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1 Introduction

This paper is concerned with the large time behavior of a solution to the Cauchy problem
for an inhomogeneous fractional diffusion equation

∂tu+ (−∆)
θ
2u = f(x, t) in R

N × (0,∞), u(x, 0) = ϕ(x) in R
N , (1.1)

where N ≥ 1, ∂t := ∂/∂t, 0 < θ < 2 and

ϕ ∈ L1
K := L1(RN , (1 + |x|)K dx) with K ≥ 0.

Here (−∆)θ/2 is the fractional power of the Laplace operator. Inhomogeneous fractional
diffusion equation (1.1) appears in the study of various nonlinear problems with anoma-
lous diffusion, the Laplace equation with a dynamical boundary condition, and so on.
Under suitable integrability conditions on the inhomogeneous term f , the solution u to
problem (1.1) behaves like a suitable multiple of the fundamental solution Gθ to the linear
fractional diffusion equation

∂tv + (−∆)
θ
2 v = 0 in R

N × (0,∞)

as t→ ∞. In this paper we obtain the higher order asymptotic expansions (HOAE) of the
large time behavior of the solution u. Furthermore, we study the precise description of the
large time behavior of solutions to the Cauchy problem for nonlinear fractional diffusion
equations such as

∂tu+ (−∆)
θ
2u = λ|u|p−1u in R

N × (0,∞), u(x, 0) = ϕ(x) in R
N , (1.2)

where λ ∈ R, p > 1 and ϕ ∈ L1
K with K ≥ 0. This paper is an improvement of [15] and it

corresponds a fractional version of the papers [11,12,14].

The large time behavior of solutions to nonlinear parabolic equations has been studied
extensively in many papers by various methods. Here we just refer to the papers [1, 4,
7–15, 17, 21–26], which are closely related to this paper. Among others, in [11, 12, 14],
HOAE of solutions behaving like suitable multiples of the Gauss kernel have already been
well established. The property that

⋃

t>0

et∆L1
K ⊂ L1

K for K ≥ 0

plays an important role in [11, 12, 14] and it follows from the exponential decay of the
Gauss kernel at the space infinity. For fractional diffusion equations, if 0 ≤ K < θ, then

⋃

t>0

e−t(−∆)θ/2L1
K ⊂ L1

K (1.3)

holds and the arguments in [11,12,14] are also applicable to fractional diffusion equations.
However, if K ≥ θ, then property (1.3) fails. This fact prevents to establish analogous
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asymptotic expansions of solutions to the case of θ = 2. In [15] the authors of this
paper and Michihisa studied a mechanism for property (1.3) to fail in the case of K ≥ θ,

and obtained HOAE of e−(−∆)θ/2ϕ. This argument is applicable to the study of HOAE of
solutions to inhomogeneous fractional diffusion equations and nonlinear fractional diffusion
equations, however HOAE of [15] to problem (1.1) do not have refined forms.

In this paper we improve and refine arguments in [15] by taking into an account of
the Taylor expansion of the kernel Gθ with respect to both of the space and the time
variables, and obtain HOAE of solutions to inhomogeneous fractional diffusion equations
and nonlinear fractional parabolic equations. Our arguments also reveal a mechanism for
the solution u to problem (1.1) to break the property that u(t) ∈ L1

K for t > 0.
We introduce some notations. Set N0 := N∪{0}. For any k ≥ 0, let [k] ∈ N0 = N∪{0}

be such that k − 1 < [k] ≤ k. Let ∇ := (∂/∂x1, . . . , ∂/∂xN ). For any multi-index
α ∈ M := N

N
0 , set

|α| :=

N
∑

i=1

αi, α! :=

N
∏

i=1

αi!, xα :=

N
∏

i=1

xαi
i , ∂αx :=

∂|α|

∂xα1
1 · · · ∂xαN

N

.

For any α = (α1, . . . , αN ), β = (β1, . . . , βN ) ∈ M, we say α ≤ β if αi ≤ βi for all
i ∈ {1, . . . , N}. Let 1 ≤ q ≤ ∞ and K ≥ 0. Let ‖ · ‖q be the usual norm of Lq := Lq(RN ).
Set

|||f |||q,K := ‖fK‖q with fK(x) := |x|Kf(x).

Let

f ∈ Lq
K :=

{

f ∈ Lq : ‖f‖Lq
K
<∞

}

, where ‖f‖Lq
K
:= ‖f‖q + |||f |||q,K .

For any f ∈ L1
K and α ∈ M with |α| ≤ K, set

Mα(f) :=

∫

RN

xαf(x) dx.

We are ready to state our main results on the asymptotic expansions of solutions to
inhomogeneous fractional diffusion equations. In what follows, set Kθ := [K/θ]. Further-
more, set

gα,m(x, t) :=
(−1)|α|+m

α!m!
(∂mt ∂

α
xGθ)(x, t+ 1)

for (x, t) ∈ R
N × (0,∞), where α ∈ M and m ∈ N0.

Theorem 1.1 Let N ≥ 1, 0 < θ < 2, 0 ≤ ℓ ≤ K, and 1 ≤ q ≤ ∞. Let ϕ ∈ L1
K and f be

a measurable function in R
N × (0,∞) such that

EK,q[f ] ∈ L1
loc(0,∞), (1.4)

where

EK,q[f ](t) := (t+ 1)
K
θ

[

t
N
θ

(

1− 1
q

)

‖f(t)‖q + ‖f(t)‖1

]

+ t
N
θ

(

1− 1
q

)

|||f(t)|||q,K + |||f(t)|||1,K for t > 0.

(1.5)
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Let u ∈ C(RN × (0,∞)) be a solution to problem (1.1), that is, u satisfies

u(x, t) =

∫

RN

Gθ(x− y, t)ϕ(y) dy +

∫ t

0

∫

RN

Gθ(x− y, t− s)f(y, s) dy ds

for (x, t) ∈ R
N × (0,∞). Then

sup
0<t<τ

t
N
θ

(

1− 1
q

)

|||u(t) − w(t)|||q,ℓ <∞ for τ > 0, (1.6)

where

w(x, t) :=

Kθ
∑

m=0

∑

|α|≤K

{

Mα(ϕ) +

∫ t

0
(s + 1)mMα(f(s)) ds

}

gα,m(x, t). (1.7)

Furthermore, there exists C > 0 such that, for any ε > 0 and T > 0,

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − w(t)|||q,ℓ ≤ εt−

K
θ + Ct−

K
θ

∫ t

T
EK,q[f ](s) ds (1.8)

holds for large enough t > 0. In particular, if

∫ ∞

0
EK,q[f ](s) ds <∞,

then

lim
t→∞

t
N
θ

(

1− 1
q

)

+K−ℓ
θ |||u(t) −w(t)|||q,ℓ = 0. (1.9)

Theorem 1.1 corresponds to [14, Theorems 1.1, 1.2] for θ = 2 and it is an improvement
of [15, Theorem 3.1 (ii)]. Our asymptotic profile w has a pretty simpler form than that
of [15]. (See Remarks 3.1 and 5.2.) We also remark that, under condition (1.4), both of
u(·, t) and w(·, t) do not necessarily belong to Lq

ℓ , while u(t)−w(t) ∈ Lq
ℓ . In other words,

the function w may break the property that u(t) ∈ Lq
ℓ for t > 0. Furthermore, we have:

Corollary 1.1 Assume the same conditions as in Theorem 1.1. Let u ∈ C(RN × (0,∞))
be a solution to problem (1.1). Then there exists R > 0 such that

u(t) ∈







h+
∑

(α,m)∈Λq
K

aα,mgα,m(x, t) : h ∈ Lq
K with ‖h‖Lq

K
≤ R, {aα,m} ⊂ [−R,R]







for t > 0, where Λq
K := {(α,m) ∈ M× N0 : gα,m(·, 0) 6∈ Lq

K}.

