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Abstract: We adapt a combinatorial optimization algorithm, extremal optimization (EO), for the search problem in

computational protein design. This algorithm takes advantage of the knowledge of local energy information and system-

atically improves on the residues that have high local energies. Power-law probability distributions are used to select the

backbone sites to be improved on and the rotamer choices to be changed to. We compare this method with simulated

annealing (SA) and motivate and present an improved method, which we call reference energy extremal optimization

(REEO). REEO uses reference energies to convert a problem with a structured local-energy profile to one with more

random profile, and extremal optimization proves to be extremely efficient for the latter problem. We show in detail the

large improvement we have achieved using REEO as compared to simulated annealing and discuss a number of other

heuristics we have attempted to date.

© 2008 Wiley Periodicals, Inc. J Comput Chem 29: 1762–1771, 2008
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Introduction

Computational protein design seeks to use computational means to

design amino acid sequences that can fold into a desired structure,

or even, to achieve a desired function. In the past 10 years there

have been significant achievements in this area, and a few land-

mark results are: the 1997 full-sequence redesign of a 28-residue

zinc-finger structure without zinc,1 the 2003 design of a 93-residue

protein with a structure not previously seen in nature,2 and the

2004 design of a biologically active enzyme (triose-phosphate

isomerase).3 For recent reviews, see Refs. 4–6.

In spite of the rapid progress and encouraging achievements,

the dream of fully-automated, full-sequence design of an arbitrary

structure still faces some significant challenges. One is the form

of the energy function that can be used to select appropriately

an amino acid sequence that is compatible with a given structure,

and another is an efficient search algorithm that can then select an

energetically optimal solution from an astronomically large num-

ber of protein sequence choices. In this article, we will focus on

the second challenge, the computational search probelm in protein

design. We introduce a new stochastic combinatorial optimiza-

tion algorithm that, to our knowledge, is applied to computational

protein design for the first time, and we show that, with proper

consideration for the energy landscape of the problem, it performs

significantly better than the search problem of choice, simulated

annealing.

We will consider the search problem with a rigid backbone,

with an energy function that can be written as single or pair-

residue terms, and a discrete choice of amino acid conformations

from a backbone-dependent rotamer library (i.e., a collection of

energetically favorable and statistically significant side-chain con-

formations based on backbone torsion angles).7 This goal is to

find the global minimum energy conformation (GMEC), and this

is the problem studied in Ref. 1 and in each fixed-backbone stage of

Ref. 2. The search space here is enormous: with on average about

100 rotamers/backbone site, the design of a 80-residue protein will

require searching through 10080 conformation choices. This search

problem in fact has been shown to be NP-complete in Ref. 8, and

Ref. 9 shows further that it is also hard to approximate with a the-

oretical guarantee. Despite the pronounced difficulties, a number

of search algorithms have been used. Dead-end elimination (DEE)

is the main method used in Ref. 1. It is a pruning algorithm that

eliminates the rotamer choices that by energy comparison cannot

be in the GMEC. In a series of papers,10–13 the inequalities used

for energy comparison have been progressively improved, resulting
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in more and more rotamers eliminated. This method is determin-

