5

$YHUDJH�QXPEHU�RI�REV�SHU�ELQ������

(c) 75 percent out of sample
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(d) Main data, only sold properties
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Figure L.11
Probability of Sale by Listing Premium (Concave Demand) -

Out-of-Sample Predictions

This figure compares the demand concavity for out-of-sample predictions using different cut-offs. Dots are averages
of 1000 iterations. Probability of sale refers to the probability of sale within 6 months.

(a) 25 percent out of sample
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(b) 50 percent out of sample
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(c) 75 percent out of sample
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(d) Main data, only sold properties
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Figure L.12
Listing Premia and Down Payment, and Current and Next House Price

Figure (a) shows a binned scatter plot of the listing premium against the down-payment of a seller’s next house,
controlling for current home equity (Ĥ), based on a sub-sample of the data for which we have information on
the next house purchase price and mortgage value (N = 16, 115). Figure (b) shows a binned scatter plot of the
current home price against the next house price (in 2015 DKK), based on a sub-sample of the data for which we
have information on the next house purchase price (N = 36, 952).
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Figure L.13
Time-On-the-Market and Retraction Rate

This figure shows the relationship between (a) time-on-market, and (b) the retraction rate for different
levels of the listing premium.

��
��

��
��

��
7L
P
H�
RQ
�WK
H�
P
DU
NH
W��
Z
HH
NV
�

��� ��� � �� �� ��
/,67,1*�35(0,80��OQ�/���OQ�3BKDW

��
��

��
��

��
6K
DU
H�
RI
�UH
WUD
FW
HG
�OL
VW
LQ
JV
���

�

��� ��� � �� �� ��
/,67,1*�35(0,80��OQ�/���OQ�3BKDW

71

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure L.14
Illustration of Homogeneity of Housing Stock for IV Estimation

Panel A illustrates what is defined as “row houses” in the Danish building and housing register (Bygnings- og
Boligregistret). Each registered property can be looked up on the register via . The right-hand side shows a
screenshot of the property outline of a house that is part of a row house unit. On contrast, Panel B shows the
property outline of a detached single family house, which has visibly different features from other surrounding
houses and is less homogeneous than the row house unit.

Panel A

Panel B
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Figure L.15
Regional Variation in Demand Concavity, Listing Premium-Gain Slope and Housing Stock

Homogeneity

Panel A shows a scatter plot of the correlation between the main instrument, the share of listed apartments and
row houses in a given municipality, and the degree of demand concavity. The degree of demand concavity is
measured as the slope coefficient of the effect of an increase in the listing premium on the probability of sale
within six months, for positive listing premia (# ∈ [0, 40]). Panel B shows the correlation between the estimated
listing premium slope over negative potential gains (Ĝ ∈ [−40, 0)) and demand concavity across municipalities.

Panel A
Homogeneity of Housing Stock and Demand Concavity across Regions

Panel B
Demand Concavity and “Hockey Stick” Slope across Regions
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Figure L.16
Estimated vs. Realized ln(price) Across Main Models

This graph compares the main model estimated prices to the realized sales price in logs, across binned averages
of the realized sales price. Panel A does this across all properties, while Panel B restricts to properties below 5
million DKK.

Panel A: All
�

�
�

�
�

��
(
VW
LP
DW
HG
�S
ULF
H�
�OQ
�

� � � � � ��
5HDOL]HG�VDOHV�SULFH��OQ�

%DVHOLQH %DVHOLQH��Z��UHQRY�� &DVH�6KLOOHU��6KLUH�LQGH[�
5HSHDW�6DOHV�� 5HSHDW�6DOHV��

Panel B: Below 5 mil. DKK

�
�

�
�

�
(
VW
LP
DW
HG
�S
ULF
H�
�OQ
�

� � � � �
5HDOL]HG�VDOHV�SULFH��OQ�

%DVHOLQH %DVHOLQH��Z��UHQRY�� &DVH�6KLOOHU��6KLUH�LQGH[�
5HSHDW�6DOHV�� 5HSHDW�6DOHV��

74

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure L.17
Hockey Stick and Demand Concavity Across Main Models

These figures compare our two key empirical shapes across our main models of P̂ . Panel A shows the hockey stick
relationship for listing premia over potential gains, and Panel B shows demand concavity (probability of sale with
respect to listing premia).
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Figure L.18
Hockey Stick and Demand Concavity Across Repeat Sales Models

