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Abstract

Motivation: In biomedicine, every molecular measurement is relative to a reference point, like a

fixed aliquot of RNA extracted from a tissue, a defined number of blood cells, or a defined volume

of biofluid. Reference points are often chosen for practical reasons. For example, we might want to

assess the metabolome of a diseased organ but can only measure metabolites in blood or urine. In

this case, the observable data only indirectly reflects the disease state. The statistical implications

of these discrepancies in reference points have not yet been discussed.

Results: Here, we show that reference point discrepancies compromise the performance of regres-

sion models like the LASSO. As an alternative, we suggest zero-sum regression for a reference

point insensitive analysis. We show that zero-sum regression is superior to the LASSO in case of a

poor choice of reference point both in simulations and in an application that integrates intestinal

microbiome analysis with metabolomics. Moreover, we describe a novel coordinate descent based

algorithm to fit zero-sum elastic nets.

Availability and Implementation: The R-package “zeroSum” can be downloaded at https://github.

com/rehbergT/zeroSum. Moreover, we provide all R-scripts and data used to produce the results of

this manuscript as Supplementary Material.

Contact: Michael.Altenbuchinger@ukr.de, Thorsten.Rehberg@ukr.de and Rainer.Spang@ukr.de

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

The emergence of novel technologies and experimental protocols for

molecular and cellular profiling of biological samples is continuously

gaining speed for at least one decade and there is no end in sight.

Every technology brings new computational challenges in the normal-

ization and interpretation of the data produced. Nevertheless, many

of these data types share common computational challenges. For ex-

ample, the high dimensionality of profiles has established machine

learning techniques including penalized regression models (Efron

et al., 2004; Hastie et al., 2009; Hoerl and Kennard, 1970;

Tibshirani, 1996) as standard tools of genomic data analysis.

In contrast, little attention has been given to the choice of refer-

ence points for measurements. Exemplary reference points include for

example one microgram of RNA, all mRNA from 1 million cells, all

metabolites in 1 ccm of blood, just to name a few. In a typical bio-

medical protocol, DNA, RNA or proteins are extracted from
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specimens such as blood, urine or tissue and a fixed size aliquot of

these molecules is profiled. In intestinal microbiome sequencing, for

instance, DNA encoding for 16S rRNA genes are extracted, a fixed

size aliquot of DNA is sequenced and the reads are mapped to taxo-

nomic units. Here, the reference point is a fixed size aliquot of DNA.

Also, the difference between profiles relative to two reference

points is not always small. For example, Lin et al. (2012) and Nie

et al. (2012) have shown that inducing the expression of the transcrip-

tion factor MYC causes transcriptional amplification, a global in-

crease in transcription rates of all currently transcribed genes by a

factor of 2–3, which can only be detected using the number of cells ra-

ther than a fixed amount of RNA as reference point. Similarly in the

context of epigenomics, Orlando et al. (2014) report global changes

in ChIPseq signals across experimental conditions. Reference points

for measurements in tissue specimens like the weight, the volume, or

the DNA content can be greatly and differentially affected by the cel-

lular composition of the specimen or even by disease state (Büttner,

1967). In all these instances, changing the reference point changes the

data including the correlations between molecular features. This will

affect both statistical analysis and biological interpretation.

Reference points are closely linked to data normalization and pre-

processing. Normalization changes the reference point. For example,

if we normalize profiles to a common mean, we generate a data in-

ternal reference point. In this case, the data becomes quasi compos-

itional. If in contrast we normalize to a constant value for one or

several housekeeping features we choose another data internal refer-

ence point and data that was compositional, looses this property.

Finally, sometimes it might not be possible to generate profiles

for the relevant reference point. For instance, one may be interested

in the effect that disease exerts on the concentration of metabolites

in an organ. Unless one were to take a biopsy from the organ, such

changes can only be determined indirectly by measuring the metab-

olites in biomedical specimens more readily available, such as blood,

urine, feces or breath. How much of the metabolites in the organ

make it into these specimens might differ from patient to patient. In

this case, the reference point is unknown.