We explain the idea of the proof of Theorem 1.1. We improve and refine arguments in
the previous papers [11,12,14,15] to obtain HOEA of the solution u to problem (1.1), in
particular, the integral term

∫ t

0

∫

RN

Gθ(x− y, t− s)f(y, s) dy ds.
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In [15], following the arguments in [11, 12, 14], the authors of this paper and Michihisa
expanded the integral kernel Gθ(x− y, t− s) by the Taylor expansions with respect to the
space derivatives of Gθ(x, t− s). Then the slow decay of Gθ(x, t) makes difficult to obtain
refined HOAE of the solution u to problem (1.1). In this paper we expand the integral
kernel Gθ(x − y, t − s) by the Taylor expansions with respect to both of space and time
variable derivatives of Gθ(x, t). (This is the same sprit as in [9].) Indeed, we introduce
the following integral kernels by the use of the Taylor expansions of Gθ:

Sm
ℓ (x, y, t) := (∂mt Gθ)(x− y, t)−

∑

|α|≤ℓ

(−1)|α|

α!
(∂mt ∂

α
xGθ)(x, t)y

α

=
1

[ℓ]!

∫ 1

0
(1− τ)[ℓ]

∂[ℓ]+1

∂τ [ℓ]+1
(∂mt Gθ)(x− τy, t) dτ,

T (x, y, t, s) := Gθ(x− y, t− s)−

Kθ
∑

m=0

(−1)m

m!
(∂mt Gθ)(x− y, t)sm

=
1

Kθ!

∫ 1

0
(1− τ)Kθ

∂Kθ+1

∂τKθ+1
Gθ(x− y, t− τs) dτ,

(1.10)

for x, y ∈ R
N and 0 ≤ s < t, where 0 ≤ ℓ ≤ K and m ∈ N0. Then

Gθ(x− y, t− s)

=

Kθ
∑

m=0

(−1)m

m!
(∂mt Gθ)(x− y, t)sm + T (x, y, t, s)

=

Kθ
∑

m=0

∑

|α|≤ℓ

(−1)|α|+m

α!m!
(∂mt ∂

α
xGθ)(x, t)y

αsm +

Kθ
∑

m=0

(−1)m

m!
Sm
ℓ (x, y, t)sm + T (x, y, t, s).

Furthermore,

R(x, y, t, s) := T (x, y, t, s) +

Kθ
∑

m=0

(−1)m

m!
Sm
K (x, y, t)sm

= Gθ(x− y, t− s)−

Kθ
∑

m=0

∑

|α|≤K

(−1)|α|+m

α!m!
(∂mt ∂

α
xGθ)(x, t)y

αsm.

(1.11)

Then it follows from (1.7) that

u(x, t) − w(x, t) =

∫

RN

R(x, y, t+ 1, 1)ϕ(y) dy

+

∫ t

0

∫

RN

R(x, y, t+ 1, s + 1)f(y, s) dy ds.

(1.12)
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Thanks to the decay of the derivatives of Gθ and (1.10), we see that

T (x, y, t, s) = O(|x− y|−N−K−ε) as |x− y| → ∞,

Sm
K (x, y, t) = O(|x|−N−K−ε) as |x| → ∞,

for some ε > 0. These decay of the integral kernels at the space infinity enables us to
establish HOAE of solutions to problem (1.1) and to obtain Theorem 1.1. These arguments
require delicate integral estimates on the integral kernels Sm

ℓ and T .

Theorem 1.1 is applicable to problem (1.2) and it gives asymptotic profiles of solutions
to problem (1.2) as a linear combination of the derivatives of Gθ (see Theorem 5.1).
Furthermore, taking a suitable approximation of the nonlinear term in problem (1.2), we
obtain refined asymptotic expansions of the solution to problem (1.1) (see Theorem 5.2).
Here we state the following result, which is a variation of Theorem 5.2.

Theorem 1.2 Let N ≥ 1, 0 < θ < 2, λ ∈ R, and ϕ ∈ L1
K ∩ L∞ with K ≥ 0. Let

u ∈ C(RN × (0,∞)) be a solution to problem (1.2) with p > 1 + θ/N and satisfy

sup
t>0

(t+ 1)
N
θ ‖u(t)‖∞ <∞. (1.13)

Then there exists M∗ ∈ R such that

M∗ := lim
t→∞

∫

RN

u(x, t) dx =

∫

RN

ϕ(x) dx+

∫ ∞

0

∫

RN

F (u(x, t)) dx dt,

where F (u(x, t)) := λ|u(x, t)|p−1u(x, t).
Assume N(p + θ) > N +K and ϕ ∈ L∞

k with k = min{N + θ,K}. Let 1 ≤ q ≤ ∞.

Then

sup
t>0

(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)|||q,ℓ <∞,

where 0 ≤ ℓ ≤ K with 0 ≤ ℓ < θ +N(1− 1/q). Furthermore, for any σ > 0

sup
t>0

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)− v(t)|||q,ℓ <∞,

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − v(t)|||q,ℓ = o

(

t−
K
θ

)

+O

(

t−
K
θ

∫ t

1
s

K
θ
−Aphσ(s) ds

)

as t→ ∞,

where 0 ≤ ℓ ≤ K. Here

v(x, t) :=

Kθ
∑

m=0

∑

|α|≤K

cα,m(t)gα,m(x, t) +

∫ t

0
e−(t−s)(−∆)

θ
2 F∞(s) ds,

cα,m(t) :=Mα(ϕ) +

∫ t

0
(s+ 1)mMα(F (u(s)) − F∞(s)) ds,

F∞(x, t) := F (M∗Gθ(x, t+ 1)) , hσ(t) := t−(Ap−1)+σ + t−1 + t−
1
θ .
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Theorem 1.2 corresponds to [12, Corollary 1.1] for θ = 2. See Remark 5.1 for condi-
tion (1.13).

The rest of this paper is organized as follows. In Section 2 we collect some properties of
the fundamental solution Gθ. In Section 3 we obtain some estimates on the integral kernels
Sm
ℓ (x, y, t) and T (x, y, t, s), and prove Theorem 1.1 and Corollary 1.1. In Section 4 we

apply Theorem 1.1 to obtain HOAE of solutions to the Cauchy problem for a convection
type inhomogeneous fractional diffusion equation. In Section 5 we apply Theorem 1.1
to study HOAE of solutions to the Cauchy problem for nonlinear fractional diffusion
equations. Furthermore, we prove Theorem 1.2.

2 Preliminaries

We recall some properties of the fundamental solution Gθ = Gθ(x, t), In what follows, by
the letter C we denote generic positive constants (independent of x and t) and they may
have different values also within the same line.

Let 0 < θ < 2. The fundamental solution Gθ = Gθ(x, t) is represented by

Gθ(x, t) = (2π)−
N
2

∫

RN

eix·ξe−t|ξ|θ dξ, (x, t) ∈ R
N × (0,∞).

Then we have:

(G) Gθ = Gθ(x, t) is a positive smooth function in R
N × (0,∞) with the following

properties:

(i) Gθ(x, t) = t−
N
θ Gθ(t

− 1
θ x, 1) for x ∈ R

N and t > 0;

(ii) sup
x∈RN

(1 + |x|)N+θ+|α||(∂αxGθ)(x, 1)| <∞ for α ∈ M;

(iii) Gθ(·, 1) is radially symmetric and decreasing with respect to r := |x|. Further-
more,

lim inf
|x|→+∞

(1 + |x|)N+θ+j(∂jrGθ)(x, 1) > 0, j ∈ N0;

(iv) Gθ(x, t) =

∫

RN

Gθ(x− y, t− s)Gθ(y, s) dy for x ∈ R
N and t > s > 0;

(v)

∫

RN

Gθ(x, t) dx = 1 for t > 0.