These figures compare our two key empirical shapes across our repeat sales models of P̂ , for differing numbers of
repeat sales observations. Panel A shows the hockey stick relationship for listing premia over potential gains, and
Panel B shows demand concavity (probability of sale with respect to listing premia).
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Figure L.19
RKD Validation: Smooth Density of Assignment Variable

This figure shows the number of observations in bins of the assignment variable, gain. Following Landais (2015),
the results for the McCrary (2008) test for continuity of the assignment variable and a similar test for the
continuity of the derivative are further shown on the figure. We cannot reject the null of continuity of the
derivative of the assignment variables at the kink at the 5% significance level.27
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Figure L.20
RKD Validation: Covariates Smooth around Cutoff

This figure shows binned means of covariates (home equity/gain, age, length of education, liquidity, bank debt,
financial wealth) over bins of the assignment variable, gain. It provides visual evidence for these covariates
evolving smoothly around and not having a kink at the cutoff point.
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Figure L.21
RKD Robustness: Estimates for Different Bandwidths (Gain)

This figure plots the range of RKD estimates and 95% confidence intervals across bandwidths ranging from 5 to
50, using a local quadratic regression. The optimal bandwidth is indicated based on the MSE-optimal bandwidth
selector from Calonico et al. (2014).
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Figure L.22
RKD Estimation: Local Linear vs. Local Quadratic Estimation Results

This figure compares regression kink estimates of listing premia across potential gains, with a cutoff point at 0
potential gains, using a local linear regression with estimates using a local quadratic regression, across different
bandwidths b ∈ {b∗, 15, 20, 30}. b∗ refers to the MSE-optimal bandwidth selector from Calonico et al. (2014).
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Figure L.23
Incidence of Round Numbers by Rounding Multiple

This figure shows the share of sold houses with a price at a given round number.
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Figure L.24
Bunching Robustness: Excluding Sales at Rounded Prices

This figure shows robustness for the frequency of sales across realized gains (right-hand panel), against bunching
being driven by round sales prices. The frequency is computed without sales that take place at 10,000; 50,000;
100,000; and 500,000 DKK, respectively. The dots represent the empirical frequency of observations in each
1 percentage point bin of realized gains, and the dotted line reflects the counterfactual frequency based on 1
percentage point bins of potential gains.

10,000 DKK 50,000 DKK

100,000 DKK 500,000 DKK
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Figure L.25
Bunching Robustness: Across Previous Sales Price

This figure shows robustness for the frequency of sales across gains at the realized price, by splitting the sample
by quintiles of the previous sales price. The dots represent the empirical frequency of observations in each 1
percentage point bin of realized gains, and the dotted line reflects the counterfactual frequency based on 1
percentage point bins of potential gains.

Below DKK 659,000 DKK 659,000 – DKK 953,000

DKK 953,000 – DKK 1,313,000 DKK 1,313,000 – DKK 1,901,000

Above DKK 1,901,000
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Figure L.26
Bunching Robustness: Across Holding Periods

This figure shows robustness for the frequency of sales across gains at the realized price, by splitting the sample
by quintiles of the months since last sale (holding period). The dots represent the empirical frequency of
observations in each 1 percentage point bin of realized gains, and the dotted line reflects the counterfactual
frequency based on 1 percentage point bins of potential gains.

Below 3 years 3–6 years

6–9 years 9–12 years

Above 12 years
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Figure L.27
Bunching Robustness: Excess Mass across Holding Periods

This figure shows robustness for the frequency of sales across gains at the realized price. The dots represent
excess mass measures as the frequency of observations in each percentage point bin of realized gains, relative
to the frequency of observations in the same percentage point bin, coresponding to potential gains. Error bars
indicate 95% confidence intervals, based on bootstrap standard errors.

Excess mass at G = −1% Excess mass at G = 0%
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Figure L.28
Bunching Robustness: Model with Cohort Fixed Effects

This figure shows robustness for the excess mass of the frequency of sales across realized gains relative to the
potential gains counterfactual, using the baseline hedonic model augmented with cohort fixed effects.
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Figure L.29
Summary Statistics: Household Demographics

This figure shows four histograms of household characteristics. Panel A depicts the distribution of available
liquid assets (left) and net financial wealth (right). Liquidity is measured as liquid financial wealth (deposit
holdings, stocks and bonds). Net financial wealth is measured as liquid financial wealth net of bank debt. 1.6
percent of households have liquid asset above 2 million DKK, and 1.2 percent have net financial assets below -3
million or above 3 million DKK, but the figures are truncated at these values for better visual representation of
the main mass. Panel B shows household characteristics. Age measures the average age in the household, and
education length measures the average length of years spent in education across all adults in the household.
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Figure L.30
Residualized Listing Premium and Gains and Home Equity

