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Today’s restraint systems typically include a number of airbags, and a three-point seat belt with load
limiter and pretensioner. For the class of real-time controlled restraint systems, the restraint actuator
settings are continuously manipulated during the crash. This paper presents a novel control strategy
for these systems. The control strategy developed here is based on a combination of model predictive
control and reference management, in which a non-linear device – a reference governor (RG) – is
added to a primal closed-loop controlled system. This RG determines an optimal setpoint in terms of
injury reduction and constraint satisfaction by solving a constrained optimisation problem. Prediction
of the vehicle motion, required to predict future constraint violation, is included in the design and
is based on past crash data, using linear regression techniques. Simulation results with MADYMO
models show that, with ideal sensors and actuators, a significant reduction (45%) of the peak chest
acceleration can be achieved, without prior knowledge of the crash. Furthermore, it is shown that the
algorithms are sufficiently fast to be implemented online.

Keywords: passive safety; restraint systems; real-time control; reference governors; model predictive
control; crash prediction

1. Introduction

Current restraint systems typically include a number of airbags and a three-point seat belt
with load limiter and pretensioner [1]. These systems have to meet the safety regulations set
by directive standards, for example from the US FMVSS [2] or the European Community.
Within these regulations, the restraint configurations are geared to impact scenarios that are
used in consumer tests, performed by crash rating agencies like USNCAP [3], IIHS [4], and
EuroNCAP [5]. For frontal impacts, these scenarios involve standardised high-speed crashes
(56, 64 kmph) against rigid or deformable offset barriers, with a 50th percentile adult male
dummy. Additional testing is performed with the two extreme dummy types, viz., the 5th adult
female and 95th male dummy.

The restraint configuration has usually one level of operation, and the level is chosen such
that it gives as much protection as possible in the standardised crash tests. Although these
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2 E.P. van der Laan et al.

tests are severe, the restraint design should be effective for a whole range of occupants
and impact scenarios that can occur in reality. Without the possibility to optimise for the
actual situation, the current design is a trade-off to maintain sufficient performance in all
scenarios. This fundamental shortcoming of current restraint systems makes that not every
vehicle occupant is optimally protected in every crash condition. To overcome this short-
coming, an increasing number of sensors and electronics is being integrated in vehicles. It
allows the use of advanced restraint systems with adjustable components. These types of sys-
tems are called adaptive restraint systems, and its advancements over the past years will be
discussed below.

1.1. Adaptive Restraint Systems

Occupant safety can be significantly improved by adaptive restraint systems. These restraint
systems adjust their configuration during the crash according to the actual operating environ-
ment, such as occupant size, age or weight, occupant position, belt usage, and crash conditions.
The flexibility of the restraint design allows to optimise the occupant’s response for the actual
situation. In literature, this type of restraint system has – confusingly – different names, like

smart [6–10], intelligent [11–13], active [14–17], or adaptive [18–21].

Many studies focus on smart adjustment of the tension in the safety belt to reduce thoracic
injuries. The conventional load limiter that is part of most belt systems nowadays, enforces a
constant load (4 or 6 kN) on the belt when activated. Studies have shown that an adjustable
constant level in the belt restraint force improves thoracic injury mitigation, [8,10,22–24].
Dual-stage load limiters, which can switch once to a lower load level when desired, are able
to lower the risk of thoracic injury even more, and examples can be found in [21,25]. Hence,
advanced belt force manipulation may result in a significant lower injury risk to the thorax,
especially for occupants or collisions that deviate from the average on which the regulations
and tests are designed [18,25].

A near optimal protection can be delivered when the belt force can be continuously adapted
during impact. In two similar studies [7,26] a time-varying belt force is applied in the open-
loop. The optimal input is found through optimisation using an elementary chest model. More
robust solutions are presented in [15–17,27,28], where the belt force is applied in a feedback
configuration, and optimal values are obtained by solving a control problem. These types of
systems, in which restraint settings can be continuously adapted during the crash, are referred
to as continuous restraint control (CRC) systems.

The continuous manipulation of the restraint components, such as load limiter force, airbag
vent size or belt roll-out, can be performed through a control algorithm. The objective of
the controller is minimising one or more injury criteria (IC). Sensors provide information on
restraint settings, biomechanical occupant responses, vehicle status, and motion. Based on
these measurement data, the restraint actuator continuously alters the restraint components
during the full duration of the crash. A schematic representation of the components of a CRC
system is shown in Figure 1.

Although this class of restraint systems is not yet available in today’s passenger vehicles,
numerical simulations with a controlled seat belt and/or airbag show that a significant
injury reduction can indeed be achieved [15,27,28]. Therefore, this class of systems will
be a main focus of future restraint system development. This paper contributes to this
development.
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Vehicle System Dynamics 3

Figure 1. Schematic representation of a CRC system.

1.2. Aim of this research

In previous studies on controlled restraint systems, the control problem is formulated as a
tracking problem, where biomechanical responses of the occupant are measured and forced to
follow a reference trajectory. This trajectory results in a minimum risk of injury, while satis-
fying certain constraints. Through simulation studies, Hesseling et al. [27] showed promising
results in terms of stability and tracking error, and significant reduction of IC. However, in [27],
the reference trajectories are constructed assuming full a priori knowledge of the crash pulse,
constraints, and occupant characteristics, which are clearly not realistic. The optimal trajec-
tories heavily depend on the vehicle deceleration pulse during the crash, the occupant type
and constraints such as the available space in the vehicle’s interior. Moreover, optimisation
strategies to derive optimal restraint settings as proposed in [7,15,26] are not likely to be solved
in real-time, and still require knowledge of the vehicle motion during impact.