In summary, even with meticulous experimental designs the refer-

ence point can remain suboptimal or even obscure. In such cases, stat-

istical analysis and biological interpretation should not depend on it.

Lin et al. (2014) pioneered zero-sum regression as a tool for feature

selection in high-dimensional compositional data. However, zero-sum

regression is not limited to compositional data. In contrast, it provides

the framework for a reference point insensitive data analysis.

Extending the work of Lin et al. (2014), we here show that zero-

sum regression yields reference point insensitive models. We extend

zero-sum regression to elastic net models and contribute a fast co-

ordinate descent algorithm to fit zero-sum elastic nets. This algo-

rithm is implemented as an R-package with crucial functions written

in C to further reduce computing time. To the best of our know-

ledge, our tool is the first freely available R-package for reference

point insensitive data analysis using zero-sum regression. Finally, we

demonstrate the use of a reference point insensitive analysis in an

application that integrates intestinal microbiome analysis with

metabolomics.

2 A strategy for reference point insensitive data
analysis

Let ðxi; yiÞ be data, where i ¼ 1; . . . ;N indicates the measurements

and xi ¼ ðxi1; . . . ; xipÞT the predictor variables. The corresponding

responses are yi. We will discuss the regression problem

yi ¼ b0 þ
Xp

j¼1

bjðxij þ ciÞ þ �i; (1)

where xij is known, but the sample specific shifts ci are not. In this

data, the response yi does not only depend on the observed data but

also on an unobserved confounder ci. We will argue that these con-

founders are omnipresent in genomic data analysis and that they re-

sult from ambiguous reference points. We will then discuss zero-sum

regression as an option for reference point insensitive data analysis.

2.1 Proportional reference point insensitivity
Molecular quantifications are always relative to a reference point r.

We say that two reference points r1 and r2 are proportional, if

changing the reference point from r1 to r2 amounts to rescaling all

features in a profile: Let i be a sample. If Zi is a profile of i relative

to r1 and X i the corresponding profile relative to r2, then Zi ¼ CiX i,

where Ci 2 R is a sample-specific rescaling factor. Omics data is typ-

ically log-transformed. Hence, the change of scale translates into a

shift of the log-profiles:

zij ¼ xij þ ci; (2)

where zij, xij and ci are the log-transformed values of Zij, Xij and Ci,

respectively. The shifts ci can vary across samples. If the measured

reference point is a fixed size aliquot of molecules, but the reference

point of clinical relevance is an organ or an entire patient, the ci are

unknown. They can be seen as latent confounders.

Let xi be a data set measured relative to r1 and yi is the respective

response. We assume that the yi are conditionally independent.

Changing the reference point from r1 to r2 yields the regression

Equation (1). We call a regression model proportional reference

point insensitive or PRP-insensitive, if the predictions byi do not de-

pend on the chosen reference point r. This is the case if the regres-

sion weights bj sum up to zero,

Xp

j¼1

bj ¼ 0 : (3)

Note that the standard tool kit of linear regression analysis

is sensitive to the reference point. This includes penalized methods

like ridge regression (Hoerl and Kennard, 1970) or the LASSO

(Tibshirani, 1996).

2.2 Zero-sum-regression is PRP-insensitive while the

LASSO and the elastic net are not
The LASSO is a regularized linear regression model that still works

for data with more features than samples where least squares esti-

mates are no longer an option. It has the additional appeal that fit-

ted models are sparse in the covariates. Covariates with non-zero

coefficients can be interpreted as biologically important. Moreover,

predictions can be calculated from only a few covariates. A LASSO

model is estimated by minimizing

1

2N

XN
i¼1

ðyi � b0 �
Xp

j¼1

bjxijÞ2 þ kPðbÞ ; (4)

