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Abstract

Background: RT-qPCR is a sensitive and increasingly used method for gene expression quantification. To normalize

RT-qPCR measurements between samples, most laboratories use endogenous reference genes as internal controls.

There is increasing evidence, however, that the expression of commonly used reference genes can vary

significantly in certain contexts.

Results: Using the Genevestigator database of normalized and well-annotated microarray experiments, we describe

the expression stability characteristics of the transciptomes of several organisms. The results show that a) no genes

are universally stable, b) most commonly used reference genes yield very high transcript abundances as compared

to the entire transcriptome, and c) for each biological context a subset of stable genes exists that has smaller

variance than commonly used reference genes or genes that were selected for their stability across all conditions.

Conclusion: We therefore propose the normalization of RT-qPCR data using reference genes that are specifically

chosen for the conditions under study. RefGenes is a community tool developed for that purpose. Validation RT-

qPCR experiments across several organisms showed that the candidates proposed by RefGenes generally

outperformed commonly used reference genes. RefGenes is available within Genevestigator at http://www.

genevestigator.com.

Background

Rationale for using reference genes

Reference genes, sometimes also called “housekeeping

genes”, frequently serve as internal controls in transcript

quantification assays such as RT-qPCR. The need for

internal controls in such assays arises from sample to

sample biases related to variability in total RNA content,

RNA stability, enzymatic efficiencies, or sample loading

variation. To correct for this, the expression levels mea-

sured are frequently normalized to internal control

genes. Ideally, such genes are expected to be invariable

in their expression and therefore correlate strongly with

the total amounts of mRNA present in each sample.

Commonly used reference genes, such as beta-actin

(ACTB), ubiquitin (UBQ), the 18 S ribosome small sub-

unit (18S), beta-glucuronidase (GUS), or glyceraldehyde

3-phosphate dehydrogenase (GAPDH), have a strong

tradition and historical track record. In fact, many man-

ufacturers provide “housekeeping gene panels” contain-

ing a dozen such genes thought to be generally stable

based on their biological function. In many laboratories,

they are used as “general purpose” reference genes for a

wide variety of experimental conditions.

Problems associated with reference genes

Despite their wide-spread use, the suitability of reference

genes for any type of experiment is not given a priori. In

fact, two types of problems can occur: 1) their expres-

sion can vary considerably depending on the experimen-

tal condition being tested, and 2) the majority of these

genes is very strongly expressed, often resulting in a dis-

crepancy in transcript abundance of several orders of
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magnitude relative to the target gene transcripts being

quantified. Both sources of error can cause significant

biases that can ultimately lead to wrong data interpreta-

tion, especially in those cases where a single gene is

used for normalization. For example, [1-5] have

described various problems associated with commonly

used reference genes.

Current approaches for improved data normalization

Although limitations are universally recognized, still

many laboratories use reference genes without appropri-

ate validation [6,7]. In an effort to improve the quality

and normalization of RT-qPCR data, several approaches

have been proposed.

A first approach consists of validating reference genes

using data obtained from RT-qPCR data. Frequently,

several genes are evaluated in parallel and the most

stable are selected for further experimentation. So far,

most studies have focused on validating a subset of

commonly used reference genes for specific contexts

such as tissue types. Overall, it appears that no reference

gene was generally suitable for any type of context, and

that the best candidates differ between different tissues.

In some cases, even opposite results were found for dif-

ferent tissues. For example, Meller et al. [3] analyzed

seven commonly used reference genes for their expres-

sion level stability in placenta and reported that TBP

and SHDA exhibited highest stability. In contrast, of the

10 commonly used reference genes tested by Zhang and

colleagues in human neutrophils [5], TBP appeared to

be the least stable. A list of similar studies in which vali-

dations were performed in a variety of organisms and

tissues is available in Additional file 1. Although these

studies have their merits, they try to identify the best

candidates from a small and a priori set of genes,

assuming that at least one or a few of them are suitable

for the experimental context under study.

A second approach is to normalize against multiple

reference genes and to use appropriate statistical models

to improve the selection of genes with minimal variance

[8-14]. Most current software packages for RT-qPCR

data analysis have incorporated one or the other of

these methods. Three of the most popular algorithms

are GeNorm [13], Norm finder [8] and Bestkeeper [15].

A more recent, data-driven method consists of using

quantile normalization rather than reference genes, but

this approach is designed for high-throughput RT-qPCR

experiments involving many genes. For studies involving

one or a few genes, data normalization using internal

control genes remains the method of choice, provided a

proper choice of reference genes and normalization

algorithms [16,17].

A fourth and quite successful approach has been to

search for reference genes from a genome-wide

background using microarray data. In most cases, large

sets of microarray data were compiled for a specific or

for a subset of conditions, and stable genes identified

within these datasets were validated and recommended

for future use. Validation experiments generally showed

that these genes performed better than commonly used

reference genes. For example, Czechowski and collea-

gues [18] selected stably expressed genes for a variety of

experimental series for Arabidopsis. Partial overlap was

found between some of these conditions, but overall

each series had its specific set of most stably expressed

genes. Saviozzi et al. [19] performed a meta-analysis of

lung cancer transcription profiles and validated several

new reference genes for this particular context. Other

similar studies were done e.g. for T-helper cells [20],

adipose tissues [21], peripheral blood [22], various

human samples and cell lines [23], breast tumor tissues

[24], breast cancer [25], human myocardium [26],

mouse (universal) [27], and human (universal) [28]. The

use of microarrays to identify candidate reference genes

for RT-qPCR normalization has been successful, but this

extrapolation requires some precautions due to differ-

ences in the choice probe sequences between the two

technologies (e.g. Affymetrixprobes typically target the

3’ region of a transcript). Additionally, in microarray

data, multiple probes (or probe sets) targeting the same

transcript may exhibit different stability values due to

cross- or weak hybridization. Therefore, in a RT-qPCR

assay, novel candidates should always be validated

against reference genes previously used in the

laboratory.

Conclusions from published data

From the experimental evidence accumulated and pub-

lished so far, we conclude that there are probably no

genes that have a sufficient overall expression stability

to be suitable for any type of assay. As previously sug-

gested, reference genes should be selected according to

the nature of the study [6,7], for example according to

the tissue type or stage of development, and should ide-

ally not be sensitive to perturbations such as external

stimuli, diseases, or even to genetic modifications. More-

over, reference genes are preferably selected from the

complete genome rather than from a handful of com-

monly used reference genes.