This figure shows the relationship between residual listing premium and gains or home equity, respectively. The
residual listing premium is computed with household controls (age, education length, net financial assets) and
municipality and year fixed effects partialled out.
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Figure L.31
Listing Premium “ Hockey Stick” for Sellers Without Mortgage

This figure shows the relationship between listing premium and potential gains for the sample of households with
no mortgage (N = 42, 124), using a binned scatter plot of equal-sized bins for Ĝ ∈ [−50, 50].
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Table L.1
Construction of Main Dataset

This table describes the cleaning and sample selection process from the raw listings data to the final matched data.

All listings of owner-occupied real estatea 615,040
Unmatched in registersb -107,679

507,361
Cleaning
No reference pricec -144,962
Owner ID not uniquely determinedd -71,876
Non-household buyer -10,382
Foreclosures -6,416
Extreme pricee -5,499
Owner ID not foundf -3,987
Missing lot size -2,823
Error in listing or previous purchase dateg -1,915
Intra-family sale and other special circumstances -2,101
No listing price -879
Missing hedonic characteristics -8

256,513
Sample selection
Summer house -24,098
Professional investorh -18,312

Final data 214,103
Of which with a mortgage 172,225
Of which without a mortgage 41,878
a Excluding listings of cooperative housing.
b Reasons could be misreported addresses or non-ordinary owner-occupied housing.
c Purchased before 1992.
d E.g. properties with several owners from different households.
e Listed or sold at prices below 100,000 DKK or above 20,000,000 DKK
(2015-prices) or marked as extreme price by Statistics Denmark.
f No owner ID found in registers.
g Listing date is before previous purchase date.
h Seller owns more than 3 properties.
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Table L.2
Cost of borrowing

28he table shows approximated costs of funding a home through a mortgage and a bank loan.
Prices are based on small surveys of banks and mortgage bank, conducted by bolius.dk and
mybanker.dk.

Mortgage (up to 80% LTV)
Bank fee29 ∼9,000 DKK
Stamp fee (fixed amount) 1,750 DKK
Stamp fee (percentage) 1.45%
Brokerage ∼0.15%
Spread ∼0.20%
Bidragssats < 40%LTV ∼0.38%
Bidragssats 40-60% LTV ∼0.83%
Bidragssats 60-80% LTV ∼1.11%
Bank loan (80-95% LTV)
Bank fee 0-14,000 DKK
Stamp fee (fixed) 1,660 DKK
Stamp fee (percentage) 1.5%
Sources:
https://www.bolius.dk/boliglaan-i-banken-find-det-billigste-18078
https://www.mybanker.dk/sammenlign/bolig/bidragssatser/
https://www.bolius.dk/omkostninger-ved-at-koebe-bolig-18145
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Table L.3
R2 of Hedonic Model - Contributions

This table shows the R2 from different components of the hedonic model for the sample period 2009-2016, as well
as the period pre-2013 and post-2013. Row 1 presents the R2 from using the hedonic characteristics only. Row 2
shows the R2 from municipality-year fixed effects, and row 3 the R2 from up to the third-degree polynomial of
the tax-assessed property value. Row 4 shows the contribution of lagged renovation tax exemptions for the years
2012 to 2016. Column 1, 3, and 5 show separate contributions of each component, and column 2, 4, and 6 show
composite contributions to R2.

(1) (2) (3) (4) (5) (6)
Simple Cumulative Simple Cumulative Simple Cumulative

2009-2016 2009-2012 2013-2016
1) Hedonics only 0.536 0.536 0.550 0.550 0.544 0.544
2) Municipality-year FEs 0.477 0.768 0.478 0.758 0.468 0.775
3) Tax-assessment 0.800 0.876 0.804 0.864 0.834 0.881
4) Renovation exemptions 0.026 0.876 0.009 0.865 0.027 0.882
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Table L.4
Overview and Description of Models of P̂

This table provides an overview of the different models of P̂ that we implement and model features. A more detailed description of the estimation
methods is provided in the online appendix.