To harvest the advantages of using CRC systems, these limitations have to be overcome.
This indicates the strong need for the development of a control algorithm that – based on the
available measurements – computes the optimal control signals for the restraint actuator. The
following requirements should be incorporated:

(i) the algorithm must be computationally feasible in order to meet the real-time requirements,
(ii) a priori knowledge of the crash pulse is not available, and

(iii) the algorithm must be based on online measurement data.

This paper proposes a solution to this challenging design problem. In particular, the study
focuses on continuous control of the belt force, because – as discussed in Section 1.1 – this is
very effective for thoracic injury mitigation.

1.3. Contribution and outline

The main contributions of this paper can be summarised as follows: (i) a control strategy is
proposed that is able to determine optimal restraint settings without a priori crash information,
aiming at a minimum risk of injury for the occupant, (ii) algorithms are developed, based on
constrained optimisation problems, which implement the proposed control strategy and are
able to run in real-time, (iii) simulation results with a force controlled seat belt and a MADYMO
dummy model are presented that show a significant injury reduction for the thoracic region
without pre-crash information.

The paper is organised as follows. Section 2 describes the approach to handle the constrained
control and predictive problems at hand. The method consists of a setpoint optimisation and
crash pulse prediction algorithm. These are explained in detail in Sections 3 and 4, respectively.
Section 5 shows the simulation results. Finally, Section 6 provides the conclusions.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
i
n
d
h
o
v
e
n
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
9
:
0
3
 
3
0
 
D
e
c
e
m
b
e
r
 
2
0
0
9



4 E.P. van der Laan et al.

2. Control strategy

In this section, the control problem is mathematically formulated, and the adopted control
strategy is presented.

2.1. Formulation of the control problem

As mentioned in the previous section, advanced belt loading may result in a significant lower
injury risk to the thorax. Therefore, the control system aims at minimising the so-called thoracic
IC, which are used in the field of impact biomechanics as indications for thoracic trauma. The
following three ICs are widely accepted to assess thoracic trauma [29–31]:

(i) the peak chest acceleration, Amax, is the maximum forward acceleration of the chest,
achest(t), that is maintained for 3 ms

Amax := max
t

(
min

τ∈[0,3] ms
|achest(t + τ)|

)
(1)

(ii) the viscous criterion, VC, is the maximum value of the product of chest compression,
d(t), and its velocity of deformation, ḋ(t),

VC := D max
t

(
d(t)ḋ(t)

)
(2)

with D ≥ 0 a dummy or occupant-dependent constant scaling factor,
(iii) the peak chest compression, Dmax, is the maximum compression of the thorax

Dmax := max
t

d(t). (3)

To determine these ICs, the biomechanical responses achest, d, and ḋ are needed. These
responses are generated by the system, P , consisting of the vehicle, the occupant and the
restraint system, which are represented by the white blocks in Figure 1. The vehicle crash,
denoted by signal w, is an exogenous disturbance input to P . As mentioned in Section 1.2,
the available control input to influence this system, u, is the seat belt force, Fbelt, that satisfies
the following assumption:

Assumption 2.1 The force in the seat belt, Fbelt, can be continuously prescribed during an
impact.

Ongoing research in the field of belt restraint actuators makes it plausible that these actuators
will be available in the near future, see, for example, the active damping device in [32].

The measured signals of system P are collected in the variable v and are available to the
controller. Later on, these signals are exactly specified. The control scheme is sketched in
Figure 2. An additional output xrel is included, which is the chest displacement relative to the
vehicle interior, i.e.

xrel(t) := xchest(t) − xveh(t). (4)

Here, xchest is the chest position during impact, satisfying achest = ẍchest. Furthermore, xveh is
the position of the B-pillar of the vehicle, that satisfies the following definition:

Definition 2.2 The moment of impact occurs at t = 0. The vehicle position is then defined
to be zero, i.e. xveh(0) = 0, and the vehicle velocity is given by vveh(0) = vo.
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Vehicle System Dynamics 5

Figure 2. General control scheme, in which the seat belt force u is used to minimise thoracic IC of the system P ,
consisting of the vehicle, the occupant and the restraint system.

The output xrel is relevant in the control problem. An upper-bound constraint on this output
makes sure that the front seat occupant is not being too close to the steering wheel before the
airbag deployment has been completed – causing even more severe injuries – and it prevents the
rear seat occupant from hitting the front seat. A lower-bound constraint prevents the occupant
from being pushed backwards through the seat. The constraints are given by

L̄1 ≤ xrel(t) ≤ L̄2, t ≥ 0 (5)

with L̄1 and L̄2 appropriate constants related to the position of the seat and steering wheel,
respectively.