with respect to the coefficient vector b ¼ ðb1; . . . ;bpÞT and the inter-

cept b0. Here PðbÞ ¼ jjbjj1 is a penalty term that implements a priori

preference for sparse models. The tuning parameter k calibrates

sparseness. If we replace the L1 norm in the log-likelihood (4) by

PðbÞ ¼ a jjbjj1 þ ð1� aÞ=2 jjbjj22, we have the log-likelihood of the

elastic net (Zou and Hastie, 2005). For a¼1, this gives us the

LASSO and for a¼0 the non-sparse ridge regression.
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These models are only PRP-insensitive if the regression coeffi-

cients add up to zero. If the profiles are mean centered, the standard

least squares estimates for b form a one dimensional subspace that

includes the unique zero-sum estimate (see Supplementary

Material). In other words, from all optimal solutions, we can simply

choose one that is PRP-insensitive. Also ridge regression models

automatically meet the zero-sum condition for centered profiles (see

Supplementary Material). However, as we will see neither the

LASSO nor the elastic net do.

Zero-sum regression (From now on we refer to an elastic-net fit

with a¼1 which respects the zero-sum constraint simply as zero-

sum regression.) yields sparse PRP-insensitive models. For compos-

itional high dimensional data, Lin et al. (2014) combined the

zero-sum condition with the L1 penalty of the LASSO. In their zero-

sum regression, they minimize the penalized log-likelihood (4) under

the constraint (3). Hence, unlike the standard LASSO or the elastic

net, zero-sum regression models are always PRP-insensitive.

Condition (3) uncouples yi from the reference points. Thus, the cor-

responding zero-sum estimates for b0 and b are also reference point

insensitive.

It is instructive to see that zero-sum models are driven by the

ratios of features rather than the individual absolute features. In

ratios, the reference points cancel. For illustration, consider a model

with only two features xi1 and xi2 on log-scale. Then, the sum of

squares becomes

XN
i¼1

ðyi � b0 � b1ðxi1 � xi2ÞÞ2 : (5)

Note that the zero-sum constraint turned xi1 � xi2 into the only

predictor variable. Since xi1 � xi2 ¼ log ðXi1=Xi2Þ, it is the ratio

Xi1=Xi2 of the original data that drives the model.

2.3 The zero-sum elastic net
We next describe an extension of the coordinate descent (CD) algo-

rithm for the elastic net (Friedman et al., 2007, 2010) that preserves

the zero-sum constraint. The challenge is to solve:

min
ðb0 ;bÞ2Rpþ1

Rkðb0;bÞ

¼ min
ðb0 ;bÞ2Rpþ1

1

2N

XN
i¼1

ðyi�b0�
Xp

j¼1

bjxijÞ2þk
1�a

2
jjbjj22þajjbjj1

� �" #

subject to :
Xp

j

bj¼0 :

(6)

We replace bs¼�
Pp
j¼1
j 6¼ s

bj, yielding

Rkðb0;bÞ¼
1

2N

XN
i¼1

 
yi�b0�

Xp

j¼1
j 6¼ s

xijbjþxis

Xp

j¼1
j 6¼ s

bj

!2

þk

 
1�a

2

�Xp

j¼1
j 6¼ s

b2
j þ
�Xp

j¼1
j 6¼ s

bj

�2
�
þa
�Xp

j¼1
j 6¼ s

jbjjþ
���Xp

j¼1
j 6¼ s

bj

����! :
(7)

We start with a standard CD routine of iteratively optimizing

the ratio between two coordinates bs and bk while keeping

all others constant. To this end, we need all partial deriva-

tives of the objective function (7). Setting one partial deriva-

tive to zero and solving for bk under the assumption that

all other bs are fixed gives us an update scheme for bbk andbbs ¼ �bbk �
Pp

j ¼ 1
j 6¼ s;k

bj:

bbk ¼
1

ak
�

ðbk � 2kaÞ if bbk > 0 ^ bbs < 0

bk if bbk > 0 ^ bbs > 0

bk if bbk < 0 ^ bbs < 0

ðbk þ 2kaÞ if bbk < 0 ^ bbs > 0

else not defined

8>>>>>>>>><>>>>>>>>>:
(8)

with

ak ¼
1

N

XN
i¼1

ð�xik þ xisÞ2 þ 2kð1� aÞ ;

bk ¼ �
1

N

XN
i¼1

ð�xik þ xisÞ � ðyi � b0 �
Xp

j ¼ 1

j 6¼ k; s

xijbj þ xis

Xp

j ¼ 1

j 6¼ k; s

bjÞ

�kð1� aÞ
Xp

j ¼ 1

j 6¼ k; s

bj :

(9)

Note the possibility that an update remains undefined.