See [3, 4]. (See also [13,14,19].)
Let α ∈ M and m ∈ N0. Let

1 ≤ q ≤ ∞, 0 ≤ ℓ < θm′ + |α|+N

(

1−
1

q

)

with m′ := max{m, 1}.

It follows from (G)-(i), (ii) and [15, Lemma 2.1] that

|(∂mt ∂
α
xGθ)(x, t)| ≤ Ct−

N+|α|
θ

−m
(

1 + t−
1
θ |x|

)−(N+θm′+|α|)
(2.1)
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for x ∈ R
N and t > 0. This implies that

sup
t>0

t
N
θ

(

1− 1
q

)

+ |α|−ℓ
θ

+m
|||(∂mt ∂

α
xGθ)(t)|||q,ℓ <∞. (2.2)

Lemma 2.1 Let 1 ≤ q ≤ r ≤ ∞, α ∈ M, and m ∈ N0. Let

0 ≤ ℓ < θm′ + |α|+N

(

1

q
−

1

r

)

. (2.3)

Then there exists C > 0 such that

t
N
θ

(

1
q
− 1

r

)

+ |α|
θ
+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂mt ∂
α
x e

−t(−∆)θ/2ϕ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r,ℓ

≤ Ct
ℓ
θ ‖ϕ‖q + C|||ϕ|||q,ℓ

for ϕ ∈ Lq
ℓ and t > 0. Here

[

e−t(−∆)θ/2ϕ
]

(x) :=

∫

RN

Gθ(x− y, t)ϕ(y) dy, (x, t) ∈ R
N × (0,∞).

Proof. Assume (2.3). It follows that

|x|ℓ
[

∂mt ∂
α
x e

−t(−∆)θ/2ϕ
]

(x) ≤ C

∫

RN

[

|x− y|ℓ + |y|ℓ
]

|(∂mt ∂
α
xGθ)(x− y, t)||ϕ(y)| dy

for (x, t) ∈ R
N × (0,∞). The Young inequality together with (2.2) implies that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂mt ∂
α
x e

−t(−∆)θ/2ϕ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r,ℓ

≤ C|||∂mt ∂
α
xGθ(t)|||p,ℓ‖ϕ‖q + C‖∂mt ∂

α
xGθ(t)‖p|||ϕ|||q,ℓ

≤ Ct
−N

θ

(

1
q
− 1

r

)

−
|α|
θ
−m+ ℓ

θ ‖ϕ‖q + Ct
−N

θ

(

1
q
− 1

r

)

−
|α|
θ
−m

|||ϕ|||q,ℓ

for t > 0, where p ∈ [1,∞] with 1/r = 1/p+1/q−1. Then we obtain the desired inequality,
and the proof is complete. ✷

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first prepare the following lemma.

Lemma 3.1 Assume the same conditions as in Theorem 1.1. Then

t
N
θ (1−

1
r )(t+ 1)

K−ℓ
θ |||f(t)|||r,ℓ ≤ EK,q[f ](t), t > 0,

where 0 ≤ ℓ ≤ K and 1 ≤ r ≤ q.
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Proof. Let 0 ≤ ℓ ≤ K and 1 ≤ q ≤ ∞. It follows that

(t+ 1)−
ℓ
θ |x|ℓ ≤ C + C(t+ 1)−

K
θ |x|K , (x, t) ∈ R

N × (0,∞).

This together with (1.5) implies that

(t+ 1)−
ℓ
θ |||f(t)|||r,ℓ ≤ C‖f(t)‖r + C(t+ 1)−

K
θ |||f(t)|||r,K

≤ C‖f(t)‖λ1‖f(t)‖
1−λ
q +C(t+ 1)−

K
θ |||f(t)|||λ1,K |||f(t)|||1−λ

q,K

≤ Ct−
N
θ (1−

1
r )(t+ 1)−

K
θ EK,q[f ](t), t > 0,

where 1/r = λ+ (1− λ)/q. Thus Lemma 3.1 follows. ✷

Next we prove a lemma on the integral kernel Sm
ℓ (x, y, t).

Lemma 3.2 Let m ∈ N0, 0 ≤ ℓ ≤ K, 1 ≤ q ≤ ∞, and j = 0, 1.

(a) There exists C1 > 0 such that

|||∇jSm
ℓ (·, y, t)|||q,ℓ ≤ C1t

−N
θ

(

1− 1
q

)

−m− j
θ |y|ℓ, (y, t) ∈ R

N × (0,∞).

(b) There exists C2 > 0 such that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C2t
−N

θ

(

1− 1
q

)

−m−K+j−ℓ
θ |||ϕ|||1,K , t > 0,

for ϕ ∈ L1
K .

(c) Let ϕ ∈ L1
K . Then

lim
t→∞

t
N
θ

(

1− 1
q

)

+m+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0.

Proof. Let 0 ≤ ℓ ≤ K, 1 ≤ q ≤ ∞, and j = 0, 1. We prove assertion (a). Let x, y ∈ R
N

and t > 0. It follows that

|x− τy| ≥ |x| − |y| ≥ |x|/2 if |x| ≥ 2|y| and 0 ≤ τ ≤ 1.

Then, by (1.10) and (2.1) we have

|x|ℓ|∇jSm
ℓ (x, y, t)|

≤ C

∫ 1

0
|x|ℓ

∣

∣

∣
(∂mt ∇[ℓ]+j+1Gθ)(x− τy, t)

∣

∣

∣
|y|[ℓ]+1 dτ

≤ C|y|ℓ
∫ 1

0
|x|[ℓ]+1 t−

N
θ
−

[ℓ]+j+1
θ

−m
(

1 + t−
1
θ |x− τy|

)−(N+θm′+[ℓ]+j+1)
dτ

≤ C|y|ℓ(t−
1
θ |x|)[ℓ]+1 t−

N
θ
−m− j

θ

(

1 + t−
1
θ
|x|

2

)−(N+θm′+[ℓ]+j+1)

≤ C|y|ℓt−
N
θ
−m− j

θ

(

1 + t−
1
θ
|x|

2

)−(N+θm′+j)
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if |x| ≥ 2|y|. Similarly, by (1.10) we have

|x|ℓ|∇jSm
ℓ (x, y, t)| ≤ |x|ℓ|(∂mt ∇jGθ)(x− y, t)|+ C

∑

|α|≤ℓ

|x|ℓ|(∂mt ∂
α
x∇

jGθ)(x, t)||y|
|α|

≤ (2|y|)ℓ|(∂mt ∇jGθ)(x− y, t)|+ C
∑

|α|≤ℓ

|y|ℓ|x||α||(∂mt ∂
α
x∇

jGθ)(x, t)|

if |x| < 2|y|. These together with (2.2) imply that

|||∇jSm
ℓ (·, y, t)|||q,ℓ ≤ Ct

−N
θ

(

1− 1
q

)

−m− j
θ |y|ℓ.

Thus assertion (a) follows.
We prove assertions (b) and (c). Let ϕ ∈ L1

K , 0 ≤ ℓ ≤ K, and R > 0. It follows from
(1.10) that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|≥R
1
θ }

|∇jSm
K (·, y, t)||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|≥R
1
θ }

|∇jSm
ℓ (·, y, t)||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

+ C
∑

ℓ<|α|≤K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|≥R
1
θ }

|(∂mt ∂
α
x∇

jGθ)(·, t)||y|
|α||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤

∫

{|y|≥R
1
θ }

|||∇jSm
ℓ (·, y, t)|||q,ℓ|ϕ(y)| dy

+ C
∑

ℓ<|α|≤K

∫

{|y|≥R
1
θ }

|||(∂mt ∂
α
x∇

jGθ)(·, t)|||q,ℓ|y|
|α||ϕ(y)| dy.