At this point, the focus lies on minimisation of the Amax criterion, but minimisation of the
Dmax or VC criteria can be added to this problem in a straightforward manner as well. As a
consequence, the control problem at hand can be formulated as follows:

Design a controller that prescribes the control input u = Fbelt to system P based on the
information of the measurements v and given an (arbitrary) crash w, such that the criterium
Amax in Equation (1) is minimised, while satisfying the constraint in Equation (5).

This constrained optimal control problem can be approached by model predictive control
(MPC) or its ramifications.

2.2. Model predictive control

MPC, for example [33–37], is a widely used control technique that is able to handle control
problems with input and state constraints. Typically, MPC utilises an explicit model of the
to-be-controlled plant to predict the future output behaviour of the plant, on the basis of
a measured or estimated current state and the chosen future input sequence. Its prediction
capability allows to solve an optimal control problem over a finite future horizon, subject to
constraints on state and input variables. MPC uses a receding horizon strategy in the sense that
from the computed optimal input sequence, only the first control move is actually implemented.
At the next sampling time, this optimisation problem is solved again on the basis of the updated
state variables.

Solving the optimisation problem online is usually a time-consuming process, which is the
reason that MPC in general requires a formidable computational effort. It is therefore mostly
applied to slow or small processes, and clearly not during a vehicle crash.

More efficient methods to implement MPC algorithms have been considered recently. In
explicit MPC [37–39], the optimisation problem is solved offline using multi-parametric pro-
gramming. This results in a partitioning of the state space into different regions, and each
region is associated with its own affine state feedback law. This might offer a solution to meet
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6 E.P. van der Laan et al.

the real-time requirements, if the determination of the correct region can be computed very
fast. However, in many situations the number of regions is large, making the evaluation of the
control function still demanding. At the current state of affairs, it is expected that explicit MPC
will not be applicable to the complex system describing a vehicle occupant, and alternatives
have to be considered.

2.2.1. Reference governors

Reference governors (RGs) reflect a predictive control method that acts on the setpoint or
reference signal, rather than the control signal [40–43]. This has clear advantages from a
computational and stability point of view. It can be seen as a subclass of MPC, and is sometimes
referred to as reference management.

The RG acts on a system, in which the output y of plant P is already controlled by a
feedback controller C. This system, consisting of P and C, is called the primal controlled
system, G, and it is designed to track relevant references g with high accuracy. It is assumed
that G is stable and has good tracking performance in spite of the presence of disturbances w,
i.e. y ≈ g. The main idea of reference management is to add an auxiliary non-linear device to
the primal controlled system G (Figure 3). This device, the RG, determines r , a manipulable
virtual reference. The virtual reference r would coincide with g when no constraints are
present. In the case of input or state constraints on G, the RG modifies r whenever necessary
to avoid (future) constraint violation. The RG uses the measurement v to determine constraint
violation. This implies that an additional outer feedback loop is present. Bemporad has shown
in [43] that stability of this outer loop – hence of the RG combined with the primal controlled
system – is guaranteed for constant references, i.e. ġ = 0. Hence, if the update period of the RG
is considerably longer than the settling time of the closed-loop system, and under reasonable
assumptions on g, stability of the combined system of RG and G as in Figure 3 can indeed be
guaranteed.

RG forms an attractive alternative to MPC-like approaches, because of its computational
efficiency. This makes RG of interest within the context of controlled restraint systems. For
these reasons, the proposed control strategy will be based on RG as a subclass of MPC. In
the following paragraph, it is explained how the RG method is tailored to solve the specific
control problems outlined in Section 1.2.

2.3. The approach

The RG control strategy is particularly appealing, because of its computational efficiency and
the separation of stability and performance. In literature, however, applications are limited to
systems with constant reference signals or small disturbances. Since the optimal setpoint for

Figure 3. The RG approach.
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Vehicle System Dynamics 7

the primal controlled system is not a constant, it is necessary to adapt the currently available
methods for RG. Instead of modifying a desired reference, the virtual reference r is found by
solving an optimisation problem online.

2.3.1. The primal controlled system

Following the control problem formulated in Section 2.1, the setpoint r should be constructed
such that Amax is minimised, i.e. the 3 ms maximum of |achest| as in Equation (1), subject to
the dynamics of plant P and the inequality constraints in Equation (5). Now consider the
following assumption:

Assumption 2.3 An accurate estimate of the forward chest acceleration, achest, is available
during the impact.

This assumption is plausible, given the results presented in [44], where Kalman filters are
used to estimate the chest acceleration from belt roll-out measurements. The output available
for feedback is now taken y = achest, and a local feedback controller C, as already discussed in
Section 2.2.1, is designed that aims at minimising e = r − achest (Figure 4). Now the following
is proposed with respect to the local controller:

Assumption 2.4 A local feedback controller C can be designed such that the primal con-
trolled system G, consisting of plant P and controller C, has ideal tracking performance, i.e.
achest = r .

This assumption can also be realised closely, as simulation results with complex and accurate
occupant models indeed show excellent tracking behaviour, see, for example, [27,28].

2.3.2. Two-step procedure

With Assumptions 2.1 and 2.4 assumed to hold, finding the optimal signal r in terms of a
minimal Amax does not require a model of the primal controlled system G, as achest = r . This
allows to split the RG in two steps, being a setpoint optimisation, and a crash prediction. The
first step is formulated as follows:

(1) The setpoint optimisation. Based on information on the internal state of the primal con-
trolled system and a prediction of the future vehicle motion, determine a reference signal
r that minimises one or more IC (here Amax) and satisfies the constraints in Equation (5).

