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Abstract

Network embedding approaches have recently attracted considerable interest as they
learn low-dimensional vector representations of nodes. Embeddings based on the
matrix factorization are effective but they are usually computationally expensive due
to the eigen-decomposition step. In this paper, we propose a Random RangE FInder
based Network Embedding (REFINE) algorithm, which can perform embedding on
one million of nodes (YouTube) within 30 seconds in a single thread. REFINE is
10× faster than ProNE, which is 10−400× faster than other methods such as LINE,
DeepWalk, Node2Vec, GraRep, and Hope. Firstly, we formulate our network
embedding approach as a skip-gram model, but with an orthogonal constraint,
and we reformulate it into the matrix factorization problem. Instead of using
randomized tSVD (truncated SVD) as other methods, we employ the Randomized
Blocked QR decomposition to obtain the node representation fast. Moreover, we
design a simple but efficient spectral filter for network enhancement to obtain
higher-order information for node representation. Experimental results prove that
REFINE is very efficient on datasets of different sizes (from thousand to million of
nodes/edges) for node classification, while enjoying a good performance.

1 Introduction

Network embeddings have drawn a lot of interest due to their ability to produce low-dimensional
representation for nodes while encapsulating the structure/properties of the network [5]. Such repre-
sentations serve as latent features for off-the-shelf machine learning for a variety of tasks on graphs
e.g., node classification [16, 22, 34], link prediction [6], graph classification [12], relation learning
[27], trajectory analysis [17, 21, 20], spatio-temporal graphs [10, 11] and network reconstruction [26].

Many network embedding approaches are based on random walks [16], matrix factorization [19]
and deep learning [26]. The skip-gram model has significantly advanced network embeddings e.g.,
DeepWalk [16], LINE [24], PTE [23], and Node2Vec [6] approaches, which sample node pairs from
k-step transition matrices with different values of k, and train a skip-gram [14] model on these pairs
to get node embeddings. The above methods can be unified into the closed-form Matrix Factorization
(MF) framework [19] with two steps: (i) building a higher-order proximity matrix and (ii) obtaining
the node embedding by using eigen-decomposition. Although MF provides an efficient way to obtain
network embeddings compared with skip-gram based methods, it faces the computational and space
challenges on large scale networks (≥ 10, 000 nodes) as these two steps depend on SVD and dense
proximity matrices.

Many methods use different approximation approaches to accelerate the MF based network embedding
because the SVD, especially on dense matrices, limits the ability to scale up the efficient network

∗The corresponding author. The code is available at: https://github.com/allenhaozhu/REFINE.

This paper is published at the 30th ACM International Conference on Information and Knowledge Management
(CIKM 2021). Extended version. DOI: https://doi.org/10.1145/3459637.3482168.

ar
X

iv
:2

10
8.

10
70

3v
1 

 [
cs

.L
G

] 
 2

4 
A

ug
 2

02
1

https://github.com/allenhaozhu/REFINE


embedding. Some methods bypass higher-order proximity computations [31], or sparsify higher-order
proximity matrices [18] e.g., they use the randomized SVD [8] to achieve acceleration. Although
[31, 18] are very fast network embedding approaches based on matrix factorization, they depend
on SVD, which limits their use on large scale networks. Therefore, approach [32] employs random
projections, a simple and powerful technique, which forms a low-dimensional embedding space for
the network while preserving the original graph structure. Although network embeddings based
on random projections are very efficient, the performance is worse compared to learning-based
approximation methods [31, 18].

We present a new method to offer a trade-off between speed [32] and performance [31, 18]. By adding
an orthogonal constraint on context vectors, we propose another Skip-Gram Network Embedding
(SGNE) framework. Subsequently, we obtain obtain node representations by a Randomized Blocked
QR with power iteration (range finder), which is much faster than SVD-based methods. Finally,
we present an efficient and effective spectral filter to enhance network embeddings by obtaining
higher-order structural information of neighborhoods. Our contributions are:

i. We propose a new skip-gram network embedding by adding orthogonal constraints, making it an
MF problem free of SVD.

ii. We propose a computationally more efficient than tSVD range finder based on the Randomized
Blocked QR with power iteration.

iii. We propose a compact and effective spectral filter to enhance node representations.

iv. We validate the effectiveness/performance of REFINE on several standard benchmarks, and show
it yields network embeddings on one million of nodes within 30 seconds (a single CPU thread),
which is ≥ 10× faster compared to the state of the art.

