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Refinable maps in the theory of shape
by

Hisao Kato (Ibaraki)

Abstract. A map r: X — ¥ between metric compacta is said to be refinable if for every >0
there is an s-mapping f of X onto ¥ such that sup {dist(r (), f (x))] x & X}<e Weestablish certain
properties of refinable maps in the theary of shape. In particular it is shown that if X is a movable
continum with FA(X)<1, every refinable map r: X—»Y pressrves shape, but there exist 1-di-
mepsional continua X, ¥ and a refinable map #: X ¥ which does not preserve shape.

0. Introduction. The term compactum is used fo mean a compact metric space.
A connected compactum is a continuum. A map f: X — Y between compacta is
said to be an s-mapping, £>0, if fis surjective and diam f ~1(y)<e for cach ye ¥.
If x and y are points of a metric space, d(x, y) denotes the distance from x to y.
A map r: X — Y between compacia is refinable [9] if for every £>0 there is an
g-mapping f: ¥— Y such that d(r,f)= sup{d(r(x),f(x))| x € X}<e. Such
a map fis called an &-refinement of r. For the pointed case, amapr: &, x)—= (Y,
between pointed compacta is refinable if for every &> 0 there is a map f: (X, %) —
(Y, y) which is an ¢-refinement of . By the definitions we know that each refinable
map is surjective, each near homeomorphism is refinable and- if there is a refinable
map from a compactum X to a compactum 7, then X is Y-like. But, any converse
assertions of them are not true.

Throughout this paper, by an ANR we mean an ANR for the class of metrizable
spaces.

In this paper, we shall investigate shape theoretic properties of refinable maps.
In the first section, we prove that a refinable map induces a pseudo-isomorphism
in shape category. In the next section, we show that if X is a movable continuym
with Fd(X)<1, every refinable map #: X — Y preserves shape, but thers exist
1-dimensional continua X, ¥ and a refinable map r: X — ¥ which does not preserve
shape. Moreover we show that under some conditions refinable maps preserve
FANR. In the last section, we give more detailed information on the refinable
map r: X — ¥ when ¥ is a compact ANR.

The author wishes to thank Professor Y. Kodama for helpful. comments.
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1. Refinable maps and pseudo-isomorphisms. By HCW we mean the category
of spaces having the homotopy type of CW-complexes and homotopy classes of
maps. For a map f [f] denotes the homotopy class determined by f. If Kisa cat-
egory, by K we mean the category of inverse systems in X and system map in K,
also by pro-K the homotopy category of K [14].

First, we give the following definitions.

1.1, Dermvamion, Let K be an  arbitrary category. A system map [14]
f={ffa BY: {Xo Puwr A}~ { Y3, dpgr» B} of K is a pseudo-isomorphism if for
each e Band each o> £ (f) there exist g (o, f) 2 P and a morphism g, g): ¥y, ;= Xa
such that for every f' =g (x, f) there exist A(f')za and a morphism /g1 Xjpy — Ypr
such that

HPrmden = Qgnm 208 Gin oot = Paniey -

A morphism f2 {X,, Paws A} —{ Y3, gpgrs B} of pro-Kis a pseudo-isomorphism
if it has a pseudo-isomorphism f: {X,, Pue, A} — {¥4; qpp, B} of K as the rep-
resentation, ie. f=[f]

1.2. DerFnaTion. In the shape category [13], & shaping f: X— ¥ is a pseudo-
isomorphism if there is a pseudo-isomorphism f = {f, [/3], B}: {X,. [Purls A}
— {¥;. [934-], B} of HCW such that

() SLpsi] = Sla,] f, where {X,, (p..], A} and {¥,, [955/1, B} are associ-
ated with X" and Y respectively, p,: X — X3, ¢5:¥ — Y are projections [18, Def-
inition 1.2], and S denotes the shape functor (cf. [13], [18, Theorem 2.3]).

The following proposition is easily seen from the definitions.