Hypotheses

In this study, we have examined how to find the best

possible candidate reference genes for specific experi-

mental contexts, starting from a genome-wide set of

genes. To do so, we defined an “ideal reference gene” as

a gene which 1) has the most stable transcript abun-

dance within the biological context of a specific experi-

ment, and 2) has an abundance of transcripts similar to
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that of the target genes under investigation. The hypoth-

eses that we tested were the following:

1. No genes are generally stably expressed; all genes

are regulated to a certain extent (non-generality

clause)

2. For each biological context there exists a subset of

genes with smaller expression variance in this con-

text than genes that are most stably expressed across

many conditions (context-specificity clause)

3. Genes that are stably expressed in a given biologi-

cal context are likely to be stably expressed in simi-

lar contexts (context- relatedness clause)

4. Genes that are stably expressed in a given tissue

of an organism are likely to be stably expressed in

the same tissue from closely related species (orthol-

ogy clause)

In this paper, we tested and substantiated these hypoth-

eses by using data from more than 40,000 quality con-

trolled and manually annotated microarrays from a wide

variety of experimental contexts and from several organ-

isms. We studied the properties of the expression level of

genes across various microarray types. Finally, to validate

our approach, we identified novel reference genes, exam-

ined their individual properties, and compared their per-

formance to commonly used reference genes using RT-

qPCR assays. We also present an online tool which helps

to identify genes that show high expression stability in a

chosen set of conditions. Researchers can thereby identify,

from all genes represented on the microarrays, those

which are most stably expressed across conditions that are

similar to that of their own experiments, providing them

with an objective choice of candidate reference genes.

Results

Datasets used in this study

The Genevestigator database contains a large set of sys-

tematically annotated and quality controlled microarray

data from several organisms [29]. Owing to the high

reproducibility of the Affymetrix system, its streamlined

labeling and hybridization protocols, the normalization

methods used, as well as our quality control measures,

expression data from different laboratories show a high

degree of homogeneity. The database therefore offers a

unique opportunity to search for genes that have parti-

cular expression characteristics across experiments, for

example reference genes that have minimal variance

across a chosen set of conditions.

Validating our hypotheses

Hypothesis 1 (non-generality clause)

Public experimental evidence accumulated and pub-

lished so far seems to suggest that there are no genes

whose expression is universally stable across any type of

condition. To verify this hypothesis, we measured the

standard deviation of gene expression across large sets

of Affymetrix arrays from various array types and cover-

ing a broad variety of conditions. This analysis was car-

ried out for human, mouse and Arabidopsis. The results

show that for all three organisms tested, the ranges of

standard deviation of gene expression across the com-

plete available datasets were approximately 15-fold, with

values mostly varying between 0.5 and 5 (Figure 1; see

also Additional file 2). Commonly used reference genes

were generally located within the range of SD between

0.5 and 1.0. However, a large portion of the genes have

SD values in this range. For instance, for the human

data set shown in Figure 1, more than 8000 other probe

sets were located within this range of SD. It is unlikely

that the expression of one fifth of the transcriptome is

sufficiently invariant so that any of them could be used

for normalization. Furthermore, no genes were found to

have a standard deviation distinctly lower than the bulk

of the remaining genes and could be declared as “uni-

versally suitable reference genes”. Genes with a high

average expression level showed slightly lower variance

of expression across these datasets. This effect could be

due to the normalization method used in this study

(MAS5/GCOS) or to saturation effects. Nevertheless, it
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Figure 1 Variance of gene expression relative to transcript

abundance. Standard deviation versus average transcript

abundance of approximately 47,000 probe sets across 5014

AffymetrixHuman133 2.0 arrays. Spots in blue show probe sets with

Present calls in at least ten percent of arrays, while spots in red are

those with Absent calls in more than ninety percent of arrays. The

probe sets contained between the square brackets are highly

enriched in ribosomal protein genes, but include many of the

commonly used reference genes (e.g. GAPDH, ACTB, B2 M, PPIA,

EIF1, ACTG1, UBC, EEF1G, TUBA1B, EEF1A1, TPT1).
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is interesting to note that most reference gene panels

tend to choose very highly expressed genes. In Figure 1,

a partly distinct cloud of probe sets was formed in the

very high range of expression and low range of standard

deviation. This cloud is enriched in cross-hybridizing

probe sets, mainly probe sets hybridizing transcripts

from the same family of genes. The vast majority of

them represent genes encoding ribosomal proteins,

while from the remaining genes from this cloud several

commonly used reference genes were identified, such as

GAPDH (glyceraldehyde-3-phosphate dehydrogenase),

ACTB (beta-actin), UBB (ubiq-uitin B), B2 M (beta-2-

microglobulin), PPIA (pep-tidylprolyl isomerase A

(cyclophilin A)), EIF1 (eukaryotic translation initiation

factor 1), TUBA1B (tubulin, alpha 1b), HSP90AA1 (heat

shock protein 90 kDa alpha (cytosolic), class A member

1), UBC (ubiquitin C), H3F3A (H3 histone, family 3A)

and EEF1G (Eukaryotic translation elongation factor 1

gamma). Similar observations were obtained by analyz-

ing data from various array types and organisms, includ-

ing human, mouse and Arabidopsis (see Additional file

2). A further piece of evidence in support of Hypothesis

1 was that from the top 50 transcripts that were most

stable across all conditions in Figure 1, all of them were

found to have a considerable variability of expression in

at least five distinct tissue types from a set of 186 tissues

available in Genevestigator (see Additional file 3). For

one third of these tissues (60) the standard deviation of

expression was very high for at least one of these 50

“generally stable” genes, indicating that this effect is not

due to a common set of biased experiments. These

genes would clearly not be suitable to normalize data

obtained from these particular experimental conditions,

even if their overall expression stability is high.

Hypothesis 2 (Context-specificity clause)

Our second hypothesis was that for each biological con-

text, a distinct set of genes exists with lower variance

within this context than genes selected for their stability

over a variety of different contexts. To verify this hypoth-

esis, we created, from a compendium of 3051 mouse

arrays (Mouse430 2.0) from Genevestigator, selections of

arrays representing various tissue types (muscle, liver,

lung, fibroblast, Central Nervous System). As control we

used the complete set of 3051 arrays covering a wide

variety of contexts. We chose to work with the mouse

dataset because it contained several tissue types with

high data coverage. For each of these array selections, we

calculated the standard deviation (SD) for each probe set

available on the array and ranked them from lowest to

highest SD. Figure 2A shows the results for 20 commonly

used reference genes across all arrays (a), and across tis-

sue-specific subsets of arrays (b). In Figure 2B, for each

tissue type we identified the top-20 genes with lowest SD

and ranked them by increasing SD (d), and as a control,

we show their respective ranked SD across all arrays (c).