Figure 4. Adapted RG design with crash prediction for the primal controlled system.
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8 E.P. van der Laan et al.

In this step, a vehicle motion prediction is required. Since acceleration sensors are present
in most consumer cars to detect a crash, the following assumption is plausible.

Assumption 2.5 The vehicle acceleration pulse, aveh, is available as a measurable signal
during impact.

Using this assumption, the second step of the RG can be formulated:

2. The crash prediction. Based on the entire history of the measured vehicle acceleration,
predict the future vehicle motion.

Combining both steps leads to the overall RG design as shown in Figure 4. The RG is imple-
mented in discrete time, and is executed every To seconds. Since this scheme typically results
in better behaviour when executed more often during the crash, it must be computationally
extremely efficient, especially given the short duration of the crash. In the next section, the
setpoint optimisation step is presented in detail, while the crash prediction step follows in
Section 4.

3. Setpoint optimisation

It is shown here that the setpoint optimisation problem can be written as a linear program
(LP), which can be solved efficiently in limited time [45].

3.1. The finite horizon

The setpoint optimisation step solves a constrained optimisation problem using a prediction
of the vehicle motion. To make this problem feasible in real-time, a finite prediction horizon
is introduced in the constraint equation by using the following assumptions.

Assumption 3.1 At t = Te, the vehicle has come to a full stop, i.e., the velocity of the vehicle
satisfies vveh(t) = 0 for t ≥ Te.

With crash data being widely available, a value Te can easily be chosen such that this
assumption is typically satisfied.

Assumption 3.2 At t = Te, the occupant has come close to a stop in the sense that the relative
occupant velocity is within bounds S1 < 0 < S2, i.e.

S1 ≤ vrel(Te) ≤ S2, vrel(t) = ẋrel(t) (6)

with xrel as in Equation (4).

Assumption 3.1 implies that the vehicle has no kinetic energy after time Te. Given that the
restraint systems only dissipate energy, the occupant’s kinetic energy typically decreases to
zero after time Te. Hence, if Equation (6) is imposed for S1 and S2 sufficiently close to zero,
and if

L1 ≤ xrel(t) ≤ L2, 0 ≤ t ≤ Te (7)

is imposed for a suitably chosen L1 > L̄1 and L2 < L̄2, then it is reasonable to assume that
Equation (5) is satisfied. Hence, when the above assumptions hold, the infinite horizon in
Equation (5) can be replaced by the finite horizon constraints in Equations (6) and (7).
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Vehicle System Dynamics 9

The RG is executed every To = Te/N1 seconds on the interval [0, Te], with N1 ∈ N, where
N is the set of positive integers. The measurable variables v are sampled on [0, Te] with sample
time T = To/N2, N2 ∈ N. Define Ne := N1N2. The measurable variables are then available
at time instances t = kT , with k ∈ K := {0, 1, 2, . . . , Ne}, and the RG is executed at time
instances t = kT , with k ∈ Ko := {0, N2, 2N2, . . . , Ne} ⊆ K. Furthermore, n(k) := Ne − k,
which are the remaining number of samples in the interval [kT , Te]. See Figure 5 for a graphical
depiction of the time line.

For clarity of notation, the variables in discrete time are denoted by, for example,
v[k] = v(kT ).

3.2. Optimisation problem

The optimisation problem from Section 2.1 can now be formulated mathematically. First, a
relaxation is applied to the minimisation of the Amax criterion in Equation (1), based on

Amax ≤ max
t

|achest(t)| .
The right-hand part in this relation is an upper bound of the Amax criterion. There are
clear advantages to use the upper bound in the optimisation problem instead of Amax. First,
the implementation is much more efficient from a numerical point of view, as only half of the
optimisation variables are needed. Second, it will typically lead to an optimal solution where
one sample of achest in the 3 ms interval is zero, whereas the remaining samples have very
high values. This solution minimises Amax, but is clearly undesirable and not implementable
in practice.

With this relaxation, and supposing that Assumptions 2.1, 2.3, and 2.4 hold, the optimal
control problem formulation with constraint Equations (6) and (7) is given in discrete time for
k ∈ Ko by

min
r

max
j∈{0,...,n(k)}

|r[k + j ]|
subject to L1 ≤ xrel[k + j |k] ≤ L2, j ∈ {0, . . . , n(k)}.

S1 ≤ vrel[Ne|k] ≤ S2

(8)

The notation xrel[�|k], with � ∈ K, � ≥ k, is used to denote the prediction of signal xrel[�] with
knowledge up to time kT . Hence, at every optimisation instant k ∈ Ko, the setpoint sequence
r is chosen to minimise the maximal r = achest, while satisfying constraints on the relative
displacement and on the final relative velocity.