istic and exact. Yet, with a fine choice of rotamers necessary for

a realistic design problem, DEE often leaves too many states after

all possible eliminations have been carried out, too many still for

exhaustive search. Another class of search algorithms is stochas-

tic, and the most efficient is simulated annealing (SA). A random

walk is carried out in the conformation space using the Metropolis

acceptance/rejection criterion with a gradual lowering temperature

parameter. This is the method used in Ref. 2 (the code used in Ref. 2

has been released as the computer package RosettaDesign).14, 15

Simulated annealing requires only the total energy of a particu-

lar conformation, and it either accepts or rejects this conformation

based on this energy (and the current temperature). In cases where

the energy function can be written as single and pair-residue terms,

as is the problem studied here, the total energy can be written as a

sum of local energies, and we have adapted a stochastic combinato-

rial optimization method that can use this local-energy information

for efficient searches. In short, the method tries to improve on the

backbone sites that have high local energies, and the new rotamers

it selects are the ones with good local energies. Power-law prob-

ability distributions are used for site and rotamer selections, and

this search algorithm, called extremal optimization (EO), has been

shown to give comparable results with simulated annealing. This

extremal optimization method was first developed for the hard opti-

mization problems in the physics sub-field of spin glass by Boettcher

and his co-workers.16–20 It has also been applied to a number of

classic optimization problems such as graph partitioning, graph col-

oring, and the traveling salesman problem with results comparable

with and sometimes superior than those achieved with simulated

annealing.16 In this article, we adapt EO for protein design and

study further the energy landscape of the problem. We realize that

there is in fact an intrinsic structure in the local energies of the

low-energy conformations; that is to say, the low-energy confor-

mations have similar local-energy profiles that are consistent with

the backbone shape and the characters of the physical interaction

energies. This understanding aids our algorithm development signif-

icantly. By subtracting a set of reference local energies, we convert

a structured local-energy profile to a random one, and the stochastic

power of extremal optimization can then be fully used. We demon-

strate that this new version of EO, which we call reference energy

extremal optimization (REEO), is dramatically more efficient than

the first adaptation of extremal optimization and simulated anneal-

ing. We believe that this result is a general one: for problems whose

low-energy states have a structured local-energy profile, REEO will

perform better than EO.

Methods

Test Proteins, Rotamer Choices, and Energy Function

We test our algorithms on a set of five proteins taken from Ref. 14.

These are shown in Table 1 and are the ones whose sequences were

successfully redesigned using the RosettaDesign program in Refs.

14, 15. As is customary in protein design calculations, a rotamer

library is used to model the side-chain conformations of each amino

acid, resulting in a discrete number of conformation choices. We

use the standard Dunbrack backbone-dependent rotamer library7

(release from May 2002) included in RosettaDesign. With all amino

Table 1. Five Test Proteins.

PDB code Short name

Residue number

(start-stop)

Rotamer

number (Nrot)

1HZ5 Protein L 62 (1–62) 4295

1AYE Procarboxypeptidase 70 (10–79) 4812

1LMB λ-repressor 87 (6–92) 5568

1URN U1A 96 (2–97) 6475

2ACY Acylphosphatase 98 (1–98) 6520

acids allowed at all positions, the default option in the program

selects about 70 rotamers per residue (see Table 1).

The energy function included in RosettaDesign has been

described in detail in the supplementary materials of Refs. 2, 14. It

is a linear sum of several terms including van der Waals, solvation,

probablistic single-rotamer and pair-rotamer energies, and a refer-

ence energy for each of the 20 amino acids. In particular, the solva-

tion energy uses the Lazaridis and Karplus implicit solvent model23

which is a function of atom pairs. In fact, if we use ir to denote the

r-th rotamer at the backbone position i and js to denote the s-th

rotamer at position j, all energy terms included in RosettaDesign are

single-residue (E(ir)) or pair-residue (E(ir , js)) terms. For a partic-

ular rotamer choice, the total energy for this conformation is then

E =
∑

i

E(ir) +
∑

i<j

E(ir , js). (1)

And if we define

E(ir , js) = E(ir , js) +
E(ir)

N − 1
+

E(js)

N − 1
, (2)

where N is the total number of residues of our given backbone, then

it is easy to show24

E =
∑

i<j

E(ir , js), (3)

which involves pairwise terms only.

With such a pairwise energy, we can convert our computational

search problem for the GMEC to a graph problem.∗ In Figure 1, the

large circles represent backbone positions (i and j), and the small

circles represent rotamer choices (ir and js). The weight on each

edge is the energy E(ir , js) [Eq. (2)]. There is no edge between

two rotamers at the same site. Equation 3 then says that the total

energy of a configuration is the total weight of a complete graph

with one rotamer choice at each site. Our goal is therefore to find the

minimum-weight complete graph among the astronomically large

number of choices.

∗Note this conversion to a graph problem can not be accomplished in a

straightforward fashion for many-residue energy terms, for example a sol-

vation energy that is the function of the total exposed (or buried) surface area.

However, methods have been devised to convert this many-residue energy

function to include single and pair-residue terms only. See ref. 21, 22.
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Figure 1. The search for GMEC can be considered as a search for the

minimum weight complete graph. The large circles represent backbone

sites (i and j), and the small circles represent rotamer choices (ir and

js). The weight on each edge is the energy E(ir , js) [Eq. (2)]. There is no

edge between two rotamers at the same site. Then Eq. (3) says that the

total energy of the configuration is the total weight of a complete graph

with one rotamer choice at each site.

For comparison a random-energy case RANDOM62 has also

been studied. In this problem, the backbone and rotamer choices of

1HZ5 are used but the energies are random, i.e., the energy E(ir , js)

on each graph edge [see Fig. 1 and Eq. (3)] is chosen randomly (and

uniformly) between −1 and 1.

