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SUMMARY

In this paper, reference priors are derived for three cases where partial information
is available. If a subjective conditional prior is given, two reasonable methods are pro-
posed for finding the marginal reference prior. If, instead, a subjective marginal prior
is available, a method for defining the conditional reference prior is proposed. A suffi-
cient condition is then given under which this conditional reference prior agrees with the
conditional reference prior derived in the first stage of the reference prior algorithm of
Berger and Bernardo. Finally, under the assumption of independence, a method for find-
ing marginal reference priors is also proposed. Various examples are given to illustrate

the methods.

Some key words: Kullback-Leibler divergence, noninformative prior, normal distribution,

gamma distribution, beta distribution, Neyman-Scott Problem.



1. INTRODUCTION

Bayesian analysis using noninformative or default priors has received considerable
attention in recent years. A common noninformative prior is the Jeffreys prior (Jef-
freys, 1961), which is proportional to the square root of the determinant of the Fisher
information matrix. The Jeffreys prior is quite useful for a single parameter, but can
be seriously deficient in multiparameter problems (cf. Berger and Bernardo, 1992). For
a recent review of various approaches to the development of noninformative priors, see
Kass and Wasserman (1996). Here, we will concentrate on the reference prior approach,

as developed in Bernardo (1979) and Berger and Bernardo (1992).

In many practical problems, one has partial prior information for some of the param-
eters. For example, in a N(u,o?) population, one might possess reasonably strong prior
information about u, while the prior information for o is vague. As another example,
Lavine et al. (1991) considered robust Bayesian inference with specified prior marginals.
As a third example, the prior knowledge could be of independence of the parameters,
such as in the ECMO clinical trial example studied by Ware (1989). Another common
type of partial information is constraints on the parameter space. This is typically easily
handled, however, in that reference priors for a constrained space are almost always just

the unconstrained reference prior times the indicator function on the constrained space.

The paper is arranged as follows. In Section 2, we will develop the reference priors
when two types of partial information are available. We first consider the case when a
conditional prior is known and it is desired to find the marginal reference prior. Two
options are given. One is similar to the final stage of Berger and Bernardo’s reference

prior algorithm; the other is more intuitive and is based on deriving the marginal model.



Next, the conditional reference prior is derived when a marginal prior is known. A
sufficient condition is found under which the conditional noninformative prior often
agrees with the conditional reference prior from the first stage of Berger and Bernardo’s
algorithm. Some examples are given in Section 3, illustrating various aspects of these
results. In Section 4, an algorithm is proposed for determining marginal reference priors
when the two parameters are known to be independent. Some sufficient conditions are
given under which the answers can be written in closed form. Formal examples and the
ECMO clinical trial example are used for illustration. Finally, Section 5 contains some

discussion.

2. KNOWING A MARGINAL OR CONDITIONAL PRIOR
2.1. INTRODUCTION
Let X, = (21, -+, 2,) be a random sample from the density p(x;0y,6;), where the
parameters 61 and 6, are vectors of dimensions d; and d, respectively. Let w(61,02)

denote the prior density of (6y,6;). The following questions are of interest.

1. Suppose there is available a subjective conditional prior density x*(02]61) for 6

given #;. How can we find the marginal noninformative prior 7" (6,) for 6,7

2. Suppose there is available a subjective marginal prior density 7*(6;) for 6;. How

can we find the conditional noninformative prior #”(6|6,) for 63 given 6;.

Solutions to these two questions will be discussed in §§2.2 and 2.3, respectively. We
will use m(6y,0,]|X,,) to denote the joint posterior density of 6y and 0y and 7 (61| X,,) the

marginal posterior density of 6;.

2.2. FINDING THE MARGINAL PRIOR



When the conditional density of 5 given 6y is available, there are two reasonable

options for finding a marginal reference prior 7" (6;).

Option 1: Following Bernardo (1979), define the expected Kullback-Leibler divergence

between the marginal posterior density of 6y given X,, and the marginal prior of 8; by

I{Xn;wT(-)}:E[/ (6:]X,.) 1g{M}d91], (1)

where the expectation is with respect to the marginal density m(X,) = [ p( X, |61)7"(61)d0;.
We seek that prior, 7”(6;), which maximizes (1) asymptotically, since maximizing the
distance between the prior and posterior is a plausible way to define a prior which has
minimal influence on the analysis. It follows from Ghosh and Mukerjee (1992) that,

under some regularity conditions and as n — oo,

(1), (2)

T{X, 7" ()} = d—log(;;e)—l—/ (6,) 1og{ UG

where

n(61) = exp{%/7r5(02|(91)10g(||;2]i|)d02}. (3)

Here ¥ = X(04,6,) is the per observation Fisher information matrix for (61,6z), Y92 =
Y9a(01,04) is the per observation Fisher information for 6,5, given that 6; is held fixed,

and |X| is the determinant of X.