Two observations can be made:

1) Genes selected for their stability within a chosen tis-

sue type had a lower SD of expression than commonly

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10  12  14  16  18  20

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Gene ranks

All arrays
muscle
liver
lung
�broblast
CNS

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10  12  14  16  18  20

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Gene ranks

muscle
muscle - all arrays
liver
liver - all arrays
lung
lung - all arrays
�broblast
�broblast - all arrays
CNS
CNS - all arrays

Commonly used reference genes Novel reference genes from RefGenes

a

b

c

d

A B

Figure 2 Standard deviation of commonly used and novel reference genes. Standard deviation (SD) of gene expression of commonly used

reference genes (A) across all samples (a) or across subsets of tissue-specific samples (b) from the AffymetrixMouse430 2.0 array dataset. In (B),

for each subset of tissue-specific samples, the most stable genes were identified using Genevestigator RefGenes. Their respective expression SD

across all arrays (c) or across subsets of tissue-specific arrays (d) is shown. The control reference genes used in this study and shown in plot A

were: HSP90AB1, TFRC, B2 M, NONO, GUSB, UBC, ACTB, H2AFZ, POLR2A, TUBB4, HIST2H2AA1, RPL22, GAPDH, YWHAZ, CANX, CYC1, SDHA, EIF4A2,

ATP5B, and EEF1E1.
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used reference genes, both within these tissue types (up

to 4-fold lower) and also as measured across all arrays

(up to 1.5 fold lower).

2) For each tissue, the range of SD of the top 20 most

stable transcripts was within 1.5 fold difference between

the most stable and least stable gene (see also Addi-

tional file 4). In contrast, the SD of the 20 commonly

used reference genes varied more than 5-fold, irrespec-

tive of the tissue type, indicating that for each tissue

type several of these genes would be unsuitable for data

normalization. None of the 20 commonly used reference

genes was systematically ranked within the top 5 genes

across every tissue type, and some even had highly vari-

able ranks. For example, TFRC (probe set 1452661_at)

had rank 1 in spinal cord and rank 20 in liver (see Addi-

tional file 5).

To substantiate these findings, we carried out two

independent RT-qPCR experiments with tissues from

mouse and Arabidopsis samples. For each experiment,

we used the RefGenes tool from Genevestigator (see

below) to find candidate reference genes for specific tis-

sue types, and then tested these candidates against com-

monly used reference genes using GeNorm. The first

experiment was carried out with mouse liver. The stabi-

lity of four control reference genes (GAPDH, TUBB,

ACTB, and HPRT) was compared to that of four novel

reference genes (vps4a, srp72, mRpL16, and GAK) iden-

tified as being highly stable across a set of 197 Affyme-

trix arrays profiling mouse liver samples from 7 distinct

public experiments available in Genevestigator. For each

gene, measurements were done in triplicate for 16 liver

samples, and all reactions were run simultaneously.

From these eight genes, GeNorm iteratively removed

the least stable ones in the following order: TUBB,

GAPDH, HPRT, ACTB, VPS4A, mRpL16, with srp72

and GAK being the two most stable genes (see Figure

3). In almost every iteration GAK appeared to be the

most stable gene (see Additional file 6). This experiment

proved that liver-specific stable genes, as identified from

Affymetrix microarray data from liver samples, outper-

formed commonly used reference genes for the normali-

zation of RT-qPCR data from liver.

The second experiment consisted of identifying genes

that are stable in seedlings, leaves and shoot apex of the

model plant Arabidopsis, and to compare their expres-

sion with that of reference genes commonly used in this

species using RT-qPCR. For each tissue type, 16, 16,

and 10 samples were used, respectively. The results are

provided in Figure 3. For seedlings and shoot apex, all

candidates proposed by RefGenes showed higher stabi-

lity in this experiment than the reference genes

GAPDH, ACTB and UBQ10. In leaves, the most stable

genes were GAPDH and one of the novel genes identi-

fied by RefGenes (same score). Overall, the RefGenes

candidates had ranks 1, 3 and 5. In the RT-qPCR

experiment, GAPDH performed better than one would

have expected from the microarray data, in which the

novel candidates were found to be more stable. This

illustrates potential differences that may occur due to

the different size and composition of experiments and

samples underlying each of these datasets. In fact, the

microarray dataset selected was composed of a large

number of leaf samples from a variety of experimental

conditions, whereas in the RT-qPCR assay there were

16 samples grown in the same conditions. It is also pos-

sible that there are discrepancies between the two tech-

nologies, e.g. due to the targeting of different regions or

splice variants.

Overall, the results from mouse and Arabidopsis sub-

stantiate this hypothesis. The tissue-specific selection of

reference genes using microarray data carried out in

similar conditions allows to identify novel genes having

higher expression stability and a more suitable expres-

sion range than commonly used reference genes. For

both organisms and across all genes tested, the Cq

values (i.e. the number of PCR cycles that elapse before

a given threshold concentration of PCR product is

reached) from the novel RefGenes candidates were

higher than those of commonly used reference genes

and closer to Cq values commonly found for most

genes from the genome (see Additional file 7 for original

experimental data).

Hypothesis 3 (Context-relatedness clause)

Our third hypothesis was that related tissue types have

overlapping sets of genes that are most stable within

these tissues. To verify this hypothesis, we selected 24

individual tissue types for which at least 50 arrays from

3 or more independent experiments were available in

Genevestigator. We then compared the overlap of the

top 20 and top 50 genes that were most stable in each

of them and, as an additional comparison, across a

selection of all tissues (Figure 4). The results show that

in the top 20 comparisons, very few genes overlapped

between any pair of the tissue types, except for central

nervous system (CNS) versus brain. This is a particular

case, as the selection of encephalon samples is contained

as a subset of the selection of CNS samples and they are

therefore not independent. In the top-50 comparisons,

there were on average 2.05 genes that overlapped

between any pair of tissues. The highest total of overlaps

was observed between CNS and other tissues, and

between the selection of all tissues ("ALL”) against indi-

vidual tissue types. In this study, biologically related tis-

sues had a significantly higher overlap than the global

mean overlap of tissue pairs (with population mean =

2.05 and SD = 1.98). For example, in the top 50 com-

parisons, spinal cord, encephalon, hippocampus, and

central nervous system had overlaps significantly above
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population mean (p = 0.01) using a permutation test

with 100,000 permutations. Also heart versus heart left

ventricle and ovary versus testis had significantly higher

overlap values (p = 0.05). In some of the cases, however,

the overlap was significant but the biological relation-

ship was unclear. For example, liver and lung both over-

lapped most with heart (p = 0.015 and p = 0.005,

respectively), although they have very different biological

functions. From this comparison alone, it was not possi-

ble to provide a general evidence to fully support this

hypothesis. The main reason could be the heterogeneity

of tissue types studied and the lack of an accepted mea-

sure to define biological relatedness between tissue

types. In fact, only few subgroups of tissues were avail-

able which had obvious related biological functions.

Despite the very large set of curated data used in this

study (4604 AffymetrixMouse430 2.0 array hybridiza-

tions), it was not possible to compile data for more

groups of biologically closely related tissues, such as dif-

ferent types of muscles, because too few independent

data sets about these tissues were publicly available.