1.3. PrOPOSITION. If a shaping f: X — Y is a pseudo-isomorphism, then every
system map f which satisfies the condition () is a pseudo-isomorphism of HCW.

1.4. Remark. For a shaping f, the following implications are true, but any
of converse are not .(cf. Fxamples 2.6 and 2.7)

[ is a shape equivalence — f is a domination
[ is a pseudo-isomorphism — f is a weak domination

(see [6] for the definition of the weak domination.)

1.5. TeEOREM. Let X and Y be compacta. If @ map r: X -» Y is refinable, then
the shaping S[r] induced by the map r is a pseudo-isomorphism.

Proof. Let {X,, P, ,+y, N}and {¥,, q, ,+, N} beinverse sequences of compact
polyhedra such that X = invlim{X,, p, .1, N} and ¥ = iovim{¥,, ¢, ,e1, N}
Let p,: X — X, and gq,: ¥ — Y, be natural projections respectively. Since each ¥,

is a compact ANR, there are positive number &, and §, such that any two &,-near
maps to ¥, are homotopic and

(1) if x,ye ¥ and d(x, y)<d,, then d(g,(x), g,()) <%e,.
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By S. Mardesi¢ and J. Segal [16], for each # there is a map f,: X, — Y, such that
Q) AP @ey<58 AN FiPu i 2 e

Let f = {1, [f,], N}. We shall show that f is a psendo-isomorphism of HCW. For
each n, choose a positive number 7, such that any two #,~near maps to X, are homo-
topic and

@) if x,yeX, and d(x, y)<m,, then d(f(x), (1)) <Fé-

By [15], for each n there exist a map gn: ¥Y— X, and a §,-refinement r, of r such
that

@ A(Pys Gnra) <My -
Then by (4) we have

S) Padnly -

Let us show that f,g.=q,. For each y € ¥ there is x € X such that r,(x} = ». By (I}, -
(2), (3) and (3,

(g3, £,9:()
= d(gyra(®)s o rn() < A(@ur(x), aur (00)+ A(gar (), £uPl)+ LPa Fonral%))
<ot ket EE <t
Hence we obtain

© ™ foin -
1t follows from (2), (5) and (6) that fis a pseudo-isomorphism of HCW. Thus the
shaping S[r] is a pseudo-isomorphism.
1.6. Remark. For the pointed case, we have the same result as Theorem 1.5.
Tn this paper all results proved for the absolute case are alsc true for the pointed
case.
" 1.7. ProPoSITION. If a shaping f: X— Y 'is a pseudo-isomorphism, then
() f is an epimorphism.
Q) iff X is movable ([3],[17]), then Y is movable.
(3) X is approximatively n-connected (13], [6 p. 50]) if and only if ¥ is so.
4) ddim¥X = ddim ¥, where ddim X implies the deformation dimension of X in
the sense of J. Dydak [6, p. 23].
(5) X is of trivial shape (I3], [6, p. 50D if and only if Y is so.
Proof. Let f={f, [f;], B}: {Xe [Purl, A} — {¥; [ap ), B} be a pseudo-
isomorphism of HCW satisfying the condition (#) of Definition 1.2.
(1) Since f is a weak demination by Remark 1.4, by [6, Proposition 2.9] /' is
an epimorphism.
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(2) Since f is a weak domination and X is movable, by [6, Theorem 2.11] ¥
is movable.

(3) Suppose that X is approximatively n-cornected. For each fie B there is
o2 f(B) such that for any map  of the n-sphere 5 to X, p s, tis null-homotopic.
Then there exist g (@, f) = Band a map g, py¢ Yo, p— X, such that [ f112 1l [, »l
= [Gpy(0, ;o) Let 51 8" — Yyp py be an arbitrary map. Then we have

Tpate S 2SoP st 5 -

Hence, gg,(4, 5y is null-homotopic, which implies that ¥ is approximatively z-con-
nected. The converse is similar.

