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ABSTRACT
Full human genomic sequences have been published in the
latest two years for a growing number of individuals. Most
of them are a mixed consensus of the two real haplotypes be-
cause it is still very expensive to separate information com-
ing from the two copies of a chromosome. However, latest
improvements and new experimental approaches promise to
solve these issues and provide enough information to recon-
struct the sequences for the two copies of each chromosome
through bioinformatics methods such as single individual
haplotyping. Full haploid sequences provide a complete un-
derstanding of the structure of the human genome, allowing
accurate predictions of translation in protein coding regions
and increasing power of association studies.

In this paper we present a novel problem formulation for
single individual haplotyping. We start by assigning a score
to each pair of fragments based on their common allele calls
and then we use these score to formulate the problem as
the cut of fragments that maximize an objective function,
similar to the well known max-cut problem. Our algorithm
initially finds the best cut based on a heuristic algorithm
for max-cut and then builds haplotypes consistent with that
cut. We have compared both accuracy and running time
of ReFHap with other heuristic methods on both simulated
and real data and found that ReFHap performs significantly
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faster than previous methods without loss of accuracy.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods; J.3
[Computer Applications]: LIFE AND MEDICAL SCI-
ENCES—Biology and genetics; I.6.5 [SIMULATION AND
MODELING]: Model Development—Modeling methodolo-
gies

General Terms
Algorithms,Performance

Keywords
Haplotyping, Algorithms, Fragments, Variants, Maximum
Cut, Heuristic, Efficiency

1. INTRODUCTION
DNA sequencing is at the cornerstone of current advances
in genetics, enabling breakthroughs in medical and biologi-
cal research [3]. The first complete human genome sequence
was in fact a “representative” genome sequence based on the
DNA of several individuals [10]. Advances in sequencing
technology and computational methods are resulting in in-
creasingly cost-effective, high-throughput sequencing, mak-
ing the sequencing of genomes from individuals possible [3,
12, 14, 20, 24, 25]. This allows the identification of com-
mon patterns of human genetic variation between individ-
ual genomes that may affect health, disease, and individual
responses to medications.

Human somatic cells are diploid, containing two sets of chro-
mosomes, one set derived from each parent. Differences be-
tween the two copies of each chromosome are called het-
erozygous variants and for each variant the sequences that
differ are called alleles. Most of the variation comes in form
of single nucleotide variants (SNV) where the alleles are base
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pairs that differ between the two copies. However, alleles
can also be identified in other types of variations, for exam-
ple, structural variations and insertion and deletion events
(indels).

The process of grouping alleles that are present together on
the same chromosome copy of an individual is called hap-
lotyping [8, 16]; reconstruction the two sequences of each
chromosome is the most advanced type of haplotyping. Be-
sides getting the full structure of the genome, complete hap-
lotype sequences enable improved predictions of changes in
protein structure produced by mutations in coding regions
and increase power for genome-wide association studies [18].
It will also allow insights into the complex interplay of alleles
of genes and their regulatory elements.

At present, published sequences may be considered “mixed
diploid” [9]; because they actually represent a composite of
the two underlying haploid sequences. Although each study
presents preliminary haplotyping results, complete construc-
tion of the ”true” molecular sequences for each of the chro-
mosome pairs remains a challenge towards full genome com-
pletion [12, 14]. This is mainly due to the fact that current
sequencing technologies do not provide enough information
to reliably separate alleles originating from each of the two
copies of a chromosome unless parental or population in-
formation is available [1, 23, 27]. However, this situation
is likely to change in the near future with improvements in
second-generation sequencing methods such as longer read
lengths, mate-pairs and increased throughput, and also the
development of new experimental approaches. This work is
part of a currently productive approach towards molecular
haplotype determination which relies upon fosmid-based se-
quencing [5, 11]; Details about resources and approaches we
have developed towards this aim are available at http://

www.molgen.mpg.de/~genetic-variation/Projects.html.

