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Summary

In this paper� reference priors are derived for three cases where partial information

is available� If a subjective conditional prior is given� two reasonable methods are pro�

posed for �nding the marginal reference prior� If� instead� a subjective marginal prior

is available� a method for de�ning the conditional reference prior is proposed� A su��

cient condition is then given under which this conditional reference prior agrees with the

conditional reference prior derived in the �rst stage of the reference prior algorithm of

Berger and Bernardo� Finally� under the assumption of independence� a method for �nd�

ing marginal reference priors is also proposed� Various examples are given to illustrate

the methods�

Some key words	 Kullback�Leibler divergence� noninformative prior� normal distribution�

gamma distribution� beta distribution� Neyman�Scott Problem�
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�� Introduction

Bayesian analysis using noninformative or default priors has received considerable

attention in recent years� A common noninformative prior is the Je�reys prior 	Jef�

freys� �
���� which is proportional to the square root of the determinant of the Fisher

information matrix� The Je�reys prior is quite useful for a single parameter� but can

be seriously de�cient in multiparameter problems 	cf� Berger and Bernardo� �

�� For

a recent review of various approaches to the development of noninformative priors� see

Kass and Wasserman 	�

��� Here� we will concentrate on the reference prior approach�

as developed in Bernardo 	�
�
� and Berger and Bernardo 	�

��

In many practical problems� one has partial prior information for some of the param�

eters� For example� in a N	�� ��� population� one might possess reasonably strong prior

information about �� while the prior information for � is vague� As another example�

Lavine et al
 	�

�� considered robust Bayesian inference with speci�ed prior marginals�

As a third example� the prior knowledge could be of independence of the parameters�

such as in the ECMO clinical trial example studied by Ware 	�
�
�� Another common

type of partial information is constraints on the parameter space� This is typically easily

handled� however� in that reference priors for a constrained space are almost always just

the unconstrained reference prior times the indicator function on the constrained space�

The paper is arranged as follows� In Section � we will develop the reference priors

when two types of partial information are available� We �rst consider the case when a

conditional prior is known and it is desired to �nd the marginal reference prior� Two

options are given� One is similar to the �nal stage of Berger and Bernardo�s reference

prior algorithm� the other is more intuitive and is based on deriving the marginal model�





Next� the conditional reference prior is derived when a marginal prior is known� A

su�cient condition is found under which the conditional noninformative prior often

agrees with the conditional reference prior from the �rst stage of Berger and Bernardo�s

algorithm� Some examples are given in Section �� illustrating various aspects of these

results� In Section �� an algorithm is proposed for determining marginal reference priors

when the two parameters are known to be independent� Some su�cient conditions are

given under which the answers can be written in closed form� Formal examples and the

ECMO clinical trial example are used for illustration� Finally� Section � contains some

discussion�

�� Knowing A Marginal Or Conditional Prior

���� Introduction

Let Xn � 	x�� � � � � xn� be a random sample from the density p	x� ��� ���� where the

parameters �� and �� are vectors of dimensions d� and d�� respectively� Let �	��� ���

denote the prior density of 	��� ���� The following questions are of interest�

�� Suppose there is available a subjective conditional prior density �s	��j��� for ��
given ��� How can we �nd the marginal noninformative prior �r	��� for ���

� Suppose there is available a subjective marginal prior density �s	��� for ��� How

can we �nd the conditional noninformative prior �r	��j��� for �� given ���

Solutions to these two questions will be discussed in xx� and ��� respectively� We

will use �	��� ��jXn� to denote the joint posterior density of �� and �� and �	��jXn� the

marginal posterior density of ���

���� Finding The Marginal Prior

�



When the conditional density of �� given �� is available� there are two reasonable

options for �nding a marginal reference prior �r	����

Option �	 Following Bernardo 	�
�
�� de�ne the expected Kullback�Leibler divergence

between the marginal posterior density of �� given Xn and the marginal prior of �� by

IfXn��
r	��g � E

hZ
�	��jXn� log

n�	��jXn�

�r	���

o
d��

i
� 	��

where the expectation is with respect to the marginal densitym	Xn� �
R
p	Xnj����r	���d���

We seek that prior� �r	���� which maximizes 	�� asymptotically� since maximizing the

distance between the prior and posterior is a plausible way to de�ne a prior which has

minimal in�uence on the analysis� It follows from Ghosh and Mukerjee 	�

� that�

under some regularity conditions and as n���

IfXn��
r	��g � d�


log
� n

�e

�
�
Z
�r	��� log

n �	���

�r	���

o
d�� � o	��� 	�

where

�	��� � exp
n�


Z
�s	��j��� log

� j�j
j���j

�
d��

o
� 	��

Here � � �	��� ��� is the per observation Fisher information matrix for 	��� ���� ��� �

���	��� ��� is the per observation Fisher information for ��� given that �� is held �xed�

and j�j is the determinant of ��

The reference prior strategy suggests choosing �r to maximize 	�� or 	� asymptoti�

cally on compact sets� this can easily be seen to lead to

�r�	��� � �	���� 	��

In fact� this is essentially the solution used in Berger and Bernardo 	�
�
� �

�� The

following theorem gives an important special case�

�



Theorem �
 �a� If j�j�j���j does not depend on ��� then� for any subjective conditional

density �s	��j���� the marginal reference prior from Option � has the form

�r�	��� � 	j�j�j���j� �� � 	��

�b� If j�j�j���j depends only on �� and �s	��j��� does not depend on ��� then �r�	��� �

�


Proof� The results follow from the de�nition of �r�	��� and the assumption�

Option �	 Find the marginal model

p	Xnj��� �
Z
p	Xnj��� ����s	��j���d��� 	��

Let ��	��� be the Fisher information matrix for �� based on this marginal model� Then

the reference prior for �� in this model� again maximizing� asymptotically� the expected

Kullback�Leibler divergence between the marginal posterior and the marginal prior� is

�r�	��� � fj��	���jg �� � 	��

Option  more closely mirrors the underlying motivation for reference priors in that�

with �s	��j��� given� the information in the data about �� resides in p	Xnj���� Hence the

marginal reference prior for �� should� ideally� be computed with respect to this mixture

model� Unfortunately� the Fisher information matrix for such mixture models is often

di�cult to compute� so that implementation of Option  is often di�cult� This same

di�culty also motivated the use of the analogue of Option � in Berger and Bernardo

	�
�
� �

�� in place of the more natural Option �

���� Finding The Conditional Prior

�



For the case when the marginal prior density �s	��� is known� consider the expected

Kullback�Leibler divergence between the conditional posterior density of ��� given �� and

Xn� and the conditional prior of ��� given ���

IfXn��
r	�j���g � E

hZ
��

�	��jXn�
Z
��

�	��j���Xn� log
n�	��j���Xn�

�r	��j���
o
d�� d��

i

� E
hZ

��

Z
��

�	��� ��jXn� log
n�	��� ��jXn�

�	��� ���

o
d�� d��

i

� E
hZ

��
�	��jXn� log

n�	��jXn�

�	���

o
d��

i
� 	��

From an asymptotic expansion of the �rst term� compare formula 	���� of Ghosh and

Mukerjee 	�

� p� �
� and 	�� we have that

IfXn��
r	�j���g � d�


log
� n

�e

�
�
Z
��

�s	���
hZ

��
�r	��j��� log

n j���j ��
�r	��j���

o
d��

i
d�� � o	��� 	
�

Choosing �r	��j��� to maximize 	
� asymptotically thus suggests de�ning the conditional

reference prior as

�r	��j��� � j���	��� ���j �� � 	���

When this conditional reference prior is proper� matters are straightforward� In

practice� it may be improper and will then encounter normalization concerns� The

compact support argument that is typically used in the reference prior approach 	Berger

and Bernardo� �

� may then be applied here� Choose a nested sequence �� � �� � � � �

of compact subsets of the parameter space � for 	��� ���� such that �i�i � � and �r	��j���

has �nite mass on �i � f�� � 	��� ��� � �ig� Let �A be the indicator function on A and

Ki	��� �
Z
�i

j���	��� ���j �� d���

The conditional reference prior of �� on �i is

�ri 	��j��� �
j���	��� ���j ��

Ki	���
��i

	����

�



Now de�ne the conditional reference prior of �� by

�r	��j��� � lim
i��

�ri 	��j���
�ri 	���j����

�

when the limit exists� here 	���� ���� is any �xed point� It is easy to see that

�r	��j��� � lim
i��

Ki	����

Ki	���
j���	��� ���j �� � 	���

The following theorem gives a su�cient condition under which this limit is propor�

tional to j���	��� ���j �� �

Theorem �
 Assume

j���	��� ���j � g�	���g�	���� 	��

for some functions g� and g�
 Suppose � � ����� and the compact sets are chosen to

be of the form �i � ��i ���i� Then the conditional reference prior of �� satises

�r	��j��� � j���	��� ���j �� � fg�	���g �� �

Proof� Clearly� the normalizing constants Ki are independent of ��� The result follows

immediately�

Note that the conditional reference prior� �r	��j���� never depends on the speci�ed

marginal prior �s	����

�� Examples

���� Multinomial Distribution

Consider the multinomial density for � cells

p	y�� y�jp�� p�� � k�

y��y��	k � y� � y���
py�� p

y�
� 	�� p� � p��

k�y��y� � 	���

�



where k is a positive integer� yi is the observed frequency in cell i� pi is the probability

of cell i� and � 	 p� � p� 	 �� Without loss of generality� we will suppress the cell count

and probability for the third cell� The Fisher information matrix for 	p�� p�� is