The reference prior strategy suggests choosing 7" to maximize (1) or (2) asymptoti-

cally on compact sets; this can easily be seen to lead to

1 (01) o< n(6r). (4)

In fact, this is essentially the solution used in Berger and Bernardo (1989, 1992). The

following theorem gives an important special case.
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THEOREM 1. (a) If|X|/|X22| does not depend on s, then, for any subjective conditional

density 7°(03|01), the marginal reference prior from Option 1 has the form
1 (01) o< ([X]/]E22])7. (5)

(b) If |X]/|X22| depends only on 3 and 7°(02]61) does not depend on 0y, then n](61) x

Proof. The results follow from the definition of #7(6;) and the assumption. =

Option 2: Find the marginal model

POXI00) = [ (X101, 02)7° (021010 (6)

Let ¥*(61) be the Fisher information matrix for §; based on this marginal model. Then
the reference prior for §; in this model, again maximizing, asymptotically, the expected

Kullback-Leibler divergence between the marginal posterior and the marginal prior, is
w5 (01) oc {1X7(01)3 7. (7)

Option 2 more closely mirrors the underlying motivation for reference priors in that,
with m°(02|61) given, the information in the data about 6, resides in p(X,|61). Hence the
marginal reference prior for 6y should, ideally, be computed with respect to this mixture
model. Unfortunately, the Fisher information matrix for such mixture models is often
difficult to compute, so that implementation of Option 2 is often difficult. This same
difficulty also motivated the use of the analogue of Option 1 in Berger and Bernardo

(1989, 1992), in place of the more natural Option 2.

2.3. FINDING THE CONDITIONAL PRIOR



For the case when the marginal prior density #°(6;) is known, consider the expected
Kullback-Leibler divergence between the conditional posterior density of 85, given 6, and

X, and the conditional prior of 85, given 6y,

TXn () = B[ 5015 [ w0t X tog (Mo, do)

= 5[, [ ronttos{ " . )

7(61]X,)
_ E[/@lr(eﬂXn)lo {7}&1] (8)
From an asymptotic expansion of the first term, compare formula (1.1) of Ghosh and

Mukerjee (1992, p. 192) and (2), we have that

T(Xsw (0 = Llog(3)+ [ w00[[ = %MbQE%ﬁMMM+M)@

Choosing 7"(63]61) to maximize (9) asymptotically thus suggests defining the conditional

reference prior as
77 (0,101 o |Sa(01,05)]2. (10)

When this conditional reference prior is proper, matters are straightforward. In
practice, it may be improper and will then encounter normalization concerns. The
compact support argument that is typically used in the reference prior approach (Berger
and Bernardo, 1992) may then be applied here. Choose a nested sequence Ay C Ay C - -+
of compact subsets of the parameter space A for (61, 8,), such that U;A; = A and 7" (01]60;)

has finite mass on Q; = {6y : (61,02) € A;}. Let 14 be the indicator function on A and
Ki(0,) = /Q |052(01, 05)|2 db,.

The conditional reference prior of 5 on €Q; is

[ X22(01, 92)|%

(02|01) K (01)

i(02)'
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Now define the conditional reference prior of 63 by

(0216
7 (02]0,) = lim i (0a]fh)

i—oo ! (g0010)

when the limit exists; here (019, 020) is any fixed point. It is easy to see that

K;(0
7"(03]01) o lim i(01o)

Noa(0y, 05)]2. 11
oo [(2(01)| 22( 1 2)| ( )

The following theorem gives a sufficient condition under which this limit is propor-

tional to |222(01, 02)|%

THEOREM 2. Assume

|222(91,92)| = 91(91)92(92)7 (12)

for some functions g1 and go. Suppose A = Oy x Oy and the compact sets are chosen to

be of the form A; = O; X Oy Then the conditional reference prior of 05 satisfies
7 (0a101) ox [Sa(01,02) [ ox {g(02)} .

