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Abstract

In this paper, as an improvement of the paper [K. Ishige, T. Kawakami and H.
Michihisa, STAM J. Math. Anal. 49 (2017) pp. 2167-2190], we obtain the higher order
asymptotic expansions of the large time behavior of the solution to the Cauchy problem
for inhomogeneous fractional diffusion equations and nonlinear fractional diffusion
equations.
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1 Introduction

This paper is concerned with the large time behavior of a solution to the Cauchy problem
for an inhomogeneous fractional diffusion equation
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du+ (—A)2u = f(x,t) in RY x(0,00), u(x,0)=¢(x) in RY, (1.1)

where N > 1, 9, := 0/0t, 0 < 0 < 2 and
€ Ly = L'RY, (14 |z))% dz) with K >0.

Here (—A)G/ 2 is the fractional power of the Laplace operator. Inhomogeneous fractional
diffusion equation (II]) appears in the study of various nonlinear problems with anoma-
lous diffusion, the Laplace equation with a dynamical boundary condition, and so on.
Under suitable integrability conditions on the inhomogeneous term f, the solution u to
problem (I.T]) behaves like a suitable multiple of the fundamental solution Gy to the linear
fractional diffusion equation

O+ (~A)iv=0 in RY x (0,00)

as t — oco. In this paper we obtain the higher order asymptotic expansions (HOAE) of the
large time behavior of the solution u. Furthermore, we study the precise description of the
large time behavior of solutions to the Cauchy problem for nonlinear fractional diffusion
equations such as
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o+ (—A)2u = AuPlu in RY x(0,00), wu(z,0)=¢(x) in RY, (1.2)

where A € R, p > 1 and p € L}( with K > 0. This paper is an improvement of [I5] and it
corresponds a fractional version of the papers [11L121[14].

The large time behavior of solutions to nonlinear parabolic equations has been studied
extensively in many papers by various methods. Here we just refer to the papers [I],[4]

[THI5L 17, 21H26], which are closely related to this paper. Among others, in [111[12][14],
HOAE of solutions behaving like suitable multiples of the Gauss kernel have already been

well established. The property that
Je*Lk c Lk for K >0
>0

plays an important role in [I1,[12114] and it follows from the exponential decay of the
Gauss kernel at the space infinity. For fractional diffusion equations, if 0 < K < 6, then

Je V" Lk c Lk (1.3)
t>0

holds and the arguments in [IT[121[T4] are also applicable to fractional diffusion equations.
However, if K > 6, then property (3] fails. This fact prevents to establish analogous



asymptotic expansions of solutions to the case of § = 2. In [I5] the authors of this
paper and Michihisa studied a mechanism for property (I3]) to fail in the case of K > 0,
and obtained HOAE of e_(_A)g/Qcp. This argument is applicable to the study of HOAE of
solutions to inhomogeneous fractional diffusion equations and nonlinear fractional diffusion
equations, however HOAE of [15] to problem (1) do not have refined forms.

In this paper we improve and refine arguments in [I5] by taking into an account of
the Taylor expansion of the kernel GGy with respect to both of the space and the time
variables, and obtain HOAE of solutions to inhomogeneous fractional diffusion equations
and nonlinear fractional parabolic equations. Our arguments also reveal a mechanism for
the solution u to problem (IJ]) to break the property that u(t) € L for ¢t > 0.

We introduce some notations. Set Ny := NU{0}. For any k£ > 0, let [k] € No = NU{0}
be such that k — 1 < [k] < k. Let V := (9/0x1,...,0/0zy). For any multi-index
a € M =N}, set

5 Mot ao e TTao o0 o
|Oé| = (e7R al = HCYZ', Tr = H':U’l l, 8:2 = W
i=1 i=1 j 1 N

For any o = (aq,...,an), B8 = (B1,...,06n) € M, we say a < [ if a; < ; for all
i€{l,...,N}. Let 1 < g<ooand K >0. Let || - ||, be the usual norm of L7 := LI(RY).
Set

1 lllgc = I frcllg with  fre(x) = |a|™ f(2).
Let

feLi={fert: |fluy <o}, where [fly = Iflly+1lIflllgx.

For any f € L} and o € M with |a| < K, set

My (f) = /]RN xf(x) dx.

We are ready to state our main results on the asymptotic expansions of solutions to
inhomogeneous fractional diffusion equations. In what follows, set Ky := [K/f]|. Further-
more, set

(1)t
alm!

for (x,t) € RN x (0,00), where a € M and m € Nj.