3.2.1. Prediction of absolute chest motion

To solve this problem, the relative motions xrel and vrel have to be predicted on the basis of
available information. It is chosen here to use a prediction model for the absolute chest motion,

Figure 5. Time line of the signals. Measurements are available at discrete time instants t = kT (•), with k ∈ K.
The RG is executed every To seconds, that is at times t = kT (◦), with k ∈ Ko. The length of the signals is Te = NeT .
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10 E.P. van der Laan et al.

instead of the relative chest motion. This is an important choice, as will become clear in the
next section. The adopted prediction model is based on a simple first-order Euler integration
scheme applied to ẍchest = achest = r . This leads to the discrete-time model

xchest[k + 1|k] = xchest[k] + T vchest[k]
vchest[k + 1|k] = vchest[k] + T r[k] (9)

in which Assumption 2.4 is used. When this model is executed recursively, the prediction of
the relative motion can be written as

xrel[�|k] = xchest[k] + (� − k)T vchest[k] + T 2
�−1∑

i=k+1

(� − i)r[i] − xveh[�|k]

vrel[Ne|k] = vchest[k] + T

Ne−1∑
i=k

r[i] − vveh[Ne|k]︸ ︷︷ ︸
0

(10)

with k ∈ K, � ∈ {k, . . . , Ne}. In the second equation,Assumption 2.5 is used to set the predicted
final vehicle velocity to zero.

The current states of the model in this equation, xchest[k] and vchest[k] are given by an ‘open-
loop observer’, which is also based on a first Euler integration scheme applied to ẍchest =
achest:

xchest[k] = xchest[0] + kT vchest[0] + T 2
k−1∑
i=0

(k − i)achest[i]

vchest[k] = vchest[0] + T

k−1∑
i=0

achest[i] (11)

with k ∈ K.

Assumption 3.3 The initial relative chest position and velocity are assumed to be zero, hence
with Definition 2.2, xchest[0] = 0 and vchest[0] = vo.

The observer model (11) can be plugged into the prediction model (10) to obtain

xrel[�|k] = T 2

(
k−1∑
i=0

(� − i)achest[i] +
�∑

i=k+1

(� − i)r[i]
)

+ �T vo − xveh[�|k]

vrel[Ne|k] = vo + T

(
k−1∑
i=0

achest[i] +
Ne−1∑
i=k

r[i]
) (12)

with k ∈ K, � ∈ {k, . . . , Ne}. Note that the constraint equations now depend on v0, on the mea-
surement history achest[i] for i = 0, . . . , k − 1, on the future vehicle displacement prediction
xveh[k + j |k] and on the virtual setpoint sequence r[k + j ] for j = 0, . . . , Ne − k.

3.3. Linear programming

The min–max objective in Equation (8) can be rewritten as a LP by introducing an aux-
iliary variable γ ≥ 0. This γ represents the maximum of the absolute value of r(k + j).
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Vehicle System Dynamics 11

Hence, Equation (8) becomes for k ∈ Ko

min
p

γ

subject to −γ ≤ r[k + j ] ≤ γ j ∈ {0, . . . , n(k)}
L1 ≤ xrel[k + j |k] ≤ L2

S1 ≤ vrel[Ne|k] ≤ S2

(13)

where p ∈ R
n(k)+2 contains the input, i.e. the degrees of freedom, given by

p = [r[k] r[k + 1] · · · r[Ne] γ ]T.

When the above constraint equations are written in a matrix form using Equation (12), it is
clear that the constraints also depend linearly on the optimisation vector p. Then Equation (13)
can be formulated as an LP

min
p

φTp

subject to App ≤ bp

(14)

with φ = [0 . . . 0 1]T ∈ R
n(k)+2, and Ap and bp suitable vectors according to the constraint

equations. The problem in Equation (14) can now be efficiently and accurately solved by
simplex or interior point methods [45].

3.4. Results

The algorithm is implemented in Matlab/Simulink, and results are generated for L1 =
−0.03 m, L2 = 0.25 m, S1 = −1 m/s, S2 = 0 m/s, T = 0.1 ms, To = 10 ms, and Te = 200 ms.
At this point, it is assumed that full a priori crash information on xveh is available. Later, this
information will come from the second step in the RG, namely the crash prediction step as
shown in Figure 4.

Since the computational complexity of the problem (14) depends directly on the degrees
of freedom in p, a tractable optimisation problem can be obtained by fixing the inputs to
be constant over a certain number of samples. This is known as the move blocking, see for
example, [46]. In Equation (14), the number of inputs is reduced to 11, and the problem of
finding the optimal p is restated as finding the optimal p̂, where p = Mp̂ and M ∈ R

n(k)+2×11

is the so-called blocking matrix. M is assumed to be a matrix of ones and zeros only, with each
row containing exactly one non-zero element. Correspondingly, constraint violation is checked
at only 10 points on the future horizon. These two relaxations save valuable computational
time, while they still lead to good performance, as will be shown later on.

Figure 6 shows the outcome of the simulation for a crash pulse obtained from a 40% offset
frontal impact with a small family car against a deformable barrier at 64 km/h. The top left
figure shows the pulse aveh (grey) and the optimal setpoint r (black). One can see that a near
optimal solution is found, in spite of the two relaxations described above.

At every time instant kT , k ∈ Ko, the optimal solution was found within 6 ms – see figure on
the top right – on an average workstation1, which is below the available time of To = 10 ms.
Of course, with dedicated algorithms and hardware, this can easily be improved further. The
decrease in calculation times is caused by the fact that blocking matrix M decreases in size,
as the future horizon length decreases, although the number of inputs remains constant. The
bottom two figures show that the constraints are not violated.
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12 E.P. van der Laan et al.