Proof. Clearly, the normalizing constants K; are independent of #;. The result follows
immediately. =
Note that the conditional reference prior, 7”(62]61), never depends on the specified
marginal prior 7°(6y).
3. EXAMPLES
3.1. MULTINOMIAL DISTRIBUTION

Consider the multinomial density for 3 cells

k! Ly
p(y1,y2|p1. p2) = T — yz),pi’lp%Q(l —p1—p) T, (13)
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where k is a positive integer, y; is the observed frequency in cell ¢, p; is the probability
of cell 7, and 0 < p; + py < 1. Without loss of generality, we will suppress the cell count

and probability for the third cell. The Fisher information matrix for (py, p2) is

L/t 0 1 11
Z(phPZ):E{( 0 p51)+m(1 1)} (14)

The Marginal Reference Prior. Given py, assume that p, has a conditional density

7*(pa|p1) on (0,1 — py). We want to find the marginal reference prior for p;.
Option 1. Since |X| = 1/{pipa(1 — p1 — p2)} and oy = p3' + (1 — p1 — p2)74,
|X|/X22 = 1/{p1(1 — p1)}. From Theorem 1, the marginal reference prior for p; is

1

=}t (15)

WI(Pl) &

Option 2. Assume that n observations @; = (y1;, y2:), ¢ = 1, -+, n, are obtained. Note
that, in reference prior developments, one considers replications of the full experiment

in creating the asymptotics. A considerable simplification results if

7 (p2lp1) = (1 — p1) g{p2/(1 — p1)} (16)

for some density ¢ on (0,1). This says that the random variable py/(1 — p;) has the

same distribution for any p;. Then the marginal model is

1-p1 1
P ) = [ 1y eyt Ly 22,
0 L=pim 1 =—p
1
= pi’”(l—pl)”’“‘y”/ s (1 — 8) "I T g(s5)ds
0

o< pit (1 —py)thTe

where y;, = >"7_; y;;. The Fisher information corresponding to this model is then

nk

Z*(pl) N pl(l —p1)'

(17)
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Therefore, w5(p1) is also given by (15) when (16) holds. If (16) does not hold, the

marginal reference priors will typically be different.

The Conditional Reference Prior of ps. For any marginal subjective prior on p;, the

conditional reference prior of py is

1
{pz(l - P11 pz)}%

7" (palp1) x L, 0<py<1—np.

3.2. NORMAL DISTRIBUTION

Consider the normal density with a mean g and a standard deviation o,

1 T — p)?
pla;p,o) = (271')%a exp{—%}, —o0 < a < 0. (18)

The Fisher information matrix for (y, o) is
Y = Y(u,0) = diag(c™?, 2077%).
Case I. Marginal and Conditional Reference Priors For u

PROPOSITION 1. (a) If n°(o|p) is independent of u, the marginal reference prior under
Option 1 is nj(p) o< 1.

(b) If n°(o|p) is independent of p, the marginal reference prior under Option 2 is
my(p) o< 1.

(¢) For any given marginal prior of o, the conditional reference prior of p is 7" (u|o)

x 1.

Proof. Note that |X|/|X22| = 072, and (a) follows from Theorem 1(b). For (b), since

Y

7*(o|p) = 7°(0), the marginal probability density p(X,,|¢) is a scale-mixture of normals



and hence a location probability density. Consequently, the Fisher information for p

will be constant. Part (¢) is obvious. 0

When #*(o|u) depends on g, Option 1 and Option 2 can generate different marginal

priors for p.

Case II. Marginal and Conditional Reference Priors For o.

PROPOSITION 2.  (a) For any conditional prior of u given o, the marginal prior for o

under Option 1 has the form 7j(o) x 1/o.

(b) If the prior distribution for u is normal with mean m and variance 72, then the

marginal prior for o under Option 2 has the form

n—1 o? }%

To(0) o { = (02 $ nr?)? (19)

(¢) For any given marginal prior on u, the conditional prior for o is also < 1/o,

independent of .