This together with (2.2) and assertion (a) implies that

t
N
θ

(

1− 1
q

)

+m+ j
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|≥R
1
θ }

|∇jSm
K (·, y, t)||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

(
∫

{|y|≥R
1
θ }

|y|ℓ|ϕ(y)| dy +
∑

ℓ<|α|≤K

t−
|α|−ℓ

θ

∫

{|y|≥R
1
θ }

|y||α||ϕ(y)| dy

)

≤ C

(
∫

{|y|≥R
1
θ }

|y|ℓ
(

|y|

R
1
θ

)K−ℓ

|ϕ(y)| dy

+
∑

ℓ<|α|≤K

t−
|α|−ℓ

θ

∫

{|y|≥R
1
θ }

(

|y|

R
1
θ

)K−|α|

|y||α||ϕ(y)| dy

)

= Ct−
K−ℓ
θ

(

(R−1t)
K−ℓ
θ +

∑

ℓ<|α|≤K

(R−1t)
K−|α|

θ

)
∫

{|y|≥R
1
θ }

|y|K |ϕ(y)| dy.

(3.1)
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Similarly, by (1.10) we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|<R
1
θ }

|∇jSm
K (·, y, t)||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|<R
1
θ }

∫ 1

0
|(∂mt ∇[K]+j+1Gθ)(· − τy, t)||y|[K]+1|ϕ(y)| dτ dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

∫

{|y|<R
1
θ }

∫ 1

0
|||(∂mt ∇[K]+j+1Gθ)(· − τy, t)|||q,ℓ|y|

[K]+1|ϕ(y)| dτ dy.

(3.2)

On the other hand, it follows that

|x|ℓ|(∂mt ∇[K]+j+1Gθ)(x− τy, t)| = |z + τy|ℓ|(∂mt ∇[K]+j+1Gθ)(z, t)|

≤ C(|z|ℓ + |y|ℓ)|(∂mt ∇[K]+j+1Gθ)(z, t)|

for x, y ∈ R
N , t > 0, and τ ∈ (0, 1), where z := x− τy. This together with (2.2) implies

that

|||(∂mt ∇[K]+j+1Gθ)(· − τy, t)|||q,ℓ

≤ |||(∂mt ∇[K]+j+1Gθ)(t)|||q,ℓ + |y|ℓ|||(∂mt ∇[K]+j+1Gθ)(t)|||q

≤ Ct
−N

θ

(

1− 1
q

)

−m−
[K]+j+1−ℓ

θ + Ct
−N

θ

(

1− 1
q

)

−m−
[K]+j+1

θ |y|ℓ

(3.3)

for y ∈ R
N , t > 0, and τ ∈ (0, 1). By (3.2) and (3.3) we obtain

t
N
θ

(

1− 1
q

)

+m+ j
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

{|y|<R
1
θ }

|∇jSm
K (·, y, t)||ϕ(y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

∫

{|y|<R
1
θ }
(t−

[K]+1−ℓ
θ + t−

[K]+1
θ |y|ℓ)|y|[K]+1|ϕ(y)| dy

≤ C
(

t−
[K]+1−ℓ

θ R
[K]+1−K

θ + t−
[K]+1

θ R
[K]+ℓ+1−K

θ

)

∫

{|y|<R
1
θ }

|y|K |ϕ(y)| dy.

(3.4)

Combining (3.1) and (3.4) and setting R = t, we obtain

t
N
θ

(

1− 1
q

)

+m+ j
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct−
K−ℓ
θ |||ϕ|||1,K , t > 0,

which implies assertion (b). Similarly, setting R = εt with 0 < ε ≤ 1, we have

t
N
θ

(

1− 1
q

)

+m+ j
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct−
K−ℓ
θ

(

(ε−1)
K−ℓ
θ +

∑

ℓ<|α|≤K

(ε−1)
K−|α|

θ

)
∫

{|y|≥(εt)
1
θ }

|y|K |ϕ(y)| dy

+ Ct−
K−ℓ
θ

(

ε
[K]+1−K

θ + ε
[K]+ℓ+1−K

θ

)

|||ϕ|||1,K .
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This together with ϕ ∈ L1
K implies that

lim sup
t→∞

t
N
θ

(

1− 1
q

)

+m+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C
(

ε
[K]+1−K

θ + ε
[K]+ℓ+1−K

θ

)

|||ϕ|||1,K .

Since ε is arbitrary, we obtain assertion (c). Thus Lemma 3.2 follows. ✷

By Lemmata 3.1 and 3.2 we have:

Lemma 3.3 Let f be a measurable function in R
N×(0,∞). Assume (1.5) for some K ≥ 0

and 1 ≤ q ≤ ∞. Let 0 ≤ ℓ ≤ K, m ∈ N0, and j = 0, 1. Then there exists C > 0 such that

(t+ 1)
N
θ

(

1− 1
q

)

+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

T

∫

RN

(s+ 1)m∇jSm
K (·, y, t+ 1)f(y, s) dy ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

∫ t

T
EK,q[f ](s) ds

(3.5)

for t > T ≥ 0. Furthermore,

lim
t→∞

t
N
θ

(

1− 1
q

)

+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

∫

RN

(s+ 1)m∇jSm
K (·, y, t+ 1)f(y, s) dy ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0

for T > 0.

Proof. It follows from Lemma 3.1 that

|||f(s)|||1,K ≤ CEK,q[f ](s), s > 0. (3.6)

This together with Lemma 3.2 (c) implies that, for any T > 0,

lim
t→∞

t
N
θ

(

1− 1
q

)

+K+j−ℓ
θ (s+ 1)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t+ 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0 (3.7)

for 0 < s < T . Furthermore, by (3.6) with Lemma 3.2 (b) we see that

(t+ 1)
N
θ

(

1− 1
q

)

+K+j−ℓ
θ (s+ 1)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jSm
K (·, y, t+ 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(t+ 1)−m(s + 1)m‖f(s)‖1,K ≤ CEK,q[f ](s)

(3.8)

for 0 < s < t. Inequality (3.8) implies (3.5). Furthermore, by (3.7) and (3.8) we apply the
Lebesgue dominated convergence theorem to obtain

lim
t→∞

t
N
θ

(

1− 1
q

)

+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

∫

RN

(s+ 1)m∇jSm
K (·, y, t + 1)f(y, s) dy ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0.

Thus Lemma 3.3 follows. ✷

Next we prove the following lemma on the integral kernel T (x, y, t, s).
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Lemma 3.4 Let 1 ≤ q ≤ ∞, and 0 ≤ ℓ ≤ K.

(a) Let ϕ ∈ L1
K with K ≥ 0 and j = 0, 1. Then there exists C1 > 0 such that

t
N
q

(

1− 1
q

)

+ j
θ (t+ 1)

K−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, 1)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C1‖ϕ‖L1
K

(3.9)

for t > 0. Furthermore,

lim
t→∞

t
N
θ

(

1− 1
q

)

+K+j−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t + 1, 1)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0. (3.10)

(b) Let f be a measurable function in R
N × (0,∞) and satisfy (1.5). Let j = 0 if

0 < θ ≤ 1 and j ∈ {0, 1} if 1 ≤ θ < 2. Then there exists C2 > 0 such that

t
N
q

(

1− 1
q

)

(t+ 1)
K−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

T

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C2

∫ t

T
(t− s)−

j
θEK,q[f ](s) ds

(3.11)

for t > T ≥ 0. Furthermore,

lim
t→∞

t
N
q

(

1− 1
q

)

+K−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

∫

RN

T (·, y, t+ 1, s+ 1)f(y, s) dy ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0 (3.12)

for T > 0.