�	p�� p�� �
�

k

��
�
�
� p��� �

� p���

�
A �

�

�� p� � p�

�
� � �

� �

�
A
�	

 � 	���

The Marginal Reference Prior
 Given p�� assume that p� has a conditional density

�s	p�jp�� on 	�� � � p��� We want to �nd the marginal reference prior for p��

Option �
 Since j�j � ��fp�p�	� � p� � p��g and ��� � p��� � 	� � p� � p�����

j�j���� � ��fp�	� � p��g� From Theorem �� the marginal reference prior for p� is

�r�	p�� � �

fp�	� � p��g ��
� 	���

Option �
 Assume that n observations xi � 	y�i� y�i�� i � �� � � � � n� are obtained� Note

that� in reference prior developments� one considers replications of the full experiment

in creating the asymptotics� A considerable simpli�cation results if

�s	p�jp�� � 	�� p��
��gfp��	� � p��g 	���

for some density g on 	�� ��� This says that the random variable p��	� � p�� has the

same distribution for any p�� Then the marginal model is

p	Xnjp�� �
Z ��p�

�
p
y��
� p

y��
� 	� � p� � p��

nk��y���y��� �

�� p�
g	

p�
� � p�

�dp�

� p
y��
� 	�� p��

nk�y��
Z �

�
sy��	�� s�nk�y���y��g	s�ds

� p
y��
� 	�� p��

nk�y�� �

where yi� �
Pn

j�� yij� The Fisher information corresponding to this model is then

��	p�� �
nk

p�	� � p��
� 	���

�



Therefore� �r�	p�� is also given by 	��� when 	��� holds� If 	��� does not hold� the

marginal reference priors will typically be di�erent�

The Conditional Reference Prior of p�
 For any marginal subjective prior on p�� the

conditional reference prior of p� is

�r	p�jp�� � �

fp�	�� p� � p��g ��
� � � p� � � � p��

���� Normal Distribution

Consider the normal density with a mean � and a standard deviation ��

p	x��� �� �
�

	��
�

��
exp

n
�	x� ���

��

o
� �� � x ��� 	���

The Fisher information matrix for 	�� �� is

� � �	�� �� � diag	���� �����

Case I
 Marginal and Conditional Reference Priors For �

Proposition �
 �a� If �s	�j�� is independent of �� the marginal reference prior under

Option � is �r�	�� � �


�b� If �s	�j�� is independent of �� the marginal reference prior under Option � is

�r�	�� � �


�c� For any given marginal prior of �� the conditional reference prior of � is �r	�j��

� ��

Proof� Note that j�j�j���j � ���� and 	a� follows from Theorem �	b�� For 	b�� since

�s	�j�� � �s	��� the marginal probability density p	Xnj�� is a scale�mixture of normals






and hence a location probability density� Consequently� the Fisher information for �

will be constant� Part 	c� is obvious�

When �s	�j�� depends on �� Option � and Option  can generate di�erent marginal

priors for ��

Case II
 Marginal and Conditional Reference Priors For �


Proposition �
 �a� For any conditional prior of � given �� the marginal prior for �

under Option � has the form �r�	�� � ����

�b� If the prior distribution for � is normal with mean m and variance 	 �� then the

marginal prior for � under Option � has the form

�r�	�� �
�
n� �

��
�

��

	�� � n	 ���

� �

�

� 	�
�

�c� For any given marginal prior on �� the conditional prior for � is also � ����

independent of �


Proof� Part 	a� is immediate from Theorem � 	a�� Part 	c� is easy� For 	b�� let

Xn � 	x�� � � � � xn� be a random sample from N	�� ���� De�ne xn � 	x� � � � � � xn��n

and S� �
Pn

i��	xi � xn��� The marginal model is

p	Xnj�� �
�

�n
exp

n
� S�

��

o Z �

��
exp

n
�n	xn � ���

��

o �

	��
�

� 	
exp

n
�	� �m��

	 �

o
d�

� �

�n��	�� � n	 �����
exp

n
� S�

��
� n	xn �m��

	�� � n	 ��

o
�

Therefore� writing �� � ��� we have


�


���
logfp	Xnj��g � n� �

���
�

�

	�� � n	 ���
� S�

��	
� n	xn �m��

	�� � n	 ��	
�

��



Under the marginal model� we have E
�S
� � 	n� ���� and E
�	xn �m�� � ���n� 	 �� So

the Fisher information for �� under the marginal model is then

��	��� � 	n� ���	���� �
�


	�� � n	 ����

The result is immediate�

Note that �r�	�� di�ers from �r�	��� When n � �� however� �r�	�� will converge to