Proof. ~ Part (a) is immediate from Theorem 1 (a). Part (c) is easy. For (b), let
X, = (x1, -+, 7,) be a random sample from N(u,0?). Define T, = (1 + -+ + x,)/n

and S* =Y | (z; — T,)*. The marginal model is

PXalo) = %eXp{_%}/_ZeXP{_n(T;;M)Q}( T e

271')%7' 272
1 { S? n(fn — m)2 }
o= 1(o? 4+ nr2)l/? P 552 2(02 4 n72))”
Therefore, writing & = 0%, we have
0? n—1 1 S n(T, —m)?
1 X, = =2 e 7Y
85'2 Og{p( |U)} 9252 + 2(5._|_n7_2)2 &3 (5-_|_n7-2)3
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Under the marginal model, we have £;5? = (n — 1)6 and E5(T, —m)? =&/n+ 7. So

the Fisher information for & under the marginal model is then
. oy, Lo 2\2
¥ (o)=(n—-1)/(26 )—|—§(U—|—n7' )-.

The result is immediate. 0

Note that 75(o) differs from 7(c). When n — oo, however, #}(c) will converge to

71 (o).

3.3. GAMMA DISTRIBUTION

Consider the gamma density p(x|a, 3) = Fﬁ(z)xa_l exp(—px), @ > 0, where a > 0

and > 0. The Fisher information matrix for (a, 3) is
(20)

where ¢ (o) = dlog{I'(«a)}/da.

PROPOSITION 3.  (a) For any conditional density of 3 given «, the marginal reference

prior for o under Option 1 is given by

i (a) o {¥'(a) — a1}z, (21)

(b) Assume that the conditional distribution of B given o is Gamma(a,b). The

marginal reference prior for a under Option 2 is given by

[T

my(a) o< {g'(a) = ni’(na +a)}?. (22)

(¢) For any given marginal prior on «, the conditional reference prior for [3 is inde-

pendent of o and is given by 57L.
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Proof. It is easy to see that |X| = f72{a)/(a) — 1} and Y93 = 72 Thus |X|/Xq; =
Y'(a) — o™t which implies (21). Part (c) is clear. For (b), let X,, = (21, --,2,) be a

random sample from a Gamma distribution. The marginal model is then

pfa) = TSl [ g (=53 ) 5 el

P(na + a)([T, )"
{P(e) b (i, o+ 6)"

The second derivative of the logarithm of p( X, |a) is —ni’(a)+n*y’'(na+a), from which

(b) follows immediately. .

Using an expansion for ¢’(+), (cf. Equation (1.45b) of Bowman and Shenton, 1988),
we can show that ¢'(x) = 27! 4 (22?)"' + O(27?) as * — oo. Therefore, ny)'(na+ a) —
-1

a”" as n — oo. Consequently, the marginal reference prior for a under Option 2

converges to the marginal reference prior for o under Option 1.

3.4. NEYMAN-SCOTT PROBLEM

Suppose that y;;,2 = 1,---,n,5 = 1,2, are independent observations, and y;; has

2, We want to find the marginal

a normal distribution with mean p; and variance o
reference prior distribution for o2 or o. The Fisher information matrix for (g1, -, ft,, 0?)

is given by
Y= Z(:ulv Ty Mn, 02) = diag(ZU_zv o 720_27 n0_4).

PROPOSITION 4.  For any conditional prior of (g1, -, itn) given o*, the marginal ref-

erence prior for o* under Option 1 is 7}(0?) o< 0=2. Equivalently, the marginal reference

prior for o is 7j(c) o< oL

Proof. Let 8, = ¢* and 0y = (p1,- -+, tn). We note that |X|/|X22| = no™*, which does

12



not depend on 3. The first result follows from Theorem 1 (a). The second result is an

immediate corollary. 0

PROPOSITION 5.  Suppose that the prior distributions for y;,t = 1,---,n, are indepen-

2

dent normal with mean m; and variance 72. The marginal reference prior for o? under

Option 2 then has the form

75 (0%) o {07 4 (02 + 272)72) 3. (23)
Equivalently, the marginal reference prior for o under Option 2 has the form

75(0) o {072 + % (o? + 272) 7%} 5 (24)

Proof. Define §; = (yi1 +yi2)/2 and S* = >0, 32 (y5; — ¥;)*. The marginal model is

2 n 00 o )2 . A2
R e L B e o e e e

(271')%7' 272
1 S (= my)?
- —ex {__ . Zz_l(yz m) }
o™(o? 4 272)2" 202 o? 4 272
Therefore, writing & = 0%, we have
0* n n ST 2% (g, — my)?
1 Xn ~ - = 1=1\J1 ¢
g2 B WAaO)) = ot S ey T (5 +2r%)°

Under the marginal model, we have F;S* = né and E;(y, — m;)* = %& + 7%, So the

Fisher information for & under the marginal model is then
(= coy Lo 22
Y*(6) =n/(267) + §n(a—|—27' ).