Simulated Annealing with Quenching

The search method of choice in RosettaDesign is simulated anneal-

ing (SA), which in fact does not require the energy to be pairwise

(only the total energy of a conformation is needed). Starting from a

random initial state, a random rotamer at a random site is selected

for a new state. The energy of this new state is then calculated and

compared with the energy of the present state, and the Metropolis

criterion is used to decide whether the new state will be accepted

or rejected. In simulated annealing, the temperature parameter in

the Metropolis criterion is gradually reduced. At a higher temper-

atue, states with larger energy increases from the previous states can

be accepted than at a lower temperature. This creates larger energy

fluctuations in an attempt to escape from meta-stable energy wells in

the search for the GMEC. As the temperature drops, the fluctuations

become smaller as only smaller energy increases are allowed and

the system settles into an energy well. Figure 2 shows the energy

progression of a typical SA run.

In our program, the temperature is reduced from 100 to 0.3

kcal/mol, the same as in the RosettaDesign program, and it is

reduced in a geometric fashion, with a specified reduction ratio. We

have tested three temperature reduction ratios (1) 0.79 which results

in 25 temperature cycles, Ncycle = 25; (2) 0.89 with Ncycle = 50;

and (3) 0.943 with Ncycle = 100. To compare the three temperature

reduction schedules, we fixed the total number of moves in each

simulation to 2500×Nrot where Nrot is the total number of rotamers

used for the protein to be designed. This means 100 × Nrot moves

per cycle for Ncycle = 25, 50 × Nrot for Ncycle = 50, and 25 × Nrot

for Ncycle = 100.

At the end of each SA run, we also “quench” the final state; that

is to say: (1) a random ordering of the backbone sites is chosen; (2)

at each site all possible rotamers are selected one by one, with the

rotamers at other residues fixed, and total energies are calculated;

(3) the rotamer that produces the lowest total energy is chosen;

(4) we continue this process until no lower energy is found for all

sites of an ordering. This process ensures that no single-rotamer

moves can lower the energy. It has been noted25 that quenching can

produce large improvement in the lowest energy found with modest

additional cost in computer power. In our program, we have gone

one step further by including a round of pair-rotamer quenching after

exhaustive single-rotamer quenches: for each randomly chosen pair

of backbone sites, all possible rotamer pairs are selected and the

pair that gives the lowest energy (with rotamers at other sites fixed)

is kept. Because pair quenching is expensive, we only carry out one

round in which each site is quenched with each other site once in a

random order.

The Extremal Optimization Method

In a series of papers, Boettcher and co-workers introduced a

combinatorial optimization method called extremal optimization

(EO),16–20 originally applied to a class of hard optimization prob-

lems in a condensed matter physics sub-field called spin glass. In

those problems there are usually a large number of positions, each

position often has two state choices (often called up and down spins),

and for each two positions is an interaction energy that depends on

the spins at those positions. The goal is to find a low-energy con-

formation among an enormous number of configuration choices.

Simulated annealing is also a well-tried method there, needing only

the total energy of a conformation. The EO idea is to use the local

energy information of the problem and improve on the sites that

have high local energies.

1. Start with a random state.

2. Write the total energy as a sum of local energy terms E =
∑

i=1,...,N Ei.

3. Rank local energy Ei : E�(1) ≥ E�(2) ≥ . . . ≥ E�(N) where k is

the rank of site �(k).

4. Make a random change at site �(k) where the rank k is cho-

sen from a power-law distribution with exponent −τ : P(k) ∼

k−τ , accept the change unconditionally, compute the new local

energies, and go back to 3 for the next iteration.

The power-law distribution used in EO is biased toward the site

with the highest local energy E�(1). It does not always improve

on that site, as that will often result in the same site picked for

change. Instead it gives all sites chances for change with a biase

toward the high local-energy sites. It is found16–20 that a τ roughly

in a range from 1.1 to 1.6 is the best for many of the optimiza-

tion problems studied, including graph partitioning, graph coloring,

and spin glass (max-cut) problems. Note that τ = 0 corresponds to

choosing the position randomly (from a uniform distribution) and

τ = ∞ means choosing the highest local-energy position always.

With this power-law distribution, Refs. 16–20 found that EO is

often comparable with SA, and in some cases it performs better

than SA.
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Figure 2. Energy progression for a typical simulated annealing and

a typical extremal optimization run for a protein design problem. As

temperature drops in a simulated annealing run, energy drops slowly,

and fluctuations reduce. For an extremal optimization run, energy

drops quickly in the initial stage, and large fluctuations are maintained

throughout the simulation.