On average, the SD of expression within each tissue

type increased 30% between probe sets of rank 1 and

rank 20, and 43%, 54% and 67% between rank 1 and

rank 50, 100 and 200, respectively (see Additional file

4). The above findings indicate that, for each tissue type,

a specific set of approximately 10-20 candidate genes

exists that has significantly smaller variance of expres-

sion across samples from this tissue. At the same time,

in the suboptimal range of expression stability (ranks 20

to 50), for each tissue type several genes were found

that also had stable expression in other tissue types. As

shown in Additional file 4 however, these “suboptimal

candidates” have SD of expression between 30% and

67% higher than the best candidates for each tissue type

and therefore are expected to be of more limited utility

as reference genes in these individual conditions.

To assess the feasibility of extrapolating candidate

reference genes from related tissue types, we carried out

a validation experiment on B-lymphocytes. For human

B-lymphocytes, only 4 arrays were available in the

human 47 k dataset at the time of experimentation. We

Samples 1 2 3 4 5 6 7 8
Top 3 

genes

RefGenes 

candidates

Common 

ref. genes

SPECIFIC TISSUES

Mouse liver 16 GAK SRP72 mRpL16 VPS4A ACTB HPRT GAPDH  TUBB

GeNorm (Avg M) 0.15 0.15 0.17 0.19 0.21 0.24 0.27 0.30 0.16 0.17 0.26

Mean Ct 25.02 24.68 26.56 26.91 20.47 25.09 19.50 24.41 25.42 25.79 22.37

Arabidopsis seedling 16 At3g24160 At1g13320 At3g27820 GADPH ACTB UBQ10

GeNorm (Avg M) 0.19 0.19 0.22 0.25 0.28 0.32 0.20 0.20 0.28

Mean Ct 20.23 21.04 21.47 17.74 17.51 17.73 20.91 20.91 17.66

Arabidopsis leaf 16 At3g01150 GAPDH At3g61710 ACTB At1g32050 UBQ10

GeNorm (Avg M) 0.16 0.16 0.31 0.42 0.50 0.63 0.21 0.32 0.40

Mean Ct 26.65 21.07 25.80 21.66 20.03 23.63 24.51 24.16 22.12

Arabidopsis apex 10 At2g17390 AT3G17920 At5g51880 ACTB GADPH UBQ10

GeNorm (Avg M) 0.11 0.11 0.15 0.20 0.22 0.49 0.12 0.12 0.30

Mean Ct 18.89 23.14 22.22 17.91 17.92 21.86 21.42 21.42 19.23

RELATED TISSUES FROM SAME ORGANISM  (RefGenes search included B-lymphocytes and related tissues; qRT-PCR done on B-lymphocytes)

Human LCL + related 16 EIF4EBP2 INTS4 SDHA GAPD YWHAZ B2M ZNF410 BUD13

GeNorm (Avg M) 0.08 0.08 0.12 0.14 0.16 0.17 0.18 0.20 0.09 0.14 0.15

Mean Ct 23.64 26.10 23.52 16.65 21.10 15.79 24.38 26.07 24.42 25.05 19.27

SAME TISSUE FROM RELATED ORGANISM  (RefGenes identified genes from mouse liver data; orthologs were used for qRT-PCR in other species)

Cattle liver 42 VPS4A GAK ACTB PMPCA UBQ GAPDH

GeNorm (Avg M) 0.25 0.25 0.27 0.29 0.32 0.35 0.26 0.26 0.31

Mean Ct 16.20 17.05 11.99 17.45 11.52 13.32 15.08 16.90 12.28

Pig liver 48 Histone H3 UBQ VPS4A GAK GAPDH PMPCA

GeNorm (Avg M) 0.29 0.29 0.30 0.32 0.34 0.36 0.29 0.33 0.31

Mean Ct 13.10 9.68 17.41 16.98 16.87 18.08 13.40 17.49 13.22

Rank of the average expression stability values of remaining reference genes Mean values for

Figure 3 RT-qPCR validation experiments. GeNorm and mean Cq values from the RT-qPCR validation experiments carried out on samples

from Mouse, Arabidopsis, Human, Cattle, and Pig. Novel reference gene candidates (blue) identified with the RefGenes tool were compared to

commonly used reference genes (yellow). The first section shows the results for tissues that were abundantly represented in Genevestigator and

for which novel reference genes were proposed by RefGenes. In this case, the candidates proposed by RefGenes generally performed better

according to GeNorm than commonly used reference genes. The second section shows RT-qPCR results for human lymphoblastoid cell lines

(LCLs). Novel reference genes were identified from a a set of human LCLs and related tissues, because there were too few arrays available for

this specific tissue type alone. The third section shows results in cattle and pig liver. Because at the time of writing this article no cattle and pig

expression data were available in Genevestigator, novel reference gene candidates were identified with RefGenes from mouse liver samples and

extrapolated to orthologs from cattle and pig. The GeNorm values indicated ("GeNorm (Avg M)”) represent the average of the expression

stability values M of the remaining genes after removal of the least stable one (see full results in Additional file 6). For all experiments, the

average GeNorm and Cp values for the top 3 genes, the novel genes identified from RefGenes, and the commonly used reference genes are

shown. In all cases, the average Cp values of candidates found by RefGenes were lower than those of commonly used reference genes.
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therefore chose to work with an extended set of tissues

that were the most closely related to B-lymphocytes as

identified by clustering the Genevestigator anatomical

profiles of 10 randomly chosen sets of 400 genes. 46

arrays covering three closely related tissue types (B-lym-

phocytes, 4 arrays; lymphoblast cells, 24 arrays; lympho-

cytes, 18 arrays) were selected. Six novel candidate

reference genes proposed by Ref-Genes were selected

for this study and were compared to five commonly

used reference genes (SDHA, GAPDH, YWHAZ, B2 M,

RPL13a). The RT-qPCR validation experiment was car-

ried out on lymphoblastoid cell lines (LCLs) of 15 sub-

jects. The results of the top 8 genes as selected by

GeNorm are shown in Figure 3. Two of the candidate

genes obtained from RefGenes performed best and

yielded significantly lower M values in GeNorm than

the other reference genes. The remaining RefGenes can-

didates were similarly or less stably expressed than the

control reference genes. Although in the microarray

data (comprising several tissue types) all candidates pro-

posed by RefGenes were more stable than commonly

used reference genes, in this particular experiment

based on LCLs only, the ranking of variances was differ-

ent. This illustrates that expanding the search to related

tissues has the potential to yield significantly better can-

didates, but it may be necessary to test a larger number

of candidates, as some of them may be of similar or

lower quality than commonly used reference genes. It

must be noted, however, that not only the variance, but

also the expression intensity range should be considered

in choosing a reference gene. In fact, the commonly

used reference genes tested had lower Cq values (reflect-

ing very high expression levels), and therefore the novel

RefGenes candidates could be preferred if their Cq

values are closer to those of a specific target gene and

their variances are similar to alternative reference genes.