Proof. Let 0 ≤ ℓ ≤ K and j = 0, 1. We find ℓ′ > 0 such that

ℓ ≤ ℓ′, θKθ < ℓ′ < θ(Kθ + 1). (3.13)

Let x, y ∈ R
N and t > 0. It follows that

t−
ℓ
θ |x|ℓ ≤ t−

ℓ
θ (|x− y|ℓ + |y|ℓ) ≤ C

(

1 + t−
ℓ′

θ |x− y|ℓ
′
+ t−

K
θ |y|K

)

. (3.14)

This together with (1.10) implies that

t−
ℓ
θ |x|ℓ|∇jT (x, y, t, s)|

≤ Ct−
ℓ′

θ sKθ+1

∫ 1

0
|x− y|ℓ

′
|(∂Kθ+1

t ∇jGθ)(x− y, t− τs)| dτ

+ C

(

1 + t−
K
θ |y|K

)

[

|(∇jGθ)(x− y, t− s)|+

Kθ
∑

m=0

sm|(∂mt ∇jGθ)(x− y, t)|

]

(3.15)

for 0 < s < t. Let ψ ∈ Lr1
K ∩ Lr2

K with 1 ≤ r1, r2 ≤ q. Let 1 ≤ r′i ≤ ∞ (i = 1, 2) be such
that

1

q
=

1

ri
+

1

r′i
− 1.
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Then we observe from the Young inequality, (2.2) and (3.15) that

t−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t, s)ψ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct−
ℓ′

θ sKθ+1

∫ 1

0
|||∂Kθ+1

t ∇jGθ(t− τs)|||r′1,ℓ′‖ψ‖r1 dτ

+ C‖∇jGθ(t− s)‖r′1‖ϕ‖r1 + Ct−
K
θ ‖∇jGθ(t− s)‖r′1 |||ϕ|||r1 ,K

+ C

Kθ
∑

m=0

sm
[

‖∂mt ∇jGθ(t)‖r′2‖ϕ‖r2 + t−
K
θ ‖∂mt ∇jGθ(t)‖r′2 |||ϕ|||r2,K

]

≤ Ct−
ℓ′

θ sKθ+1‖ψ‖r1

∫ 1

0
(t− τs)

−N
θ

(

1
r1

− 1
q

)

−(Kθ+1)+ ℓ′−j
θ dτ

+ C(t− s)
−N

θ

(

1
r1

− 1
q

)

− j
θ (‖ψ‖r1 + t−

K
θ |||ψ|||r1,K)

+ Ct
−N

θ

(

1
r2

− 1
q

)

− j
θ

(

1 +

Kθ
∑

m=0

smt−m

)

(‖ψ‖r2 + t−
K
θ |||ψ|||r2,K)

(3.16)

for t/2 < s < t. On the other hand, it follows from (3.13) that

∫ 1

0
(t− τs)

−N
θ

(

1
r1

− 1
q

)

−(Kθ+1)+ ℓ′−j
θ dτ ≤ (t− s)

−N
θ

(

1
r1

− 1
q

) ∫ 1

0
(t− τs)−(Kθ+1)+ ℓ′−j

θ dτ

≤ C(t− s)
−N

θ

(

1
r1

− 1
q

)

− j
θ s−1t−Kθ+

ℓ′

θ

for 0 < s < t. This together with (3.16) implies that

t−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t, s)ψ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(t− s)
−N

θ

(

1
r1

− 1
q

)

− j
θ (‖ψ‖r1 + t−

K
θ |||ψ|||r1,K)

+ Ct
−N

θ

(

1
r2

− 1
q

)

(t− s)−
j
θ (‖ψ‖r2 + t−

K
θ |||ψ|||r2 ,K)

(3.17)

for t/2 < s < t. Similarly, by (1.10) and (3.14) we have

t−
ℓ
θ |x|ℓ|∇jT (x, y, t, s)| ≤ CsKθ+1

(

1 + t−
ℓ′

θ |x− y|ℓ
′
+ t−

K
θ |y|K

)

×

∫ 1

0
|(∂Kθ+1

t ∇jGθ)(x− y, t− τs)| dτ
(3.18)
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for 0 < s < t. It follows from the Young inequality, (2.2), and (3.18) that

t−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t, s)ψ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ CsKθ+1

∫ 1

0
‖(∂Kθ+1

t ∇jGθ)(t− τs)‖r′1‖ψ‖r1 dτ

+ CsKθ+1t−
ℓ′

θ

∫ 1

0
|||(∂Kθ+1

t ∇jGθ)(t− τs)|||r′1,ℓ′‖ψ‖r1 dτ

+CsKθ+1t−
K
θ

∫ 1

0
‖(∂Kθ+1

t ∇jGθ)(t− τs)‖r′1 |||ψ|||r1 ,K dτ

≤ CsKθ+1‖ψ‖r1

∫ 1

0
(t− τs)

−N
θ

(

1
r1

− 1
q

)

−(Kθ+1)− j
θ dτ

+ CsKθ+1t−
ℓ′

θ ‖ψ‖r1

∫ 1

0
(t− τs)

−N
θ

(

1
r1

− 1
q

)

−(Kθ+1)+ ℓ′−j
θ dτ

+CsKθ+1t−
K
θ |||ψ|||r1,K

∫ 1

0
(t− τs)

−N
θ

(

1
r1

− 1
q

)

−(Kθ+1)− j
θ dτ

≤ CsKθ+1t
−N

θ

(

1
r1

− 1
q

)

−(Kθ+1)
(t− s)−

j
θ

{

‖ψ‖r1 + t−
K
θ |||ψ|||r1,K

}

(3.19)

for 0 < s ≤ t/2.
We prove assertion (a). Since (t + 1)/2 ≤ 1 for 0 < t ≤ 1, by (3.17) with ψ = ϕ and

r1 = r2 = 1 we have

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, 1)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct
−N

θ

(

1− 1
q

)

− j
θ (‖ϕ‖1 + (t+ 1)−

K
θ |||ϕ|||1,K)

≤ Ct
−N

θ

(

1− 1
q

)

− j
θ ‖ϕ‖L1

K

(3.20)

for 0 < t ≤ 1. On the other hand, since (t+ 1)/2 > 1 for t > 1 by (3.19) with ψ = ϕ and
r1 = 1 we see that

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, 1)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(t+ 1)
−N

θ

(

1− 1
q

)

−(Kθ+1)
t−

j
θ

{

‖ϕ‖1 + (t+ 1)−
K
θ |||ϕ|||1,K

}

≤ Ct
−N

θ

(

1− 1
q

)

− j
θ (t+ 1)−(Kθ+1)‖ϕ‖L1

K

for t > 1. This together with θ(Kθ + 1) > K implies (3.10) and

t
N
θ

(

1− 1
q

)

+ j
θ (t+ 1)

K−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

T (·, y, t+ 1, 1)ϕ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C‖ϕ‖L1
K

(3.21)
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for t > 1. Combining (3.20) and (3.21), we obtain (3.9) and (3.10). Thus assertion (a)
follows.