Theorem 1.1 Let N >1,0<0<2,0</(< K, and 1< g < oo. LetgpeL}( and f be

a measurable function in RN x (0,00) such that

Exglf] € Lige(0,00), (1.4)

ga,m(fnat) = (07" 07 Go)(x,t + 1)

where

17 (1-3) 1 @)lg + (1 (@)l
(1.5)

7 D @Ol + IOl for ¢ > 0.
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Let u € C(RY x (0,00)) be a solution to problem (L)), that is, u satisfies
t
u(@,t) = [ Golz—y,t)p(y)dy + / Go(x —y,t —s)f(y,5) dyds
RN 0 JRN
for (z,t) € RN x (0,00). Then
E(l_l)
sup t7\ d|||lu(t) —w(t)|||ge < o0 for T >0, (1.6)
o<t<t
where
Ky ¢
w(at)=Y Y {Ma(w) +/0 (s + 1)mMa(f(8))d8}9a,m($7t)- (1.7)
m=0 |a|<K

Furthermore, there exists C' > 0 such that, for any e >0 and T > 0,
N (1_ l) _£ K K t
U ute) 0l <ot F 4 0 [ Byl ds (18)
T
holds for large enough t > 0. In particular, if

thmmww<w

then

tim 5 (73T ) — wib)lfl = 0. (1.9)

t—o00

Theorem [[T] corresponds to [I4, Theorems 1.1, 1.2] for # = 2 and it is an improvement
of [15, Theorem 3.1 (ii)]. Our asymptotic profile w has a pretty simpler form than that
of [I5]. (See Remarks Bl and 5.21) We also remark that, under condition (IL4]), both of
u(-,t) and w(-,t) do not necessarily belong to L7, while u(t) — w(t) € L]. In other words,
the function w may break the property that u(t) € Lg for ¢t > 0. Furthermore, we have:

Corollary 1.1 Assume the same conditions as in Theorem 1. Let u € C(RY x (0,00))
be a solution to problem (LII). Then there exists R > 0 such that

ut)eSh+ Y damGam(,t) : h € L with || 2 < R, {aam} C [-R, R]
(a;m)eA,

for t >0, where A}, := {(a,m) € M x Ny : gam(-,0) & L%}

We explain the idea of the proof of Theorem [[LT1 We improve and refine arguments in
the previous papers [11L[12L[T41[15] to obtain HOEA of the solution u to problem (LJ), in
particular, the integral term

t
L/ Golw —y,t — $)f(y, ) dy ds.
0 RN
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In [15], following the arguments in [I11[12,[14], the authors of this paper and Michihisa
expanded the integral kernel Gy(x —y,t — s) by the Taylor expansions with respect to the
space derivatives of Gg(z,t —s). Then the slow decay of Gy(z,t) makes difficult to obtain
refined HOAE of the solution u to problem (II]). In this paper we expand the integral
kernel Gy(z — y,t — s) by the Taylor expansions with respect to both of space and time
variable derivatives of Gy(x,t). (This is the same sprit as in [9].) Indeed, we introduce
the following integral kernels by the use of the Taylor expansions of Gy:

—_ 1)\l
S . ) = O Co)e — 1) — Y I 0P oG e,

o] <2
1 1 ola+1 .
— W/0 (1-— T)[f}m(at Go)(xz — Ty, t) dr,
. (1.10)
-1 m m
T($7y7t73) = GG(x_yat_S)_ 2:0 m) (at G@)(‘T_yat)s
1 1 8K0+1
= K—g! /0 (1— T)KQT'K@“ Go(x —y,t —7s)dr,
form,yGRN and 0 < s < t, where 0 </ < K and m € Ny. Then
G@(gj -V, t— S)
e (D™ .
=D O"Go)(x —y. )" + T(a,y.t.5)
m=0 ’
Ky Ky
—1)led+m —1)m
- CO T apocn e s + Y C0 s ey 5 4 Tleits)
m=0 |a|<f o m=0 ’
Furthermore,
e (=D
R(z,y,t,s):=T(x,y,t,s)+ Z p_ S (x,y,t)s™
m=0 :
Ky ( 1)|oc\+m (111)
=Golr—yt—s)— > > o (007 Go) (, 1)y ™
m=0 |a|<K o

Then it follows from (L7) that

u(x,t) —w(z,t) = / R(z,y,t+1,1)p(y) dy
RN (1.12)

t
+// R(z,y,t+ 1,5+ 1)f(y,s)dyds.
0 JRN



Thanks to the decay of the derivatives of Gy and (L.I0]), we see that

T(‘Tayat7 S) = O(‘.’I’ - y‘_N_K_E) as "T - y’ — 00,
Si(@,y,t) = O(Ja] ™ 757%) as z| = oo,
for some ¢ > 0. These decay of the integral kernels at the space infinity enables us to

establish HOAE of solutions to problem (II]) and to obtain Theorem[[Jl These arguments
require delicate integral estimates on the integral kernels &;* and 7.