Model Name Description
Time-varying Tax-assessed Repeat Renovation
observables value sales expenses

Main
Ia Baseline Baseline hedonic model " " × ×

Ib Baseline (with renovation expenses) Baseline with 1-year lagged renovation
expenses

" " × "

Ic Baseline (OOS)* Baseline, estimated on 50% of the data
and fitted on the remaining 50%

" " × ×

II Simple Repeat (Shire index) Simple repeat sales model using previous
purchase price and shire-level house price
changes

× × " ×

IIIa Repeat Sales I Baseline with 1-year lagged renovation
expenses and last pricing residuals (νis +
ωis) (for T = 2, one repeat sale)

" " " "

IIIb Repeat Sales II Baseline with 1-year lagged renovation
expenses and average past pricing residu-
als (ν̄itτ<t + ω̄itτ<t)

" " " "

Additional

IVa Repeat Sales (T = 2) Baseline with last pricing residual, for
T = 2 (one repeat sale)

" " " ×

IVb Repeat Sales (T ≥ 3) Baseline with average past pricing resid-
uals, for T ≥ 3 (≥ two repeat sales)

" " " ×

IVc Repeat Sales (T ≥ 4) Baseline with average past pricing resid-
uals, for T ≥ 4 (≥ three repeat sales)

" " " ×

IVd Repeat Sales (T ≥ 2) Baseline with average past pricing resid-
uals for any number of repeat sales

" " " ×

Va Renovations (1yr) Subset of Ib, where renovation expenses
over the past year are available

" " × "

Vb Renovations (3yr) Va, but where cumulative 3-year renova-
tion expenses are available

" " × "

Vc Renovations (5yr) Va, but where cumulative 5-year renova-
tion expenses are available

" " × "
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Table L.5
Out-of-Sample Test of Hedonic Model

This table shows the mean R2 from 1000 regressions of realized price on three different in-sample estimation
shares and accompanying predicted prices from the baseline hedonic model. Standard errors of the mean are in
parentheses.

(1)
Mean

50 pct out-of-sample 0.874
(0.0000238)

25 pct out-of-sample 0.874
(0.0000402)

100 pct in-sample 0.876
(.)

Observations 1000
Standard errors in parentheses

Table L.6
Out-of-Sample Test of Hedonic Model without Tax-Assessed Value

This table shows the mean R2 from 1000 regressions of realized price on realized price on three different in-sample
estimation shares and accompanying predicted prices from the baseline hedonic model, without controlling for
the tax-assessed value. Standard errors of the mean are in parentheses.

(1)
Mean

50 pct out-of-sample 0.764
(0.0000383)

25 pct out-of-sample 0.765
(0.0000676)

100 pct in-sample 0.768
(.)

Observations 1000
Standard errors in parentheses
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Table L.7
Regional Variation in Demand Concavity and Hockey Stick - OLS and IV Regressions

This table reports regression results for the relationship between the listing premium slope over gains and demand
concavity. The dependent variable in all regressions is the slope of the listing premium over Ĝ < 0 across munici-
palities.30 Column 1 reports the baseline correlation with the demand concavity slope across municipalities using
OLS. Column 2 reports the 2-stage least squares regression instrumenting demand concavity with the apartment-
and row-house share. Columns 3 and 4 report the overidentified 2SLS regression with both instruments, row-house
and apartment share and average distance to city, without and with household controls (age, education length,
net financial assets and log income), respectively. In parentheses, we report bootstrap standard errors, clustered
at the shire level. *, **, *** indicate statistical significance at the 10%, 5% and 1% confidence levels, respectively.

OLS 2SLS

(1) (2) (3) (4)
Single IV Overidentified

Demand concavity -0.422∗∗∗ -0.569∗∗∗ -0.548∗∗∗ -0.428∗∗∗

(0.048) (0.102) (0.098) (0.137)
Household controls "

Observations 96 96 96 96
R2 0.367 - - -
First-stage F-stat - 30.65 30.49 13.36
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Table L.8
Comparison of Moment Summary Metrics Across Models of P̂ - Main Models