Using this scheme, active set cycling consists of the following it-

eration (Friedman et al., 2010; Krishnapuram et al., 2005; Meier

et al., 2008):

1. Start with b ¼~0 and do one complete cycle over all combin-

ations of s and k (s 6¼ k) updating each pair bk and bs using the

scheme. Apparently, this is not feasible for larger datasets.

However, it turns out that approximating the active set by ran-

domly sampling updates is sufficient.

2. Cycle over all bj 6¼ 0 updating each pair bk and bs until

convergence.

3. Repeat a complete cycle. If the active set changes go back to (2)

else your done.

This procedure is stuck once an update remains undefined.

While this never happens with the standard LASSO, we observed

that it became the rule with zero-sum regression problems. To fix

the problem in practice, we introduce diagonal moves that update

three coefficients bs, bn and bm simultaneously, thus efficiently

reducing the frequency of stuck searches. For the diagonal moves,

we can use the following translation and rotation:

b0n

b0m

 !
¼

cosðhÞ �sinðhÞ

sinðhÞ cosðhÞ

 !
bn � c1

bm � c2

 !
: (10)

In general, any value for the rotation angle h and translation fac-

tors c1; and c2 can be chosen to manoeuvre the search out of a dead

lock. However, by choosing c1 ¼ bold
n and c2 ¼ bold

m , the coefficients

b0n; b0m become zero and the resulting update scheme for bbn;
bbm andbbs is easier to calculate. With this simplification, we can calculate an

update scheme in the transformed search space. The corresponding

formulas are summarized in the Supplementary Material.

We have implemented an option for polishing updates by a ran-

dom local search. We do this by generating a random Gaussian jitter

n that is added to a randomly chosen coefficient and at the same time

subtracted from another, thus retaining the zero-sum constraint.

Whenever the step improves the objective function, the coefficients

are updated, otherwise the old coefficients are kept. This can be
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iterated K times. In general, both diagonal updates and polishing can

improve the computed coefficients at the cost of computing time.

3 Simulations

3.1 There is a trade-off between the zero-sum bias and

the PRP-sensitivity of the LASSO
Zero-sum regression is PRP-insensitive, while standard regression is

not. But does this make a relevant difference in practice? It turns out

that the relative performance of zero-sum regression and the stand-

ard LASSO strongly depends on the correlation structure of the

predictors xj ¼ ðx1j; x2j; . . . ;xNjÞT. To illustrate this, we use the fol-

lowing simulation of high dimensional sparse regressions. From a

standard linear regression model, employing the coefficients sum-

marized in Table 1, we generated four data sets with N¼100 sam-

ples each (20 training samples and 80 test samples). Every data set

includes 500 predictors xj, and a response variable y that only de-

pends on three of them. The regression coefficients are shown in

Table 1. Note that with the exception of data set (d), the models do

not fulfill the zero-sum condition. The noise �i was sampled inde-

pendently from a normal distribution with mean zero and standard

deviation r ¼ 0:1. The predictors x4; . . . ;x500 where drawn inde-

pendently from a normal distribution with mean zero and standard

deviation 0.5. For the first three predictors—those that define y—we

allowed for different correlation structures in the four data sets via

a Cholesky decomposition of the correlation matrix. For simula-

tions (a) and (c), we have chosen corðx1; x2Þ ¼ 0:9, corðx1; x3Þ ¼ 0:9

and corðx2; x3Þ ¼ 0:8. While for scenario (b) we have chosen

corðx1;x2Þ ¼ �0:9, corðx1;x3Þ ¼ 0:9 and corðx2; x3Þ ¼ �0:8.