Algorithms for haplotyping can be grouped in three cat-
egories depending on the type of source information: (i)
population information, (ii) parental and individual geno-
type information and (iii) evidence of co-occurrence of alle-
les. Population information takes genotype information for
a group of individuals known to come from the same popula-
tion and uses an evolutionary model to phase all genotypes
at the same time [7, 19, 21] whereas parental and individ-
ual genotype information enables alleles to be grouped into
loci where either parent is homozygous and hence there is
no doubt on deciding which allele comes from which parent
[4, 13]. A combination of these approaches is used by the
International HapMap Project [22] to generate haplotypes
for each population. These two categories have the advan-
tage that they require genotype information which is easy
to acquire for certain loci. However, acquiring parental or
population information may not feasible for all heterozygous
variants of the individual of interest. In algorithms based on
evidence of the allele co-occurrence, this information has so
far come from reads or mate-pairs spanning at least two het-
erozygous variant loci but in general the evidence can come
from any source. DNA sequences showing co-occurrence of
two or more alleles are usually called fragments. The com-
putational problem of haplotyping based on this kind of in-
formation is called single individual haplotyping and many
formulations and algorithms have been proposed to solve it

[16, 15]. Although absence of real data has been always
an issue, the problem has been carefully studied from both
theoretical and practical points of view and simulated data
has been used to make comparisons between different ap-
proaches [1, 23, 27]. The algorithm presented in this paper
is a contribution to this approach.

Previous studies on single individual haplotyping have es-
tablished different problem formulations seeking for differ-
ent optimization objectives. Computational properties of
these formulations have been studied and it has been shown
that most of them are NP-hard [16, 15]. Proposed algo-
rithms can be divided into exact, genetic, probabilistic and
heuristic. Due to the NP-hardness of the formulations, ex-
act algorithms require an exponential dependency on at least
one input parameter so they do not scale well as the size of
the input gets large [23]. Genetic and probabilistic algo-
rithms have the advantage of searching within a large set of
possible haplotypes at the expense of time [2, 23]. Heuris-
tic algorithms try to find efficiently a haplotype as close to
the optimum as possible according to a specific optimization
criterion. One of the most accurate of these algorithms is
HapCUT [1], which starting from a random solution, builds
a graph and uses max-cut to find loci that should be flipped
to improve the current haplotype based on the input data.
Our experiments indicate that although the algorithm is re-
liable, its running time is too large for whole genome haplo-
typing.

In this paper we present a novel problem formulation for sin-
gle individual haplotyping and a heuristic algorithm called
ReFHap. Like in [1] our formulation allows us to reduce the
problem to max-cut but here we design a graph that enforces
separation of fragments rather than variant loci. Our ap-
proach initially attempts to find the cut that groups together
fragments coming from the same copy of each chromosome
to subsequently build haplotypes consistent with the best
cut found by our heuristic algorithm. We show through ex-
tensive simulation experiments that ReFHap represents an
improvement in running time compared to previous algo-
rithms without loss of accuracy. Simulations indicate that
ReFHap is more accurate and scalable than the model of [27]
and that it has comparable accuracy and higher efficiency
than HapCUT [1]. Moreover, we tested both ReFHap and
HapCUT with preliminary real data from fosmid-based se-
quencing. Results indicate that ReFHap is able to efficiently
perform whole chromosome haplotyping with good accuracy.

2. METHODS
2.1 Problem Formulation
Informally, the objective of single individual haplotyping is
to reconstruct the two haplotypes of an individual from a
set of partial readings called fragments. Each fragment pro-
vides evidence of coocurrance of two or more alleles of dif-
ferent SNPs in the same haplotype. The usual strategy to
predict the true haplotypes is to define a real function on
the input data and an arbitrary pair of haplotypes, hoping
that the real haplotypes will correspond with the result of
an optimization objective on this function.

As in previous works [1, 15], we represent the input of the
problem as a matrix M of size mxn where m is the number
of fragments and n is the number of variant loci. Each row



of M encodes the information for one fragment as a string
on the alphabet {0, 1,−}. Here, M [i, j] 6= − means that
fragment i calls allele M [i, j] in locus j while M [i, j] = −
means that fragment i does not cover locus j. This problem
definition inmposes a restriction of at most two alleles per
locus, which is sufficient for most of the variation in many
diploid organisms. There is no restriction on the type of
variations considered as long as they can be mapped to a
specific locus and the two alleles can be identified. Usually,
the reference allele is encoded as a zero and the alternative
allele as a one but this is not required by ReFHap. As in [1]
ReFHap assumes that all input loci are heterozygous. If this
is not the case, a preprocessing step like the one in [15] can
be implemented to call genotypes and remove homozygous
loci and fragments covering at most one heterozygous locus.