Figure 6. Top: Left: The optimal setpoint (solid) for the chest acceleration given a vehicle acceleration (dash-dotted).
Right: Calculation times at every optimisation step To. Bottom: The relative chest displacement does not violate the
constraints.

3.5. Conclusion

In this section, the setpoint optimisation step has been developed that generates a setpoint for
the primal controlled system shown in Figure 4. This setpoint is optimal in a sense that an upper
bound on the Amax criteria is minimised while satisfying the constraint in Equation (5). It was
shown that a finite prediction horizon suffices when this constraint is replaced by Equations (6)
and (7). Using the models (10) and (11), the optimisation problem could be written as an LP.
To solve this LP, we need to know the initial vehicle velocity, a measurement of the current
chest acceleration and a prediction of the future vehicle displacement. With assumed a priori
knowledge of the latter, the obtained setpoint for a given crash pulse was shown to be near
optimal, and it was found within milliseconds due to a move blocking procedure.

4. Prediction of vehicle motion

Knowledge of the future vehicle motion is obviously not available during the crash. In this
section, an algorithm is presented to predict this motion.

The algorithm presented in the previous section has a very important advantage. From
Equation (10), it became clear that the future vehicle displacement xveh(k + j |k), for j =
1, . . . , n(k), should be known. Note that if the prediction model in Equation (9) would have
been applied to xrel instead of xchest, which is more intuitive as the constraints are imposed
on xrel, a prediction of the crash pulse aveh would have been required instead of the crash
displacement xveh. This is an important advantage, as the displacement is a far smoother
signal than the acceleration and can therefore be much better estimated.

4.1. Objective function

It is proposed to fit a vehicle displacement function, fx : R → R, to the history of xveh by
regression analysis. This function fx(t) is chosen to be twice differentiable in t , such that
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Vehicle System Dynamics 13

ḟx and f̈x are the vehicle velocity and acceleration functions, respectively. The optimal fit is
found by minimisation of an objective function, J . The optimal vehicle displacement function,
fx , is used to predict the future vehicle displacement as follows:

xveh[k + j |k] = fx((k + j)T ), j = 1, . . . , n(k) (15)

for k ∈ Ko.
The objective function, J , consists of the sum of the squared error between the measured past

displacement and the function evaluations fx . The squared error between measured current
velocity and acceleration, and the velocity and acceleration function are both included in
J as well. Previously, it was assumed that the vehicle will reach zero velocity at time Te

(Assumption 3.1). Therefore, it is required that the vehicle has zero velocity at an additional
10 time instant after Te with a time separation of τ = 5 ms. This objective forms the last part
of J . Hence, the objective function J for k ∈ Ko reads

J [k] =
k∑

j=0

|fx(jT ) − xveh[j ]|2+

β2
1 |ḟx(kT ) − vveh[k]|2+

β2
2 |f̈x(kT ) − aveh[k]|2

β2
3

10∑
j=0

|ḟx(Te + jτ) − 0|2+

(16)

where βi > 0, i = 1, 2, 3 are weighting constants. The objective function (16) requires knowl-
edge of the current values of vveh and aveh, and the history of xveh.According toAssumption 2.5,
only the vehicle acceleration is available for measurement. Therefore, again an ‘open-loop
observer’ is used similar to Equation (11), hence:

xveh[k] = 0 + kT vo + T 2
k−1∑
i=0

(k − i)aveh[i]

vveh[k] = vo + T

k−1∑
i=0

aveh[i].
(17)

In these equations, knowledge of the initial vehicle velocity is required. Now consider the
following:

Assumption 4.1 The vehicle speed at the moment of impact, v0, is known.

This is a reasonable assumption, since the vehicle’s speedometer can be used to determine
the speed just before impact. Note that this is a good estimate when there is low slip, which is
often the case as anti-locking brake systems are available in most consumer vehicles.

The objective J now only depends on the measured vehicle acceleration aveh, and the known
initial speed v0.

4.2. Linear regression

To solve the minimisation of J , a polynomial structure of order m is imposed on fx :

fx(t) = q0 + q1t + q2t
2 + q3t

3 + · · · + qmtm
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14 E.P. van der Laan et al.

with qi ∈ R, i = 0, . . . , m. It follows from Definition 2.2 that q0 = 0 and q1 = vo. The remain-
ing parameters are stacked in a parameter vector q = [q2 q3 · · · qm]T. The vehicle motion
functions can be written linearly in q, as follows:

fx(t) = ψx(t)q + vot

ḟx(t) = ψ̇x(t)q + vo

f̈x(t) = ψ̈x(t)q

(18)

with vector function ψx : R → R
m−1 given by

ψx(t) = [t2 t3 · · · tm].
When Equations (18) and (17) are substituted into Equation (16), the minimisation of the

objective function can be rewritten as

min
q

∥∥Aqq − bq

∥∥2
2 (19)

with matrices Aq and bq as follows

Aq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψx(T )

ψx(2T )

ψx(3T )
...

ψx(kT )

β1 · ψ̇x(kT )

β2 · ψ̈x(kT )

β3 · ψ̇x(Te)

β3 · ψ̇x(Te + τ)
...