Hypothesis 4 (orthology clause)

Our fourth hypothesis was that the stability of expres-

sion of gene orthologs remains similar across related

species. Here, we cannot provide a general proof of

principle, but an initial set of evidence to substantiate

this hypothesis.

As a case study, we checked whether orthologs of

genes that are highly stable in mouse liver could be

used as alternative reference genes for RT-qPCR experi-

ments carried out on cattle liver and pig liver samples.

In fact, although Genevestigator currently does not con-

tain data from these species, we hypothesized that the

positive results obtained with mouse liver could be

reproduced in other species by choosing the corre-

sponding orthologs. Due to the incompleteness of avail-

able annotations for orthologs across these species, from

the four genes that were previously validated in mouse,

two (GAK and VPS4A) were found in cattle and pig.

We identified a further gene (PMPCA) that was stable

in mouse microarray data and was available as an ortho-

log in cattle and pig. These three genes were compared

to three commonly used reference genes (ACTB,

GAPDH, and UBQ for cattle, and Histone H3, GAPDH

and UBQ for pig) in a RT-qPCR experiment comprising

42 cattle liver samples and 48 pig liver samples. The

application of both GeNorm and Normfinder to identify

the most stable genes within the cattle dataset showed

that the two best normalizers were GAK and VPS4A

(Figure 3; see also Additional file 6). PMPCA performed

similarly to commonly used reference genes. In pig, the

extrapolation from mouse did not result in novel genes

being significantly more stable than commonly used

reference genes. In fact, expression stability was similar

across most genes and was in a more narrow range as

compared to the stability values obtained in other

experiments (in the pig data, Avg M varied between

0.29 to 0.36). Histone H3, Ubiquitin and VPS4A per-

formed best, followed by GAK, GAPDH and PMPCA.

Concluding from the results of all three species, GAK

and VPS4A seem to have a conserved expression stabi-

lity and to be suitable candidates for normalizing RT-

qPCR experiments on liver samples. Overall, our results

show that genes that were highly stable in mouse liver

had orthologs in other species that were also highly

stable. In our experiments, they performed similarly or

better than commonly used reference genes. This is
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Figure 4 Overlap of most stable probe sets between tissue

types. Overlap of the top 20 (top right section) and top 50 (lower

left section) candidate reference genes identified by RefGenes in

different tissue types. The number of samples available for each

category is indicated in parenthesis.
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particularly useful for those cases where the search for

new reference genes is limited by the amount of micro-

array data available for a given species, but abundant

data is available in related species.

The RefGenes tool

Our results suggest that for RT-qPCR it is best to iden-

tify specific reference genes for each experiment indivi-

dually. To this end, we have developed Ref-Genes, a

novel online tool from the Genevestigator platform. The

main feature of RefGenes is to search for genes that

exhibit minimal expression variance across a chosen set

of arrays. Its graphical user interface is shown in Figure

5. RefGenes is very simple to use and requires only two

main actions:

1) choosing a set of microarrays (samples)

2) choosing the range of expression.

Choosing a set of microarrays

The user can create selections of microarrays according

to organism and to chosen sample properties, for exam-

ple a set of human arrays from a particular tissue type.

Currently, array selections can be done from sample

annotations such as anatomical part, developmental

stage, treatment, disease, genetic modification, or tumor

type. Because the database is populated with a very large

number of experiments, researchers can often identify

subsets of arrays from a context similar to that from their

own RT-qPCR experiment. Our recommendation is to

select at least three independent studies comprising at

least 60 arrays in total. If this cannot be reached within a

specific context, it may be worth extending this context

with closely related conditions. In the example described

earlier with T-lymphocytes, we selected 137 arrays hybri-

dized with transcripts from CD4 T-Lymphocyte samples.

Choosing the range of expression

Theoretically, as long as data normalization is carried

out in the linear range of amplification of both target

and reference gene, it is not necessary for them to be in

the same range of expression. However, some experi-

menters prefer using reference genes that are in a simi-

lar range of expression as their genes of interest. In

RefGenes, the user can define the upper and lower

bounds of the search space such as to obtain candidate

reference genes within these bounds. As an additional

information, a bar below the graph indicates, for a given

microarray platform, the typical ranges of low, medium,

and high expression (where “Medium” indicates the

interquartile range). We recommend to upload genes of

interest as well as alternative reference genes for a com-

parison with new candidates that will be proposed by

RefGenes. In the screen shot shown in Figure 5, we

uploaded the probe set identifiers for GAPDH, TUBB,

PPIA, B2 M, TBP, UBC, ACTB, RPL13A, as well as that

of PIK3R1 as an example of a target gene to be mea-

sured by RT-qPCR in CD4 T-lymphocytes. We then

defined the range of reference gene expression to be

slightly above and below that of PIK3R1.

Searching for reference genes

The “Run” button allows to trigger the search algorithm

based on the selections of arrays and genes. The Gene-

vestigator engine searches for genes with the lowest var-

iance within this selection of arrays and displays the top

25 probe sets. For each probe set, the mean and stan-

dard deviation are indicated. Mouse-over tooltips over

each probe set provide additional information such as

gene name and IDs for various gene models. In the pre-

sent example, after launching the search by clicking on

the “Run” button, RefGenes suggested 25 potential refer-

ence genes, of which the standard deviation of expres-

sion was between 0.22 and 0.31. As a comparison, the

standard deviations of commonly used reference genes

was between 0.35 and 0.98.

Validating potential reference genes

The candidate reference genes obtained can be pre-vali-

dated by checking their expression across all microar-

rays available for that array type. The user can verify

whether there are particular conditions in which their

expression varies unexpectedly. For example, one can

create a new selection of genes obtained in RefGenes,

and go to the Meta-Profile Analysis toolset to check

their expression levels in different tissues (Anatomy

tool), or their response to different diseases, chemicals,

hormones, etc. (Conditions tool). In general, genes pro-

posed by Ref-Genes appear to be very unresponsive to a

wide variety of conditions. In the example with CD4 T-

lymphocytes, one of the genes was unlikely to be a good

candidate as it responded strongly to a subset of condi-

tions in the Conditions tool. We also observed that most

of the candidate genes had a slight response to various

tumors and to oncolytic viruses (see Additional file 8).