Given two strings f1, f2 of length n, we say that f1 = f2

if and only if for every 1 ≤ j ≤ n, f1[j] = −, f2[j] = −
or f1[j] = f2[j]. In absence of errors, the problem reduces
to find two haplotypes h, h̄ such that every fragment fi is
equal to either h or h̄ according with the definition of equal-
ity given above. This problem can be solved just by sepa-
rating the fragments in two groups such that for any pair of
fragments f1, f2 inside a group f1 = f2 and then building
the haplotypes by taking the consensus allele for each locus
inside each group. This is equivalent to solve max-cut on
a graph G = (V, E) where V is the set of fragments and
e = 〈f1, f2〉 if and only if f1 6= f2. In absence of errors,
G is bipartite and hence max-cut can be solved in polyno-
mial time for G. However, the solution is not unique if the
graph is not connected. The connected components of G are
called in this setting haplotype blocks. The number of these
blocks affects the quality of the output haplotypes because
in absence of additional inputs, there is no information to
decide how to connect two consecutive blocks and hence the
probability of joining them consistently is 0, 5.

If fragments contain errors, G may not be bipartite any-
more and conflics are created between fragments. A simple
example of a conflict happens when there are two loci j1, j2
covered by two fragments f1, f2 for which f1[j1] = f2[j1] and
f1[j2] 6= f2[j2]. Clearly one of the entries must be wrong if
both loci are heterozygous. Different strategies to remove
conflicts lead to optimization objectives studied in previous
works like finding the minimum number of fragments to re-
move (MFR), the minimum number of loci to remove (MSR)
or the minimum number of allele calls to correct (MEC).
Computational properties of these problems have been ana-
lyzed by [16, 15] and several algorithms have been proposed
for MEC [1, 6, 23, 26]. If weights are available for each allele
call on each freagment, the model called (WMLF) described
by [27] tries to minimize the sum of weights of corrected
alleles.

Our approach is to reduce the problem to max-cut as in the
case without errors but adding weights to the edges of G
in such a way that the cut that maximizes the sum of the
weights of crossing edges resembles as accurate as possible
the actual origin of each fragment. Weights are calculated
based on the following scoring scheme. Given two allele calls
a1, a2, the score s(a1, a2) is given by:

s(a1, a2) =

8
><
>:

−1 if a1 6= − ∧ a2 6= − ∧ a1 = a2,

1 if a1 6= − ∧ a2 6= − ∧ a1 6= a2,

0 otherwise.

Now, given two rows i1, i2 of M , the score s(M, i1, i2) is just
the sum of the contributions for each pair of alleles at each
locus:

s(M, i1, i2) =

nX
j=1

s(M [i1, j], M [i2, j])

Note that if two fragments do not cover any common locus
then their score is zero but the opposite is not necessarily
true. Given a fragments matrix M we can define a cut of
fragments as a set of rows I ⊆ {1, . . . m}. Given a matrix
M , the score of the cut I is given by:

s(M, I) =
X
i∈I

X

k/∈I

s(M, i, k)

We use this scoring function to state the following problem
definition:

Maximum Fragments Cut (MFC): Given a mxn matrix
M of m fragments covering n loci, find a cut I such that
s(M, I) is maximized.

Theorem 1. Maximum Fragments Cut is NP-Hard.

Proof. Max-Cut can be reduced to MFC in the following
way. Given an instance G = (V, E) for max-cut, build M
by creating a row for each element of V and for each edge
〈i1, i2〉 ∈ E make a column j and set M [i1, j] = 0, M [i2, j] =
1 and M [k, j] = − for every row l different than i1 or i2.
The score s(M, i1, i2) for any pair of rows is equal to 1 if
and only if 〈i1, i2〉 ∈ E otherwise, it will be zero because
the two rows cover at most one common locus. Now, given
a cut on G represented by a subset V ′ ⊆ V , the weight of
this cut will be equal to the score s(M, I) of the cut I made
by selecting the rows corresponding with the vertices in V ′.
Hence, any algorithm that can calculate the maximum of
the function s(M, I) will calculate also the max-cut value
for G and conversely, any algorithm that can calculate the
max-cut value for G will also calculate the maximum of the
function s(M, I).

