
1

Reference Model of Open Distributed Processing (RM-ODP): Introduction

Kerry Raymond

kerry@dstc.edu.au

CRC for Distributed Systems Technology

Centre for Information Technology Research

University of Queensland

Brisbane 4072 Australia

Abstract

The Reference Model of Open Distributed Processing (RM -ODP) was a joint effort by the

international standards bodies ISO and ITU-T to develop a coordinating framework for the

standardisation of open distributed p~ocessing (ODP). The ~odel describes an architecture

within which support of distribution, interworking, interoperability and portability can be inte

grated. The RM-ODP framework defines ODP concerns using five "viewpoints" (abstrac

tions), namely enterprise, 'information, computational, engineering, and technology. This

tutorial introduces the reference model, describing the viewpoints and some of the ODP func

tions and transparencies.

Keyword Codes: C.2.4

Keywords: Computer-Communication Networks, Distributed Systems

1. WHAT IS RM-ODP?

Advances in computer networking have allowed computer systems across the world to be

interconnected. Despite this, heterogeneity in interaction models prevents interworking

between systems. Open distributed processing (ODP) describes systems that support heteroge

neous distributed processing both within and between organisations through the use of a com

mon interaction model.

ISO and ITU-T (formerly CCITT) have developed a Reference Model of Open Distributed

Processing (RM-ODP) to provide a coordinating framework for the standardisation of ODP by

creating an architecture which supports distribution, interworking, interoperability and porta

bility.

1.1. The Goals and Deliverables of RM-ODP

RM-ODP aims to achieve:

portability of applications across heterogeneous platforms

interworking between ODP systems, i.e. meaningful exchange of information and

convenient use of functionality throughout the distributed system

distribution transparency, i.e. hide the consequences of distribution from both the

applications programmer and user

K. Raymond et al. (eds.), Open Distributed Processing

© Springer Science+Business Media Dordrecht 1995

4 Part One Invited Presentations

The reference model provides a "big picture" that organises the pieces of an ODP system into a
coherent whole. It does not try to standardise the components of the system nor to unnecessar
ily influence the choice of technology.

There are many challenges in developing a reference model. RM-ODP must be adequate to
describe most "reasonable" distributed systems available both today and in the future, so RM
ODP is abstract, but not vague. RM-ODP carefully describes its components without prescrib
ing an implementation.

1.2. Structure of RM-ODP

The RM-ODP standard is known as both ISO International Standard 10746 and ITU-T X.900
Series of Recommendations and will consist of four parts:

Part 1: Overview and Guide to Use (ISO 10746-1/ITU-T X.901) [1]
Part 2: Descriptive Model (ISO 10746-2'ITU-T X.902) [2]
Part 3: Prescriptive Model (ISO 10746-3/ITU-T X.903) [3]
Part 4: Architectural Semantics (ISO 10746-4/ITU-T X.904) [4]

Part 1 contains a motivational overview of ODP and explains the key concepts of the RM-ODP
architecture. Part 2 gives precise definitions of the concepts·required to speCify distributed
processing systems. Part 3 prescribes a framework of concepts, structures, rules, and functions
required for open distributed processing. Part 4 describes how the modelling concepts of Part 2
can be represented in a number of formal description techniques.

This tutorial focuses on the framework established in Part 3.

1.3. Status of RM-ODP

In January 1995, Parts 2 and 3 of RM-ODP were successfully balloted to become International
Standards; official copies of the standard will be soon be available, after the necessary admin
istrative processing.

Parts 1 and 4 are based on Parts 2 and 3. Therefore, the standardisation of Parts 1 and 4 follows
the standardisation of Parts 2 and 3. Parts 1 and 4 are currently Committee Drafts and expected
to become Draft International Standards in Aprill995 and International Standards in early
1996.

2. VIEWPOINTS

Part 3 of RM-ODP prescribes a framework using viewpoints from which to abstract or view
ODP systems. A set of concepts, structures, and rules is given for each of the viewpoints, pro
viding a "language" for specifying ODP systems in that viewpoint.