�r�	���

���� Gamma Distribution

Consider the gamma density p	xj�� �� � ��

����
x��� exp	��x�� x  �� where �  �

and �  �� The Fisher information matrix for 	�� �� is

� � �	�� �� �

�
���	�� � �

�

� �
�

�
��

�
A � 	��

where �	�� � d logf 	��g�d��

Proposition �
 �a� For any conditional density of � given �� the marginal reference

prior for � under Option � is given by

�r�	�� � f��	�� � ���g �� � 	��

�b� Assume that the conditional distribution of � given � is Gamma	a� b�
 The

marginal reference prior for � under Option � is given by

�r�	�� � f��	�� � n��	n�� a�g �� � 	�

�c� For any given marginal prior on �� the conditional reference prior for � is inde�

pendent of � and is given by ���


��



Proof� It is easy to see that j�j � ���f���	�� � �g and ��� � ����� Thus j�j���� �

��	�� � ���� which implies 	��� Part 	c� is clear� For 	b�� let Xn � 	x�� � � � � xn� be a

random sample from a Gamma distribution� The marginal model is then

p	Xnj�� �
	
Qn

i�� xi�
���

f 	��gn
Z �

�
�n� exp

�
��

nX
i��

xi
� ba

 	a�
�a�� exp	��b�d�

�  	n� � a�	
Qn

i�� xi�
�

f 	��gn
�Pn

i�� xi � b
�n��a �

The second derivative of the logarithm of p	Xnj�� is �n��	���n���	n��a�� from which

	b� follows immediately�

Using an expansion for ��	��� 	cf� Equation 	����b� of Bowman and Shenton� �
����

we can show that ��	x� � x���	x�����O	x�	� as x��� Therefore� n��	n�� a��

��� as n � �� Consequently� the marginal reference prior for � under Option 

converges to the marginal reference prior for � under Option ��

���� Neyman�Scott Problem

Suppose that yij� i � �� � � � � n� j � �� � are independent observations� and yij has

a normal distribution with mean �i and variance ��� We want to �nd the marginal

reference prior distribution for �� or �� The Fisher information matrix for 	��� � � � � �n� ���

is given by

� 
 �	��� � � � � �n� ��� � diag	���� � � � � ���� n�����

Proposition �
 For any conditional prior of 	��� � � � � �n� given ��� the marginal ref�

erence prior for �� under Option � is �r�	�
�� � ���� Equivalently� the marginal reference

prior for � is �r�	�� � ����

Proof� Let �� � �� and �� � 	��� � � � � �n�� We note that j�j�j���j � n���� which does

�



not depend on ��� The �rst result follows from Theorem � 	a�� The second result is an

immediate corollary�

Proposition �
 Suppose that the prior distributions for �i� i � �� � � � � n� are indepen�

dent normal with mean mi and variance 	 �
 The marginal reference prior for �� under

Option � then has the form

�r�	�
�� � f��� � 	�� � 	 ����g �� � 	��

Equivalently� the marginal reference prior for � under Option � has the form

�r�	�� � f��� � ��	�� � 	 ����g �� � 	��

Proof� De�ne yi � 	yi�� yi��� and S� �
Pn

i��

P�
j��	yij � yi�

�� The marginal model is

p	Xnj��� � �

��n
exp

n
� S�

��

o nY
i��

Z �

��
exp

n
�	yi � �i��

��

o �

	��
�

� 	
exp

n
�	�i �mi��

	 �

o
d�i

� �

�n	�� � 	 ��
�

�
n
exp

n
� S�

��
�
Pn

i��	yi �mi��

�� � 	 �

o
�

Therefore� writing �� � ��� we have


�


���
logfp	Xnj���g � n

���
�

n

	��� � 	 ���
� S�

��	
� 

Pn
i��	yi �mi��

	�� � 	 ��	
�

Under the marginal model� we have E
�S
� � n�� and E
�	yi �mi�� �

�
��� � 	 �� So the

Fisher information for �� under the marginal model is then

��	��� � n�	���� �
�


n	�� � 	 ����

This proves the �rst assertion� The second assertion follows immediately�

Interestingly� �r�	�� and �r�	�� remain substantially di�erent because of the strong

prior input on the �i in Option  even if n��� This prior input weakens if we take 	 �

��



very large� and in that case �r�	�� and �r�	�� approximately agree� Also� for any given

marginal prior on 	��� � � � � �n�� the conditional prior of � is independent of 	��� � � � � �n��

and is the same as �r�	���

���� Bivariate Normal Distribution

Suppose that 	Y�� Y�� has a bivariate normal distribution with unknown mean vector

	��� ���� variances equal to one and known correlation �� The joint density of 	Y�� Y�� is

p	y�� y�j��� ��� � �

�	�� ���
�

�

exp
n
�	y� � ���� � �	y� � ���	y� � ��� � 	y� � ����

	� � ���

o
�

The Fisher information matrix is the inverse of the covariance matrix�

Proposition �
 �a� For any conditional prior of �� given ��� �r�	��� � �


�b� Suppose that �� and �� are independent
 Then� for any subjective prior for ���

�r�	��� � �


Proof� Part 	a� is an immediate corollary of Theorem � 	a�� For any subjective prior

for ��� say �s	���� the Fisher information of � from the marginal model is given by

��	��� � E

��
�

�
���

R�
�� p	Y�� Y�j��� ����s	���d��R�

�� p	Y�� Y�j��� ����s	���d��

�	


�

�
Z Z nR�

��
�
���

p	y�� y�j��� ����s	���d��
o�

R�
�� p	y�� y�j��� ����s	���d�� dy�dy�

�
Z Z hR�

�� p	y�� y�j��� ���f	y� � ��� � �	y� � ���g�s	���d��
i�

R�
�� p	y�� y�j��� ����s	���d�� dy�dy��

By making the transformation t� � y� � ��� we know that the right hand side does not

depend on �� and the Fisher information for �� is in fact a constant� The result follows

immediately�

In general� the marginal priors under Option � and Option  are di�erent� Here

is an example� where �s	��j��� does depend on ��� Suppose that � � � and assume

��



that �s	��j��� has a N	��� ���� distribution� It is easy to see that Y�j�� has a N	��� ��

distribution and� independently� Y�j�� has a N	��� � � ���� distribution� The Fisher

information based on the observation Y� is �� Furthermore�


�


���
logfp	Y�j���g � � 

� � ���
�

���
	� � �����

� ���	Y� � ���

	� � �����
� ����	Y� � ����

	� � ����	
�
	Y� � ����

	� � �����
�

The Fisher information based on the observation Y� is then 	� � ����
�� � ����	� � ����

��

Therefore�

��	��� � � �
�

� � ���
�

���
	� � �����

�

Clearly� the reference priors under Option � and Option  are thus di�erent�

���� Beta Distribution

Consider the beta density

p	xj�� �� �  	�� ��

 	�� 	��
x���	� � x����� � � x � �� 	��

where �  � and �  � are unknown parameters� The Fisher information matrix for

	�� �� is

� � �	�� �� �

�
�G	�� �G	�� �� �G	�� ��

�G	� � �� G	���G	� � ��

�
A � 	��

where G	�� � d�

d��
logf 	��g is the poly�gamma function� A computational formula for

G is G	x� �
P�

j��	x� j��� 	Bowman and Shenton� �
����

We now try to �nd the conditional reference prior of � given �� Note that the Fisher

information matrix does not satisfy the condition in Theorem � We will see that the

conclusion of Theorem  fails in this case� Let li � ui be two sequences of constants

satisfying

li � � and ui ��� 	��

��



Let Ki	�� �
R ui
li
fG	�� � G	� � ��g ��d�� When � � �� it is easy to show that G	�� �

G	���� � ��� and Ki	�� �
R ui
li
���d� � log	ui�� log	li�� For an arbitrary �  �� exact

computation of Ki	�� is quite complicated� but we have the following expansion�

Lemma �
 For �xed � and as i���

Ki	�� �
p
� log	ui�� log	li� �O	���

where O	�� is a bounded constant�

Proof� See the Appendix�

Proposition �
 Assume that ���� holds and that uili � � as i��
 For any given

marginal prior of �� the conditional reference prior of � given � is

�r	�j�� � �p
� � �

fG	���G	�� ��g �� �

Proof� From Lemma ��

lim
i��

Ki	��

Ki	��
� lim

i��
log	ui�� log	li�p

� log	ui�� log	li� �O	��
�

p
�� �

�

The result then follows from 	����

This fact illustrates that� when j���	��� ���j does not have the form 	��� �r	��j���

may not be proportional to j���	��� ���j �� � Furthermore� �r	��j��� may depend on the

choice of the compact supports !li� ui"� For example� if li � u
�p�
i � then �r	�j�� �

��
�

�fG	�� � G	� � ��g �� � although such a choice of the compact sets would be rather

unusual�

�� When Two Parameters Are Known To Be Independent

��



���� Basic Algorithm

Other types of possible partial information may be available� For example� one might

believe that �� and �� are independent� Then one wants� as a reference prior� the product

of marginal reference priors� �r�	��� and �r�	���� It is not clear how to de�ne these� but

Option � in Section �� suggests the following iterative algorithm�

Step �
 Choose any initial nonzero marginal prior density for ��� say �
���
� 	����

Step �
 De�ne an interim prior density for �� by

�
���
� 	��� � exp

�
�



Z
�
���
� 	��� log

�
j�j�j���j

�
d��

�
�

Step �
 De�ne an interim prior density for �� by

�
���
� 	��� � exp

�
�



Z
�
���
� 	��� log

�
j�j�j���j

�
d��

�
�

Now replace �
���
� in Step � by �

���
� and repeat Step � and Step �� to obtain �

���
� and �

���
� �

Consequently� we generate two sequences f��i�� gi�� and f��i�� gi��� The desired marginal

priors will be the limits �rj � limi�� �
�i�
j � j � �� � if the limits exist� In applying the

iterative algorithm� it may be necessary to operate on compact sets� and then let the

sets grow�

We do not know the extent to which this algorithm converges in general� We have

studied several speci�c situations� and convergence was achieved quickly� For instance�

in the two�parameter Weibull model the equations iterate to the usual reference prior

given in Sun 	�

��� It would clearly be of interest to establish conditions under which

convergence is guaranteed� For many important situations� it is possible to deduce the

result of the above algorithm directly without actually going though the iterations� Here

are two su�cient conditions under which this can be done�

��



Theorem �
 �a� If j�j�j���j does not depend on ��� then the marginal reference priors

are

�r�	��� � 	j�j�j���j� �� and �r�	��� � exp
�
�



Z
�r�	��� log	j�j�j���j�d��

�
� 	��

�b� If j�j�j���j does not depend on ��� then the marginal reference priors are

�r�	��� � 	j�j�j���j� �� and �r�	��� � exp
�
�



Z
�r�	��� log	j�j�j���j�d��

�
� 	
�

Proof� Under the assumption in 	a�� �r�	��� does not depend on the choice of ����� in

Step ��

The reference priors under the independence assumption are� in general� di�erent

from the reference prior or the reverse reference prior 	Berger and Bernardo� �

�� The

following result gives a condition under which they are the same� Its proof is obvious�

and is omitted�

Theorem �
 If the Fisher information matrix of 	��� ��� is of the form

�	��� ��� � diagfg�	���h�	���� g�	���h�	���g�

then the independent marginal reference priors are

�r�	��� � fg�	���g �� and �r�	��� � fh�	���g �� � 	���

Under the conditions of the theorem� when either �� or �� is the parameter of interest�

the reference priors have the same form� �	��� ��� � fg�	���h�	���g �� 	cf� Datta and

Ghosh� �

��� Therefore� the reference prior and the reverse reference prior are also as

in 	����

���� Examples For Independent Priors

��



Example �	 normal distribution� Clearly� when � and � are independent� the marginal

reference priors are �r�	�� � � and �r�	�� � ����

Example 	 gamma distribution� It is easy to see that j�j�j���j does not dependent on

�� From Theorem �� the marginal reference priors are �r�	�� � f��	�� � ���g �� and

�r�	�� � exp

�



Z
f��	�� � ���g �� log

�
���	��� �

����	��

�
d�
�
� ����

This is also the unrestricted reference prior when � is the parameter of interest 	Sun

and Ye� �

���

Example �	 bivariate binomial distribution� Crowder and Sweeting 	�
�
� consider the

following bivariate binomial distribution� whose probability density is given by

f	r� sjp� q� �
�
m

r

�
pr	�� p�m�r

�
r

s

�
qs	�� q�r�s�

where � � p� q � �� and s and r are nonnegative integers satisfying � 	 s 	 r 	 m� The

Fisher information matrix for 	p� q� is given by

� � m diag!fp	� � p�g��� pfq	�� q�g��"�

Clearly� the Je�reys prior is proportional to f	� � p�q	� � q�g� �

� � Based on the as�

sumptions that p and q are independent� that � � pq and � � p	� � q�	� � pq��� are

independent� and some invariance considerations� Crowder and Sweeting 	�
�
� derived

the noninformative prior� �CS	p� q� � fp	� � p�q	� � q�g��� Polson and Wasserman

	�

�� derived� as the reference prior when either p or q is the parameter of interest�

�r	p� q� � fp	� � p�q	� � q�g� �

� � From Theorem �� this is also the reference prior based

on independence of p and q�

�




���� A Clinical Trial	 ECMO

Ware 	�
�
� considered a Bayesian solution of a clinical trial� Ten patients were given

standard therapy and six survived� On the other hand� nine patients were treated with

ECMO 	extra corporeal membrane oxygenation� and all nine survived� Let p� be the

probability of success under standard therapy and p� be the probability of success under

ECMO� It is desired to compare the two treatments� Let �i � logfpi�	� � pi�g� i �

�� � and � � �� � ��� The quantity of interest is then the posterior probability that

�  �� where �� is a nuisance parameter� This example was reanalyzed by Kass and

Greenhouse 	�
�
�� who considered �� di�erent proper prior distributions� all involving

the independence assumption� They said that the independence assumption is somewhat

subtle and reasonable�

A follow�up to Kass and Greenhouse�s study was given in Lavine et al
 	�

���

who studied bounds on the posterior probability that �  � under various priors with

and without the independence constraint� Berger and Moreno 	�

�� also treated the

example from a robust Bayesian viewpoint� Lavine et al
 	�

�� and Berger and Moreno

	�

�� all showed that� without the independence assumption� the in�ma of the posterior

probability that �  � for a reasonable class of priors might be very small� They also

thus suggested use of the independence assumption 	assuming� of course� that it was

plausible in the application��

For this problem� both the Je�reys prior and the Berger and Bernardo 	�

� refer�

ence prior will give a dependent prior for � and ��� We now derive the reference prior

under the independence assumption� First� the Fisher information matrix of 	p�� p�� is

�	p�� p�� � diag!n��fp�	� � p��g� n��fp�	�� p��g"�

�



where n� � �� and n� � 
� Thus the Fisher information matrix of 	��� �� is given by�
�

n�e
��

���e���� �
n�e

����

���e������
n�e

����

���e������

n�e
����

���e������
n�e

����

���e������

�
A � 	���

We can now apply Theorem �� because j�j�j���j � n�e
���	� � e���� is independent of ��

Note that the two marginal priors are proper� so it is not necessary to use a compact set

limiting argument for the derivation�

Proposition 

 �a� Under the constraint that the marginal priors for � and �� be

independent� the marginal reference priors are of the form

�r�	��� � e�����f�	� � e���g� 	��

�r�	�� � exp
�
� �

�

Z �

�
ft	�� t�g� �

� log
h
� �

n�
n�
f	� � t�e���� � te���g�

i
dt
�
� 	���

�b� The marginal densities in �a� are both symmetric and exp	���� has a folded

Cauchy ����� density


Proof� The density in 	�� follows from the fact that

Z �

��

e����

� � e��
d�� �

Z �

�
ft	�� t�g� �

�dt � f 	�

�g� � ��

For 	����

�r�	�� � exp

�
� �

�

Z �

��

e����

� � e��
log
� n�e��

���e���� �
n�e����

���e������

n�e��
���e����

n�e����

���e������

�
d��

�

� exp

� �

�

Z �

��

e����

� � e��
log
�
n�e

��	� � e������ � n�e
����	� � e����

e��e����

�
d��

�

� exp

� �

�

Z �

��

e����

� � e��
log
n
n�e

�������	� � e������ � n�e
���	� � e����

o
d��

�
�

Making the transformation t � e���	� � e���� we have

�r�	�� � exp
h
� �

�

Z �

�
ft	�� t�g� �

� log
nn�	�� t�

te�

�
� �

te�

�� t

��
�
n�	�� t�

t

�
� �

t

�� t

��o
dt
i

�



� exp
�
� �

�

Z �

�
ft	�� t�g� �

� log
hn�f	�� t�e���� � te���g� � n�

t	�� t�

i
dt
�

� exp
�
� �

�

Z �

�
ft	�� t�g� �

� log
h
n�f	�� t�e���� � te���g� � n�

i
dt
�
�

Formula 	��� then follows� Part 	b� is clear�

Kass and Greenhouse 	�
�
� found that the posterior probability P 	�  �jdata� is

approximately ��
� based on the independence of the proper prior they favoured� For

their independent prior in the � and �� parameterization� P 	�  �jdata� was approxi�

mately ��

� Figure � compares the independent reference prior density and the resulting

posterior density of �� The resulting posterior probability that �  � is about ��

� It

is interesting that the noninformative prior analysis yields the same conclusion as the

Kass and Greenhouse 	�
�
� subjective analysis for the same parameterization� even

though it can be shown that the reference priors are considerably more di�use than the

subjective priors of Kass and Greenhouse� Note �nally that� even though �r�	�� can be

expressed only in terms of an integral� this is not a problem in that computation must

be done by Monte Carlo integration in any case�

�� Discussion

We have proposed two options to �nd the marginal reference prior for �� when the

conditional prior for �� is known� Option  was felt to be the most natural approach�

but di�culty in its implementation will usually necessitate use of the easy Option ��

Table � summarizes� for the examples in this paper� when the two options are known

to yield the same answer� Note� however� that� for all examples considered in which

the two options give di�erent answers with the exception of the Neyman�Scott problem�

�r�	�� and �r�	�� agree asymptotically� as n � �� This lends further support to general





use of the simple Option �� In the Neyman�Scott problem� the two marginal reference

priors do remain di�erent as n � �� but� since the number of unknown parameters

grows with n� this is perhaps not unexpected�

The conditional reference prior� �r	��j���� is usually given by 	���� and does not then

depend on the speci�ed marginal prior for ��� However� as shown in the example of the

beta distribution in Section ���� �r	��j��� can di�er from 	����

In dealing with the partial prior knowledge that �� and �� are independent� an iter�

ative application of the reference algorithm was proposed� While this can be trivially

implemented in many important special cases� its general applicability and convergence

require further study�

Appendix� Proof of Lemma �

Let

J�	�� �
�X
j��

n
	� � j��� � 	�� � � j���

o
�

ThenG	���G	���� � ����	�������J�	�� � �	����f��	�����g���J�	���De�ne

h	x� � 	��x����	����x���� for x � �� Since h�	x� � �f	��x��	�	����x��	g � �

for x  �� h	x� is a monotone decreasing function of x� Thus�

J�	�� �
Z �

�
f	� � x��� � 	� � � � x���gdx

� 	� � ���� � 	� � � � ����

� �f	� � ��	� � � � ��g���

On the other hand� for any x � � and �  ��

�
�

x�
� �

	x� ���

�
�
�

�

x� � �
�

� �

	x� ��� � �
�

�

�



� f	x� ��� � x�g


�

x�	x� ���
� �

	x� � �
�
�f	x� ��� � �

�
g
�
�

which is negative� Thus� for any j � ��

�

	� � j��
� �

	� � � � j��
	 �

	� � j�� � �
�

� �

	�� � � j�� � �
�

�
Z j� �

�

j� �

�

�
�

	� � x��
� �

	�� � � x��

�
dx�

Therefore�

J�	�� 	
Z �

�

�

n �

	� � x��
� �

	� � � � x��

o
dx �

�

	� � �
�
�	�� � � �

�
�
�

Consequently� HL
i 	�� 	 Ki	�� 	 HU

i 	��� where

HL
i 	�� �

p
�
Z ui

li

�
� � �

��	�� ���
�

�

	� � ��	� � � � ��

� �

�

d��

HU
i 	�� �

p
�
Z ui

li

�
� � �

��	�� ���
�

�

	� � �
�
�	�� � � �

�
�

� �

�

d��

For any � � � � � small enough and i large enough such that li � � � ��� � ui� we have

HU
i 	�� �

p
�
�Z �

li

�

�

�
� � �

	�� ���
�

��

	�
�
� ��	�� �

�
� ��

� �

�

d� �O	��

�
Z ui

���

�

�

�
 � ����

�	� � ������
�

�

f� � �
��

��gf� � 	�� �
���

��g

� �
�

d�
�

�
p
�

�Z �

li

�p
��

n
� �O	��

o
d� �O	�� �

Z ui

���

�

�

n
� �O

� �
�

�o
d�

�

�
p
� log	ui�� log	li� �O	���

Similarly� we have HL
i 	�� �

p
� log	ui�� log	li� �O	��� This completes the proof�
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Table �	 Comparison of Marginal Reference Priors from Two Options

Distribution 	��� ��� �r�	��� � �r�	����

Multinomial 	p�� p�� 	p�� p�� Yes� if 	��� holds

Normal 	�� ��� 	�� �� Yes� if �s	�j�� � �s	��

	�� �� No

Gamma 	�� �� 	�� �� No

Neyman#Scott f�� 	��� � � � � �n�g No

Normal�	��� ��� �� �� �� 	��� ��� Yes� if �� and ��

� is known are independent

�
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Fig� �� Prior and Posterior Densities of � from ECMO data