β3 · ψ̇x(Te + 10τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, bq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 T 2 0 · · · 0 0
0 2T 2 T 2 · · · 0 0
...

...
...

. . .
...

...

0 (k − 1)T 2 (k − 2)T 2 · · · T 2 0
0 β1T β1T · · · β1T 0
0 0 0 · · · 0 β2

−β3 0 0 · · · 0 0
−β3 0 0 · · · 0 0

...
...

...
. . .

...
...

−β3 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

v0

aveh(0)

aveh(1)
...

aveh(k)

⎤
⎥⎥⎥⎥⎥⎦ .

It is well-known, see, for example, [45], that the analytical solution to the linear regression
problem in Equation (19) is q∗ = (AT

q Aq)
−1AT

q bq , assuming Aq has full column rank. Since
the top block of Aq has linearly independent columns and has dimensions k × (m − 1), one
can easily verify that Aq has full column rank for all k ≥ m − 1. So the optimal solution exists,
when there are at least as many data points available as the order of the polynomial function
fx . Or in other words, the vehicle prediction can successfully be executed for the first time at
t = mT .

With the optimal solution q∗ and Equations (18) and (15), the prediction for xveh reads for
k ∈ Ko as follows:

xveh[k + j |k] = ψx((k + j)T )q∗ + (k + j)T v0, j ∈ {1, . . . , n(k)}.
The vehicle prediction is now used in the prediction model of the relative chest displacement,
see Equation (12), and it only depends on measurements of aveh and v0.
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Vehicle System Dynamics 15

Figure 7. Prediction error values for 19 frontal crash pulses, according to the error criterium in Equation (20).

4.3. Results

A large set of crash pulses, obtained from data from frontal EuroNCAP and USNCAP impact
tests, is used to evaluate the accuracy of the algorithm. The absolute error between the predicted
displacement and the actual future vehicle displacement is calculated at every optimisation
step To. So for k ∈ Ko

e[k] = max
j∈{1,...,n(k)}

|fx((k + j)T ) − xveh[k + j ]| . (20)

These error values are determined for 19 different crash pulses, and then averaged.
Figure 7(a) shows the error values e(k), k ∈ Ko for three different approximation orders
m = 8, 9, 10, and for To = 10 ms, T = 0.1 ms, β1 = β2 = 1, β3 = 10, and Te = 0.2 s. The
prediction algorithm is first executed at time t = To, so then k = To/T = 100 	 m and the
optimal solution exists.

The results show that for m = 9, the best results are obtained, leading to errors of less
than 10 cm after 30 ms. Similar tests have been performed to obtain the optimal values of βi ,
i = 1, 2, 3. Given that the desired relative displacement of the chest is in the order of 25 cm,
the obtained error values are acceptable. Especially since the setpoint optimisation can adapt
online to mismatches, as will also be shown in Section 5, where the setpoint optimisation
and crash prediction are combined. So, although the crashes differ substantially in magnitude,
impact velocity and duration, the displacement is predicted with reasonable accuracy.

5. Simulation results with the adapted RG

In this section, the results are shown for the complete RG, which combines the setpoint
optimisation and the vehicle prediction, as depicted in Figure 4. To accommodate the prediction
errors of the future vehicle displacement path, see Figure 7(b) a robustified version of the
setpoint optimisation algorithm is proposed first.

5.1. Robustness

The information about the maximum prediction error at every time instant k is shown in
Figure 7(b). It is used in the setpoint optimisation problem to cope with the uncertainty in
the prediction. This will be done using the so-called robustness function εx : R → R. It is a
function of time, and it is assumed that the maximum absolute error in the prediction of xveh
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16 E.P. van der Laan et al.

will be less than this function, in the sense that

max
j∈{1,...,n(k)}

|xveh[k + j |k] − xveh[k + j ]| ≤ εx[k], k ∈ Ko. (21)

The function εx(t) decreases over time, as the maximum prediction error over 19 pulses also
decreases, as can be seen in Figure 7(b). The function is chosen as

εx(t) =
{

0.20 − 1.33 t for t ≤ 0.15

0 for 0.15 < t

and is indicated in Figure 7(b) by the black line. In this function, εx is given in meters, and t

in seconds. The setpoint optimisation algorithm is made robust against this inevitable vehicle
prediction error. The robustified version of the optimisation problem is obtained by decreasing
the constraints with εx[k]. So for k ∈ Ko

min
r

max
j∈{1,...,n(k)}

|r[k + j ]|

subject to L1 + εx[k] ≤ xrel[k + j |k] ≤ L2 − εx[k]
S1 ≤ vrel[Ne|k] ≤ S2.

(22)

Clearly, the constraint on xrel in this optimisation problem together with the relationship (21),
guarantees that L1 ≤ xrel[k + j |k] ≤ L2 as in the original problem. Besides, since εx is a
decreasing function, the bounds become less conservative as the crash progresses and more
information becomes available. Towards the end of the crash, the original constraint as in
Equation (8) is recovered. Note that the prediction error in the final vehicle velocity can be
neglected, and therefore the constraint on vrel is not altered.