Discussion

Our approach builds on previous studies showing that

reference genes identified from microarray data often

performed better in normalizing RT-qPCR experiments

than commonly used reference genes. In contrast to

previous studies, our approach combines three levels: 1)

it searches for the most stable candidates from a gen-

ome-wide set of genes (rather than from a small set of

commonly used reference genes), 2) it allows to restrict

the search to an expression range similar to that of own

target genes, and 3) it allows users to flexibly choose,

from a very large array compendium, context-specific

sets of microarrays based on sample annotations.
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Additionally, based on the Genevestigator standardized

data content, it allows users to cross-validate new candi-

dates across a large set of experimental conditions prior

to testing them in the laboratory. RefGenes therefore

allows to select experimental conditions that are similar

to that of a specific experiment and to obtain reliable

and condition-specific candidates for the normalization

of RT-qPCR or other types of transcript quantification

data. Although Genevestigator currently contains more

than 50,000 arrays, several experimental conditions may

not yet be well populated (e.g. B-lymphocytes). In such

cases, it is recommended to include additional arrays

from related experimental conditions or tissues.

In our approach, we are extrapolating results from a

variety of microarray experiments carried out within a

specific biological context (e.g. tissue type) to predict

gene stability in similar contexts. We show across sev-

eral RT-qPCR experiments that the extrapolation is

generally reliable. Nevertheless, because we are com-

paring different sets of biological experiments as well

as two technologies, results may differ between the

two platforms. The main source of discrepancy is

likely to be due to differences in the types of biologi-

cal experiments and samples between the predictor

dataset (microarray) and the target experiment (e.g.

RT-qPCR). It is also possible that the candidates pro-

posed by RefGenes are biased by the inherent nature

of microarray data as compared to RT-qPCR data, or

by data transformation procedures during normaliza-

tion. In fact, one would expect variance to depend lin-

early on the mean based on original intensities (which

are proportional to molecular concentration). Never-

theless, and despite differences in sensitivity between

the two technologies, we did not observe major discre-

pancies that would question the use of microarray

data to identify stably expressed genes to be used as

1

2

3

3

4

5 6
7

8
Figure 5 Graphical user interface of the RefGenes tool in Genevestigator. 1) The RefGenes tool belongs to the Biomarker Search toolset. 2)

Panel for the selection of arrays associated with various experiments or conditions. 3) Panel for the selection of genes (target genes or

commonly used reference genes for comparison). These genes are represented in the graph on the right with box and whiskers plots of signal

intensity. In this example, the box and whiskers plots of expression in T-lymphocytes of 8 commonly used reference genes and a target gene

(PIK3R1) are shown. 4) RefGenes toolbar, with fields to de fine the range of signal intensity within which new reference genes must be searched.

The search for reference genes is triggered by a click on the “Run” button. 5) Box and whiskers plot of signal intensity of the new reference

genes proposed by RefGenes. 6) The numerical values of the median and standard deviation of signal intensity are shown. 7) For each reference

gene proposed by RefGenes, additional information is available in the mouse-over tooltip. 8) The typical range of low, medium, and high

expression is shown for the array type chosen in (2). Medium is defined as the interquartile range (IQR).
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references for RT-qPCR. In fact, the experiments

described above, as well as previously published work,

e.g., [18] demonstrate that the availability of quality

controlled and normalized oligonucleotide microarray

data (such as Affymetrix GeneChip arrays) allows to

identify better reference gene candidates than com-

monly used reference genes. The use of different nor-

malization methods or measures of variance is

expected to influence the outcome of a search by

RefGenes, but overall it is unlikely that genes that

exhibit a high stability within a RT-qPCR experiment

would not be identified by either of these methods at

the microarray level. In particular, differences between

popular algorithms, such as RMA and MAS5, are

minor in the medium to high expression range for

data from single experiments [30]. This is the range

where most RT-qPCR normalization genes are located.

When combining data from multiple experiments, the

method used to correct for cross-experiment effects

will have an additional influence on the overall var-

iance. The same holds true for batch effects within a

single experiment. Here, we show a proof of principle

of reference gene identification using a data compen-

dium normalized with MAS5 (cross-normalized with

global scaling) and several RT-qPCR validation stu-

dies. A further measure to in silico validate candidates

proposed by RefGenes is to check how they respond

to different conditions using the Conditions and Geno-

types tools in the Meta-Profile Analysis toolset. In

general, stably expressed genes respond very weakly to

internal or external perturbations (see for example

Additional file 8 figure D). Batch and experimental

biases are minor in this dataset since we are looking

at (log)ratio values that were calculated from

individual treatment versus control sets of samples

from the same batch or experiment.

In summary, for individual experimental conditions it

is worth searching for a number of new candidates and

validating them against commonly used reference

genes. The proposed general approach is illustrated in

Figure 6: instead of starting with a handful of com-

monly used reference genes, we propose to start with a

statistically selected, context-specific set of candidate

genes identified by Ref-Genes, and then to validate

them (optionally together with commonly used genes)

within the experiment under study using algorithms

such as GeNorm, Norm finder, or Bestkeeper. We also

strongly recommend researchers to read the MIQE

guidelines [17] as a guide to help carrying out and

publishing their work.

Conclusions

We conclude that the identification of context-specific

reference genes, combined with existing methods for

normalization against multiple controls, is expected to

significantly improve the quality and sensitivity of

expression quantification experiments, facilitating the

correct interpretation of RT-qPCR data. RefGenes is

freely available for academic users (upon registration to

prove one’s affiliation), while for commercial users,

RefGenes is available as part of a Genevestigator sub-

scription. Ref Genes is a Genevestigator tool and is

available at http://www.genevestigator.com.

Methods

Selection of reference genes

Data from Genevestigator was normalized, quality con-

trolled, and annotated manually as described previously

Based on public experiments

that have conditions

similar to your experiment

Based on RT-qPCR data

from your own experiment

Best combination of reference

genes for your own experiment

Selection of context

speci�c reference genes

Complete genome

Figure 6 Proposed approach for the selection of suitable reference genes. Rather than starting from a subset of commonly used reference

genes, we propose to start with an objective choice of candidate genes based on public microarray data obtained from similar experimental

conditions. The second step remains identical, i.e. the validation of several candidates within the RT-qPCR experiment being carried out, and the

selection of the most stable ones using algorithms such as GeNorm, Norm finder, or Bestkeeper.
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[29]. In brief, Affymetrix expression array data used for

this study was normalized using the MAS5 algorithm,

with global scaling set to a target value of 1000. The qual-

ity of the arrays was assessed using various Bioconductor

[31] packages, including AffyQCReport and SimpleAffy

[32]. Sample descriptions were annotated using the Gen-

evestigator application ontologies for anatomical parts,

stage of development, and experimental perturbations.

Novel reference gene candidates used for experimental

validation were obtained from RefGenes. The search

algorithm identifies, for a chosen set of microarrays,

those probe sets for which the standard deviation of sig-

nal intensities across these arrays is lowest.

In the below experiments, the set of commonly used

reference genes was arbitrarily chosen from genes that

had been previously used as references in the respective

laboratories.