Hence, in (a), we have correlated predictors, while in (b) predictor

x2 is anti-correlated to predictor x1 and x3. For scenario (d), we

have not imposed any a priori correlation structure. We call the pre-

dictors of this data set X.

Next, we simulated a change in the reference point by drawing

random shifts ci from a centered normal distribution with standard

deviation r. The larger r the more the two reference points differ.

The responses yi remain unchanged. We call the sample-wise shifted

predictors X0. Note that y is computed from X in both data sets. X

represents the data relative to the reference point that matters, like

the absolute amount of metabolites in renal proximal tubule cells,

while X0 represents the data relative to a reference point that was

practical to measure, like metabolite concentrations in a fixed vol-

ume of urine. We run both LASSO and zero-sum regression on both

X and X0 to study the trade-off between the benefit of reference

point insensitivity and the cost of introducing a bias by the zero-sum

constraint. The sparseness parameter k was optimized via cross val-

idation (Friedman et al., 2010). For obtaining the standard Lasso

penalized models, we employed the well-established R-package

glmnet (Friedman et al., 2010).

We first compare zero-sum regression and the LASSO with

respect to the accuracy of predictions (Fig. 1). Every plot shows

the coefficient of determination R2 as a function of r, cf.

Supplementary Material Figure S1 for the corresponding mean-

squared errors (MSE). Hence, on the left, we compare the per-

formance of the LASSO and zero-sum regression for small changes

of reference point, while on the right we compare it for large

changes. Zero-sum regression is not affected by the change in ref-

erence point. Its performance is shown by the dashed horizontal

lines. In contrast, LASSO is sensitive to the choice of ci and yields

different performances for each simulation run. The median of

this distribution is shown by the solid lines while the 25–75%, 5–

95% and 1–99% percentiles of the distribution are shown by

dark, medium and light bands, respectively. Depending on the cor-

relation structure and the choice of the ci zero-sum or the standard

LASSO are more accurate. (a) In these simulations, the three rele-

vant predictors, j ¼ 1; . . . ; 3, are highly correlated, the coefficients

bj do not fulfill the zero-sum condition but vary in sign and size.

For small r, zero-sum regression is inferior to the LASSO, but

with increasing r zero-sum regression outcompetes the LASSO.

We also observed several simulations where the classical LASSO

breaks down completely yielding R2 values nearly zero. (b) This

simulation is based on the same set of coefficients as scenario (a),

but now the predictor x2 is anti-correlated to x1 and x3. In spite of

the change of reference point and the unbalanced coefficients both

the LASSO and zero-sum regression work accurately. However,

for large r the classical LASSO frequently looses predictive power

and zero-sum regression is more reliable, even if the differences

between the methods is much smaller than for scenario (a). (c)

Here, we have only positive coefficients bj > 0, which potentially

spoils the zero-sum constraint. Note that the correlations are

imposed as in scenario (a). Thus, we can directly study the conse-

quences of changing the constants bj to a scenario which more

substantially violates the zero-sum condition. Interestingly, we

qualitatively observe a similar trade-off between zero-sum bias

and PRP-sensitivity as in the previous scenarios. (d) Here, the bj

add-up to zero and no correlations are imposed on the predictor

variables. Thus, for this scenario, the zero-sum constraint is not a

bias. Clearly, zero-sum works perfectly, while the LASSO breaks

down rapidly in many of the simulations. In summary, zero-sum

regression tends to outperform the LASSO for ci that are relatively

large. More importantly, in several scenarios, we observed a com-

plete breakdown of the LASSO but never for zero-sum regression.