This proves the first assertion. The second assertion follows immediately. 0

Interestingly, #7(o) and 75(0) remain substantially different because of the strong

prior input on the y; in Option 2 even if n — oo. This prior input weakens if we take 72
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very large, and in that case 7](o) and 7}(o) approximately agree. Also, for any given
marginal prior on (g1, -, it,), the conditional prior of o is independent of (1, - -, fn),
and is the same as 7](0).

3.5. BIVARIATE NORMAL DISTRIBUTION

Suppose that (Y1, Y3) has a bivariate normal distribution with unknown mean vector
(01, 01), variances equal to one and known correlation p. The joint density of (Y7, Y3) is

1 (y1 —01)? = 2p(y1 — 01)(y2 — 02 5 — 05)?
p(yl,yz|91,02):m p{ (y )’ p(yg(l_)(pyz) )+ (y )}‘

The Fisher information matrix is the inverse of the covariance matrix.

PROPOSITION 6. (a) For any conditional prior of 0 given 01, ©7(61) o 1.

(b) Suppose that 61 and 5 are independent. Then, for any subjective prior for 03,

mh(61) o 1.

Proof. Part (a) is an immediate corollary of Theorem 1 (a). For any subjective prior

for 8y, say n°(0y), the Fisher information of # from the marginal model is given by

2
o 2 p(Ye, Ya|Or, 02)7% (602)d0s
ffo p(E71/2|01702)W5(02)d02

S*(0,) = B {

2
B // {f—oo 55 P(Y1, y2|01, 02)7 (92)6192}
a f P ylay2|01702) (92)d92 Yrayz

2
[/ 125 (1,201, 0){ (1 = 01) + plya — 02)} 7 (62)d6s) y
J25 p(y1, Y2101, 02)7(02)db, e

By making the transformation ¢; = y; — 6;, we know that the right hand side does not
depend on #; and the Fisher information for #; is in fact a constant. The result follows
immediately. 0

In general, the marginal priors under Option 1 and Option 2 are different. Here

is an example, where 7°(6;|6,) does depend on 6. Suppose that p = 0 and assume
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that 7°(0,]0;) has a N(8y,607) distribution. It is easy to see that Y;|f; has a N(6;,1)
distribution and, independently, Y3|6; has a N(#;,1 + 67) distribution. The Fisher

information based on the observation Y; is 1. Furthermore,

02 2 200 40,(Ys—6) 403, — 01 (Yy — 0,)?

—1 Y5100)} = — :
002 og{p(¥2(01)} 1102 + (1 + 02)2 (1 + 62)2 (14 07)° (1+067)?

The Fisher information based on the observation Y5 is then (1 4 67)~' + 207/(1 + 67)%.
Therefore,

. 202
T+ ey

Clearly, the reference priors under Option 1 and Option 2 are thus different.

3.6. BETA DISTRIBUTION

Consider the beta density

plxla, B) = %xa_l(l —)7 o< <, (25)

where @ > 0 and # > 0 are unknown parameters. The Fisher information matrix for
(a, B) is

Gla) — Gla+ ) —G(a+ 3) )
, (26)

—Gla+p) G(B) — Gla + )

where G(a) = % log{T'(«)} is the poly-gamma function. A computational formula for

o= s(o -

Gis G(x) = 52o(x +7)7% (Bowman and Shenton, 1988).

We now try to find the conditional reference prior of 3 given . Note that the Fisher
information matrix does not satisfy the condition in Theorem 2. We will see that the
conclusion of Theorem 2 fails in this case. Let [; < u; be two sequences of constants

satisfying

[; — 0 and u; — oo. (27)
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Let Ki(a) = [/{G(B) — G(a + ﬂ)}%dﬂ When o = 1, it is easy to show that G(3) —
G(f+1) = p7% and K;(1) = [ p7'dp = log(u;) —log(l;). For an arbitrary a > 0, exact

computation of K;(«) is quite complicated, but we have the following expansion.