5.2. RG with vehicle prediction

Results with the combined RG, i.e. the robustified setpoint optimisation and the vehicle
prediction, are generated with identical setting as previously, so T = 0.1 ms, To = 10 ms,
Te = 200 ms, L1 = −0.03 m, L2 = 0.25 m, S1 = −1m/s, S2 = 0 m/s, m = 9, β1 = β2 = 1,
and β3 = 10. Figure 8 shows the results of the combined robust RG for the same EuroNCAP
frontal impact pulse as in Figure 6. The RG starts at t = 2To = 20 ms, because the error in the
vehicle prediction is too large at t = To, as can be observed in Figure 7(b), and an appropriate
setpoint cannot be determined. For t < 20 ms, the setpoint is set to equal the measured crash
pulse, as this will keep the occupant restrained to the seat.

Obviously, the calculation times were higher than for the case in which it was assumed that
full a priori knowledge of the crash is available, see Figure 6. The prediction step takes no

Figure 8. Left: The optimal setpoint r for the chest acceleration with (grey) and without (black) prior knowledge
of the crash pulse. Right: Corresponding relative chest displacement.
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Vehicle System Dynamics 17

more than 2 ms on average, as it consists merely of some matrix multiplications. However,
the constraints are tighter in the robustified version (22), and the LP solver needs more time,
viz. 10 ms compared with 6 ms, to find the optimal solution. In standard high-level comput-
ing language (Matlab), solutions were hence found within 12 ms. When the algorithms are
efficiently rewritten in a middle-level language, for example C++, it is more than reasonable
to assume that the solutions can be found within To = 10 ms, thereby meeting the real-time
requirements.

The results show that the calculated setpoint, based on the vehicle prediction, is desirably
close to the optimal setpoint, obtained with full a priori crash information as in Section 3.4.
This implies that without knowledge of the crash, close to optimal behaviour can be predicted
in terms of the injury parameter Amax for the considered impact pulse.

5.3. Results with a MADYMO primal controlled loop

In this section, the RG is applied to a more realistic, primal controlled system. This system has
reasonably well tracking properties, i.e. y = achest ≈ r , instead of y = r . So in other words,
Assumption 2.4 is somewhat relaxed.

The numerical, primal compensated system consists of a 50 percentile Hybrid III dummy
from the MADYMO database [47]. The airbag system is disabled, and the conventional belt
load limiter is replaced by a belt force actuator. The occupant is seated in an interior com-
partment model, representing a small family car. The controller consists of an integrator with
appropriate gain and is designed such that the chest acceleration tracks the desired trajectory
r . For more details on this model, the interested reader is referred to [15,28].

Results for the controlled chest acceleration using the setpoint from the RG are shown in
Figure 9 together with the required belt force. Results are compared with responses from
an identical occupant model with a conventional belt restraint system, i.e. a 4 kN load lim-
iter. It can be seen that the Amax criterion has reduced by approximately 45%. Although not
shown in this figure, the peak chest deflection, Dmax, is also lowered, in spite of the higher
belt forces. This can be understood from the fact that the peak chest acceleration has been
reduced, which indicates that the forces acting on the thorax are lower. To emphasise the
relevance of these results, note that the only inputs to the RG algorithm are the initial vehicle
velocity vo, and the measured current vehicle and chest acceleration, aveh and achest, respec-
tively. However, it should be mentioned that this injury reduction is achieved with an ideal
belt actuator and perfect sensors, which is, of course, in practice not realisable. Still, it is
believed that it is possible to harvest a major part of the Amax-reduction, since the primal
controller can be accommodated to the near ideal actuator, and to the filtering properties
of the estimator.

Figure 9. Chest acceleration (left) and belt force (right) from a system with a conventional restraint (grey) and a
primal controlled system with the RG as proposed in this paper (black).
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18 E.P. van der Laan et al.

6. Discussion and future work

In this paper, a novel control strategy for real-time control of adaptive belt restraint systems
is proposed. The control method consists of a combination of a primal controlled loop, which
achieves good tracking properties, and a modified RG. The RG finds an optimal setpoint for
the chest acceleration, while satisfying constraints and without having a priori knowledge of
the upcoming crash. The RG includes a vehicle motion estimation procedure to obtain goods
estimates of the vehicle position during the crash. The complete RG is robustified with respect
to these uncertain prediction errors.

Moreover, the whole design procedure is generic in nature. For instance, it is straight-
forward to include multiple IC in the design process. Also, different primal controllers and
plant dynamics can be accounted for. This flexibility enables the inclusion of various future
improvements, such as novel actuators and sensor technologies.

In summary, the RG control strategy is believed to be an important step towards real-
time implementation of controlled passive safety systems. It reduces the IC considerably (for
example, Amax for a EuroNCAP pulse with 45% with respect to conventional to conventional
restraint systems) while still meeting the real-time computational requirements.

Interestingly, the performance of the overall RG scheme can even be improved when accu-
rate pre-crash information systems, for example on closing speed or impact angle, become
available in the near future. The reason is that the vehicle motion prediction can be signifi-
cantly improved. This could potentially lead to a further reduction of injury risk even beyond
the achieved reductions, which were already significant.
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Note

1. The code was written in Matlab M-code, and simulations were performed on a workstation with a CPU that
runs at 1.4 GHz.
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