This table estimates simple linear coefficients to summarize and compare the information contained in the non-parametric moments we use for the structural
estimation. (1) is the average listing premium (#̂) around zero potential gains (Ĝ ∈ (−1, 1]). (2) is the piecewise-linear slope of the hockey stick in listing premia,
over negative potential gains (Ĝ ∈ [−40, 0)). (3) is the piecewise-linear slope of the hockey stick in listing premia, over positive potential gains (Ĝ ∈ [0, 40]). (4)
is the piecewise-linear slope of the hockey stick in listing premia, over home equity in the constrained range (Ĥ ∈ [−40, 20)). (5) is the piecewise-linear slope of
the probability of sale with respect to negative listing premia (#̂ ∈ [−20, 0)). (6) is the piecewise-linear slope of the probability of sale with respect to positive
listing premia (#̂ ∈ [0, 40]). We refer to (5) and (6) as summarizing “concave demand”. (7) is the slope in the probability of listing with respect to potential gains,
estimated in the data comprising the full housing stock. The underlying number of observations vary slightly for models using repeat sales and the shire-level
price index, as we cannot compute past pricing residuals or the price index, respectively, due to data limitations for some observations. *Model Ib is estimated
by randomly sampling 50% of the data to estimate the baseline model (Ia), and only using the remaining 50% of the data to compute the summary metrics out
of sample, based on 100 random draws from the full housing stock data.

Ia Ib Ic II IIIa IIIb
Baseline Baseline Baseline Simple Repeat Repeat Sales 1 Repeat Sales 2

(w/ renov.) (OOS)* (Shire index) (T = 2) (T ≥ 2)

(1) Level of #̂ (Ĝ ∈ (−1, 1]) 14.054 13.432 13.914 27.406 12.484 13.082
(0.412) (0.460) (0.372) (0.802) (0.385) (0.405)

(2) Slope #̂ − Ĝ (Ĝ < 0) -0.482 -0.485 -0.487 -0.537 -0.452 -0.453
(0.015) (0.019) (0.009) (0.035) (0.018) (0.018)

(3) Slope #̂ − Ĝ (Ĝ ≥ 0) -0.111 -0.132 -0.117 -0.081 -0.104 -0.109
(0.010) (0.012) (0.004) (0.022) (0.009) (0.010)

(4) Slope #̂ − Ĥ (Ĥ < 20) -0.353 -0.346 -0.356 -0.632 -0.299 -0.296
(0.012) (0.018) (0.007) (0.011) (0.012) (0.012)

(5) Slope P(sale)-#̂ (#̂ < 0) 0.026 0.147 0.004 -0.214 -0.042 -0.047
(0.043) (0.051) (0.042) (0.049) (0.045) (0.045)

(6) Slope P(sale)-#̂ (#̂ ≥ 0) -0.904 -0.866 -0.890 -0.494 -0.922 -0.922
(0.013) (0.016) (0.013) (0.014) (0.014) (0.014)

Model R2 0.876 0.881 0.873 0.566 0.881 0.881
Number of observations 214,103 136,717 107,052 202,652 180,545 180,556

(7) P(listing)-Ĝ .003 .002 0.021 .003 .037 .036
(0.002) (0.002) (0.000) (0.004) (0.003) (0.003)

Number of observations (ext.) 5,538,052 5,538,052 2,769,026 5,109,438 2,705,243 2,706,078
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Table L.9
Comparison of Moment Summary Metrics Across Models of P̂ - Additional Models

This table estimates simple linear coefficients to summarize and compare the information contained in the non-parametric moments we use for the structural
estimation. (1) is the average listing premium (#̂) around zero potential gains (Ĝ ∈ (−1, 1]). (2) is the piecewise-linear slope of the hockey stick in listing premia,
over negative potential gains (Ĝ ∈ [−40, 0)). (3) is the piecewise-linear slope of the hockey stick in listing premia, over positive potential gains (Ĝ ∈ [0, 40]). (4)
is the piecewise-linear slope of the hockey stick in listing premia, over home equity in the constrained range (Ĥ ∈ [−40, 20)). (5) is the piecewise-linear slope of
the probability of sale with respect to negative listing premia (#̂ ∈ [−20, 0)). (6) is the piecewise-linear slope of the probability of sale with respect to positive
listing premia (#̂ ∈ [0, 40]). We refer to (5) and (6) as summarizing “concave demand”. (7) is the slope in the probability of listing with respect to potential
gains, estimated in the data comprising the full housing stock.