2.2 Algorithm
To solve MFC we build a graph G = (V, E, w), where V =
{1, . . . , m}, 〈i1, i2〉 ∈ E if and only if s(M, i1, i2) 6= 0 and
for all e = 〈i1, i2〉 ∈ E, w(e) = s(M, i1, i2). Then, we solve
the weighted version of Max-Cut on G. We implemented a
heuristic algorithm similar to the one used by [1] that iter-
ates over the edges and for each one builds an initial greedy
cut and then tries to improve it through local optimization.
The main steps are the following:



ReFHap(M, k)

1. Build G = (V, E, w) from M

2. Sort E from largest to smallest weight

3. Init I with a random subset of V

4. For each e in the first k edges of E

(a) I ′ ← GreedyInit(G, e)

(b) I ′ ← GreedyImprovement(G, I ′)

(c) If s(M, I) < s(M, I ′) then I ← I ′

The procedure GreedyInit finds a cut I ′ in which e crosses
from I ′ to V \ I ′ and the procedure GreedyImprovement
tries to improve I ′ by local optimization. The parameter k
controls how many edges are considered for the initializa-
tion step and hence allows to make a compromise between
accuracy and speed. Unlike the algorithm in [1] in which
initial edges are chosen at random, we decided to sort the
edges because edges with large weight are more likely to be
part of the best cut. The maximum value that k can take is
|E| but we can achieve good accuracy in many cases with a

small value of k. In our current implementation k =
p
|E|.

To show how we implemented the greedy procedures we need
to expand the score function to subgraphs. Given a graph
G = (V, E, w) and two disjoint subsets I1, I2 of V we define:

s(G, I1, I2) =
X
i∈I1

X

k∈I2

w(〈i, k〉)

and for each vertex v ∈ V \ (I1 ∪ I2) we can define:

s(G, I1, I2, v) = max(s(G, I1 ∪ {v}, I2), s(G, I1, I2 ∪ {v}))

As in [1], to avoid high negative edges crossing the cut, we
build a cut from an input edge 〈i1, i2〉 by initializing I1 with
i1 and I2 with i2 and then adding either to I1 or I2 the edge
that locally maximizes s(G, I1, I2, v):

GreedyInit(G, 〈i1, i2〉)

1. Init I1 ← {i1} and I2 ← {i2}
2. While I1 ∪ I2 6= V

(a) Find v ∈ V \ (I1 ∪ I2) maximizing s(G, I1, I2, v)

(b) If s(G, I1 ∪ {v}, I2) > s(G, I1, I2 ∪ {v}) add v to
I1 else add v to I2

3. return I1

For local optimization we implemented the classical greedy
algorithm of [17], which calculates for each vertex v ∈ I ′ the
score s(G, I ′ \ {v}, V \ (I ′ \ {v})) and for each vertex w /∈ I ′

the score s(G, I ′ ∪ {w}, V \ (I ′ ∪ {w})) and flips the vertex

with maximum score if it is larger than the current score
s(G, I ′, V \ I ′). We also implemented a local optimization
step flipping edges rather than vertices, which is equivalent
to check the improvement after flipping every possible pair
of vertices at the same time. We iterate these two optimiza-
tions until neither of them can achieve any improvement.

After finding the cut I, the algorithm uses the input matrix
to find the haplotype h that minimizes the number of entries
to be corrected assuming that rows in I belong to h and
rows in V \ I belong to h̄. Since we assume that all loci are
heterozygous, the output of ReFHap is just one haplotype h
and h̄ is just the haplotype obtained by flipping every allele
call in h. The haplotype h can be inferred by making a single
traversal of M as follows:

1. For each column j

(a) Ij,0 ← {i : (i ∈ I∧M [i, j] = 0)∨ (i /∈ I∧M [i, j] =
1)}

(b) Ij,1 ← {i : (i ∈ I∧M [i, j] = 1)∨ (i /∈ I∧M [i, j] =
0)}

(c) If |Ij,0| ≥ |Ij,1| then hj ← 0 otherwise hj ← 1

2. output h

The complexity of this algorithm depends on the number of
fragments m, the number of different starting edges k, the
maximum number of loci covered by a single fragment and
the maximum number of fragments covering a single locus,
which as in [27] we call respectively k1 and k2. First note
that the maximum degree of a vertex in G is bounded by
k1(k2 − 1). To prove this note that one fragment f calls
alleles for at most k1 loci. Each of these loci is covered by
at most k2 − 1 fragments different than f . Therefore, each
locus contributes with at most k2 − 1 edges to the vertex
associated with f . In the worst case, there are no shared
edges between loci and then the total number of edges is
k1(k2 − 1).

Since k1k2 is typically much smaller than m, the total num-
ber of edges of G is O(mk1k2). The sorting step takes
then O(mk1k2 log(mk1k2)) and, as shown below, it is dom-
inated by the iterations step. For fixed G, I1, I2 and v,
s(G, I1, I2, v) can be calculated just by inspecting the edges
of v, so, for each of the k edges considered, GreedyInit
takes O(m2k1k2). Although the local optimization in the-
ory could take a time equivalent to the sum of the positive
edge weights which would be exponential on the input size,
in practice the number of iterations is small enough to be
considered a constant, so the time needed for each local op-
timization is O(mk1k2 + mk2

1k2
2) = O(mk2

1k2
2). The total

time is O(k(m2k1k2 + mk2
1k2

2)). Comparing this result with
the complexity of the algorithm designed by [27], which in-
cludes an exponential dependency on k2, and the algorithms
designed by [1] and [6], which need at least O(mn2) time,
we can predict that ReFHap will perform faster especially as
the number of loci covered by each fragment increases and
hence less fragments are needed to achieve the same cover-
age. In the next section we will show simulation experiments
confirming this hypothesis.



Figure 1: Number of blocks as a function of coverage
for different fragment lengths.

3. RESULTS

3.1 Experimental Setup
We performed several simulation experiments to test the be-
havior of ReFHap under a wide range of circumstances. We
generated instances varying over five different criteria: num-
ber of loci n, number of fragments f , mean fragment length
l, error rate e and gap rate g. For each instance, we created
a random haplotype h of size n and then we created f frag-
ments. For each fragment we selected its length li drawing
from a normal distribution centered at l and with standard
deviation equal to 1. We then selected its starting position
j as a random integer in the range from 1 to n− li + 1. The
fragment fi is then the substring of h starting at position j
with length li. We flipped the whole fragment with proba-
bility 0.5, assuming that real fragments are equally likely to
come from either of the two haplotypes. Finally, we intro-
duce errors by flipping each allele call of fi with probability
e and we also introduced gaps by deleting each allele call of
fi, except for the first and the last position, with probability
g.

We performed one experiment for each combination of se-
lected values of the simulation parameters. For each experi-
ment, we generated 100 random instances following the pro-
cedure described above. We implemented ReFHap in Java
1.6 and we compared it with the public available implemen-
tation of HapCUT [1] and with the implementation of the
WMLF model kindly provided by the authors of [27]. Both
HapCUT and WMLF were implemented in C. We ran all
experiments on a RedHat Linux 64 bit server.

Before checking the performance of ReFHap we investigated
how the number of haplotype blocks changes for different
number of fragments and fragment lengths. As shown in
section 2, the number of blocks heavily influences the qual-
ity of the haplotype no matter which model is used to solve
the problem. Figure 1 shows how as the fragment length in-
creases, less coverage is needed to connect every locus with
each other. Although the simulation assumes that variants
are evenly distributed in the genome (in real organisms that
is not always the case) this result means that for the same
coverage, few large fragments produce fewer blocks than
many short fragments.

3.2 Simulation Results
For each experiment we calculated means for three measures.
The first one is the Minimum Error Correction (MEC), which
is the minimum number of changes within the matrix to
make it consistent with the answer haplotypes. This mea-
sure divided by the total number of allele calls in the input
matrix is a good estimator of the allele calling error rate.
The algorithm implemented in HapCUT assumes that the
true haplotype is the one that minimizes this measure. The
second measure is the switch error (SE) which is calculated
by traversing the resulting haplotypes from left to right and
computing the number of times needed to jump from one
haplotype to its complement to reconstruct the real hap-
lotype. Assuming absence of genotyping errors, this is the
true measure of quality for any solution. However, this mea-
sure can not be calculated for real instances unless a gold
standard haplotype is known. For our simulations we can
calculate the number of switch errors because we know the
true haplotype for each instance. The third measure is the
running time of the algorithm measured by running it on a
single processor.