RM-ODP defines the following five viewpoints:

Enterprise Viewpoint (purpose, scope and policies)
Information Viewpoint (semantics of information and information processing)
Computational Viewpoint (functional decomposition)
Engineering Viewpoint (infrastructure required to support distribution)
Technology Viewpoint (choices of technology for implementation)

Specifying an ODP system using each of the viewpoint languages allows an otherwise large
and complex specification of an ODP system to be separated into manageable pieces, each

Reference model of open distributed processing 5

focused on the issues relevant to different members of the development team. For example, the

information analyst works with the information specification while the systems programmer is
concerned with the engineering viewpoint. Figure 1 shows how the RM-ODP viewpoints can
be related to the software engineering process.

Enterprise Requirements Analysis

--- :~l~~- - --- v

Technology Implementation

Figure 1: RM-ODP Viewpoints and Software Engineering

3. ENTERPRISE VIEWPOINT

The enterprise viewpoint is used to organis,ational requirements and structure. In the enterprise
viewpoint, social and organizational policies can be defined in terms of:

objects- both "active" objects, e.g. bank managers, tellers, customers, and "passive"
objects, e.g. bank accounts, money
communities- groupings of objects intended to achieve some purpose, e.g. a bank branch
consists of a bank manager, some tellers, and some bank accounts; the branch provides
banking services to a geographical area
roles of the objects within communities, expressed in terms of policies:
* permission - what can be done, e.g. money can be deposited into an open account

* prohibition- what must not be done, e.g. customers must not withdraw more than $500
per day

* obligations - what must be done, e.g. the bank manager must advise customers when
the interest rate changes

The enterprise language is specifically concerned with performative actions that change policy,
such as creating an obligation or revoking permission. In a bank, the changing of interest rates

is a performative action as it creates obligations on the bank manager to inform the customers.
However, obtaining an account balance is not a performative action as obligations, permis
sions, and prohibitions are not affected. Thus, an enterprise specification of a bank need not

include the obtaining of account balances; such functionality will be identified in the computa
tional specification.

By preparing an enterprise specification of an ODP application, policies are determined by the
organisation rather than imposed on the organisation by technology (implementation) choices.

For example, a customer should not be limited to having only one bank account, simply

because it was more convenient for the programmer.

6 Part One Invited Presentations

4.1NFORMATION VIEWPOINT

The information viewpoint is used to describe the information required by an ODP application
through the use of schemas, which describe the state and structure of an object; e.g., a bank
account consists a balance and the "amount withdrawn today".

A static schema captures the state and structure of a object at some particular instance; e.g., at
midnight, the amount-withdrawn-today is $0.

An invariant schema restricts the state and structure of an object at all times; e.g., the amount
withdrawn-today is less than or equal to $500.

A dynamic schema defines a permitted change in the state and structure of an object; e.g. a
withdrawal of $X from an account decreases the balance by $X and increases the amount-with
drawn-today by $X. A dynamic schema is always constrained by the invariant schemas. Thus,
$400 could be withdrawn in the morning but an additional $200 could not be withdrawn in the
afternoon as the amount-withdrawn-today cannot exceed $500.

Schemas can also be used to describe relationships or associations between objects; e.g., the
static schema "owns account" could associate each account with a customer.

A schema can be composed from other schemas to describe complex or composite objects;
e.g., a bank branch consists of a set of customers, a set of accounts, and the "owns account"
relationships.

The information specification of an ODP application could be expressed using a variety of
methods, e.g., entity-relationships models, conceptual schemas, and the Z formal description
technique.

5. COMPUTATIONAL VIEWPOINT

The computational viewpoint is used to specify the functionality of an ODP application in a
distribution-transparent manner. RM-ODP's computational viewpoint is object-based, that is:

objects encapsulate data and processing (i.e. behaviour)
objects offer interfaces for interaction with other objects
objects can offer multiple interfaces.

A computational specification defines the objects within an ODP system, the activities within
those objects, and the interactions that occur among objects. Most objects in a computational
specification describe application functionality, and these objects are linked by bindings
through which interactions occur. Binding objects are used to describe complex interaction
between objects.

Objects in a computational specification can be application objects (e.g. a bank branch) or
ODP infrastructure objects (e.g. a type repository or a trader, see Section 8.3.1 and Section
8.3.2). Figure 2 illustrates a bank branch object providing a bank teller interface and a bank
manager interface. Both interfaces can be used to deposit and withdraw money, but accounts
can be created only through the bank manager interface. Each of the bank branch object's
interfaces is bound to a customer object.