Table 1. Summary of the simulation scenarios (a) to (d). Shown

are the coefficients bj for j ¼ 1,. . .,500 and the imposed correlations

Sim. b1 b2 b3 b4 - b500 cor(x1, x2) cor(x1, x3) cor(x2, x3)

(a) 1 �1 3 0 0.9 0.9 0.8

(b) 1 �1 3 0 �0.9 0.9 �0.8

(c) 1 2 3 0 0.9 0.9 0.8

(d) 1 �2 1 0 – – –

(a) (b) (c) (d)

Fig. 1. Shown are the coefficients of determination, R2 between observed and

predicted responses, for the simulation studies (a) to (d) as a function of r,

where r is the standard deviation of the sample-specific shifts ci. The median

over all simulation runs is the dashed line for zero-sum regression and the

solid line for LASSO. The dark, medium and light bands correspond to the

LASSO and represent the 25–75%, 5–95% and 1–99% percentiles of the R2 dis-

tribution obtained from drawing 1000 sets of ci. The very narrow zero-sum

bands are only visible as a line
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3.2 LASSO predictions change, if the reference point

changes. Zero-sum predictions do not
While it is a priori not clear, whether a zero-sum or a LASSO model

is more accurate, zero-sum models always have the advantage that

predictions are reference point insensitive. In contrast, a LASSO

model can be dominated by the reference point. To show the extend

of PRP sensitivity of the LASSO, we compared predictions before

and after changing the reference point (r¼0 versus r 6¼ 0), i.e. we

compare byr1
to byr2

, while in the previous section we compared byr1
to

y. We used the same four simulation scenarios as in the previous sec-

tion. Figure 2 summarizes the results. By definition, both predictions

agreed for zero-sum regression, yielding a mean-squared error of 0,

or perfect reproducibility. In contrast, for the LASSO we saw several

simulations in all four scenarios where predictions vastly diverge

upon changing the reference point.

3.3 Zero-sum regression facilitates reference point inde-

pendent feature selection more reliably than the LASSO
Besides prediction, feature selection is an important application of

sparse regression models. If we use the LASSO, selected features de-

pend on the reference point, if we use zero-sum they do not. In

Figure 3, we show areas under the receiver operating characteristic

(ROC) curve versus r. Again we used the scenarios (a) to (d)

described above. In scenarios (b) to (d), zero-sum recovered the three

driving features perfectly and so did the LASSO for the majority of

simulations. However, in few simulations, the LASSO picked incor-

rect features. In scenario (a), we never reached perfect feature selec-

tion. Nevertheless, zero-sum regression proved again to be more

reliable. Note that an area under the curve (AUC) of 0.5 corresponds

to random feature selection and in a few simulations the LASSO

was not better than that. In summary, zero-sum regression selected

relevant features as accurate as the LASSO. In few simulations, the

LASSO broke down due to change of reference point.

4 An application of zero-sum regression to
genomic data integration: identifying intestinal
bacterial communities associated with indole
production

In this section, we show reference point insensitive data analysis

at work. We chose a study that combined intestinal microbiome

sequencing with metabolome analysis of urine in patients

undergoing bone marrow transplantation. Different reference points

apply to the intestine, the stool and the urine of patients.

About 40% of patients receiving allogeneic stem cell transplants

(ASCT) develop a systemic acute graft versus host disease (Ferrara

et al., 2009). About 54% of these diseases affect the gastrointestinal

tract (Martin et al., 1990). This complication was associated with

the intestinal microbiome composition (Holler et al., 2014; Taur

et al., 2012) and with the presence of toxic or the absence of protect-

ive microbiota born metabolites in the gut (Murphy and Nguyen,

2011). A candidate protective substance is the tryptophan microbial

fermentation product indole (Weber et al., 2015). It reduces epithe-

lial attachment of pathogenic bacteria, promotes epithelial restitu-

tion and, simultaneously, inhibits inflammation (Bansal et al., 2010;

Zelante et al., 2013).

Weber et al. (2015) studied associations between the microbiome

composition of ASCT patients during treatment and urinary 3-in-

doxyl sulfate (3-IS) levels. 3-IS is a metabolite of indole produced in

the colon and liver. In this study, it was quantified in patient urine

by liquid chromatography/tandem mass spectrometry. The intestinal

microbiomes of the same patients were profiled by sequencing the

hypervariable V3 region of the 16S ribosomal RNA gene in patient

stool and mapping the sequences to operational taxonomic units

(OTUs). ASCT patients receive antibiotics, which might kill indole

producing bacteria thus damaging the intestine. If one identified the

indole producing bacteria in the gut, one could choose antibiotics

that spare them. As a first step towards this goal, we strive to iden-

tify a small set of OTUs that are jointly associated with 3-IS levels.