2 Related Work

Many off-the-shelf ML techniques leverage network embeddings, which we review below. A popular
deep embedding model called DeepWalk [16] uses truncated random walks (to explore the network
structure) and the skip-gram word embedding model [14] (to obtain embedding vectors of nodes).
LINE [24] sets the walk length as one, and it introduces the negative sampling strategy [14] to
accelerate training. Node2Vec [6] generalizes the above two methods and modifies the definition of
neighborhood. The above methods are equivalent to factorizing a higher-order proximity matrix [19].

Many explicit matrix factorization methods have been used for network embeddings. GraRep [2]
applies SVD to preserve higher-order proximity matrices (time complexity O(|V |3). HOPE [15]
uses generalized SVD to preserve the asymmetric transitivity in directed networks. Community
structure (a mesoscopic structure of network) is preserved by non-negative matrix factorization
in [28]. Approach [4] uses the matrix factorization with sparsification to accelerate SVD. Another
approximate matrix factorization technique is used by approach [29]. AROPE [33] improves upon
the above works by preserving arbitrary-order proximity simultaneously.

Many methods accelerate factorization e.g., ProNE [31] avoids computing the higher-order proximity
matrix by initializing embeddings with a low-order proximity matrix and applying a graph filter to
improve the performance. Approach [18] uses higher-order proximity and then employs random-walk
polynomial sparsification to higher-order proximity matrix. The above methods use a sparse proximity
matrix with randomized tSVD which is much faster in obtaining the network embedding than SVD
on a dense matrix.

3 Methodology

Below, we present our approach. Firstly, we propose a new objective function for SGNE, by
imposing an orthogonal constraint on context vectors. We rewrite the objective function as the matrix
factorization. Secondly, we present a range estimator based Randomized Blocked QR with power
iterations to solve the matrix factorization.Finally, to enhance network embedding with higher-order
proximity, we propose a simple spectral filter, approximated by the second-order Taylor expansion.

2



(a) Micro-F1 (b) Macro-F1

Figure 1: The Micro-F1 (and Macro-F1) vs. runtime for different methods on the YouTube dataset
(90% of dataset used for training).

3.1 SGNE as Column Pivoting QR Factorization

Based on the Skip-Gram with Negative Sampling (SGNS) model[14, 31], we introduce an orthogonal
constraint on context vectors, which leads to a very fast optimization procedure. Firstly, consider the
objective function:

l = −
∑

(i,j)∈Ê

[pi,j lnσ(r
⊤
i cj) + λφ(Ê, j) lnσ(−r⊤i cj)], s.t. C⊤C = I, (1)

where λ ≥ 0 is a coefficient controlling the negative noise sample ratio, σ(·) is the sigmoid function,

context vector cj is the j-th row of context matrix C ∈ R
n×k, whereas ri ∈ R

k are k-dimensional
embeddings and pi,j is the (i, j)-th coefficient of the degree-normalized adjacency matrix. Finally,

φ(Ê, j) forms the empirical context for node j given the edge set Ê associated with j, given as:

φ(Ê, j) =

∑

i:(i,j)∈Ê pi,j
∑

(i′,j′)∈Ê pi′,j′
. (2)

Without the constraint C⊤C = I, Eq. (1) has a trivial solution cij → ∞. The constraint fulfills
two different roles: i) it bounds context vectors to be normalized to the ℓ2 unit norm, and (ii) it
decorrelates them. Thus, C can be thought of as a subspace as k ≪ n.

A sufficient condition for minimizing the objective (1) is to let its partial derivative with respect to
c⊤j ri be equal zero, thus:

r⊤i cj = ln
pi,j

λφ(Ê, j)
, (i, j) ∈ Ê. (3)

If Mij = r⊤i cj , M would result in a dense matrix, the source of inefficiency in MF. Thus, ProNE
[31] defines a matrix M with entries:

Mi,j =







ln
pi,j

λφ(Ê, j)
, (i, j) ∈ Ê

0, (i, j) 6∈ Ê.