The upper panel of figure 2 shows the distribution of dif-
ferences between the WMLF model and ReFHap in MEC,
switch errors and running time for experiments varying cov-
erage by increasing the number of reads and fixing the num-
ber of loci to 200, the fragment length to 6 and with no
errors or gaps. ReFHap consistently produces lower MEC
and switch errors. WMLF has a better runtime for small in-
stances but that changes when coverage increases and even
after 10x, the limit on the maximum coverage for one locus
of 23 is often achieved. This limit is required by WMLF be-
cause the algorithm has an exponential dependency on this
parameter.

The lower panel of figure 2 shows the distribution of differ-
ences between HapCUT and ReFHap for the same criteria
as above for experiments with the same number of loci and
fragment length but adding an error rate of 5% and a gap
rate of 10%. While the difference in switch errors between
HapCUT and ReFHap is almost zero on average, ReFHap
performs consistently faster than HapCUT. We performed a
statistical test for each experiment to see if the differences
are on average significanly different from zero and we found
that this is the case in general for the time differences, in fa-
vor of ReFHap and for the MEC differences in favor of Hap-
CUT. HapCUT provides lower MEC values because that is
its optimization objective. However, switch errors are the
true measure of quality, not MEC. Table 1 shows that we
could not find evidence of a significant difference between
HapCUT and ReFHap in switch errors for most of the ex-
periments carried on, which means that the reliability of the
two methods is similar. This table also shows that results in
Figure 2 are replicated consistently by experiments increas-
ing the mean fragments length up to 12 and the number of
loci up to 1000.

We finally examined how the haplotype quality decreases as
the error rate increases. Figure 3 shows that the number of
switch errors increases at the same pace for both HapCUT
and ReFHap as the error rate increases to an extreme value
of 50%. These experiments were performed on 200 loci with
296 fragments of length 6 and a gap rate of 0.1, achieving a



Figure 2: Distribution of differences between values reported by WMLF and HapCUT and values reported
by ReFHap for experiments varying coverage by increasing the number of fragments. Markers above and
below the mean correspond to the mean plus and minus one standard deviaton respectively. The upper panel
shows the differences between WMLF and ReFHap in (a) MEC , (b) switch errors and (c) running time.
The lower panel shows the differences between HapCUT and ReFHap in (d) MEC , (e) switch errors, and
(f) running time



Table 1: Minimum Error Correction (MEC), Switch errors (SE) and running time for HapCUT and ReFHap
for simulation experiments varying haplotype length (l), number of fragments (n) and mean fragment length
(f). Each reported p-value is the probability that HapCUT and ReFHap report on average the same value
for MEC and SE on each set of input conditions. Time p-values were also calculated but, except for the first
row, they are always less than 10−32

Input HapCUT ReFHap p-values
l n f Avg. Avg. %MEC %SE Time %MEC %SE Time p-value p-value

Blocks Cov. MEC SE

200 200 2 26.8 2.49 3.57 12.35 0.28 3.62 12.45 0.22 6.3 ∗ 10−6 0.32

200 200 4 7.1 3.82 4.62 5.29 1.81 4.69 5.95 0.26 5.9 ∗ 10−11 1.2 ∗ 10−4

200 200 6 1.74 5.61 4.89 1.46 10.54 4.9 1.55 0.39 8.8 ∗ 10−4 0.16
200 200 8 1.06 7.41 4.94 0.75 19.06 4.94 0.74 0.58 0.02 0.4
200 200 10 1 9.19 4.91 0.34 24.55 4.91 0.29 0.68 0.16 0.12
200 200 12 1 11.0 5.0 0.21 29.27 5.0 0.2 0.73 0.5 0.29