Theorem [[LTlis applicable to problem (L2Z)) and it gives asymptotic profiles of solutions
to problem ([2)) as a linear combination of the derivatives of Gy (see Theorem [B.1]).
Furthermore, taking a suitable approximation of the nonlinear term in problem (L.2)), we
obtain refined asymptotic expansions of the solution to problem (1) (see Theorem [.2)).
Here we state the following result, which is a variation of Theorem

Theorem 1.2 Let N > 1, 0 < 0 < 2, A € R, and ¢ € L}(QLOO with K > 0. Let
u € C(RN x (0,00)) be a solution to problem ([L2) with p > 1+ 0/N and satisfy

sup (t + 1) 7 [[u(t)[|oc < . (1.13)
>0
Then there exists M, € R such that

M, := lim u(z,t) dx :/ o(x) da:—l—/ F(u(z,t))dxdt,
RN 0 JRN

t—o00 RN

where F(u(x,t)) = Mu(z,t)|P~ u(x,t).
Assume N(p+0) > N + K and ¢ € L° with k = min{N + 6, K}. Let 1 < g < oo.
Then

E<1_1>_£
Stulg(tJrl)e o [u(®)]]lg,e < oo,
>

where 0 <€ < K with 0 < /¢ <0+ N(1—1/q). Furthermore, for any o >0
ﬂ(l_l)_ﬁ
sup £ 7\ @) [Ju(t) — o(t)][lqe < oo,
t
N(1_1)_¢t t
to <1 ‘1) U |u(t) —v(t)||lqe =0 (t_%> +0 <t_%/ 8%_‘4’%0(3) ds> as t— oo,
1

where 0 < ¢ < K. Here

v(x,t) = Z Z ca,m(t)ga,m(x,t)—l—/o e IR B (s)ds,

m=0|a|<K
Cam(t) = Ma(i) + /0 (5 + 1) Ma(F(u(s)) — Fol(s)) ds,

Foo(,t) i= F (M,Gp(,t + 1)), ho(t) =t~ A=+ 441 445,
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Theorem corresponds to [12, Corollary 1.1] for § = 2. See Remark [B.1] for condi-
tion (LI3)).

The rest of this paper is organized as follows. In Section 2 we collect some properties of
the fundamental solution Gy. In Section 3 we obtain some estimates on the integral kernels
S (x,y,t) and T (x,y,t,s), and prove Theorem [[.Il and Corollary [LTI In Section 4 we
apply Theorem [L.1] to obtain HOAE of solutions to the Cauchy problem for a convection
type inhomogeneous fractional diffusion equation. In Section 5 we apply Theorem [T
to study HOAE of solutions to the Cauchy problem for nonlinear fractional diffusion
equations. Furthermore, we prove Theorem

2 Preliminaries

We recall some properties of the fundamental solution Gy = Gy(x,t), In what follows, by
the letter C' we denote generic positive constants (independent of z and ¢) and they may
have different values also within the same line.

Let 0 < 6 < 2. The fundamental solution Gy = Gy(x,t) is represented by

Go(z,t) = (277)_];7/ eiré el de,  (x,t) € RY x (0,00).
RN
Then we have:
(G) Gy = Gg(x,t) is a positive smooth function in RY x (0,00) with the following
properties:
(i) Go(z,t) = t_%Gg(t_%m, 1) for x € RN and t > 0;
(i) sup (1+ |z))NT0H(02Gp)(x,1)] < oo for o € M

zeRN
(i) Gg(+,1) is radially symmetric and decreasing with respect to r := |z|. Further-
more, o
liminf (1+ o)V (8)Gy)(z,1) > 0, j € N
|x| =400
(iv) Go(z,t) = Go(x —y,t —5)Gy(y,s)dy for z € RN and t > s > 0;
RN

(v) Go(z,t)dz =1 for t > 0.
RN

See [BLM]. (See also [I3L14L[19].)

Let a € M and m € Nj. Let
1
1<qg<oco, 0<L<Om' +|a|+N <1— 5) with  m’ := max{m, 1}.
It follows from (G)-(i), (ii) and [I5, Lemma 2.1] that

N+]|af

(O 02 Go) ()] < Ct= 0= (1 447 ) ¢

N+6m'+|af)
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for € RV and ¢ > 0. This implies that

N1y lel=t, . e
iﬁ%’”(l D 0702 Co) (D) e < oo (2.2)

Lemma 2.1 Let 1 < g¢g<r<oo, a € M, and m € Ny. Let
) 11

0<l<Om'+]a|+N|[-—-]). (2.3)
qg T

Then there exists C > 0 such that

N(L_1)yloly 4 ANG/2 £
() mH amare -1l < ot olly + Clllellloe

rl

for o € L} and t > 0. Here
T @)= | Gola—p ) dy,  (2.1) € RY x (0,00).
RN

Proof. Assume (23). It follows that
m o  —1(— / (A 1e]
2l o oge A o] (@) < © /R Nl =yl + ] 1@ 92 Go) @ — v Dl e (w)] dy
for (z,t) € RN x (0,00). The Young inequality together with ([22) implies that

m o —t(—A)%/
H'a dret=D"

rl
< C[107" 0 Go(t)lllp,ellellq + CllOF" 05 Go (@) lIpll el g,

<ot ()=o) o )