(4)

Thus, we obtain an approximate sparse matrix M with the low-rank product of embedding matrix R
and the context embedding matrix C. We avoid the truncated Singular Value Decomposition (tSVD),
and achieve the optimal rank k factorization w.r.t. the p′ norm by solving:

min
R,C
‖M−M∗‖p′ , s.t. M∗ = RC⊤, C⊤C = I, (5)

where R and C are n× k matrices whose rows stand for a node embedding and context embedding,
respectively. Note that this objective is different from other objectives in [31, 18, 19]. Intuitively,
through SVD, the matrix M can be decomposed into M = UΣV⊤, where U = [u1, · · · ,uk] is
orthogonal and Σ = diag([σ1, · · · , σk]) with σ1 ≥ σ2 ≥ · · · ≥ σk. Thus, R = UΣ and C = V.
Thus, we avoid SVD as its computational cost is high.
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3.2 Randomized Range Finder for Network Embedding

Another solution to Eq. (5) can be obtained by the Randomized Range Finder, which yields an
orthonormal matrix C with very few columns, such that ‖(I − CC⊤)M)‖F ≤ ǫ for a desired
tolerance ǫ. Below, we explain the use of the randomized blocked QR factorization to obtain C.

Suppose that we seek a basis for the range of matrix M with an exact rank k. Draw a random vector ω,
and form the product y = Mω. Repeat such a sampling process k times: yi = Mωi, i = 1, 2, · · · , k.
Owing to the randomness, the set Ω = [ω1,ω2, · · · ,ωk] of random vectors is likely to be in the
so-called general linear position. In particular, the random vectors form a linearly independent set
and no linear combination falls in the null space of M. As a result, the set Y = [y1, · · · ,yk] of
sample vectors is also linearly independent, so it spans the range of M. Therefore, to produce an
orthonormal basis C for the range of M, one just needs to orthonormalize the sample vectors (QR
decomposition). The theoretical performance guarantees of randomized QR decomposition based
low-rank approximation are given in the Theorem 1.

The randomized QR decomposition works well for matrices whose singular values exhibit some
decay, but it may produce a poor basis if the input matrix has a flat spectrum or the input matrix is
very large. The power iteration is thus considered in our solution despite requiring extra q times
matrix–matrix multiplications (MqΩ) as the power iteration is far more accurate if singular values of
A decay slowly. A heuristic we use has a nice property: if the original scheme (q = 1) produces a
basis whose approximation error is within a factor c′ of the optimum [8], the power scheme yields an

approximation error within c′1/q of the optimum. The power iteration shrinks the approximation gap
towards one exponentially fast.

Theorem 1. Based on [7], let M be a matrix (m × n) of real numbers with singular values
σ1 ≥ σ2 ≥ σ3 ≥ · · · . Choose a target rank k ≥ 2 and an oversampling parameter p ≥ 2, where
k + p = l and l ≤ min{m,n}. Draw coefficients of matrix Ω of size n× l according to the Normal
distribution, Ωij ∼ N (0, 1/k), and construct the sample matrix Y(Ω) = MΩ. Then the expected
approximation error of QR(Y(Ω))=C(Ω) yields:

EΩ

∥

∥M−C(Ω)C(Ω)⊤M
∥

∥

F
≤ min

k+p=l

(

1 +
k

p− 1

)
1

2

(

∑

j>k

σ2
j

)
1

2

. (6)

Although the eigen-decomposition or randomized SVD can be avoided, the orthogonalization (QR
decomposition) is the most computationally intensive part of the entire algorithm. Take QR decompo-
sition as an example, the computational cost is approximately 2nk2 − 2

3k
3 flops. The cost is highly

dependent on k. By blocking techniques, one can improve computational efficiency to obtain cost
2nb2 − 2

3qb
3 flops, where b≪ k.

In the proposed by us randomized blocked QR based network embedding, we use power iterations to
improve the performance and speed. In the experimental section, we discuss the parameters for our
techniques. The pseudocode for our algorithm is outlined in Algorithm 1. Of the parameters of the
algorithm, k (target rank) is problem dependent, whereas b (block size) and q (the number of power
iterations) are chosen by the user to control the quality and computational cost of the approximation.
The algorithm requires the choice of b and q to satisfy qb ≥ k, and it is not the standard blocked
QR as we avoid computing the residual M′ = M−RC⊤, which is a dense matrix leading to extra
storage costs. Empirically, we found that removing this term does not influence the final performance.

Algorithm 1: Network Embedding based on the Randomized Blocked QR (RBQR).