Our First Adaptation of Extremal Optimization for Protein Design

The adaptation of EO to computational protein design is straight-

forward. Our pairwise energy, Eq. (3), can be easily written in the

local-energy form required by EO, if we define the local energy

(often also called fitness, borrowing a term from evolution)

Ei =
∑

j �=i

Ei,j . (4)

Strictly speaking
∑

i Ei from Eq. (4) equals two times the total

energy in Eq. (3), but this will not affect the rankings in EO

moves. On our graphical representation of energy in Figure 1, this

local energy function Ei [Eq. (4)] is simply the sum of all weights

on the “fan” of edges emanating from a rotamer on a particular

site.

One complication from the protein design problem is that at

each backbone site, we have many rotamer choices. In spin glass

problem usually there are only two choices, and a move involves

changing from the up spin to the down spin and vice versa. Here

which rotamer should we choose to change into? A random choice

of rotamers is an option. A choice of the rotamer that gives the

best local energy is another. Borrowing from the idea of the EO for

selecting sites, we can allow both to happen when we draw from a

power-law distribution (k′)−τ ′

where k′ is the rank of local energy for

the rotamers at this site and τ ′ is a second exponent. Our extremal

optimization method adapted for computational protein design is

then:

1. Start with a random state.

2. Write total energy as a sum of local energy terms

2E =
∑

i=1,...,N

Ei, Ei =
∑

j �=i

Eij (5)

3. Rank local energy by site

E�(1) ≥ E�(2) ≥ · · · ≥ E�(N) (6)

where k is the rank of site index �(k).

4. Pick a rank from a power-law distribution with exponent −τ :

P(k) ∼ k−τ which is biased toward the high local energy sites

Figure 3. The local-energy profile of three low-energy states for (a) 1HZ5, using RosettaDesign energies,

and (b) RANDOM62, with the same backbone and rotamer choices as 1HZ5 but using random energies. The

realistic problem (a) shows a structured local-energy profile while the random-energy problem (b) shows a

nonstructured local-energy profile.
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5. At site �(k) = i, rank the rotamer r using Eir =
∑

j �=i Eir ,js (with

rotamers s at all other sites j fixed by the current state)

Ei�′(1)
≤ Ei�′(2)

≤ · · · ≤ Ei�′(Mrot (i))
(7)

where k′ is the rank of rotamer index �′(k′) and Mrot(i) is the

number of rotamers at this site i.

6. Pick a rotamer index k′ from a power-law distribution with

exponent −τ ′: P(k′) ∼ (k′)−τ ′

which is biased toward the low

local-energy rotamers.

7. Change the rotamer at site �(k) to rotamer �′(k′), accept it

unconditionally, and go back to 2 for the next iteration.

The two exponents, one for site selection (τ ) and one for rotamer

selection (τ ′), need to be determined from optimization. Note that

one step of an EO run will take more time than one step in a SA

run. In a step of a SA run, only one total energy of the state under

consideration is calculated. In a step of an EO run, local energies

must be calculated and sorted and once a site is chosen for the move,

local energies for all the rotamers at that site need to be calculated

and then sorted.

We have used heap sort for both sorting steps in EO. In spin

glass calculations, in which there are millions of sites and millions

of local energies to be sorted, approximate heap sort has been found

to be sufficient and efficient.20 In our problem, our sorting need

is divided into two parts: first sorting by site (the number of sites

ranging from 62 to 98 for the five test proteins) and then sorting by

rotamer (about 70 per site). We found that approximate heap sort

does not save us much time and therefore have used exact heap sort

for all EO calculations. Roughly, one EO move costs about the same

time as 25 SA moves. For each run we have therefore used 100×Nrot

EO moves as compared to 2500 × Nrot SA moves.

Reference Energy Extremal Optimization

In spin glass problems, the interaction energies are random and all

positions are essentially equal. In our protein design problems, on

the other hand, the physical interaction energies (used in RosettaDe-

sign) and the shapes of the protein backbone may result in certain

sites having intrinsically lower (or higher) energies than others.

We looked into the low-energy states of 1HZ5 with realistic and

random energies respectively. In Figure 3 we plot the local energies

Ei for the three lowest total energies found in our simulations. It

is clear that the local-energy profiles of the low-energy states in

the realistic-energy problem (a) are structured, i.e., they are small

perturbations of each other while maintaining an overall energy

composition, with several well-defined valleys and peaks. On the

other hand, the low-energy states in the random-energy problem do

not exhibit a distinctive local-energy profile.