LEMMA 1. For fixed a and as 1 — oo,

Ki(a) = /a log(u;) —log(l;) + O(1),

where O(1) is a bounded constant.
Proof. See the Appendix. 0

PROPOSITION 7.  Assume that (27) holds and that u;l; — 1 as i — oco. For any given

marginal prior of a, the conditional reference prior of B given « is

, 1 1
(Bla) o <= (6(5) - Gla+ A1)
Proof. From Lemma 1,
K;(1) log(u;) — log(l;) 2

lim = lim

o0 Ki(a) = \Ja log(u;) — log(l) + O(1)  Va+1
The result then follows from (11). 0

This fact illustrates that, when |¥5(601,65)| does not have the form (12), #"(62|61)
may not be proportional to |222(01,02)|%. Furthermore, 7"(65]61) may depend on the
choice of the compact supports [l;,u;]. For example, if ; = u;\/a, then #"(fBla)
oz_%{G(ﬂ) — Gla+ 5)}%, although such a choice of the compact sets would be rather

unusual.

4. WHEN TwO PARAMETERS ARE KNOWN TO BE INDEPENDENT
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4.1. BASIC ALGORITHM

Other types of possible partial information may be available. For example, one might
believe that #; and 3 are independent. Then one wants, as a reference prior, the product
of marginal reference priors, #7(6;) and 73(63). It is not clear how to define these, but

Option 1 in Section 2.1 suggests the following iterative algorithm.
Step 0. Choose any initial nonzero marginal prior density for 6,, say ﬂ'go)(ez).

Step 1. Define an interim prior density for 6; by
1
() exp{ﬁ/71'50)((92)log(|2|/|222|)d02}.
Step 2. Define an interim prior density for 6y by

1
#(0) o exp{ 5 [ 700 log (1)/150 )0, |

Now replace 71'50) in Step 0 by 71'51) and repeat Step 1 and Step 2, to obtain 7r£2) and 71'52).

Consequently, we generate two sequences {ﬂ“}izl and {ﬂ'gi)}izl. The desired marginal

(4)

priors will be the limits 77 = lim; ., 7'('; ,J = 1,2, if the limits exist. In applying the
iterative algorithm, it may be necessary to operate on compact sets, and then let the

sets grow.

We do not know the extent to which this algorithm converges in general. We have
studied several specific situations, and convergence was achieved quickly. For instance,
in the two-parameter Weibull model the equations iterate to the usual reference prior
given in Sun (1997). It would clearly be of interest to establish conditions under which
convergence is guaranteed. For many important situations, it is possible to deduce the
result of the above algorithm directly without actually going though the iterations. Here

are two sufficient conditions under which this can be done.
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THEOREM 3. (a) If |X|/|X22] does not depend on 03, then the marginal reference priors

are

R0 s (IS1/1S2l)? and w3(02) s exp{ 5 [ w0 log(ISI/Sulidor}. (25)

(b) If |X|/|X11] does not depend on 0y, then the marginal reference priors are

730 s (IS1/1Zul)? and wj(0) s exp{ 5 [ wi00) log(IS1/Salidos . (29)

Proof.  Under the assumption in (a), 77(#1) does not depend on the choice of 71'50) in
Step 0. a

The reference priors under the independence assumption are, in general, different
from the reference prior or the reverse reference prior (Berger and Bernardo, 1992). The

following result gives a condition under which they are the same. Its proof is obvious,

and is omitted.

THEOREM 4. If the Fisher information matriz of (01,02) is of the form

N(01,02) = diag{gi(61)h1(62), g2(01)h2(02)},

then the independent marginal reference priors are
m(00) o< {gu(O)}F and w5(0:) o< {ha(0)}. (30)

Under the conditions of the theorem, when either 8, or 4, is the parameter of interest,
the reference priors have the same form: 7(6,6;) {gl(el)hz(ez)}% (cf. Datta and
Ghosh, 1995). Therefore, the reference prior and the reverse reference prior are also as

in (30).

4.2. EXAMPLES FOR INDEPENDENT PRIORS
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Example 1: normal distribution. Clearly, when p and o are independent, the marginal

reference priors are 77 (¢) o 1 and 75(0) x 1/0o.

Example 2: gamma distribution. It is easy to see that |X|/|¥52] does not dependent on

S. From Theorem 3, the marginal reference priors are 7] (a) o {¢'(«) — 1/a}z and

This is also the unrestricted reference prior when « is the parameter of interest (Sun

and Ye, 1996).

Example 3: bivariate binomial distribution. Crowder and Sweeting (1989) consider the

following bivariate binomial distribution, whose probability density is given by

f(r.slp,q) = (T)zf(l —p)" (2) ¢*(1—q)7,

where 0 < p,¢ < 1, and s and r are nonnegative integers satisfying 0 < s <r < m. The

Fisher information matrix for (p, ¢) is given by

Y =m diag[{p(1 —p)}~", pla(1 —¢)}7"].