Input: M ∈ R
n×n, rank k ≤ n, b, q

Output: R ∈ R
n×k

for i← 1 to k/b do
Ω : Ωij ∼ N (0, 1) (Ω is of n× b size)
Ci = QR(MqΩ)

Ci = QR(Ci −
∑i−1

j=1 CjC
⊤
j Ci)

R⊤
i = C⊤

i M

end
return R = [R1, · · · ,Rk/b]
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3.3 Spectral Graph Filter for Network Embedding Enhancement

The randomized blocked QR factorization relies on the low-proximity matrix, which means that such
a node embedding does not capture the relationship between distant neighbors. In social networks,
this is of concern as not direct neighbors are of interest e.g., representing close friends and distant
acquaintances.

To improve our model, we capture such relations via the graph diffusion. Intuitively, we apply the
heat to the node under consideration and then continuously diffuse the heat towards other neighbors.
After a certain time, the heat distribution defines the edge weights from the starting node to other
nodes. Thus, we obtain a matrix that defines a new, continuously weighted graph. We define a graph
diffusion on node embedding as:

R∗ =

K
∑

k′=0

θk′Tk′

R, (7)

where θk′ are coefficients and T is the transition matrix D−1A. Coefficients θk′ are predefined by
the specific diffusion variant we choose, such as the heat kernel [9] or Markov diffusion kernel [35].
Increasing K will utilize the information from the K-hop neighborhoods of the node at an increased
computational cost. We set K = 2 for all datasets, as empirically we observe it is sufficient.

3.4 Computational Complexity

We compare the computational cost of the randomized QR and Algorithm 1. To this end, let
Cspmm,Cmm and Cqr denote the scaling constants for the cost of sparse matrix-matrix multiplication,
matrix-matrix multiplication and a full QR factorization, respectively. The computational complexity
for the randomized QR is (q + 1)Cspmm|E|k + Cqrnk

2, where |E| is the number of edges. Alg. 1

costs (q+1)Cspmm|E|k+Cmmnk
2+ 2

k/bCqrnk
2, where b is the block size. The blocked QR is faster

if n/b ≥ 2, whereas more power iterations (larger q) yields better results and costs more. Alg. 1
spends less time executing the full QR factorization, as expected. The computational cost of Eq. (7)
is 3|E|k + 3nk.

Table 1: Micro/Macro-F1(%) of node classification on the Blogcatalog and the PPI datasets.

Metric ALG BlogCatalog PPI

10.0% 30.0% 50.0% 70.0% 90.0% 10.0% 30.0% 50.0% 70.0% 90.0%

Micro-F1 LINE 25.35 32.05 35.16 36.61 37.35 11.7 14.2 16 17.82 19.59

DeepWalk 35.85 39.91 41.62 42.45 42.9 16.06 19.37 21.26 22.63 24.36

ProNE 36.52 39.97 41.20 41.75 42.16 17.37 22.45 24.28 25.08 26.31

RBQR 32.88 36.42 37.85 38.61 39.33 16.44 20.90 22.59 23.29 23.71

REFINE 36.46 39.75 41.00 41.75 42.29 17.79 22.57 24.30 24.96 26.35

Macro-F1 LINE 14.38 19.11 21.36 22.25 22.62 9.5 12.15 13.82 15.35 15.92

DeepWalk 21.16 25.59 27.58 28.47 28.66 12.89 16.71 18.25 19.48 20.36

ProNE 18.04 22.68 24.05 24.95 25.03 12.42 17.44 19.59 20.52 20.86

RBQR 13.74 18.25 20.21 21.30 21.56 11.10 15.69 17.97 18.89 18.71

REFINE 17.76 22.61 24.17 25.09 25.35 12.67 17.57 19.73 20.60 20.86

4 Experiments

Below, we evaluate our method on the node classification. We study the computational efficiency, the
performance and parameters.

4.1 Experiments Setting

We evaluate the algorithms on four widely-used real-world network datasets listed below:

1) BlogCatalog [30] is a network of social relationships of bloggers in the BlogCatalog website,
whose labels represents interests of bloggers.
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Table 2: Micro/Macro-F1(%) of node classification on the Wikipedia and Flickr datasets.