200 222 6 1.36 6.20 4.94 1.17 12.72 4.95 1.27 0.51 5.2 ∗ 10−4 0.09

200 259 6 1.22 7.26 5.08 0.7 14.49 5.1 0.82 0.67 7.2 ∗ 10−4 0.05

200 296 6 1.06 8.29 4.97 0.43 16.74 4.97 0.42 0.91 9.1 ∗ 10−3 0.44
200 333 6 1.03 9.32 4.93 0.22 17.58 4.93 0.27 1.29 0.04 0.06
200 370 6 1.01 10.37 4.91 0.14 18.65 4.91 0.15 1.79 0.02 0.35

200 700 2 1.75 8.73 4.75 1.75 10.72 4.8 1.87 3.58 1.5 ∗ 10−13 0.09

400 700 5 1.24 8.22 4.89 0.46 79.12 4.91 0.58 4.97 1.6 ∗ 10−6 1.7 ∗ 10−3

600 700 7 1.3 7.59 4.98 0.48 300.63 4.99 0.51 4.70 3.7 ∗ 10−4 0.15
800 700 10 1.14 8.05 5.01 0.35 1064.62 5.01 0.35 5.47 0.05 0.48

1000 700 12 1.24 7.69 4.98 0.38 2279.25 4.98 0.45 5.89 0.16 1.7 ∗ 10−3

200 296 6 1.06 8.29 4.95 0.4 16.72 4.95 0.48 0.88 0.01 0.05

400 592 6 1.2 8.28 4.98 0.38 94.95 4.98 0.395 4.34 2.9 ∗ 10−3 0.33

600 888 6 1.28 8.3 5.02 0.4 273.87 5.02 0.46 8.05 5.1 ∗ 10−5 0.03

800 1185 6 1.31 8.3 4.97 0.4 595.47 4.98 0.43 13.4 5.7 ∗ 10−4 0.10

1000 1481 6 1.41 8.3 4.98 0.35 1019.78 4.98 0.36 20.8 3.3 ∗ 10−3 0.30

Figure 3: Switch error rate for HapCUT and
ReFHap for experiments varying error rate

mean coverage of about 8x and a mean number of blocks of
1.06. These parameters were set up to ensure that most of
the switch errors are produced by the error rate and by the
behavior of the algorithms and not by the number of blocks.

3.3 Results with Real Data
We tested ReFHap and HapCUT on data resulting from the
experimental fosmid based sequencing approach introduced
by [5] and that we are currently developing (See http://

www.molgen.mpg.de/~genetic-variation/Projects.html).
We built a test case by sequencing and aligning fosmids gen-
erated from chromosome 22 of a caucasian individual. The
input for this test case is a matrix of 32347 SNPs covered by

Table 2: MEC percentage and running time of
ReFHap and HapCUT for a real instance with 32347
SNPs and 13905 fragments in chromosome 22

ReFHap HapCUT (1 It) HapCUT (50 It)
%MEC 6.32% 6.26% 6.24%
Time 73.04 Sec 0.99 Hours 50.4 Hours

13905 fragments. The total number of allele calls is 178191.
Hence, each SNP is covered on average 5.51 times and each
fragment covers on average 12.81 SNPs. The total number
of haplotype blocks is 102. Table 2 shows MEC percentage
and running time values for both ReFHap and HapCUT. We
included HapCUT results for its first iteration and after 50
iterations. ReFHap clearly performed faster than HapCUT
by solving this test case in about one minute while even one
single iteration of the heuristic implemented in HapCUT
takes about one hour.

Unfortunately for this data we do not have the true hap-
lotype so we can not calculate the exact switch error rate.
However, we did several quality control steps to verify the ac-
curacy of the assembled haplotypes. First, we estimated the
switch error rate by running a simulation experiment with
the same number of variants and fragments as in the real
instance (l = 32347 and n = 13905), mean fragment length
f = 13, gap probability g = 0.1 and error rate e = 0.063.
Even though the total number of allele calls is on average
178004, which is less than the total for the real data, the
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Figure 4: Distribution of percentages of concordance
between assembled haplotypes for a caucasian in-
dividual and CEU HapMap haplotypes assembled
from trio phasing

mean switch error rate is 1.86%.