This local-energy profile complicates the EO searches. Sites with

lower local energies will attract most improvement attempts, yet

there is not much room for improvement. On the other hand, sites

with higher local energies may in fact have more room for improve-

ment. With this in mind, we developed a new method which we call

reference energy extremal optimization (REEO). During site selec-

tion, instead of comparing and sorting local energy Ei we compare

and sort the difference between the local energy and a reference

local energy E
R
i , i.e.,

(

E�(1) − E
R
�(1)

)

≥
(

E�(2) − E
R
�(2)

)

≥ · · · ≥
(

E�(N) − E
R
�(N)

)

. (8)

In this way, we compare the potential for improvement for these

local energies (or the improvability of local energies) and improve

on the sites with a higher potential for improvement.

Our next question is then what reference energy we should use.

If we knew the GMEC, then using its local energies as reference

energies would be the most efficient. Positions with local energy

above that reference local energy will be improved on, and if we

consider an EO run as a dynamical system, the reference state tends

to serve as a target that can attract other states to it through EO

moves. Without the knowledge of GMEC, we need to find refer-

ence energies that can approximate the energy profile of the GMEC.

A natural choice is using the local energies of the lowest-energy

state achieved so far in the simulation. Among several reference

choices tested (this will be discussed later), this has proven to be

the best.

Search Parameter Optimization

We now need to have a measure to determine for SA which Ncycle

to use and for EO and REEO the power-law exponents τ and τ ′.

For each search method with generic parameters {P}, we carry out

100 independent runs for the i-th protein in our protein set and the

average energy is denoted E
(i)
avg({P}). And if we use E

(i)

min to denote

the minimum energy ever found for the i-th protein, then we can

define a quality measure D({P}) for the parameter set {P}:

D({P}) =
∑

i

E
(i)
avg({P}) − E

(i)

min

Ni

(9)

where Ni is the number of residues for the i-th protein and i sums over

the test protein set. What this measure does is that for a particular

parameter set {P} and for a test protein set, find the deviation from the

minimum energy (ever found) per residue. We will use this measure

to find the optimal Ncycle for SA and τ − τ ′ combination for EO and

REEO: the smaller D({P}) the better.

Results

Simulated Annealing

The results for SA runs with (Ncycle = 25, 50, and 100) are shown

in the supplementary materials, as are results of quenching after SA

runs. Quenching improves results significantly for all temperature

reduction ratios, more for the runs with fewer cycles than those

with more cycles. This is reasonable as, with a sufficiently large

number of steps per cycle, runs with a slower temperature reduction

rate tend to explore the energy landscape more thoroughly. On the

other hand, we observe that after single and pair-rotamer quenching,

runs with fewer temperature cycles (Ncycle = 25) achieve slightly

better results than those with more cycles (Ncycle = 50, 100). Using

our measure Eq. 9, D(Ncycle = 25) = 0.0611, D(Ncycle = 50) =

0.0715, and D(Ncycle = 100) = 0.0705 (see Table 3).

Journal of Computational Chemistry DOI 10.1002/jcc



Stochastic Search Algorithm Applied to Computational Protein Design 1767

Table 2. SA, EO, and REEO Search Results.

PDB code Method Average Standard dev Minimum Search time Quench time τ τ ′

1HZ5 SA −192.448 0.544 −193.005 101 44

EO −192.492 0.580 −193.005 119 45 0.4 4.0

REEO −192.915 0.233 −193.005 121 45 1.4 2.5

1AYE SA −211.696 0.474 −212.177 133 72

EO −211.784 0.349 −212.154 156 71 0.4 4.0

REEO −211.918 0.226 −212.082 136 71 1.4 2.5

1LMB SA −254.671 0.581 −255.571 202 135

EO −254.607 0.624 −255.245 209 132 0.4 4.0

REEO −255.399 0.168 −255.571 195 133 1.4 2.5

1URN SA −278.762 0.855 −280.009 267 221

EO −279.220 0.761 −280.009 274 213 0.4 4.0

REEO −279.943 0.156 −280.171 286 208 1.4 2.5

2ACY SA −301.069 1.322 −302.943 297 225

EO −299.693 1.183 −302.375 290 217 0.4 4.0

REEO −302.078 0.806 −302.963 279 219 1.4 2.5

RANDOM62 SA −520.842 6.568 −536.590 100 44

EO −539.874 3.884 −550.652 118 45 1.0 2.5

REEO −537.921 4.379 −550.781 121 45 0.6 3.5

Average, standard deviation, and minimum energies are for 100 independent runs, including quenching, and are in kcal/mol.

Search and quench time are in sec; Each calculation is done on a 2.8 GHz Xeon processor. The energy matrix E(ir , js)

was calculated and read into memory beforehand; this time was not included.