(4) Since fis a weak domination, by [6, Theorem 4.2] we have ddim X> ddim ¥.
The converse is similar.

(5) The proof is the same as (3).

1.8. TuEOREM. If @ map r: X -+ Y between compacta is refinable, then

(1) SIr] is an epimorphism. )

(2 if X is movable, then Y is movable.

(3) X is approximatively n-connected if and only if Y is so.

4) Fd(X) = Fd(Y) [3, p. 253] and dimX = dim Y.

(%) X is an FAR [3] if and only if ¥ is so,

Proof. All of the proofs except dimX = dim ¥ follow from Theorem 1.5
and Proposition 1.7. Let us show dim X = dim ¥, Since r is refinable, for any family

of ANR’s X is f-like by [9, Corollary 3.1] if and only if ¥ js f-like. This implies
dim X = dim Y.

2. Refinable maps preserving shapes. In this section we show that under some
conditions refinable maps preserve shapes. Also we give some examples in which
refinable maps do not preserve shapes.

The author thanks the referee for some remarks concerning this section.

2.1. PROPOSITION, For a category K, if 2 X = {Xy, Pogrr A} — ¥ = {¥y, g, B}
is a pseudo-isomorphism of pro -K and Y is dominated in pro-K by an object of K,
then [ is an isomorphism. :

Proof. Let f={f,/;.B}: X—»Ybhea pseudo-isomorphism of X such that
J'=[f). Then for each f € B there exist f’ > B such that for every ' e B there exist
a morphism Kpep: ¥Yp — ¥ and B2, such that FeprgeQurgim = Gy
because Y is dominated in pro-K by an object of K. For each a3 f(f), choose
o' 2, £ (") such that Qpp ToP1gre = JuPropye - Since fis a pseudo-isomorphism of K,
there existg (o', )= anda morphism g gyt Yy, gy — Xir satisfying the condition
of Definition 1.1, Then for every 8 > ¢ («, §°) there exist a morphism Ky gt ¥ — ¥por
and B*'=p" such that kg pgppe = 4grp. Also, there exist A(8")=a!, £(B)
and a morphism /! Xy~ ¥y such that

.oy Quter, 2rp-Fae = Pangey Ad Doy = Qg Sy pcgomsmipos -
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Then we have

Qg JeP gy = Koo g Qpe goor Sy B piprogipory, = Kpeogr S P resnear
= kpe g SoPrigre e, g2 8o, oo hae
= by g Qg gy dote ypr e

= qﬁnﬁnrllpul .
Hence, we obfain

g(u,‘ﬂ,)qg(a,'p,m_,.,_f',mpf(ﬂm),,(,,,) = Giw, gy Datar, 5157 Dprepeor e = Pamipersy »
and

el iy = Qogter 0 -

This implies that f is an isomorphism.

The following theorem follows from Theorem 1.5 and Proposition 2.1.

2.2. TueorEM. Let X and Y be compacta and « map r: X — Y be refinable.
If Y is an FANR, then S[r] is a shape equivalence.

2.3. CorROLLARY [9, Corollary 3.4]. Let X and ¥ be compact ANR’s and a map
r: X — Y be refinable. Then r is a homotopy equivalence.

2.4. TusoreM. Let X and Y be compacta and a map r: X — Y be refinable.
If X is a movable contimunn with FA(X)<1, then Sh(X) = Sh(¥). Moreover if
either X or Y is an FANR, S[r] is a shape equivalence.

Proof. Since X is a movable continuum with Fd(X)<1, by Theorem 1.8 Y is
a movable continuum with FA(Y)<1. Then there exist continua X; and ¥; such
that Sh(X) = Sh{X,), Sh(Y¥)} = Sh(Y¥;), dimXy<1 and dim ¥,<1. Further, by
A. Trybulec [21] there exist plane continua X, and ¥, such that Sh(¥;) = Sh(X>)
and Sh(Y;) = Sh(¥,). By K. Borsuk [3, p. 221, 267), it is enough. to consider the
following two cases.