We prove assertion (b). Since (t + 1)/2 < s + 1 for t/2 < s < t, by (3.13) and (3.17)
with ψ = f(s) and (r1, r2) = (q, 1) we have

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t + 1, s+ 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(t− s)−
j
θ (‖f(s)‖q + (t+ 1)−

K
θ |||f(s)|||q,K)

+ Ct
−N

θ

(

1− 1
q

)

(t− s)−
j
θ (‖f(s)‖1 + (t+ 1)−

K
θ |||f(s)|||1,K)

for t/2 < s < t. This together with Lemma 3.1 implies that

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C

(

s
−N

θ

(

1− 1
q

)

+ t
−N

θ

(

1− 1
q

))

(

(s+ 1)−
K
θ + (t+ 1)−

K
θ

)

(t− s)−
j
θEK,q[f ](s)

≤ Ct
−N

θ

(

1− 1
q

)

(t+ 1)−
K
θ (t− s)−

j
θEK,q[f ](s)

(3.22)

for t/2 < s < t. On the other hand, by (3.13) and (3.17) with ψ = f(s) and r1 = r2 = 1
we have

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t + 1, s+ 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct
−N

θ

(

1− 1
q

)

(t− s)−
j
θ (‖f(s)‖1 + (t+ 1)−

K
θ |||f(s)|||1,K)

for 0 < s ≤ t/2 with (t+ 1)/2 < s+ 1. This together with Lemma 3.1 implies that

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct
−N

θ

(

1− 1
q

)

(

(s+ 1)−
K
θ + (t+ 1)−

K
θ

)

(t− s)−
j
θEK,q[f ](s)

≤ Ct
−N

θ

(

1− 1
q

)

(t+ 1)−
K
θ (t− s)−

j
θEK,q[f ](s)

(3.23)

for 0 < s ≤ t/2 with (t+ 1)/2 < s + 1. Furthermore, by (3.19) with ψ = f(s) and r1 = 1
we have

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t + 1, s+ 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(s+ 1)Kθ+1(t+ 1)
−N

θ

(

1− 1
q

)

−(Kθ+1)
(t− s)−

j
θ×

×

{

‖f(s)‖1 + (t+ 1)−
K
θ |||f(s)|||1,K

}
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for 0 < s ≤ t/2 with (t+ 1)/2 ≥ s+ 1. This together with Lemma 3.1 again implies that

(t+ 1)−
ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ Ct
−N

θ

(

1− 1
q

)

(s+ 1)Kθ+1(t+ 1)−(Kθ+1)
(

(s+ 1)−
K
θ + (t+ 1)−

K
θ

)

×

× (t− s)−
j
θEK,q[f ](s)

≤ Ct
−N

θ

(

1− 1
q

)

(s+ 1)Kθ+1−K
θ (t+ 1)−(Kθ+1)(t− s)−

j
θEK,q[f ](s)

(3.24)

for 0 < s ≤ t/2 with (t+ 1)/2 ≥ s + 1. Then, by (3.24), for any T > 0, we observe from
θ(Kθ + 1) > K that

lim
t→∞

t
N
θ

(

1− 1
q

)

+ j
θ (t+ 1)

K−ℓ
θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

= 0 (3.25)

for 0 < s < T . Furthermore, by (3.22), (3.23), and (3.24) we see that

t
N
θ

(

1− 1
q

)

(t+ 1)
K−ℓ

θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∇jT (·, y, t+ 1, s + 1)f(y, s) dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,ℓ

≤ C(t− s)−
j
θEK,q[f ](s)

(3.26)

for 0 < s < t. This implies (3.11). Furthermore, by (3.25) and (3.26) we apply the
Lebesgue dominated convergence theorem to obtain (3.12). Thus assertion (b) follows.
The proof of Lemma 3.4 is complete. ✷

Now we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u and w be as in Theorem 1.1. Then, by (1.11) and (1.12)
we have

u(x, t) − w(x, t)

=

∫

RN

T (x, y, t+ 1, 1)ϕ(y) dy +

∫ t

0

∫

RN

T (x, y, t+ 1, s + 1)f(y, s) dy ds

+

Kθ
∑

m=0

(−1)m

m!

∫

RN

Sm
K (x, y, t+ 1)ϕ(y) dy

+

Kθ
∑

m=0

(−1)m

m!

∫ t

0

∫

RN

(s + 1)mSm
K (x, y, t+ 1)f(y, s) dy ds.

We apply Lemmata 3.2, 3.3, and 3.4 to obtain (1.6) and (1.8). Then we easily see that
(1.9) holds. Thus Theorem 1.1 follows. ✷

Proof of Corollary 1.1. By property (G)-(i) we see that gα,m(0) ∈ Lq
K is equivalent to

gα,m(t) ∈ Lq
K for t ≥ 0. Then Corollary 1.1 follows from Theorem 1.1. ✷
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Remark 3.1 (i) The arguments of [11,12,15] are in the frameworks of Lq and L1
K . On the

other hand, the arguments in the proof of Theorem 1.1 are in the framework of Lq
K . This

improvement enables us to obtain HOAE of solutions to the Cauchy problem for nonlinear

fractional diffusion equations such as (1.2). See Section 5.

(ii) Let 0 ≤ K < θ and ℓ = 0. By similar arguments to those in the proof of Theorem 1.1
we see that Theorem 1.1 holds with EK,q[f ] replaced by

E′
K,q[f ](t) := (t+ 1)

K
θ

[

t
N
θ

(

1− 1
q

)

‖f(t)‖q + ‖f(t)‖1

]

+ |||f(t)|||1,K .

See also [14, Theorem 1.2].

4 Fractional convection-diffusion equation

In this section we consider the Cauchy problem for a convection type inhomogeneous
fractional diffusion equation

∂tu+ (−∆)
θ
2u = divf(x, t) in R

N × (0,∞), u(x, 0) = ϕ(x) in R
N , (4.1)

where 1 < θ < 2, ϕ ∈ L1
K with K ≥ 0, and f = (f1, . . . , fN ) is a vector-valued function in

R
N × (0,∞). Similarly to Theorem 1.1, we have:

Theorem 4.1 Let N ≥ 1, 1 < θ < 2, K ≥ 0, and 1 ≤ q ≤ ∞. Let f = (f1, . . . , fN ) be a

vector-valued measurable function in R
N ×(0,∞) satisfying (1.5). Let u ∈ C(RN ×(0,∞))

be a solution to problem (4.1), that is, u satisfies

u(x, t) =

∫

RN

Gθ(x− y, t)ϕ(y) dy +

∫ t

0

∫

RN

∇Gθ(x− y, t− s) · f(y, s) dy ds

for (x, t) ∈ R
N × (0,∞), where ϕ ∈ L1

K . Let 0 ≤ ℓ ≤ K. Then

sup
0<t<τ

t
N
θ

(

1− 1
q

)

|||u(t)− z(t)|||q,ℓ <∞ for τ > 0, (4.2)

where

z(x, t) :=

Kθ
∑

m=0

∑

|α|≤K

Mα(ϕ) gα,m(x, t)

+

Kθ
∑

m=0

∑

|α|≤K

N
∑

j=1

(
∫ t

0
(s+ 1)mMα(fj(s)) ds

)

∂xjgα,m(x, t).

Furthermore, there exists C > 0 such that, for any ε > 0 and T > 0,

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − z(t)|||q,ℓ ≤ εt−

K
θ + Ct−

K
θ

∫ t

T
(t− s)−

1
θEK,q[f ](s) ds (4.3)

holds for large enough t > 0.
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Proof of Theorem 4.1. Let u and z be as in Theorem 4.1. Then, similarly to (1.11)
and (1.12), we have

u(x, t)− z(x, t)

=

∫

RN

T (x, y, t+ 1, 1)ϕ(y) dy +

∫ t

0

∫

RN

∇T (x, y, t+ 1, s + 1) · f(y, s) dy ds

+

Kθ
∑

m=0

(−1)m

m!

∫

RN

Sm
K (x, y, t+ 1)ϕ(y) dy

+

Kθ
∑

m=0

(−1)m

m!

∫ t

0

∫

RN

(s+ 1)m∇Sm
K (x, y, t+ 1) · f(y, s) dy ds.