In Table 2, we show the average, standard deviation and min-

imum energy results for 100 independent independent SA runs

(including single and pair-rotamer quenching). The temperature

reduction ratio used is 0.79 (Ncycle = 25 with 100 × Nrot moves

per cycle; full results in supplementary materials). Search time is

the average time (in sec) per run, and quench time is the average

time (in sec) per run for single plus pair quenching. In our computer

studies, a Linux cluster of 2.8 GHz Xeon processors was used. Each

program is run on a single processor; no parallel processing is used

except for running (independent) programs with different random

seeds simultaneously on different processors. The pairwise energy

matrix E(ir , js) for each protein in Table 1 was calculated before-

hand and stored in a file, involving about 10 million nonzero entries

for 1HZ5 and about 20 million for 2ACY (this calculation took sev-

eral hours for each protein). These energy matrices were read into

memory before search was conducted; the reading time was less

than 60 s and is not included in the times reported in Table 2 or

subsequent tables on search results.

Extremal Optimization

The energy progression of a typical extremal optimization run for

a protein design problem is shown in Figure 2. As compared to

a typical simulated annealing run for the same problem, we see

the same behavior as observed for SA/EO comparisons in other

optimization problems (for example, see ref. 17). The EO run starts

with high energies but very quickly finds some relatively low energy

state. It then maintains relatively large fluctuations as it searches for

the GMEC. The large fluctuations are possible because all states in

the EO run are accepted unconditionally, i.e., there is no rejection

of states as there is in simulated annealing. On the other hand, the

fluctuations are also controlled by the τ and τ ′ parameters, as the

move is biased toward the site with the worst local energy and the

rotamer to be selected is biased toward the one with the best local

energy.

We have also studied the effect of quenching at the end of EO runs

(results in supplementary materials). Here single-rotamer quench-

ing does not improve the results much. This is expected because

single-rotamer quenching is simply an extremal optimization run

with random site selection (τ = 0) and best rotamer selection

(τ ′ = ∞). On the other hand pair-rotamer quenching does improve

the average energy results.

The EO results for the five-protein set is shown in Table 2. As

explained before we have chosen 100 × Nrot EO moves that take

about the same time as 2500 × Nrot SA moves. For the five proteins

with realistic energy, 56 τ − τ ′ combinations have been tried (τ =

0, 0.2, 0.4, . . . , 1.2 and τ ′ = 1.5, 2.0, . . . , 5.0). To find a combination

Table 3. SA, EO, and REEO Parameter Optimization Using the Quality

Measure D({P}) [Eq. (9)] (in kcal/mol) and the five proteins in Table 1.

Method Parameters D({P})

SA Ncycle = 25 0.0611

Ncycle = 50 0.0715

Ncycle = 100 0.0705

EO τ = 0.4, τ ′ = 4.0 0.0674

τ = 0.6, τ ′ = 3.5 0.0690

τ = 0.8, τ ′ = 4.0 0.0691

REEO τ = 1.4, τ ′ = 2.5 0.0194

τ = 1.8, τ ′ = 2.5 0.0205

τ = 1.8, τ ′ = 2.0 0.0211

For each method the top 3 parameter combinations are shown. The measure

is not very sensitive with parameter change. EO achieves comparable results

to SA whereas REEO performs much better than SA and EO.
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of τ − τ ′ for our test protein set, we use the measure D({P}) defined

in Eq. (9). The three combinations that give the lowest D({P}) are

D(0.4, 4.0) = 0.0674, D(0.6, 3.5) = 0.0690, and D(0.8, 4.0) =

0.0691. Note these numbers are similar to what are achieved using

SA (see Section “Simulated annealing” and Table 3).

Here EO achieves results comparable to SA and often slightly

better results than SA. The optimal EO parameters found are τ = 0.4

and τ ′ = 4.0, i.e., a fairly flat power-law for site selection and a

fairly steep power-law for rotamer selection. In fact this combina-

tion resembles a slightly relaxed quench. (We have mentioned before

that quench is τ = 0 and τ ′ = ∞.) The result is not sensitive to

the τ − τ ′ variation (see supplementary materials). The average,

standard deviation, and minimum energy found for this optimal

τ − τ ′ combination are reported in Table 2.

For the random-energy case (RANDOM62), 128 τ − τ ′ com-

binations have been tried, with τ = 0, 0.2, . . . , 3.0 and τ ′ =

2.0, 2.5, . . . , 5.0. Here, EO achieves much better results than SA.