Case (1). If ¥, is an FANR, then ¥ would be an FANR. It follows from
Theorem 2.2 that Sh(X) = Sh(Y).

Case (2). If Y, is not an FANR, we must show that X, is not an FANR.
Suppose that X is an FANR. By [3, p. 267] we have,

(i) the projection py: H (X}~ pro-H,(X) is an isomorphism where H,
denotes a 1-dimentional homology with integer coefficients, and

(i) pro-H,;(¥) is not dominated in pro-groups (e.g. see [14]) by a group.

Then, by Theorem 1.5 the composition pro-H;()p,: H(X)— pro-H(¥)
is a weak domination of pro-groups. Since H;(X) is a finitely gemerated abelian
group, by [6, Lemma 2.20] pro-H(Y) is dominated in pro-groups by a group.
This implies a contradiction. Thus we conclude that X, is not an FANR. By
[3, p. 221], Sh(X,) = Sh(¥,) hence Sh(X) = Sh{¥).
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The second part of Theorem follows from the first part and Theorem 2.2. This
completes the proof,

2.5. COROLLARY. Let X and Y be continua in the plane R2. If there exists u refinable
map of X 10 Y, then two continua X, Y= R* decompose the plane into the same number
of components.

2.6. ExampLE, Let k be a natural number and {X; * pff,,,ﬂ, N} be an inverse
sequence of the k-sphere X¥ = S* where the bonding map pﬁ,,,M is a map of S*
onto S* of deg(ph .+1)>1 for each n. Consider the following sets:

Zky = invlim{Xf, Pﬁ,n-u » N} ,

. .
Yy = {(x1, Xz, oy Xy g) € R¥H (xl—l/n)2+x%+--a+x:f+1 = 1jn%},

Y =U ¥,

n=1

Yo = (0,0, ...,0) e R**! where R is reals,

By identifying a point z, € Z(k) and y, € ¥(k) we obtain a continuum
(X(k), *) = (Z(k)’ zo) V(Y(k), yo) .
Now, define a map r: X(k)— Y (k) by
x fxe¥k),
rdx) = { . ®
yo U xeZk). o

Then, 7, is reﬁn-ablc. In fact, for a given £>0 choose a natural number n, such
thakt 4fnp<e. Since Z(k) is S*-like, there is an }e-mapping f3 (Z(&), zo) —
(Yng+1: o). Define a map g: X (k) — Y{&) by

X o o
x fxeU Yru U ¥,
X) == r=1 n=ngt2
6() Yo if xe ¥k, )
f@) i xeZ().

Clearly we have diamg~!(y)<e and d(r., g¥<e, hence 7y, is refinable. On the other
hand, Y(k) is movable but X (k) is not movable [17], which implies Sh(X (k))
# Sh( Y(¥)) for each k. Note that X(1) and ¥(1) are contained in R and dim X (1)
=-dim ¥(1) = 1. Hence this example shows that the movability of X in Theorem 2.4
can not be removed. '

2.7. ExaMpLE. Let 4 be an arbitrary continuum. Consids :
. ry . f '
in Ax0,3]. onsider the following sets

A, = Ax{t}cAx[0,3] for O0<r<3

3

« @
X)) = 450 UlAlln VA, U dsigp,
LI n=1

Y(d) = Ao U 4y,
a=1

icm
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Deﬁnq a map ry: X(4)— Y(4) by

(@) if (@, t)edow U4y,

ra(a, ) = "

(@,0) if (a,0)ed; U darypy-
n=1

Then the map r, is refinable. On the other hand, Sh(X(4) # Sh(¥(4)), because
the decomposition space [1(X(4)) of X(4) can not be embedded in the decompo-
sition space [I(Y(A)) of Y(4) [3, p. 2141 If 4 is 2 one point set, X(4) and Y{4)
are movable compacta of dimension 0. Hence this example shows that the connec-
tivity of X in Theorem 2.4 can not be removed.

