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ABSTRACT:

Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also
the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of
error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional
ocean tide model. We first process the four offshore GPS tracking station’s observation data which located in Guangdong province
of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean
Tidal Loading. We get the estimated value of not only ~12hour period tide wave (M2, S2, N2, K2) but also ~24hour period tide
wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is
consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.

1. INTRODUCTION

With the improvement of positioning accuracy, GPS has been
used in many researches such as current crustal movement
monitoring and continental dynamics. GPS is capable to reveal
detailed crustal deformation with a high spatial and temporal
resolution (Hirahara, 2000). The tidal forces exerted on the
Earth by the sun and the moon cause cyclical fluctuations in the
sea level relative to the average sea level. The elastic response
of the solid earth to the redistribution of seawater mass caused
by sea tides is often called the tidal load effect. In the offshore
areas, the distortion caused by the tide loading effect can reach
several centimeters (Yuan et al., 2010). Therefore, the impact of
ocean tidal load must be taken into account in high precision
geodetic research. Corrections of ocean tide load displacements
are usually obtained by discrete convolution integrals of the
ocean tide model and the Green's function based on the earth
model (Farrell, 1972). Therefore, the accuracy of ocean tide
load corrections depends mainly on the resolution and accuracy
of the ocean tide model. Penna et al. (Penna et al., 2008) used
the M, tidal wave as an example to quantitatively evaluate the
accuracy of the correction of the ocean tide load displacement
model. The results show that the differences in ocean load
displacement calculated by different models are 1 to 2 mm in
the coastal area, for the IGS stations, the different root-mean-
square error of the load displacement obtained by the tide model
can reach 3 mm in the vertical direction and 8§ mm in some
coastal areas. At the same time, the deviation of the tidal wave
in the tide model will evolve into a false periodic signal
confounded in the time series (Penna and Stewart, 2003), thus
misleading the study of real periodic signals. An accurate tide
model can improve the accuracy of GPS positioning, similarly,
the precision GPS measurements can also contribute to refine
the ocean model, which is a positive feedback process. It can be
seen that improving the accuracy of ocean tide load models,
especially in offshore areas, is of great practical significance for
improving GPS accuracy and reliability.

Many previously studies have recognized the significance of
ocean tide loading effects in GPS. Khan and Tscherning (Khan

and Tscherning, 2001) published results of vertical deformation
due to the semi-diurnal constituents of ocean tide loading using
DGPS in Alaska. Vey et al. (Vey et al ., 2002) presented results
from a GPS experiment studying crustal displacements caused
by ocean loading effects and their impact on zenith tropospheric
delay estimates in France. Greaves et al. (Greaves et al .,2008)
first conducted related research and they used the British GPS
observation data to study the tide load, S2 and M2 results
obtained from current GPS data and the FES99 model The
difference is only 5%. Vergnolle (Vergnolle et al.,2008) carried
harmonic analysis by useing 14 GPS stations which located in
northwestern france, found that the tide load correction
differences between GPS inversion results and FES2004 model
are 2~7mm, the amplitude difference of some tidal wave
components is only sub-millimeter; Ito et al. (Ito et al.,2009)
use Japan's dense GPS array and ultra guided gravimeter data
extraction M2, found that the initial phase and amplitude given
by global tide model and GPS observation are different.Yuan et
al. ( Yuan et al.,2010) used several years of GPS data in Hong
Kong calculating the eight major ocean tide components.

A large number of continuous GPS tracking stations which
located in the offshore area of China have been built up under
many major projects, this provides us with an opportunity and
possibility to refine Chinese local ocean tide model. We first
refine the regional ocean tide model using GPS data. After that,
analysis the presion of ‘new’ ocean tide model.

2. CONSTRUCT OCEAN TIDE MODEL USING GPS
STATION

2.1 GPS data processing

In order to deduce the displacements caused by the ocean tide
loading effect, we selected 4 permanent GPS trcaking stations
(GDSG, GDZH, GDST and GDZJ )located in Guangdong
province of China. The GPS analysis software Bernese
( Hugentobler., 2007) has been employed to analyze the GPS
data. The data processing started with automatic editing of the
GPS data. This included the elimination of bad data points,
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cycle slip detection, and repairs. The used processing strategy
was compliant with IGS standards.We performed carrier-phase
analysis and used precise IGS ephemerides. Solid earth tide and
pole tide corrections were applied. Phase ambiguities were
solved and fixed to integer values. The Neill tropospheric zenith
delay model and the Neill mapping function were applied and
hourly solutions of station position were estimated. We use PPP
aproach to process the GPS data that span (2015-2016), the data
were sepearted to 2 hour a session. So we get the coordinate
time series, which are shown in Fig 1-Fig 4.