Average energy and minimum energy found are both significantly

lower, and the standard deviation of the energy distribution has been

reduced as well. The best exponents here are τ = 1.0 and τ ′ = 2.5,

i.e., much closer to the τ = 1.1 − 1.6 choices found in many of the

random-energy optimization problems.16–20

The fact that EO achieves much better results than SA for the

random-energy case and only slightly better for the realistic-energy

problems is another evidence of the existence of an intrinsic local-

energy profile for real proteins [as shown Fig. 3a], i.e., local energies

at certain sites tend to be always higher than those at other sites, EO

site selection then tends to pick these sites for improvement more

often than others. It is therefore understandable why our optimized

EO site-selection power-law exponent τ is so small (0.4–0.6); this

helps to give a more even chance for site selection.

Reference Energy Extremal Optimization

Our REEO results using this choice of reference energy are also

presented in Table 2. The same number of EO moves are attempted

as the regular EO (100×Nrot), and 70 τ −τ ′ combinations have been

tried, with τ = 0.4, 0.6, . . . , 3.0 and τ ′ = 1.5, 2.0, . . . , 3.5. As in the

case of EO, to find a combination of τ −τ ′ for our test protein set, we

use the measure D({P}) defined in Eq. (9). The three combinations

that give the lowest D({P}) for REEO are D(1.4, 2.5) = 0.0194,

D(1.8, 2.5) = 0.0205, and D(1.8, 2.0) = 0.0211.

As compared to EO we observe significant improvement in the

average and standard deviation of the lowest energies found, and in

D({P}) measure (see Table 3). Visually, the results are dramatic. In

Figure 4, the distributions of energies found for 100 SA, EO, and

REEO runs, using the best parameters found for these methods and

the test-protein set (Ncycle = 25 for SA, τ = 0.4 and τ ′ = 4.0 for

EO, and τ = 1.4 and τ ′ = 2.5 for REEO), are plotted together

for the five-protein set. REEO achieves signficiant improvement as

compared to regular EO and SA. In particular, for the case of 1HZ5

(Fig. 4a), the lowest energy ever found in all simulation runs is

−193.00548 kcal/mol. This energy is found 29 times in 100 SA

runs, 41 times in 100 EO runs, and a significantly higher 83 times

in 100 REEO runs (see supplementary materials).

The REEO results in Table 2 also shows that with the subtraction

of reference local energies, the optimal exponents for EO now are

τ = 1.4 and τ ′ = 2.5, much more like the exponents reported

for random-energy problems than those quench-like combinations

found with the first EO. This clearly shows that the use of reference

energies indeed has converted a structured problem into a more

random, unstructured problem, for which the power of the extremal

optimization algorithm can be fully utilized.

In Table 2 and Figure 4f we also show REEO results for the

random-energy case RANDOM62. The same 128 τ − τ ′ combina-

tions have been tried, as with the EO runs for RANDOM62, with

τ = 0, 0.2, . . . , 3.0, and τ ′ = 2.0, 2.5, . . . , 5.0. Here the results are

not as good as the straightforward EO results, and the exponents are

more quench-like (τ = 0.6, τ ′ = 3.5).

We have also studied the effect of quenching on REEO (results in

supplementary materials). Before any quenching, REEO achieves

better average and minimum energy than regular EO. Single-rotamer

quenching does little to EO or REEO, and pair quenching improves

the results quite noticeably.

Discussion and Conclusions

Summary

We have studied the combinatorial optimization problem of com-

putational protein sequence design with a fixed backbone. With a

choice of rotamer library and a pair-residue energy function, as

it is used in RosettaDesign, we have a minimum-weight graph

search problem. We have adapted the extremal optimization algo-

rithm, originally developed in the field of computational spin glass

physics, to our search problem in protein design. We systematically

explore the optimal exponent combinations and compare our results

with those obtained from simulated annealing (with quenching). We

notice a significant boost in performance when a reference energy

is subtracted during the EO backbone site comparison process and

show that this REEO performs significantly better than both SA and

regular EO. We note that this is the case because we have converted

a search problem with a structured local energy composition (due to

the particular 3D structure of the backbone and the intrinsic physical

properties of rotamer interactions) to one that is more random, and

thus we are able to use the full power of the extremal optimization

algorithm.

Can We Improve Our Results Further?

We have tried several other variations of REEO; none achieved better

results than the one described earlier. We mention these ideas here

as they may help the reader developing better algorithms.