Metric ALG Wikipedia Flickr

10.0% 30.0% 50.0% 70.0% 90.0% 1.0% 3.0% 5.0% 7.0% 9.0%

Micro-F1 LINE 41.3 48.35 51.89 53.57 54.86 25.3 28.64 30.07 31.28 32.34

DeepWalk 42.32 47.02 48.65 49.8 50.35 32.06 35.89 37.46 38.29 38.84
ProNE 48.61 53.96 55.63 56.52 57.43 30.77 35.14 36.69 37.54 38.12
RBQR 45.72 49.73 50.88 51.56 52.31 30.55 34.23 35.58 36.41 37.04

REFINE 51.17 56.15 57.50 58.34 58.84 31.17 35.22 36.74 37.66 38.32

Macro-F1 LINE 8.51 10.53 12.63 13.4 13.16 9.01 13.42 15.77 17.44 18.68
DeepWalk 7.26 9.02 9.71 10.03 9.92 13.36 19.45 22.21 23.94 25.07

ProNE 8.40 10.73 11.40 11.83 12.21 8.21 13.55 16.14 17.86 19.12
RBQR 7.10 9.39 9.98 10.36 10.63 7.68 12.21 14.47 15.98 17.21

REFINE 9.42 11.75 12.36 12.79 13.11 8.18 13.50 16.29 18.21 19.54

2) Protein-Protein Interactions (PPI) [6] is a subgraph of the PPI network for Homo Sapiens, whose
labels represent biological states.

3) Wikipedia is a co-occurrence network of words appearing in the first million bytes of the
Wikipedia dump. The labels are Part-of-Speech (POS) tags inferred using the Stanford POS-
Tagger.

4) Flickr [25] is a network of contacts between Flickr users, whose labels represent the user’s
interest group.

5) YouTube [30] is a social network between YouTube users. The labels represent groups of viewers
that enjoy common video genres. The statistics of these datasets are shown in Table 3.

Experiments were conducted on a Ubuntu workstation (AMD Ryzen 2700, 64G RAM).

Baseline Algorithms. We compare the proposed algorithms with LINE(2nd) [24] (number of
samples 10, number of negative samples 5, initial learning rate 0.025), DeepWalk [16] (window size
10, walk length 40, and the number of walks 80), and ProNE [31]. The proposed methods include
two variants, with or without spectral filters, referred to as RBQR (no spectral filter) and REFINE
(RBQR with spectral filters). The dimension of representation is set k = 128.

For the node classification, we follow the same experimental setting as DeepWalk. In particular, we
randomly sample a portion of labeled nodes for training and use the rest for testing. For BlogCatalog,
PPI and Wiki datasets, the training set size ranges from 10% to 90% of a given dataset, with 20%
step. For Flickr and YouTube, the training set size ranges from 1% to 9% of the dataset, with 2% step.
Using the one-vs-rest logistic regression, we repeat experiment 10 times and report the Micro-F1 and
Macro-F1 performance.

4.2 Computational Efficiency

The efficiency of baselines is accelerated by using 16 CPU threads, whereas our approach and ProNE
use a single CPU thread. Note that REFINE can be easily extended to a multi-threaded REFINE as
QR scales gracefully for multi-threading compared with SVD. As shown in Figure 1a, DeepWalk
needs more than 10K seconds to obtain the node representation on YouTube. LINE is 10× faster than
DeepWalk while ProNE is 10× faster than LINE. Our approach with/without spectral filters is 10×
faster than ProNE. Table 5 reports the running times (both I/O and computation time) of our approach
and the fastest baseline, ProNE (other methods are much slower). The runtime results suggest that for
PPI and Wiki (small networks of 1,000+ nodes), REFINE requires less than 0.15 seconds to complete
while the fastest baseline ProNE is at least 10× slower. Similar speed-ups are consistently observed
on BlogCatalog and Flickr, moderate-size networks (10K+ nodes), and YouTube, a relatively big

Table 3: The statistics of datasets.

Dataset BlogCatalog Wiki PPI Flickr YouTube

#nodes 10312 4777 3890 80513 1138499
#edges 333983 184812 76584 5899882 2990443
#labels 39 40 50 195 47
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Table 4: Micro-F1 scores for node classification. Asterisk ‘*’ indicates that we use 9% of a given
dataset for training, other methods use 80% of a given dataset for training.

HARP RandNE MILE NetSMF LouvainNE Ours

Blogcatalog 0.316 0.308 0.264 0.334 0.306 0.420
Flickr 0.384 0.385 0.386 0.356 0.389 0.389*
YouTube 0.305 0.303 0.304 0.307 0.307 0.451*

Table 5: Computational efficiency (runtime in seconds).