Clearly, the Jeffreys prior is proportional to {(1 — p)¢(1 — ¢)} 2. Based on the as-
sumptions that p and ¢ are independent, that § = pg and ¢ = p(1 — ¢)(1 — pq)~" are
independent, and some invariance considerations, Crowder and Sweeting (1989) derived
the noninformative prior, mcs(p,q) o< {p(1 — p)g(1 — ¢)}~*. Polson and Wasserman
(1990) derived, as the reference prior when either p or ¢ is the parameter of interest,

7r(p,q) < {p(1 —p)g(1 — q)}_%. From Theorem 3, this is also the reference prior based

on independence of p and g.
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4.3. A CLiNICAL TriaL: ECMO

Ware (1989) considered a Bayesian solution of a clinical trial. Ten patients were given
standard therapy and six survived. On the other hand, nine patients were treated with
ECMO (extra corporeal membrane oxygenation) and all nine survived. Let p; be the
probability of success under standard therapy and p; be the probability of success under
ECMO. It is desired to compare the two treatments. Let 1, = log{p;/(1 — p;)},i =
1,2, and 6 = ny — . The quantity of interest is then the posterior probability that
6 > 0, where 7y is a nuisance parameter. This example was reanalyzed by Kass and
Greenhouse (1989), who considered 84 different proper prior distributions, all involving
the independence assumption. They said that the independence assumption is somewhat

subtle and reasonable.

A follow-up to Kass and Greenhouse’s study was given in Lavine et al. (1991),
who studied bounds on the posterior probability that ¢ > 0 under various priors with
and without the independence constraint. Berger and Moreno (1994) also treated the
example from a robust Bayesian viewpoint. Lavine et al. (1991) and Berger and Moreno
(1994) all showed that, without the independence assumption, the infima of the posterior
probability that 6 > 0 for a reasonable class of priors might be very small. They also
thus suggested use of the independence assumption (assuming, of course, that it was

plausible in the application).

For this problem, both the Jeffreys prior and the Berger and Bernardo (1992) refer-
ence prior will give a dependent prior for 6 and ;. We now derive the reference prior

under the independence assumption. First, the Fisher information matrix of (p1, p2) is

Y(p1,p2) = diaglna /{p1(1 — p1)}, n2/{p2(1 — p2)}],
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where n; = 10 and ny = 9. Thus the Fisher information matrix of (11, 6) is given by

nqe’ll T npemt4 npemté
(1+em)2 (14emt9)2  (14emto)2

ngetsé ngeMté
(1+em+9)2 (14em+é)2

(31)

We can now apply Theorem 3, because |X|/| 22| = nie™ /(1 + €™)? is independent of 6.
Note that the two marginal priors are proper, so it is not necessary to use a compact set

limiting argument for the derivation.

PROPOSITION 8. (a) Under the constraint that the marginal priors for 6 and ny be

independent, the marginal reference priors are of the form

mim) = e"Pr(l+em)} (32)

T(8) o exp(—%/ol{t(l—t)}_%log[l—l-z—:{(l—t)e_5/2+t65/2}2]dt). (33)

(b) The marginal densities in (a) are both symmetric and exp(ni/2) has a folded

Cauchy (0,1) density.

Proof. The density in (32) follows from the fact that

0 6771/2 1 "
/ dn = [ {0 - 0y e = {1(5)) = 7.

—00 1 —|— e
For (33),
r nie noe +6
) 1 oo em/2 Gimy + gy
7T2(5) o exp _ﬂ/_oo 1 _|_ emn 10g{ nq el noeM +9é }d?]1:|

(1+em)2 (14emt+8)2

1 poo m/2 m(1 n+6)2 m+é (] 712
e o {nle (1+e )2 + nae (14 em) }dﬁl]