This biomedical challenge defines a sparse high dimensional re-

gression problem. And, it is a regression problem where the choice

of reference points matters. The reference point of the microbiome

profiles is a fixed size aliquot of 16S rDNA obtained from bacteria

in patient feces. The reference point that links the microbiome to 3-

IS levels are patient intestines. If there are more indole secreting bac-

teria in the intestine, we expect more 3-IS in the urine. The total

number of microbiota in patient intestines vary strongly due to diet

and treatments including antibiosis. We thus expect that compos-

itional microbiome data poorly reflects absolute microbiota abun-

dances in the intestines. In summary, the regression problem calls

for absolute bacterial abundances in patient intestines, while the

available profiles provide only relative abundances. Obviously, the

reference points do not match.

In total, we analyzed 37 matched pairs of stool and urine speci-

mens. Urinary 3-IS was quantified by liquid chromatography tan-

dem mass spectrometry (LC-MS/MS). To control for variations in

(a) (b) (c) (d)

Fig. 2. Shown are the mean-squared errors (MSEs) calculated with respect to

the predicted responses at r ¼ 0 for the simulation studies (a) to (d) as a func-

tion of r, where r is the standard deviation of the sample-specific shifts ci.

The median over all simulation runs is the dashed line for zero-sum regres-

sion and the solid line for LASSO. The bands are analogous to Figure 1, but

now represent the distribution of MSEs

(a) (b) (c) (d)

Fig. 3. Shown are the area under the ROC curves (AUCs) as a function of r for

the simulation scenarios (a) to (d), where r is the standard deviation of the

sample-specific shifts ci. The median over all simulation runs is the dashed

line for zero-sum regression and the solid line for LASSO. The bands are

analogous to Figure 1, but now represent the distribution of AUCs
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urine flow rate, we normalized the measured concentration of 3-IS

against the measured urinary concentration of creatinine (Waikar

et al., 2010), which was also determined by LC-MS/MS. The intes-

tinal microbiome was profiled by next-generation sequencing of the

V3 hypervariable region of the 16S rRNA gene. Prior to DNA ex-

traction of the stool samples, three exogenous bacteria (Salinibacter

ruber, Rhizobium radiobacter and Alicyclobacillus acidiphilus) were

spiked into crude specimens as external controls. Subsequently, a

constant aliquot of PCR amplified 16S rDNA was sequenced. Reads

were assigned to 160 bacterial genera, one pseudo count was added

and the counts were log2 transformed. Finally, the genera where

quantified relative to two different reference points:

i. We normalized the data sample-wise to a constant average of all

genera. This is equivalent to centering the data, cf. supplement.

ii. We normalized the data to a constant average value of the 3 ex-

ternal standards.

Data (i) is library-size normalized (on log scale) and is thus the

standard compositional microbiome. The reference point is a fixed

size aliquot of 16S rDNA. This data does not reflect changes in the

total microbial load of the stool. Data (ii), in contrast, is sensitive to

changes in microbial load because in a fixed aliquot of 16S rDNA

more endogenous sequences lead to proportionally less spike-in se-

quences. Here the reference point is a fixed size aliquot of stool.

We run the LASSO and zero-sum regression on both microbiome

data sets with log2 transformed urinary creatinine normalized 3-IS

values as response variable y. 3-IS levels were predicted in leave one

out cross validation and the predictions were compared to the meas-

ured values. By definition, zero-sum produces the same predictions

for both datasets because of its PRP insensitivity.