Reference model of open distributed processing

Deposit
Withdraw

Bank Branch Object

Figure 2: Bank Branch Object with Bank Manager and Bank Teller Interfaces

5.1. Computational Interaction

RM-ODP provides three forms of interaction between objects: operational, stream-oriented,
and signal-oriented.

7

Operational interfaces provide a client-server model for distributed computing-client objects
invoke operations at the interfaces of server objects (i.e. the remote procedure call paradigm).
Operational interfaces consist of named operations with parameters, terminations, and results.
Operations in RM-ODP can be either interrogations (which return a termination) or announce
ments (which do not return a termination).

For example, a bank branch object offers a number of BankTeller operational interfaces, whose
signature is defined as:

BankTeller - Interface Type {

operation Deposit (c: Customer, a: Account, d: Dollars)
returns OK (new_balance: Dollars)
returns Error (reason: Text);

operation Withdraw (c: Customer, a: Account, d: Dollars)
returns OK (new_balance: Dollars)
returns NotToday (today: Dollars, daily_limit: Dollars)
returns Error (reason: Text);

Note that the notation used in the example above is merely illustrative. RM-ODP does not pre
scribe any particular notation for defining operational interface types.

Stream interfaces provide (logically) continuous streams of information flowing between pro
ducer and consumer objects. Consumer objects connect to the stream interfaces of producer
objects or vice-versa, and several streams can be grouped in a single interface, e.g., an audio
stream and a video stream. Stream interfaces have been included in RM-ODP to cater for
multi-media and telecommunications applications.

8 Part One Invited Presentations

Underlying both operational interfaces and stream.interfaces are signal interfaces which pro
vide very low-level communications actions. The OSI service primitives (REQUEST, INDI
CATE, RESPONSE, and CONFIRM) are examples of signals.

5.1.1. Interface Subtyping

The concept of interface type is particularly important in RM -ODP. Interfaces in the computa
tional model are strongly typed and inheritance of an interface type (usually) creates a subtype
relationship. Subtypes of an interface type are substitutable for the parent type (or any super
type).

Figure 3 illustrates interface subtyping.The BankManager and LoansOfficer interface types are
subtypes of the BankTeller interface (super-)type; either can substitute for a BankTeller as they
can perform the Deposit and Withdraw operations expected of a BankTeller. Neither a Bank
Teller nor a LoansOfficer can replace a BankManager, as neither can provide the CreateAc
count operation.

BankTeller

Deposit()
Withdraw()
CreateAccount ()

Loans Officer

Figure 3: Example of Interface Subtyping

5.2. Computational Activity

The computational viewpoint also defines the actions that are possible within a computational
object. These are:

creating and destroying an object
creating and destroying an interface
trading for a interface (see Section 8.3.2)
binding to an interface
reading and writing the state of the object
invoking an operation at an operational interface
producing/consuming a flow at a stream interface
initiating or responding to a signal at a signal interface.

These basic actions can be composed in sequence or in parallel. If composed in parallel, the
parallel activities can be dependent (the activity is forked and must subsequently join at a syn
chronisation point) or independent (the activity is spawned and cannot join).

Reference model of open distributed processing 9

5.3. Environment Contracts

The refinement of a computational object and its interfaces might require the specification of

requirements on the realization of that object or its interfaces (and, hence, of the objects with

which it interacts). For example, a bank must protect the customer's money and must ensure

that interaction is secure against a variety of fraudulent activities, e.g. capturing and replaying

operations. Therefore, the actual interactions must either be communicated over a secure net

work or employ end-to-end security checks.

Ideally, environment contracts will be expressed in high-level quality-of-service terms rather

than, e.g., specifying a particular network or a particular encryption scheme (either of which

presupposes the environment in which the ODP system will operate).

Currently, the state of the art falls short of this ideal. However, it is important that RM-ODP be

"future-proof', capable of incorporating both current and expected future technologies.

6. ENGINEERING VIEWPOINT

The engineering viewpoint is used to describe the design of distribution-oriented aspects of an
ODP system; it defines a model for distributed systems infrastructure. The engineering view

point is not concerned with the semantics of the ODP application, except to determine its

requirements for distribution and distribution transparency.

The fundamental entities described in the engineering viewpoint are objects and channels.

Objects in the engineering viewpoint can be divided into two categories-basic engineering

objects (corresponding to objects in the computational specification) and infrastructure objects

(e.g., a protocol object- see below). A channel corresponds to a binding or binding object in

the computational specification.