We also had access to Affymetrix 1000k chip genotypes for
one hundred individuals coming from the same population
as our indvidual. We ran fastPHASE [19] on these geno-
types to obtain a phasing of 3158 SNPs on chromosome 22
for the same individual. This haplotype can not be con-
sidered a gold standard but we can compare it with other
haplotypes by defining a measure of concordance. Given
two haplotypes, we calculate the switch error rate of the
first as if the second were the gold standard and then we
call percentage of concordance the result of one minus this
rate. We achieved a 92.89% concordance between ReFHap
and fastPHASE on 2941 SNPs shared between the two hap-
lotypes. The percentage of concordance between HapCUT
and fastPHASE was 93.30%.

Finally, we used the same measure of concordance to com-
pare ReFHap, HapCUT and fastPHASE haplotypes with 89
haplotypes from individuals in the the CEU population of
the HapMap project [22] assembled by trio phasing. We
selected these haplotypes for comparison because the infor-
mation provided by trios makes them more reliable and be-
cause the true haplotype of our individual should be similar
to CEU haplotypes. Figure 4 shows the proportion of CEU
haplotypes for different percentages of concordance, or in
different words, the distribution of percentages of concor-
dance for each assembled haplotype with the CEU haplo-
types. The average percentages of concordance for HapCUT
and ReFHap are 87.55% and 87.21% respectively, while the
average percentage of concordance for fastPHASE is 84.67%.
This comparison was done over an average of 2065 common
SNPs for ReFHap and HapCUT and an average of 989 com-
mon SNPs for fastPHASE.

4. DISCUSSION
Current advances in sequencing technologies will increase
the amount and types of variation discovered for individual
genomes and will provide the information needed to assem-
ble the true pair of haplotype sequences underlying each
human chromosome through single individual haplotyping
[11]. However, the increase in throughput, accuracy and
completeness of sequencing technologies will not be reflected
in improved haplotype construction if algorithms are not
suitable to handle efficiently genome-wide scale data. Full
haploid sequences are the ultimate goal to achieve a com-
plete understanding of the structure of the human genome.

We have contributed to this field by introducing a novel
problem formulation for single individual haplotyping and
a heuristic algorithm to solve it. Our approach tries first
to predict the actual separation of the input fragments into
two groups, one for each chromosome copy. To this aim, we
introduced a scoring scheme that allows us to build a graph
of fragments and assign a weight to the relation between
each pair of overlapping fragments based on their calls for
common loci. After solving max-cut on this graph, we build
the consensus haplotypes based on the best cut found. Since
this approach resembles the well known max-cut problem, a
heuristic algorithm for this problem is used as the base for
our algorithm.

We compared our algorithm with HapCUT[1], which is the
most accurate heuristic algorithm that we found available
and with the WMLF model [27] which is the only solution
including error probabilities for the input alleles. We have
shown through extensive simulations that ReFHap computes
haplotypes faster than these solutions without loosing accu-
racy. We also used experimental data to show that ReFHap
scales better than other solutions for chromosome wide in-
put, for which ReFHap finds reliable haplotypes within sec-
onds while HapCUT takes one hour to make one iteration.
We also performed comparisons with a statistical phasing
approach and with high quality haplotypes from the CEU
HapMap population [22].

It is difficult to establish a fair comparison between statis-
tical phasing and phasing based on evidence of coocurance
of alleles because the input information for both methods
is too different to be comparable. However, we have shown
that haplotypes assembled with single individual haplotyp-
ing can be more accurate than haplotypes inferred by statis-
tical phasing if the region to assemble has enough coverage.
Our simulations also help to get an idea of the coverage
needed to achieve different levels of confidence.

In general, the biggest disadvantage of heuristic algorithms
is that unlike exact algorithms, they do not provide the
best solution for every instance. However, for this particular
problem, formulations seek to optimize objective functions
that are not fully correlated with the switch error rate. In
that sense, even an exact algorithm cannot claim to provide
the true haplotype sequences in every instance. In this sce-
nario, an efficient heuristic algorithm with low error rates
will be a better option from a practical point of view than
an exact algorithm that can not ensure to have zero switch
error rate.



In the near future, we intend to make further accuracy im-
provements by taking into account quality scores of fragment
allele calls and by including other types of information like
parental or population information within a single frame-
work.
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