Figure 4 compares cross validated mean-squared errors of zero-

sum regression with that of the LASSO for library-size normalized

data and spike-in calibrated data as a function of the LASSO spars-

ity parameter k. The optimal mean-squared errors are similar with

zero-sum regression yielding the smallest error. More important in

this application is the selection of features. Figure 5 summarizes our

results, i.e. the selected features and the corresponding coefficients

obtained in 37 models learned in a leave-one-out cross validation.

Figure 5a shows how often a feature was selected. Features selected

by the LASSO depended on the chosen reference point. For example,

Bifidobacterium was frequently selected when the reference point

was the library size but hardly ever, when the reference point was an

external standard. Also when a feature was reproducibly selected for

both reference points like the genus Staphylococcus, its regression

coefficients can drastically differ depending on the reference point.

Figure 5b shows the difference of regression weights for the two ref-

erence points. In theory, zero-sum regression should not be affected

at all by the change in reference point. Indeed, this is observed in

Figure 5c. Finally, Figure 5d contrasts the regression coefficients of

the LASSO with that of zero-sum regression. Interestingly unlike the

LASSO, zero-sum regression picked the genus of one of the external

standards, Alicyclobacillus, with a high negative weight. It thus

automatically built its own reference point.

We tested if zero-sum regression retains its predictive power in

the absence of external reference points. To this end we removed the

three reference bacteria, Salinibacter ruber, Rhizobium radiobacter

and Alicyclobacillus acidiphilus, from the dataset and re-performed

our analysis, cf. Supplementary Figures S2 and S3. The lowest MSE

observed in leave-one-out cross validation was 10.86. This error is

again lower for zero-sum regression than for the two LASSO mod-

els. In fact, it is even slightly lower than the error of the zero-sum re-

gression with the spike-ins.

In summary, zero-sum regression stabilized feature selection

compared to the LASSO. LASSO features greatly depended on the

chosen reference point, zero-sum features did not. Zero-sum regres-

sion selects features that are predictive of urinary 3-IS independent

of the reference point.

5 Discussion

Here, we discussed the problem of reference point dependence in the

analysis of omics data and exemplified its relevance both in a simu-

lation study and in an application on integrating urinary metabo-

lome data with intestinal microbiome compositions. We recommend

zero-sum regression as a method that can overcome the problem. In

this context, we contribute a coordinate descent algorithm for fitting

zero-sum regression models and provide the first R-package for this

type of analysis.

Our theoretical analysis is restricted to reference point changes

that yield proportional data. On log-transformed data these propor-

tional reference point changes are fully described by the sample spe-

cific shifts we discussed. Of course a reference point change can be

more complicated leading to non-linear distortions. In this case,

zero-sum regression is no longer reference point independent.

However, it might nevertheless be worth testing its performance,

since it can still cushion the reference point, if the transformation

systematically affects the sample mean.

We believe that there is a wide spectrum of high content profiling

methods where changes or ambiguities of reference points exist and

matter. It ranges from gene and protein expression, via metabolo-

mics, epigenetic readouts, microbiome sequencing and metagenom-

ics, to very recent advances in digital immune cell quantifications.

More and more studies integrate several of these data types. Likely,

the reference points differ between them. Also, the integration of

new data with published data that can be downloaded from public

repositories can greatly enhance analysis and interpretation.

However, the reference points of the published data might not even

be sufficiently clear from the documentation of the data files. We be-

lieve that in all these scenarios a reference point insensitive analysis

is called for.

Fig. 4. MSE in cross validation for different choices of the penalizing param-

eter k. The zero-sum regression results are shown as circles and the standard

LASSO results based on library-size adjusted data as crosses, and the LASSO

results based on spike-in normalized data as triangles. At the top of the figure,

the number of selected features is shown
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Finally, what does it mean, when we routinely say that a gene is

up-regulated between control and treatment? These genes can be

up-regulated with respect to one reference point but down-regulated

with respect to another. A reference point insensitive analysis cannot

resolve this question, only meticulous distinction between reference

points can. However, if we strive for more general statements like:

‘Gene A is up-regulated’, we argue that these statements should at

least be supported by a reference point independent analysis.
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