2.8. EXAMPLE. Let ¥*, ¥(k) and y, be the same in Example 2.6. Since each YE
is the k-sphere, there is a homeomorphism h YE._ Y¥ for each n such that
h{vo) = ¥o. Define a map h: Y(k)— Y (k) by

()

fyeli  (n=1,2,.),
h(y) = £ e rr
Yo Y€ gy

n=1,2,.).

Then, by the same way as in Example 2.6 we know that h is a near homeomorphism.
Note that Y(1)=R? Clearly, & does not induce a shape equivalence. Hence this
example shows that if X is not an FANR in Theorem 2.4, every refinable map
7' X — ¥ does not necessarily induce a shape equivalence.

2.9, Remark. (1) For an arbitrary inverse sequence {X,,, P ns1, ¥V } of compacta
with bonding maps p, ,+; onto, the method of the construction of the refinable
map in Example 2.6 can be generalized. Therefore for any nonmovable continuum
we can construct a refinable map which does not preserve shape.

(2) T. Walanabe showed that a refinable map does not necessarily preserve
shape for compacta in R® by using the example of K. Borsuk [2].

Applying Theorem 2.4, we get the following

2.10. COROLLARY. Let @ map r: X — Y between compacta be refinable and Y be
a plane compactum. If X is an ANR (resp. AR), then Y is an ANR (resp. AR).

Proof, Without loss of generality, we may assume that X and Y are continua.
Since X is locally comnected, ¥ is locally connected. By Theorem 1.8 we have
Fd(¥) = FA(Y)< 1. Further, by Theorem 2.4 ¥ is an FANR, hence by K. Borsuk
[4, Theorem 14.1] we conclude that ¥ is an ANR. If X isan AR, then by Theorem 1.8
Y is an FAR, hence we conclude that ¥ is an AR. ‘

2.11. CoroLLARY [19]. Let a map r: X — Y between compacia be refinable.
I X is a 1-dimensional ANR, then Y is a 1-dimensional ANR.

Proof. We may assume that X" and ¥ are continua. By Theorem 1.8 Yis
2 1-dimensional locally connected comtinuum, Further, by Theorem 2.4 ¥ is an
FANR, hence by [4, Corollary 13.6] we conclude that ¥ is an ANR.
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Now, the following problem is raised; if X is an FANR, does every refinable
map r: X' — Y induce a shape equivalence? If FA(X)<1, we have an affirmative
answer from Theorern 2.4. Moreover, we obtain the following partial answer.

2.12. THEOREM. Let « map r: (X, x)— (Y, y) between pointed compacta be
refinable. If X fs a connecied pointed FANR and the firsi shape group (X, x) is
trivial, then SIr] is a shape equivalence.

Proof. Since the Wall obstruction (r,(X,x)) e K%n,(X, x)) vanishes,
by [7] there is a compact polyhedron (P, p) such that Sh(X, x) = Sh(P, p). Further,
since m,(P,p) = 7,(X,x) =0, by [20, p. 509] wy(P,p) = %,(X, %) is a finitely
generated abelian group for each i Then, by [10] the projection p;: %, (X, x)—
—pro-n{X, x) is an isomorphism of pro-groups (e.g., see [14]), because (¥, x)
is movable and 7,(X, x) is a countable group. Then, by Theorem 1.5 we conclude
that the composition pro-m(r)p;: X, X) — pro-z(Y, ) is a weak domination
of pro-groups. Since by [6, Lemma 2.20] pro-u,( ¥, ») is stable and by Theorem 1.8
Fd(Y) = Fd(X)<co, by ([8], [6, p. 46]) ¥ is a pointed FANR. By Theorem 2.2 we
conclude that Sfr] is a shape equivalence.