Dataset BlogCatalog Wiki PPI Flickr YouTube

ProNE 10.04 2.06 0.959 195 305
REFINE 0.49 0.15 0.097 13 40

network (1M+ nodes). Remarkably, our proposed method embeds the YouTube network within 40
seconds by using one thread, whereas ProNE takes 300 seconds. Remaining baselines need between
half an hour and a dozen of hours. Without spectral filters, using RBQR alone (Algorithm 1 alone) to
obtain the network embedding takes 26 seconds. We analyzed the time cost of our method and found
that the random generation costs≥15% of the total time. In practice, the cost may be limited by using
pools of random numbers. In this paper, we kept the cost of random generator in our comparisons.

To summarize, the single-threaded REFINE is about 8-20× faster than the ProNE, which is 10–400x
faster than the 16-threaded LINE, DeepWalk, and Node2Vec.

4.3 Performance

For YouTube, Figure 1a shows that REFINE enjoys the best Micro-F1 score and the best runtime
compared to three fastest baselines, given training set of 90% size of the dataset. Figure 1b shows
that REFINE simultaneously achieves the best Macro-F1 score and the best runtime compared with
competing methods. Thus, REFINE without spectral filtering outperforms other more advanced
methods such as DeepWalk on YouTube. Tables 1 and 2 summarize the prediction performance on
small- and large-scale datasets, respectively, and report the results in terms of Micro-F1 and Macro-F1
metrics. We provide the embedding results generated by the RBQB (Algorithm 1) without spectral
filters as well as results with the spectral filter (REFINE). We note that REFINE, RBQR, LINE,
and ProNE have all similar performance in Macro-F1 because they are based on the low-proximity
matrix factorization. Benefiting from the high-order information, DeepWalk performs well in terms
of the Macro-F1 score. Table 1 shows that REFINE works very well in terms of the Micro-F1 scores
outperforming DeepWalk by ∼8% on Wikipedia, and outperforming LINE for training ratios of
10% and 30% on Macro-F1. REFINE also outperforms the initial RBQR (Algorithm 1) by a large
margin. We also conduct the comparison with fast network embedding methods without matrix
factorization [1, 13, 3]. As shown in Table 4, our method outperforms other methods significantly.
Kindly note that on Flickr and Youtube, our method only uses 9% of a given dataset for the training
set, whereas other methods use 80% of a given dataset for training.

4.4 Parameter Analysis

Our approach has two parameters which control the efficiency and effectiveness, that is, power
iteration number q and the block size b. As we aforementioned, the power iteration can improve the
accuracy of the low-rank approximation at the cost of extra computations. The block size, given a
rank k, can determine the number of blocks. Below, we analyze the computational cost of blocked
QR, which is highly dependent on the block number.

Power Iteration. Figure 2 shows Micro-F1 w.r.t. the number of power iterations (ranging from 1 to
4, indicated by the four curves) on Blogcatalog. The plot shows that the larger number of iterations is,
the better the results of REFINE are. REFINE with q ≥ 2 significantly improves the performance
over without power iteration (q = 1). The performance at q = 3 saturates, whereas q = 4 does not
offer any further significant gain.
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Figure 2: Micro-F1 w.r.t. the number of power iterations on Blogcatalog under different training
ratios in range 10%-90%.

Figure 3: Micro-F1 w.r.t. different block sizes on Blogcatalog under different training ratios (10-90%).

Block Size. Figure 3 shows Macro-F1 w.r.t. different block sizes (8,16, 32, 64, indicated by different
colors) on the Blogcatalog dataset. The plot shows that there are no significant differences between
these variants. For the sake of efficiency, the smaller the block size is, the lesser the computational
cost is e.g., the QR decomposition may account for less than 10% of runtime of the whole algorithm,
which appears to be faster than the cost of random generation.

5 Conclusions

In this work, we have proposed REFINE, a fast and scalable network embedding approach. REFINE
achieves a favourable computational efficiency and performance compared to recent powerful network
embedding approaches, such as DeepWalk and LINE. The proposed method is 8− 20× faster than
the ProNE, which is 10− 400× faster than the aforementioned baselines that are already accelerated
by multi-threaded codes. Due to the speed and accuracy of REFINE, its use is suitable for scenarios
where node embeddings are frequently updated e.g., in commercial recommendation systems.
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