RT-qPCR for mouse liver

16 liver samples were harvested from WT and Re-verb

alpha mutant females fed with 2 different diets. RNA was

extracted according to Fonjallaz’s protocol [33]. cDNA

was synthesized from 1 μg of total RNA using random

hexamers and Supercript II reverse transcriptase (Invitro-

gen) following suppliers instructions. SYBR green assays

were designed using the program Primer Express v 2.0

(Applied Biosystems) with default parameters such that

they spanned exon bondaries when possible. Amplicon

sequences were aligned against the mouse genome by

BLAST to check for specificity. Oligonucleotides were

obtained from Invitrogen. The efficiency of each design

was tested with serial dilutions of cDNA. PCR reactions

(10 μL volume) contained diluted cDNA, 2 × Power SYBR

Green Master Mix (Applied Biosystems), 300 nM of for-

ward and reverse primers. PCR were performed on a SDS

7900 HT instrument (Applied Biosystems) with the fol-

lowing parameters: 50°C for two minutes, 95°C for ten

minutes, and 40 cycles at 95°C for 15 seconds and 60°C

for one minute. Each reaction was performed in three

replicates on a 384-wells plate. Raw Cq values obtained

with SDS 2.2.2 software (Applied Biosystems) were ana-

lysed and the best house keeping genes selected according

to the GeNorm method [13]. The forward (F) and reverse

(R) primers used for this experiment were:

Mm GAK F CTGCCCACCAGGCATTTG

Mm GAK R CCATGTCACATACATATTCAATGT

ACCT

Mm MRPl46 F GGGAGCAGGCATTCCTACAG

Mm MRPl46 R GGTCCGGTCATTTTTTTTGTCA

Mm SRP72 F CACCCAGCAGACAGACAAACTG

Mm SRP72 R GCACTCATCGTAGCGTTCCA

Mm VPS4A F GACAACGTCAACCCTCCAGAAA

Mm VPS4A R TCTGTGGCTTTTGTCACCAGAT

Mm TUBB F GCAGTGCGGCAACCAGAT

Mm TUBB R AGTGGGATCAATGCCATGCT

Mm HPRT F GCTCGAGATGTCATGAAGGAGAT

Mm HPRT R AAAGAACTTATAGCCCCCCTTGA

Mm ACTB F CTAAGGCCAACCGTGAAAAGAT

Mm ACTB R CACAGCCTGGATGGCTACGT

Mm GAPDH F TCCATGACAACTTTGGCATTG

Mm GAPDH R CAGTCTTCTGGGTGGCAGTGA

RT-qPCR for human LCLs

Human lymphocytes were isolated from blood samples

by Ficoll Lymphocyte Separation Medium (MP Bio-

chemicals). Lymphoblastoid cell lines were obtained by

transformation of the fresh lymphocytes with Epstein-

Barr Virus and grown in advanced RPMI medium sup-

plemented with 2% fetal bovine serum, 2 mM glutaMAX

(L-Alanyl-L-Glutamine), 50 units/mL penicillin, 50 μg/

mL streptomycin and 2% phytohemagglutinin, all from

Invitrogen (Carlsbad, CA, USA). For extraction of total

RNA, the transformed lymphoblastoid cell lines were

harvested, lysed in RLT buffer (Qiagen, Valencia, CA,

USA) and homogenized with a QIAshredder homogeni-

zer (Qiagen). RNA purification was performed with the

Qiagen RNeasy Plus Mini-kit (Qiagen) and RNA was

quantified and checked for its purity using the Nano-

drop spectrophotometer (Nanodrop Technologies, Wil-

mington, DE, USA). Reverse transcription was

performed on 2 μg total RNA with the superscript III

first-strand synthesis system for RT-PCR kit (Invitrogen)

using a mixture of oligo (dT)20 and random hexamer

primers. Primer sequences for conventional reference

genes were obtained from [13] and primer sequences for

the novel candidate reference genes proposed by

RefGenes were designed using primer 3 software [34]

(see list below). 20 ng total RNA equivalents of cDNA

were used in each RT-qPCR amplification run in tripli-

cate. Detection of the PCR product was carried out by

the LC480 real-time PCR detection system (Roche, Nut-

ley, NJ, USA) using LightCycler 480 SYBR Green I Mas-

ter mix and 250 nM primer. Relative quantities were

calculated by the delta-Ct method and expression stabi-

lity of the housekeeping genes was evaluated by GeN-

orm [13]. The primers used in this study were as

follows:

Hs B2 M F TGCTGTCTCCATGTTTGATGTATCT

Hs B2 M R TCTCTGCTCCCCACCTCTAAGT

Hs GAPD F TGCACCACCAACTGCTTAGC

Hs GAPD R GGCATGGACTGTGGTCATGAG

Hs RPL13A F CCTGGAGGAGAAGAGGAAAG

AGA

Hs RPL13A R TTGAGGACCTCTGTGTATTTG

TCAA
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Hs SDHA F TGGGAACAAGAGGGCATCTG

Hs SDHA R CCACCACTGCATCAAATTCATG

Hs YWHAZ F ACTTTTGGTACATTGTGGCTT

CAA

Hs YWHAZ R CCGCCAGGACAAACCAGTAT

Hs BUD13 F GATGGAGATTTGCCTGTGGT

Hs BUD13 R ATTTGGCACTGGAACGAAAG

Hs EIF4EBP2 F TAGCCCTGGCACCTTAATTG

Hs EIF4EBP2 R AACTGAGCATCATCCCCAAC

Hs GOLT1B F CCTTATTGGTTGGCCTTTGA

Hs GOLT1B R AGCCAACAACGACAGGAAAG

Hs INTS4 F GCAGCTCCATGAAAGAGGAC

Hs INTS4 R ACCCAGATAAGCTGGACTGC

Hs SAP130 F GAGGCCAGTTTCTGCAGTTC

Hs SAP130 R GCACCAGGTGGTAGGTCACT

Hs TATDN2 F ACAAATGCTCTCCACCCCTA

Hs TATDN2 R TCCATCACCACCTCCCTATC

Hs ZNF410 F CTCCGAAAACATCTGGTGGT

Hs ZNF410 R CTGCAGGTGATGCTTTCTCA

RT-qPCR for cattle and pig liver

Immediately after slaughtering pieces of liver tissue were

taken from calves and piglets fed different dietary fiber

diets and snap frozen in liquid nitrogen. Total RNA was

extracted with TriFast reagent (Peqlab, Erlangen, Ger-

many) according to the manufacturer’s instructions. RNA

quantity and quality were assessed using a NanoDrop

spectrophotometer (Peqlab, Erlangen, Germany) and a

Bioanalyzer 2100 with RNA Nano Chips (Agilent Technol-

ogies, Palo Alto, CA). RNA integrity ranged between 7.2

and 8.4 and OD260/280 between 1.81 and 1.96. Samples

were diluted to a working concentration of 10 ng/μL. Pri-

mers were chosen for cattle and pig orthologs of mouse

genes identified as stably expressed in liver tissue. Primer

design was done using the primer 3 software [26] and pri-

mers were purchased from Eurofins MWG Operon

(Ebersberg, Germany). One-step RT-qPCR (gene specific

reverse transcription immediately followed by RT-qPCR)

was performed using SuperScirpt III Platinum SYBR

Green One-Step qRT-PCR kit (Invitrogen, Carlsbad, CA).