3. Refinable maps onto ANR’s. In this section, we give detailed information
on the refinable map r: X — ¥ when Y is a compact ANR.

3.1. TueoreMm. Let r: X — A be a map between compacta and A be an ANR.
Then the map r is refinable if and only if there exist an inverse sequence {4y, ps,iv1, N}
such that for each i, A; = A4 and p; ;. Is an ontg map which is homotopic 1o 14, and
a homeomorphism h: X~ invlim{d;, py ;1 1, N} such that hm (p,h) = r, where

Jor each i p;: va;m{A,, Piivys N} — A4, 15 a natural pPOJ«?CIIOH

Proof. Tt is enough to give the proof of necessity. It is essentially due to
S. Mardesié¢ and 7J. Segal (f12], [15]).

Inductively, we can find for each i, maps p; ;4y: A;4q — 4, onto, positive

number & with lims; = 0, &;-refinement f; of r, and positive number 7;<¢; having
the following properties.

(1) For any set N;=d; with diam(N)<r;, we have diam p, (V) <n,/2'™%
(2 If d(x, )22 for x, y e X, then d( £i(x), /;()>2n;.
() d(fis pi1vs Jre) <3y for each i
Then the sequence {p,;f};=y,,.. is a Cauchy sequence for each i Put
hy :jlirz (P ). Then we have h; = p; ;1  hyyy and d(f;, 1)<n,. Therefore there

is a map At X —inviim{d,, p, ;,,, N} such that p,h = &, for each i Then k is
a homeomorphism [I5]. On the other hand, we have
d(r(x), ph(x)) = d(r(x), h(x))
d(r(x)sf;(x))+d(ﬁ(x)x hi(x))

<
< &tm<2e  for each xeX.
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Hence, lim (p;/) = r. Since 4 is a compact ANR, r=~ p:h for allmost all i Then,

rethy = pi rerMias = Piqert for allmost all i Since S[r] is an epimorphism, we
obtain p;, ;14 for allmost all i This completes the proof.

Amap f: X ¥ is said to be monotone if f is surjective and for cach ye ¥

F~Y(y) is connected. .

3.2. THEOREM. A map rof a (Syv Sy v ..
is re'ﬁnable if and only if it is monstone, where S; v .S, v
point union of n circles.

Proof. We shall show only the case n == 2. The case n # 2 is similarly proved.
If r is refinable, r is monoténe [9, Corollary 1.2] because Sy v Sy is locally connected.

Conversely, suppose that r is monotone. Let 2 be an arbitrary positive number.
Now, let g, Ay, .., 4, and By, By, ..., B, denote circular chains of non-overlapping
closed intervals of S, and S, respectively such that sq € Int(d, L Bo), where s, is
a common point of S, and S,, and diam(d, U Bo)<ge, diamd,<ge, diamB; <z
for each 1<i<m. We may assume that m is a sufficiently large integer. Put
C, = r~Y(4) and D; = r™1(B;) for 0<i<m and choose points x; € C; and py € I;
for 1< j<m such that

[€)) r(x)entd; and

v S,)-like continyum X to S;v S, ... v.S,
.. VS, (n>1)denotes a one

r(y;) eIntB;.

Then the sequences Cy, Cy, «vr C and Do, Dy, ..., D, ate circular chains of sub-

continua of X such that X = { C; v U D,, because r is monotone [11, p. 131},
=0 =0

Then by (1) E@here is a positive number n<e such that

@ d(xi,UCuU y>n for  1<i<m,

jelt i=

ady:, U Gu U Dy>n for 1<i<m,
i=0 jeds

where J; = {0, 1,...,i—1,i+1, ..., m} (1<i<m), and

(3) if d(C;, Cp<n for 0<i,j<m, then [i—j|<1 or [i—jl =
if d(b,, D))<n for 0<i, j<m, then {i—jI<1 or [i—j| = m, and
4(C,, D)=y for 1<, j<m. '
Since X is (S, v Sp)-like, there is an n-mapping f: X' — (S, v S,). Then, by (2)
and (3) we can prove that s,€f(Cy v Do} and the sequences f(C,),[(Ca), .