2.2 Spectral estimation and interpolation

Then used CLEAN (Bsisch and Bokelmann, 1999) algorithm to
estimate every tidal wave, this algorithm is a powerful tool for
the spectral estimation and interpolation of any finite regularly
sampled time series with data gaps. The basic concept of the
CLEAN algorithm is to deduce the amplitude of a cosinusodial
and remove its contribution to dirty spectrum including all
sidelobes (Baisch and Bokelmann, 1999). Values for amplitude
A and phase @ of signal frequency v are obtained from least
squares estimation by solving Eq. (1). For the discrete times t =
t1,t2, . . ., tn the vertical displacement y(t) by ocean tide loading
derived from GPS becomes:

y(l) = Acos(@)cos(2avl) — Asin(@)sin(2mvl) + (L) )

where A is the unknown amplitude, @ the unknown phase, 21T

v the test frequency, and n (t) is the measure of the ‘noise’
which includes any process different from the signal. We can
write the linear equation system of Eq. (1) based upon the least
square solution as follows:

o(t)
o(t+ At)[ = Gmi +1
5 (2)
Where,
cos(2nv (t)) sin(Zﬂv (t})

G = | cos(@mv(t) + At)  sin(2mv(t) + Af)
cos(2mv(t) + 2At)  sin(2nv(t) + 2AtL)

Acos(;p)

m= I—Asi"(m)

The estimated results are shown in Fig 2 and Table 1. It is clear
that we get the estimated value of both of ~12hour period tide
wave (M2, S2, N2, K2) and ~24hour period tide wave (O1, K1,
P1, Q1). The results of previous studies (Khan and Tscherning,
2001, Hong-Sic et al., 2007) show only the semidiurnal waves.
The effort is mainly due to the reason that we have taken longer
observation data and more accurate physical models, and
obtained higher accuracy time series. Observation time span
impact the estimated result a lot, the stations (such as GDZJ)
with shorter obserevation span couldn’t get a convergence
estimation results.
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Figure 1. Coordinate time series (left) and spectrum analysis

(right) of GDSG station
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Figure 2. Coordinate time series (left) and spectrum analysis

(right) of GDZH station
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Figure 3. Coordinate time series (left) and spectrum analysis
(right) of GDST station

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-1685-2018 | © Authors 2018. CC BY 4.0 License. 1686



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC Il Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7-10 May, Beijing, China

05 6

= [ Eas °° B i =51 j
z g ‘ .W' s,k
3 AMY Llas A
< ,.‘,J'f Wy
-05 O e L)
0 2000 4000 6000 10 15 20 25 30 35
Time (Hours) Period (Hours)

’5
Amplitude (mm)
o N y

S 0 e >
w
-05
0 2000 4000 6000 10 15 20 25 30 35
Time (Hours) Period (Hours)
1 _15
c 05 £
o =10}
S o A & e o
e PR 3
© _ = 5 {
> -05 S ’H
i < oh L ey | URTERIS
0 2000 4000 6000 10 15 20 25 30 35
Time (Hours) Period (Hours)

Fig 4. Coordinate time series (left) and spectrum analysis (right)
of GDZJ station

3. PRESION ANALYSIS OF THE NEW OCEAN TIDE
MODEL

In order to evaluate the accuracy of the new ocean load tide
model, SPOTL (Agnew, 1997) was used to calculate the
displacement caused by ocean tide load for each station. In this
paper, the latest five (EOT08a, FES2004, TPXO7.1, GOT4.7
and NAO99b) models were used for comparison. The
comparison which is shown in Table 1 revealed that, GPS
estimation value of M2, K1 is consistent with the result of five
models, but S2, N2, K2, O1, P1, Q1 is obviously larger. The
reason for this deviation is partly due to the inaccurate
correction of ocean tidal load model, but other potential sources
of error can not be ignored. It is necessary to use the global
GPS station indepth study in mainland China, especially in the
eastern coastal areas, it is necessary to introduce more
continuous  operating reference station, between the
geographical proximity of base station to determine the tidal
wave valuation can verify each other, but also the multipath
effect is equal to the influence of station environment effect.

4. CONCLUSIONS:

Ocean tide loading is an important error source in the precision
satellite positioning. Accurate ocean tide model can improve
GPS positioning accuracy. A GPS experiment was carried out
to measure the displacements generated by ocean tide loading in
this paper. We processed the observation data of four GPS
tracking stations by using PPP approach and get the position
time series, then carried spectral estimation and interpolation of
the time series in order to get the ocean load tides. The results
show that GPS technology can detect submillimeter level tidal
deformation, we can use GPS data refine the regional ocean
load tide model which is not accurate enough because of lock of
data constrainte. The model can be used to correct the
inaccuracy of Chinese regional ocean tide model in the future.
The new model can be applied to high accuracy GNSS data
processing, gravity data processing, and sea tide compliance
calculation.The continuous refinement of the model can also
enable GNSS to capture weaker signals, thereby facilitating the
in-depth study of earth sciences.
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