PCR temperature profiles were optimized for each primer

pair and identity of amplicons was verified by sequencing

(Sequencing Service, Ludwig Maximilians Universitaet,

Munich). Signal detection was achieved with a Rotor-Gene

3000 (Corbett Life Sciences, Sydney, Australia). Validation

of the housekeeping genes was done by GenEx Profes-

sional Software ver. 4.4.2 (multiD Analyses AB, Gothen-

burg, Sweden) utilizing GeNorm and Normfinder. Below

are the primers used for this study:

Bovine primers:

Bt ACTB F AACTCCATCATGAAGTGTGACG

Bt ACTB R GATCCACATCTGCTGGAAGG

Bt GAPDH F GTCTTCACTACCATGGAGAAGG

Bt GAPDH R TCATGGATGACCTTGGCCAG

Bt UBQ F AGATCCAGGATAAGGAAGGCAT

Bt UBQ R GCTCCACCTCCAGGGTGAT

Bt VPS4A F CAAAGCCAAGGAGAGCATTC

Bt VPS4A R ATGTTGGGCTTCTCCATCAC

Bt GAK F TCTGGGAAGTGGCAGAGAGT

Bt GAK R CGGCACGTCTGGTAGAAGAT

Bt PMPCA F CATCCCAGAATAAGTTTGGACAG

Bt PMPCA R AGAATCAGCAGACACAGCATACA

Porcine primers:

Ss UBIQ F AGATCCAGGATAAGGAAGGCAT

Ss UBIQ R GCTCCACCTCCAGGGTGAT

Ss Histon H3 F ACTGGCTACAAAAGCCGCTC

Ss Histon H3 R ACTTGCCTCCTGCAAAGCAC

Ss GAPDH F AGCAATGCCTCCTGTACCAC

Ss GAPDH R AAGCAGGGATGATGTTCTGG

Ss GAK F AATCGCAGTGATGTCCTTCC

Ss GAK R GCTTCGAGTCCAGAAACAGC

Ss VPS4A F CAAAGCCAAGGAGAGCATTC

Ss VPS4A R ATGTTGGGCTTCTCCATCAC

Ss PMPCA F CATCCCAGAATAAGTTTGGACAG

Ss PMPCA r AGAATCAGCAGACACAGCATACA

RT-qPCR for Arabidopsis tissues

Total RNA was isolated from 5 day old seedlings or

from 15 day old leaves following the TRIzol protocol

(Invitrogen). RNA quantity and quality was assayed via

spectrophotometer analysis (Pharmacia Biotech). First-

strand cDNA synthesis was performed with 3 μg of total

RNA using SuperScript II RNase H-reverse transcriptase

(Invitrogen) and oligo-dT primers (Fermentas) according

to the manufacturer’s instructions. The 20-μL cDNA

reaction was diluted 1:100 with deionized water, and 4

μL were used for each RT-PCR amplification. Amplifica-

tions were performed as technical duplicates and biolo-

gical quadruplicates in 96-well plates in a 20-μL

reaction volume containing 10 μL 2× Fast SYBR Green

qPCR MasterMix (Applied Biosystem). Reactions were

performed on a 7500 Fast Real-Time PCR System

(Applied Biosystems). Primers for all amplifications,

designed with PerlPrimer v1.1.10 (freeware by Owen

Marshall), were located on exon-exon borders to pre-

vent amplification of potentially contaminating genomic

DNA.

Primers used for Arabidopsis seedlings:

At At3g24160 F ATATCAGACAGGCAGTCAGCG

AT At3g24160 R TGCTAAAGCATCGATACCACC

At At3g27820 F GCGGTGGCTATATCGGTATGG

At At3g27820 R AAAGAGACGTGCCATGCAGTG
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At At1g13320 F CAAGTGAACCAGGTTATTG

GGA

At At1g13320 R ATAGCCAGACGTACTCTCCAG

Primers used for Arabidopsis leaves:

At At3g61710 F AGACACAGGTTGAACAGCCA

At At3g61710 R GTATGCTTCCACGTCCCTCG

At At1g32050 F TCACCTACTTGATTCACAT

TGGCT

At At1g32050 R ATCAATTGCTGCAAGCACAC

At At3g01150 F CCACCGGAGCAGAGATTACAC

At At3g01150 R CAACTTTCTTGCCGTCAGCAC

Primers used for Arabidopsis shoot apices:

At At3G17920 F AACGACACTGTCAGATTCCA

At At3g17920 R CTACTTCCCGTTGCTTATA

GGTG

At At2G17390 F CAGACTGTTGCAGCTGAACCT

At At2g17390 R GCTTTCAAACCCTCGACATCAC

At At5G51880 F CAGTATTGTAGCTGAGGTA

GCTCC

At At5g51880 R CGCCTTTGGAGACATTCCTC

Additional material

Additional file 1: List of publications related to reference gene

validation. Publications that report about the validation of small sets of

commonly used reference genes for various biological contexts.

Additional file 2: Variance of gene expression across different array

types. Standard deviation of signal intensity versus mean signal intensity

for all probe sets from different Affymetrix array types available in

Genevestigator.

Additional file 3: Variance of gene expression across different tissue

types. Standard deviation of the top 50 probe sets that were most

stable across all conditions (5014 samples from the AffymetrixHuman133

2.0 platform) across 186 different tissue categories.

Additional file 4: Ranking of the SD of the most stable probe sets

across different mouse tissues. Ranking of the SD of the most stable

probe sets identified for a variety of mouse tissue samples

(AffymetrixMouse430 2.0 platform).

Additional file 5: Ranks of the SD of commonly used reference

genes across different mouse tissues. Ranks of the SD across different

tissues of probe sets representing commonly used reference genes in

mouse (AffymetrixMouse430 2.0 platform).

Additional file 6: GeNorm calculations. This figure shows the complete

set of GeNorm calculations for the results summarized in Figure 3 of the

article.

Additional file 7: Original measurement data of RT-qPCR validation

experiments. For each validation experiment, the original Cq values for

each sample are provided.

Additional file 8: Pre-validation of reference genes for CD4 T-

lymphocytes. This figure shows screen shots of meta-profile data for

candidate reference genes for CD4 T-lymphocytes.
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