IVa IVb IVc IVd Va Vb Vc
Repeat sales only With renovations data only

(T = 2) (T ≥ 3) (T ≥ 4) (T ≥ 2) (1yr) (3yr) (5yr)

(1) Level of #̂ (Ĝ ∈ (−1, 1]) 12.639 10.873 10.792 12.853 13.432 11.815 12.487
(0.393) (0.424) (0.507) (0.389) (0.460) (0.524) (0.849)

(2) Slope #̂ − Ĝ (Ĝ < 0) -0.451 -0.421 -0.387 -0.454 -0.485 -0.503 -0.536
(0.018) (0.020) (0.025) (0.017) (0.019) (0.021) (0.032)

(3) Slope #̂ − Ĝ (Ĝ ≥ 0) -0.102 -0.114 -0.145 -0.111 -0.132 -0.151 -0.176
(0.009) (0.011) (0.012) (0.009) (0.012) (0.012) (0.017)

(4) Slope #̂ − Ĥ (Ĥ < 20) -0.302 -0.233 -0.186 -0.299 -0.346 -0.327 -0.314
(0.012) (0.014) (0.018) (0.012) (0.018) (0.024) (0.044)

(5) Slope P(sale)-#̂ (#̂ < 0) 0.001 0.065 0.174 -0.029 0.147 0.259 0.244
(0.045) (0.061) (0.085) (0.045) (0.051) (0.061) (0.102)

(6) Slope P(sale)-#̂ (#̂ ≥ 0) -0.906 -0.969 -0.989 -0.913 -0.866 -0.799 -0.822
(0.014) (0.019) (0.029) (0.014) (0.016) (0.021) (0.037)

Model R2 0.880 0.887 0.894 0.881 0.881 0.885 0.890
Number of observations 180,545 95,080 43,894 180,556 136,717 85,483 29,073

(7) P(listing)-Ĝ .038 .054 .075 .037 .002 .004 .009
(0.003) (0.004) (0.007) (0.003) (0.003) (0.004) (0.007)

Number of observations (ext.) 2,705,243 1,150,804 440,439 2,706,078 3,489,967 2,050,917 671,547
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Table L.10
Regression Kink Design

The table shows results from sharp regression kink tests of a discontinuous increase in the listing premia slope
over potentials gains, at the 0% potential gain cutoff, for varying bandwidths b ∈ {b∗, 20, 30, 40}. b∗ refers
to the optimally chosen bandwidth using a MSE-optimal bandwidth selector from Calonico et al. (2014). All
estimations include the following control variables: year fixed effects, household controls (age, education length
and net financial wealth) and year of previous purchase. *, **, *** indicate statistical significance at the 10%,
5% and 1% confidence levels, respectively.

(1) (2) (3) (4)
h=opt h=20 h=30 h=40

RD_Estimate 0.171∗∗∗ 0.177∗∗∗ 0.199∗∗∗ 0.239∗∗∗

(0.050) (0.029) (0.017) (0.012)
Cutoff 0.00 0.00 0.00 0.00
Bandwidth 14 20 30 40
Polynomial order 1 1 1 1
N below cutoff 48,682 48,682 48,682 48,682
N above cutoff 165,421 165,421 165,421 165,421
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Table L.11
Alternative Estimation of “Hockey Stick” Pattern

The table reports estimated coefficients from the following regression specifications:

#i = a0 + b0Ĝi + εi,

Li = a0 + b1P̂ + b2R + εi,

with all variables defined as in the paper. In Panel B, we interact terms with an indicator variable which takes
the value of 1 if potential gains are positive, and zero otherwise. For consistency with the binned moments used
in structural estimation along the potential gains dimension, we restrict the support to potential gains domain
between -40% and +40%. *, **, *** indicate statistical significance at the 10%, 5% and 1% confidence levels,
respectively, based on standard errors clustered at the municipality × year level.

Panel A

Listing premium Listing price
(" = L − P̂ ) (L)

Potential gains (Ĝ = P̂ − R) -0.269∗∗∗

(0.007)
Hedonic valuation (P̂ ) 0.709∗∗∗

(0.007)
Reference point (R) 0.258∗∗∗

(0.006)
Number of obs. 122,916 122,916
R2 0.073 0.083

Panel B

Listing premium Listing price
(" = L − P̂ ) (L)

Potential gains (Ĝ = P̂ − R) - Loss domain (Ĝ < 0) -0.494∗∗∗

(0.015)
- Gain domain (Ĝ ≥ 0) -0.118∗∗∗

(0.009)
Hedonic valuation (P̂ ) - Loss domain (P̂ < R) 0.496∗∗∗

(0.016)
- Gain domain (P̂ ≥ R) 0.861∗∗∗

(0.010)
Reference point (R) - Loss domain (P̂ < R) 0.472∗∗∗

(0.015)
- Gain domain (P̂ ≥ R) 0.107∗∗∗

(0.009)
Number of obs. 122,916 122,916
R2 0.840 0.885
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