We have tried two other choices for reference energy. The first

is what we call rotamer minimum energy. For each rotamer, we can

find the minimum local energy this rotamer can give by finding the

minimum pairwise energies it forms with all rotamers at other sites

of the protein. This energy gives a measure of lowest local energy

this rotamer can achieve and can be used as reference energy when

this rotamer appears in a state in the simulation. Another choice is

what we call site minimum energy, which, for a particular site, is

the minimum of all the rotamer minimum energies at this site.

We have also asked whether it is better to use the absolute value

of this difference for comparison, i.e.,

∣

∣E�(1) − E
R
�(1)

∣

∣ ≥
∣

∣E�(2) − E
R
�(2)

∣

∣ ≥ · · · ≥
∣

∣E�(N) − E
R
�(N)

∣

∣. (10)
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Figure 4. Energy distributions for 100 simulated annealing, extremal optimization, and reference energy

extremal optimization runs, using Ncycle = 25 for SA runs and the best overall τ − τ ′ combination for EO

and REEO runs (τ = 0.4 and τ ′ = 4.0 for EO and τ = 1.4 and τ ′ = 2.5 for REEO, see Table 2).
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This appears to have given more weight for changes to both the case

when the local energy is much higher than the reference energy and

the case when the local energy is much lower than the reference

energy.

Our local energy is defined after scaling [Eq. (2)], through which

process we eliminated the single-rotamer energies and placed their

weights evenly on the edges linked to the rotamers. Because only

the total energy is minimized in our problem, we also can imag-

ine a different kind of scaling which absorbs more weight to the

single-rotamer terms from pair-rotamer terms while keeping the

total energy the same, trying, in fact, to make a many-body problem

more like a one-body problem.

As shown in Figure 5, as we get to the later stages of an EO run,

it is more and more difficult to find a state with a lower energy. The

number of moves (shown in solid line) needed increases dramat-

ically, and the number of sites that need to have rotamer changes

from one lowest-energy state so far to another also increases. In early

stages, it often take just tens of moves and just 2 or 3 site changes to

produce a lower energy, but later it takes tens of thousands of moves

and when a new lowest energy state is found about one-fifth of the

sites have changed (13/62). In the physics literature,17 these large-

scale changes are called avalanches–a large cumulation of small

moves that results in a large-scale change in the state of the system.

Our question is then: is there a better way to identify more efficiently

the coordinated moves needed to produce such an avalanche? Pair-

rotamer quenching is in fact such a move, in which two rotamers

change together. We have seen (in supplementary materials) that

they produce rather significant gains. We have also explored the

idea of decomposing the total energy in not local fan energies but

energies of paths that can cover the complete graph. Sites along the

path will then be able to change together. This idea is still at an early

stage of development.

There is an interesting stochatic algorithm FASTER26, 27 that in

fact makes a large number of moves at the same time. It is shown that

with some improvement27 this method performs significantly better

Figure 5. The number of rotamer changes (in circle) and the number

of simulation moves taken from one current lowest energy found to the

next are plotted for a typical extremal optimization run for the 62-residue

1HZ5 protein. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

than simulated annealing and can find low energy states extremely

rapidly. We have done some preliminary study of this algorithm and

hope to investigate its dynamics more in the future.

We have noted that quenching is fact a type of EO, with τ = 0

and τ ′ = ∞. In our EO and REEO, we start with a combination

(τ , τ ′) and reach the quenching stage with τ = 0, τ ′ = ∞. We can

imagine a gradually reduction of (τ , τ ′), imitating the temperature

reduction schedule in simuated annealing. We have not studied this

implementation.

Finally, it is interesting to note that while here we use local

energies extensively in EO and REEO searches, they have also been

used to biase Monte Carlo and simulated annealing searches (see

for example Refs. 28–30).

Conclusions

The hard optimization problems that EO has been applied to, such

as spin glass, graph partitioning, graph coloring, and the travel-

ing salesman problem, are all random-energy problems.16 For these

cases, EO has been shown to be comparable with or sometimes

better than SA. For our design problem, with low-energy states hav-

ing a consistent local-energy profile, the subtraction of reference

local-energies, as carried out in REEO, achieves significantly better

results than EO or SA. We believe our result is general. Further,

the existence of such a low-energy local-energy profile (consistent

with REEO results) suggests that a “funnel”-like energy landscape

may exist for the fixed-backbone protein design problem, as has been

suggested for the protein folding problem (see for example Ref. 31).

That is to say, the overall funnel shape of the design/folding energy

landscape (which is superimposed with smaller scale roughness of

local maxima and minima) drives the dynamic process of design and

folding, resulting in a stable design/folding sequence. Because of

this dominant bias, the low-energy states are similar to the GMEC.
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