= exp|—=—

27 Joo 1 + em e em+6
= exp _i /OO en/? log{nle_(”1+5)(1 + e”1+5)2 + nge” M (1 + e”l)Q}dnl].
| 27 J-o 1 +em

Making the transformation ¢t = e /(1 4 ™), we have

o) o explog [0 =0y Hos MO 0 1) = (1 )
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1 . ny _ 6—6/2 66/2 2 no
= exp(—%/o{t(l—t)}_ilog[ =1 i ——I_t; s ]dt)

o exp(—% /Ol{t(l — t)}_% log [nl{(l — t)e_5/2 + t66/2}2 + nz]dt)-

Formula (33) then follows. Part (b) is clear. 0

Kass and Greenhouse (1989) found that the posterior probability P(é > 0|data) is
approximately 0.95 based on the independence of the proper prior they favoured. For
their independent prior in the 6 and 1; parameterization, P(6 > 0|data) was approxi-
mately 0.99. Figure 1 compares the independent reference prior density and the resulting
posterior density of 6. The resulting posterior probability that 6 > 0 is about 0.99. It
is interesting that the noninformative prior analysis yields the same conclusion as the
Kass and Greenhouse (1989) subjective analysis for the same parameterization, even
though it can be shown that the reference priors are considerably more diffuse than the
subjective priors of Kass and Greenhouse. Note finally that, even though #}(¢) can be
expressed only in terms of an integral, this is not a problem in that computation must

be done by Monte Carlo integration in any case.

5. DISCUSSION

We have proposed two options to find the marginal reference prior for #; when the
conditional prior for 65 is known. Option 2 was felt to be the most natural approach,
but difficulty in its implementation will usually necessitate use of the easy Option 1.
Table 1 summarizes, for the examples in this paper, when the two options are known
to yield the same answer. Note, however, that, for all examples considered in which
the two options give different answers with the exception of the Neyman-Scott problem,

77(+) and 75(-) agree asymptotically, as n — oo. This lends further support to general
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use of the simple Option 1. In the Neyman-Scott problem, the two marginal reference
priors do remain different as n — oo, but, since the number of unknown parameters

grows with n, this is perhaps not unexpected.

The conditional reference prior, 7" (63|601), is usually given by (10), and does not then

depend on the specified marginal prior for §;. However, as shown in the example of the

beta distribution in Section 3.6, 77(65]61) can differ from (10).

In dealing with the partial prior knowledge that §; and 6, are independent, an iter-
ative application of the reference algorithm was proposed. While this can be trivially
implemented in many important special cases, its general applicability and convergence

require further study.

APPENDIX. PROOF OF LEMMA 1

Let

L) ={B 47~ (0t 547}
Then G(3)—G(a+p) = 87 =(a+3)*+Ja(8) = ala+28){B*(a+3)*} 7' +Ju(3). Define
h(z) = (B+x) *—(a+B+z)"2 for x > 0. Since b/ (z) = —2{(f+z)*—(a+p+2)"?} <0
for @ > 0, h(x) is a monotone decreasing function of x. Thus,
LB = [HB+a) = (a+d+0) e
= ()T et A1)
= of(B+D)(a+p+ 1}

On the other hand, for any # > 1 and a > 0,

{%_ (xja)z}_{ﬁl_l_ (x+;)2— }

4
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2 _ 2 1 N 1
B F e i C R a1

which is negative. Thus, for any j > 1,

1 1 1 1

G137 @tB43?F = B1iP-1 (atdrii-

- /i;_{(ﬂjx) B oz—l—ﬂ—l—xQ}

Therefore,

0 1 1 «
w9 < G e S G e D

Consequently, HF(a) < K;(a) < HY (a), where

Hi(a) = Va / {ﬁfffg +(ﬁ+1)(;+ﬁ+1)}§dﬁ;
#ie) = v {ﬂf;fg (ﬁ+§)(;+ﬂ+§)}2dﬁ'

For any 0 < ¢ < 1 small enough and ¢ large enough such that [; < ¢ < 1/¢ < u;, we have

i) = vo ([ 5l e o0

Wil [ 24ap! | :
e e e
- Va [/l:ﬁ{u()(ﬂ)}dﬂw(m S{ivo(3 )}dﬁ]

= Valog(u;) —log(l;) + O(1).

Similarly, we have H!(a) = \/a log(u;) — log(l;) + O(1). This completes the proof.
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Table 1: Comparison of Marginal Reference Priors from Two Options

Distribution (61,0, 7 (01) = 7(6,)?
Multinomial (py, p2) (p1, p2) Yes, if (16) holds
Normal (i1, %) (1, 0) Yes, if 7*(o|p) = 7*(0)

(o, 1) No

Gamma (a, §) (o, B) No

Neyman-Scott | {0, (s1,- -, pin)} No
Normaly(6y, 65,1, 1, p) (61,0, Yes, if 6; and 6,
p is known are independent
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Fig. 1: Prior and Posterior Densities of 6 from ECMO data