Similarly to the proof of Theorem 1.1, we apply Lemmata 3.2, 3.3, and 3.4 to obtain (4.2)
and (4.3). Thus Theorem 4.1 follows. ✷

5 Nonlinear fractional diffusion equation

Let N ≥ 1, 0 < θ < 2, and F ∈ C(RN × [0,∞) × R). Consider the Cauchy problem for a
nonlinear fractional diffusion equation

∂tu+ (−∆)
θ
2u = F (x, t, u) in R

N × (0,∞), u(x, 0) = ϕ(x) in R
N , (P)

where ϕ ∈ L1
K ∩ L∞ for some K ≥ 0 under the following condition (F):

(F) there exists p > 1 + θ/N such that

|F (x, t, v) − F (x, t, w)| ≤ C(|v|+ |w|)p−1|v − w|

for (x, t, v, w) ∈ R
N × [0,∞) × R

2.

Let u ∈ C(RN × (0,∞)) be a solution to problem (P) that is, u satisfies

u(x, t) =
[

e−t(−∆)θ/2ϕ
]

(x) +

∫ t

0

[

e−(t−s)(−∆)θ/2F (·, s, u(·, s))
]

(x) ds

for (x, t) ∈ R
N × (0,∞). In this section, under condition (1.13), we obtain HOAE of the

solution u. Theorem 5.1 is an application of Theorem 1.1.

Theorem 5.1 Let N ≥ 1, 0 < θ < 2, and ϕ ∈ L1
K with K ≥ 0. Assume condition (F).

Let u ∈ C(RN × (0,∞)) be a solution to problem (P). Set

F (x, t) := F (x, t, u(x, t)), (x, t) ∈ R
N × (0,∞).

(a) Assume that ϕ ∈ L∞
k with k = min{N + θ,K}. Let u satisfy (1.13). Then

sup
t>0

(t+ 1)
N
q

(

1− 1
q

)

− ℓ
θ |||u(t)|||q,ℓ <∞ (5.1)

for 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K with ℓ < θ +N(1− 1/q).
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(b) Let u satisfy (5.1). If p(N + θ) > K +N , then

EK,q[F ](t) ≤ C(t+ 1)
K
θ
−Ap , t > 0, (5.2)

for 1 ≤ q ≤ ∞, where Ap := N(p− 1)/θ > 1.

(c) Assume that (5.2) holds. Set

U0(x, t) :=

Kθ
∑

m=0

∑

|α|≤K

(

Mα(ϕ) +

∫ t

0
(s+ 1)mMα(F (s)) ds

)

gα,m(x, t). (5.3)

Then

sup
t>0

t
N
θ

(

1− 1
q

)

(t+ 1)−
ℓ
θ |||u(t)− U0(t)|||q,ℓ <∞ (5.4)

and

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)−U0(t)|||q,ℓ =







o(t−
K
θ ) +O(t−Ap+1) if Ap − 1 6= K/θ,

O(t−
K
θ log t) if Ap − 1 = K/θ,

(5.5)

as t→ ∞, for 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K.

Remark 5.1 Let N ≥ 1, 0 < θ < 2, and ϕ ∈ L∞. Assume condition (F).

(i) There exists δ > 0 such that, if ‖ϕ‖LN(p−1)/θ < δ, then problem (P) possesses a

solution u ∈ C(RN × (0,∞)) satisfying (1.13). See [13, 16,20].

(ii) Let F (x, t, u) := λ|u|p−1u with λ ≤ 0. Then the comparison principle implies that

|u(x, t)| ≤
[

e−t(−∆)θ/2 |ϕ|
]

(x), (x, t) ∈ R
N × (0,∞).

This together with Lemma 2.1 implies (1.13).

We prepare the following lemma for the proof of Theorem 5.1.

Lemma 5.1 Assume condition (F). Let K ≥ 0. Let v1 and v2 be measurable functions in

R
N × (0,∞) and h in (0,∞) such that

(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ |||vi(t)|||q,ℓ <∞, i = 1, 2,

(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ |||v1(t)− v2(t)|||q,ℓ ≤ h(t),

(5.6)

for t > 0, 1 ≤ q ≤ ∞, and 0 ≤ ℓ ≤ K with ℓ < θ +N(1− 1/q). Assume that p(N + θ) >
K +N . Then

EK,q[F (v1)− F (v2)](t) ≤ C(t+ 1)−Ap+
K
θ h(t), t > 0.
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Proof. Let 0 ≤ ℓ ≤ K and 1 ≤ q ≤ ∞. Since p(N + θ) > K +N , we find ℓ1, ℓ2 ≥ 0 such
that

0 ≤ ℓ1 < θ +N, 0 ≤ ℓ2 < θ +N

(

1−
1

q

)

, ℓ = (p− 1)ℓ1 + ℓ2.

Then, by condition (F) and (5.6) we see that

(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ |||F (v1(s))− F (v2(s))|||q,ℓ

≤ C(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ (|||v1(t)|||

p−1
∞,ℓ1

+ |||v2(t)|||
p−1
∞,ℓ1

)|||v1(t)− v2(t)|||q,ℓ2

≤ C(t+ 1)
N
θ

(

1− 1
q

)

− ℓ
θ
−N(p−1)

θ
+

(p−1)ℓ1
θ |||v1(t)− v2(t)|||q,ℓ2

≤ C(t+ 1)−
ℓ
θ
−

N(p−1)
θ

+
(p−1)ℓ1

θ
+

ℓ2
θ h(t) = C(t+ 1)−Aph(t), t > 0.

Thus Lemma 5.1 follows. ✷

Proof of Theorem 5.1. We prove assertion (a). Since Ap = N(p − 1)/θ > 1, the
comparison principle together with condition (F) and (1.13) implies that

|u(x, t)| ≤ exp

(

C

∫ t

0
(s+ 1)−Ap ds

)

[

e−t(−∆)θ/2 |ϕ|
]

(x) ≤ C
[

e−t(−∆)θ/2 |ϕ|
]

(x)

for (x, t) ∈ R
N×(0,∞). This together with Lemma 2.1 implies assertion (a). Furthermore,

assertion (b) follows from Lemma 5.1 with v1 = u and v2 = 0. On the other hand, by
Theorem 1.1 with (5.2) we obtain (5.4). Furthermore, for any ε > 0 and T > 0, we have

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − U0(t)|||q,ℓ ≤ εt−

K
θ + Ct−

K
θ

∫ t

T
(s+ 1)

K
θ
−Ap ds

for large enough t > 0. This implies (5.5). Thus assertion (c) follows. The proof of
Theorem 5.1 is complete. ✷

As a corollary of Theorem 5.1, we have:

Corollary 5.1 Let N ≥ 1, 0 < θ < 2, and ϕ ∈ L1
K with K ≥ 0. Assume condition (F)

and

p > 1 +
2K + θ

N
. (5.7)

Let u ∈ C(RN × (0,∞)) be a solution to problem (P) and satisfy (5.1). Then there exists

a set {Mα,m} ⊂ R, where m ∈ {0, . . . ,Kθ} and α ∈ M with |α| ≤ K, such that

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)− U∗(t)|||q,ℓ = o

(

t−
K
θ

)

as t→ ∞ (5.8)

for 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K, where

U∗(x, t) :=

Kθ
∑

m=0

∑

|α|≤K

Mα,m gα,m(x, t). (5.9)
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Proof. It follows from (5.7) that

p(N + θ) > K +N, Ap − 1 =
N

θ
(p − 1)− 1 >

2K

θ
. (5.10)

By Theorem 5.1 we have

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − U0(t)|||q,ℓ = o

(

t−
K
θ

)

as t→ ∞ (5.11)

for 1 ≤ q ≤ ∞ and 1 ≤ ℓ ≤ K. Here U0 is as in Theorem 5.1.
Let m ∈ {0, . . . ,Kθ} and α ∈ M with |α| ≤ K. Assertion (b) of Theorem 5.1 implies

that
|Mα(F (t))| ≤ C(t+ 1)−Ap+

|α|
θ , t > 0. (5.12)

Then, by (5.10) we find Mα,m ∈ R such that

Mα,0 =Mα(ϕ) +

∫ ∞

0
Mα(F (s)) ds, Mα,m =

∫ ∞

0
(s+ 1)mMα(F (s)) ds (m ≥ 1).