6.1. Channels

A channel provides the communication mechanism and contains or controls the transparency

functions required by the basic engineering objects, as specified in the environment contracts

in the computational specification. Figure 4 illustrates the channel between a Customer Object

and the Bank Branch object in Figure 2. The shaded area is the channel, composed of stubs,

binders, and protocol objects. Stubs and binders are used to provide various distribution trans

parencies.

Figure 4: Structure of a Channel

10 Part One Invited Presentations

Stubs are used when the transparency involves some knowledge of the application semantics,
e.g., maintaining a log of operations for an audit trail.

Binders are used when application semantics are not required; they merely transport themes
sages (bit streams). Binders are responsible for managing the binding between the basic engi
neering objects; e.g., binders could use sequence numbers to foil capture-and-replay attempts.

Protocol objects interact via a communications interface; this models networking.

Outside of the channel, supporting objects assist the stub, binder, and protocol objects within
the channel. Typically, supporting objects are repositories of information required by the stubs,
binders, and protocol objects. For example, binders register and retrieve interface locations via
a supporting object known as the relocator (see Section 8.3.3) in order to achieve location
transparency.

6.2. Engineering Structures

The RM-ODP engineering viewpoint prescribes the structure of an ODP system. The basic
units of structure are:

cluster - a set of related basic engineering objects that will always be co-located
capsule- a set of clusters, a cluster manager for each Cluster, a capsule manager, and the
parts of the channels which connect to their interfaces
nucleus object- an (extended) operating system supporting ODP
node - a computer system

Figure 5 illustrates the structure of a node.

Figure 5: Structure of a Node

.-.-----.

r ~ 1
Iii
~ if ~

l ___)

Node

Reference model of open distributed processing

Given these definitions, the following structuring rules are defined:

a node has a nucleus object
a nucleus object can support many capsules
a capsule can contain many clusters
a cluster can contain many basic engineering objects
a basic engineering object can contain many activities
all inter-cluster communication is via channels

11

An implementation of an ODP system can choose to constrain the structuring, for example, by
allowing:

only one object per cluster
only one cluster per capsule

7. TECHNOLOGY VIEWPOINT

A technology specification of an ODP system describes the implementation of that system and
the information required for testing. RM-ODP has very few rules applicable to technology
specifications.

8. ODP FUNCTIONS

The ODP functions are a collection of functions expected to be required in ODP systems to
support the needs of the computational language (e.g. the trading function) and the engineering
language (e.g. the relocator). The following subsections outline the major function groups in
RM-ODP; a few of the functions are discussed in more detail to illustrate the scope ofRM
ODP.

8.1. Management Functions

RM-ODP defines a number of functions to manage the engineering structures, including:

node management function (provided by the nucleus) for creating capsules and channels
capsule management function (provided by the capsule manager) for instantiating clusters
and checkpointing and deactivating clusters in a capsule
cluster management function (provided by the cluster manager) for checkpointing,
deactivating and migrating clusters
object management function (provided by the basic engineering object) for checkpointing
and deleting basic engineering objects

8.2. Coordination Functions

RM -ODP defines a number of functions aimed at coordinating the actions of a number of
objects, clusters, or capsules in order to produce some consistent overall effect. These include:

checkpoint and recovery
deactivation and reactivation
event notification
groups and replication
migration
transactions

12 Part One Invited Presentations

8.2.1. Transaction Function

In the information viewpoint, state change appears to happen as a single indivisible action.
However, in a computational and engineering viewpoints, this state might be distributed
throughout the ODP system and be concurrently accessed by many parallel activities. In order
to develop reliable ODP systems, it will be necessary to coordinate the behaviour of objects to
achieve the desired degrees of:

visibility- the degree to which the intermediate effects of an operation (or other
interaction) are visible to other operations
recoverability - the state after the failure of the operation (which of its effects are
undone?)
permanence -the consequences of the failure of the operation on completed operations
(are their effects altered?)

RM-ODP defines a very generalised transaction function; this is another example of"future
proofing" in RM-ODP. Realistically, the ACID transaction model will be the only style of
transaction mechanism supported by most ODP systems for a number of years. Consequently,
RM-ODP defines an ACID transaction function as specialisation of its generalised transaction
function.