e f (Com ) and f(D2), f(D3)s s f (D—y) are chains of closed intervals in S; or
Sy. Clearly, there is a homeomorplusm hr 8 v 8, — 8 vS, such that

Bf(y) =r(y) for
Now, hfis an #-mapping, hence an g-mapping. Also, by (1), (2), (3) and (4) we have

@ hf(x) =r(x) and 2€igm—1.
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&) HAC)ElF(rop), rGa Dl S dioy U 440 Ay for
{6) R (DYyelr(yi-1)» r(risDlcBic, v Biu By for

and

CJ Cjuksz,.u CJ

j=m-1 i=0 J=me

Q] hf(f) Ciw Dyelr(xs), rixp-2)] v IF(73)s ¥ (Yu-2)]
=0 1 5

i
U 4vu

j=m-2

3 m
Bv U B,

i=0 JEm=-2

<
i

A v

ice

where [x, y] denotes the smallest interval in a cirele S* from x to y if d(x, y) <diam$ !
for x,y & S, Then it follows from (5), (6) and (7) that d(r, hf)<e, which implies
that r is refinable. This completes the proof.

Combining Theorems 3.1 and 3.2 we have )

3.3. CoROLLARY. If there is ¢ monotone.map r of a (Syv S,V ... v S,)-like con-
tinmum X to Syv Sy v ... v S, then S{r] is a shape equivalence. Moreover, X is homeo-
morphic to the limit of the inverse sequence of S, v Sy v ... v S, satisfying the conditions
of Theorem 3.1.

The map of the Warsaw Circle onto a circle obtained by shrinking the limiting
interval to a point is monotone, hence refinable. Generally we have the following

" 3.4. COROLLARY. If X is a hereditarily decomposable circle-like continuum,
then there is a refinable map of X to a circle S'.

Proof. Since X is a hereditarily decomposable circle-like cgntinuum, by
[5, Theorem 3] we conclude that X is ot arc-like. Also, since X is decomposable,
there exist proper subcontinia M and N such that X = M U N. Then, by
[3, Theorem 4] no proper subcontinuum of X separates X, hence we may assume
that ‘ ’

M=X-N and N=X-M.
Then M N N is not conmected, because X is not arc-like. By [5, Theorem 3]
M AN = Hu K, where H and X are disjoint subcontinua of X. New, we define
an equivalence relation ~ on X by setting x~y if and only if x =y and
xeX—(HUK) or x,yeH or x,ye K Let X, = X/~ be the quotient space
and p: X — X, the quotient map. Note that p: X — X, p|M: M — M, = p(M)
and -p|N: N— N = p(N) are monotone maps. Since M, N are irreducible
between H and K respectively, M, N, are irreducible between p{#) and p(X)
respectively [11, p. 192]. Further, M, and N; are atriodic, hereditarily unicoherent
and hereditarily decomposable by [11, p. 171]. Then for some intervals I; = [a;, b}]
i=1,2 and a,<b;<a,<b,), by [l, Theorem 8] there are monotone maps
Jit My — Iy and f3: Ny — I,. Since p(H) and p(K) are one point sets respectively,
we may assume that fyp(H) = ay, f1p(K} = by, fop(H) = a, and f5p(K) = b,.
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Clearly, there is an onto map k: I, U I, — S* such that k(a,) = k(ay) # k{by)
= k(b,) and k|I; (i = 1,2) is injective. Define a map r: ¥ — 8! by

— kfip(x)
re) = {kfzp(x)

Then we can easily see that 7 is monotone, hence by Theorem 3.2 r is refipable. This
completes the proof.

ProBLEM. Does each refinable map preserve FANR?

i xe b,
if xeN.
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