Furthermore, by (2.2), (5.3), (5.9), (5.10), and (5.12) we have

t
N
θ

(

1− 1
q

)

− ℓ
θ |||U0(t)− U∗(t)||q,ℓ

≤ t
N
θ

(

1− 1
q

)

− ℓ
θ

Kθ
∑

m=0

∑

|α|≤K

(
∫ ∞

t
(s+ 1)m|Mα(F (s))| ds

)

|||gα,m(t)|||q,ℓ

≤ C

Kθ
∑

m=0

∑

|α|≤K

(t+ 1)−m− |α|
θ

∫ ∞

t
(s+ 1)m(s + 1)−Ap+

|α|
θ ds ≤ Ct−Ap+1, t ≥ 1.

This together with (5.10) and (5.11) implies (5.8). Thus Corollary 5.1 follows. ✷

Combining Theorems 1.1 and 5.1, we obtain a refined asymptotic expansion of the
solution to problem (P).

Theorem 5.2 Assume the same conditions as in Theorem 5.1. Let u satisfy (5.1). For

n = 1, 2, . . . , define a function Un = Un(x, t) in R
N × (0,∞) inductively by

Un(x, t) := U0(x, t) +

∫ t

0

[

e−(t−s)(−∆)θ/2Fn−1(s)
]

(x) ds

−

Kθ
∑

m=0

∑

|α|≤K

(
∫ t

0
(s+ 1)mMα(Fn−1(s)) ds

)

gα,m(x, t),

where U0 is as in Theorem 5.1 and Fn−1(x, t) := F (x, t, Un−1(x, t)). Then

sup
t>0

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − Un(t)|||q,ℓ <∞ (5.13)

22



and

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)− Un(t)|||q,ℓ

=







o(t−
K
θ ) +O(t−(n+1)(Ap−1)) if (n+ 1)(Ap − 1) 6= K/θ,

O(t−
K
θ log t) if (n+ 1)(Ap − 1) = K/θ,

(5.14)

as t→ ∞, for 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K.

Proof. Let K ≥ 0. By Theorem 5.1 we have (5.13) and (5.14) with n = 0. Assume that
(5.13) and (5.14) hold for some n = k ∈ {0, 1, . . . }. Then, by (5.1) and (5.13) with n = k
we have

sup
t>0

t
N
θ

(

1− 1
q

)

− ℓ
θ |||Uk(t)|||q,ℓ

≤ sup
t>0

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) − Uk(t)|||q,ℓ + sup

t>0
t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t)|||q,ℓ <∞

(5.15)

for 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K with ℓ < θ+N(1− 1/q). On the other hand, it follows that

u(x, t)−

∫ t

0

[

e−(t−s)(−∆)θ/2Fk(s)
]

(x) ds

=
[

e−t(−∆)θ/2ϕ
]

(x) +

∫ t

0
e−(t−s)(−∆)θ/2 [F (s)− Fk(s)] ds

(5.16)

for (x, t) ∈ R
N × (0,∞). By (5.2) and (5.15) we apply Lemma 5.1 to obtain

EK,q[F − Fk] ∈ L
∞(0, τ) for τ > 0

and

EK,q[F − Fk](t) =















o
(

t−Ap
)

if (k + 1)(Ap − 1) < K/θ,

O
(

t−Ap log t
)

if (k + 1)(Ap − 1) = K/θ,

O
(

t−Ap+
K
θ
−(k+1)(Ap−1)

)

if (k + 1)(Ap − 1) > K/θ,

as t→ ∞. Then we apply Theorem 1.1 to (5.16), namely f(x, t) = F (x, t)− Fk(x, t), and
obtain (5.13) and (5.14) with n = k + 1. Therefore, by induction we obtain (5.13) and
(5.14) for n = 0, 1, 2, . . . . Thus Theorem 5.2 follows. ✷

Similarly to the proof of Theorem 5.2 for the case n = 1, we prove Theorem 1.2.

Proof of Theorem 1.2. Let 1 ≤ q ≤ ∞ and 0 ≤ ℓ ≤ K with ℓ < θ + N(1 − 1/q).
Assume p > 1+ θ/N and put F (u(x, t)) := λ|u(x, t)|p−1u(x, t). Assertion (a) follows from
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the similar argument to that of the proof of Corollary 5.1. Furthermore, for any σ > 0,
by (2.2) and (5.12) we have

t
N
θ

(

1− 1
q

)

− ℓ
θ |||U0(t)−M∗g(t)|||q,ℓ

≤ C

∫ ∞

t
|M0(F (s))| ds + C

∑

1≤|α|≤K

t−
|α|
θ |Mα(ϕ)| + C

Kθ
∑

m=1

∑

|α|≤K

t−m−
|α|
θ |Mα(ϕ)|

+ C

Kθ
∑

m=1

∑

|α|≤K

t−m− |α|
θ

∫ t

0
(s+ 1)m|Mα(F (s))| ds

+C
∑

1≤|α|≤K

t−
|α|
θ

∫ t

0
|Mα(F (s))| ds

= O
(

t−(Ap−1)
)

+O(t−
1
θ ) +O(t−1) +O

(

t−1

∫ t

1
s1−Ap ds

)

+O

(

t−
1
θ

∫ t

1
s

1
θ
−Ap ds

)

= O
(

t−(Ap−1)+σ
)

+O(t−1) +O(t−
1
θ ) = O(hσ(t))

as t→ ∞. This together with (5.5) implies that

t
N
θ

(

1− 1
q

)

− ℓ
θ |||u(t) −M∗g(t)|||q,ℓ = o

(

t−
K
θ

)

+O(hσ(t)) as t→ ∞. (5.17)

Furthermore, combining Lemma 5.1 and (5.17), we have

EK,q[F (u)− F∞](t) = o
(

t−Ap−
K
θ

)

+O
(

t−Aphσ(t)
)

(5.18)

as t→ ∞. On the other hand, it follows that

w(x, t) := u(x, t)−

∫ t

0
e−(t−s)(−∆)

θ
2 F∞(s) ds

=

[

e−t(−∆)
θ
2 ϕ

]

(x) +

∫ t

0
e−(t−s)(−∆)

θ
2 [F (u(s)) − F∞(s)] ds.

Applying Theorem 1.1, for any ε > 0 and T > 0, we obtain

t
N
θ

(

1− 1
q

)

− ℓ
θ |||w(t) − w∗(t)|||q,ℓ

≤ εt−
K
θ + C∗t

−K
θ

∫ t

T
s

K
θ EK,q[F (u)− F∞](s) ds

(5.19)

as t→ ∞, where C∗ is a positive constant independent of ε and T and

w∗(x, t) =

Kθ
∑

m=0

∑

|α|≤K

(

Mα(ϕ) +

∫ t

0
(s+ 1)mMα(F (u(s)) − F∞(s)) ds

)

gα,m(x, t).
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Since ε is arbitrary, by (5.18) and (5.19) we see that

t
N
θ

(

1− 1
q

)

− ℓ
θ |||w(t) − w∗(t)|||q,ℓ = o

(

t−
K
θ

)

+O

(

t−
K
θ

∫ t

T
s

K
θ
−Aphσ(s) ds

)

as t→ ∞. This implies assertion (b). Thus Theorem 1.2 follows. ✷

Remark 5.2 Let u be a solution to the Cauchy problem for a nonlinear fractional diffusion

equation and possess the mass conservation law, that is,
∫

RN u(x, t) dx is independent of

t. The mass conservation law has often played an important role in the study of HOAE

of solutions to various nonlinear problems, see e.g. [5,6,9,18,21–26]. Then the arguments

in the proof of Theorem 4.1 are valid for the Cauchy problem.
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