8.3. Repository Functions

In addition to a general storage function and a general relationship repository, RM-ODP
defines a number of specific repository functions, concerned with maintaining a database of
specialised classes of information.

8.3.1. Type Repository

In most computer systems, type definitions are not explicitly maintained within the system.
Instead, types are documented in manuals or defined according to some local conventions (e.g.
use of mnemonic file names). ODP systems must make type information available through the
ODP system itself; the primary need is to support type checking during trading and interface
binding.

In RM-ODP, the type repository is a registry for type definitions, particularly for interface
types. The type registry maintains a type hierarchy (subtype relationships) and other relation
ships between types.

8.3.2. Trader

The ODP Trader provides "a dating service for objects"; its purpose is to support dynamic
binding by allowing services to be discovered at run-time. The trader is a repository of service
advertisements.

Server objects advertise their services through a trader; the service advertisement specifies the
interface type and service attributes. Servers manipulate their service advertisements by using
the export operations provided by the trader. Clients choose services by specifying the required
type and attributes in import operations.

The ODP Trader is also the subject of standardisation, separate from RM-ODP. An introduc
tion to this standard can be found in [5].

Reference model of open distributed processing 13

9.2. Relocation Transparency

Relocation transparency frees a basic engineering object (and the programmer of the object)
from needing to know if an interacting object is relocated.

Relocation transparency can be achieved by configuring the channel with binders, which:

inform the relocator (see Section 8.3.3) of the location of the interface it supports
obtain from the relocator the location(s) of the other interface(s) connected to the channel

Binders will typically cache location information. If the location of an interface changes, the
use of the old location will cause an error. With relocation transparency, the binder will auto
matically obtain the new location from the relocator, reconnect the channel, and replay the
interaction. The basic engineering object should remain unaware of the change in location.

9.3. Transaction Transparency

Unlike access and relocation transparency which are achieved through configuring engineering
channels with clever components, transaction transparency cannot be achieved by this mecha
nism alone.

The correct operation of the transaction function requires the reporting of the execution (or
undo-ing) of certain "actions of interest" (e.g. reading or writing a piece of transaction-man
aged data). These events occur internal to the objects and are not visible to a stub or binder
configured in the channel. Therefore, transaction transparency must involve the refinement of a
transaction-transparent specification into a specification which reports the execution of these
actions of interest to the transaction function.

lO.SUMMARY

RM-ODP is a reference model, not an implementation standard; it defines a framework for the
standardisation of open distributed processing. The RM-ODP model defines five viewpoints
which decompose the specification of ODP applications by focusing on separate concerns.

The enterprise viewpoint defines a model for policy analysis while the information viewpoint
provides a model for information analysis. The computational viewpoint defines a model for
distributed programming languages; the run-time support for these languages is provided by
the distributed systems infrastructure based on the engineering viewpoint model and the ODP
infrastructure functions. The technology viewpoint is used to describe implemented systems.

ACKNOWLEDGEMENTS

The author thanks Andrew Berry for his assistance in preparing this paper and all of the partic
ipants in the Australian and international RM-ODP standards groups for the many hours of live
ly discussions.

The participation of the author in the standardisation ofRM-ODP has been supported by:

Telecom (Australia) Research Laboratories through the Centre of Expertise in Distributed
Information Systems (CEDIS)

the Cooperative Research Centre for Distributed Systems Technology through the
Cooperative Research Centres Program of the Department of the Prime Minister and
Cabinet of the Commonwealth Government of Australia
Standards Australia through their travel assistance scheme.

14 Part One Invited Presentations

REFERENCES

[1] ISO/IEC CD 10746-1, "Basic Reference Model of Open Distributed Processing- Part 1:
Overview and Guide to Use", July 1994.

[2] ISO/IEC DIS 107 46-2, "Basic Reference Model of Open Distributed Processing - Part 2:
Descriptive Model", February 1994.

[3] ISO/IEC DIS 10746-3, "Basic Reference Model of Open Distributed Processing- Part 3:
Prescriptive Model", February 1994.

[4] ISO/IEC CD 10746-4, "Basic Reference Model of Open Distributed Processing- Part 4:
Architectural Semantics", July 1994.

[5] M.Y. Bearman, "ODP-Trader", International Conference on Open Distributed Process
ing, Berlin, September 1993.

[6] ISO/IEC CD 10181, "Security Frameworks in Open Systems".