_ o]

7 elllg.e

for t > 0, where p € [1,00] with 1/r = 1/p+1/q—1. Then we obtain the desired inequality,
and the proof is complete. O

3 Proof of Theorem [I1.1]

In this section we prove Theorem [Tl We first prepare the following lemma.

Lemma 3.1 Assume the same conditions as in Theorem L1l Then
N({_1 K-t
t7 02+ 1) 1 Olllre < Brglf1(8), >0,

where 0 <L < K and 1 <r <gq.



Proof. Let 0 </ < K and 1 < g < oco. It follows that
t+ 1) 0zl <C+Ct+1) %2, (2,t) e RY x (0,00).
This together with (LH]) implies that
(t+ )73 Ollne < CUF Ol + O+ 17T @)l

<ClFOIRIFDOIT™ + CE+ V)T O &IF O
< Ct 7D (E4+1)79 Exe i[f1(t), t>0,

where 1/r = A+ (1 — \)/q. Thus Lemma BTl follows. O

Next we prove a lemma on the integral kernel S} (z,y,1).
Lemma 3.2 Let m e Np, 0 </ < K, 1 <q¢g< o0, and j =0,1.
(a) There exists C; > 0 such that

. N (1)
VISP g, Olllge < Cot™ 0 (7018 (4,0 € BY x (0, 00).

(b) There exists Cy > 0 such that

for o € LL..

1) S (o

_%<1_ 5
< Oyt a elll1,x, >0,
q,¢

- VISP (- y, t)p(y) dy

(c) Let p € LY. Then

i ¢35 (1 7)+m+ S5
t—o0

RN

=0.
q,t

Proof. Let 0 < /< K, 1< ¢ < o0, and j = 0,1. We prove assertion (a). Let z, y € R
and t > 0. It follows that

o=yl > [e] — gl > Jal/2 i |z > 2yl and 0<r<1.
Then, by (LI0) and 1)) we have
|V 8P (2, y, t)|

1
< [ ol @G @ - .61y ar
0

1 a1
< C|y|f/ |zl =5 ™ (1 F 0|2 — Ty dr
0

>—(N+9m’+[£]+j+1)

>—(N+0m’+[€]+j+1)

< Clylf (o[l =75 (1 +t—%%
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if |x| > 2|y|. Similarly, by (II0) we have
||V 87 (2, y, )] < [0 VI Go) (= y, 1) + C Y |l [(97" 05 VI Gi) (1) [y
o] <€

< @D IOV Go) @ =y, ) +C Y |yl || (97 02V Go) (w, 1)

laf <t

if |z| < 2Jy|. These together with ([Z2)) imply that

. N (1)
87 (g, )l < 60 (m8) B

Thus assertion (a) follows.
We prove assertions (b) and (c). Let p € LY, 0 < ¢ < K, and R > 0. It follows from

(CI0) that

'H [ IVISEC Do) dy
{ly|>R?}

q,t

< 'H /{ ) [Tl dy

+C Y

1<|o|<K

</ , V9SOl eloly)] dy
{\y|>R

q,t

H [ @ an .ol el dy
{ly|>R?}

q,t

vC 3 [ PTGyl o) dy

1<]a|<K |y\>R0}

This together with ([2.2]) and assertion (a) implies that

(1= 1)+mtg

‘ / L VISR y,t)lle(y)| dy
{ly|>R?}

gc(/{yl o) dy+ 3

t<|al<K {lyl=

K—¢
§C</ M(M) e(y)| dy
() o )
vy e (M>K_a'|y|'a|¢<y>|dy>
{(ly>RP} \Ro

I<|a|<K
_K—t Kt il ]
= Ct ™7 <(R o+ ) >/ L ¥ le)l dy.
{ly>R7}
10
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Similarly, by (L.I0) we have

[, skl

q,t

< C" (3.2)

1
N L I [ E O
yI<

q,¢

1
<c [ [EremE G~ ry )l (o)l dr dy
{lyl<r?}

On the other hand, it follows that
2“0 VI Gy ) (= 7y, )] = |2 + Tyl | (97 VIEIH T Gy) (2, 1))
< C(|2l" + [y (@ VIEIHHGY) (2, 1))

for 2, y € RN, ¢t > 0, and 7 € (0,1), where z := x — 7y. This together with (ZZ) implies
that

11OV GY) (- — 7y, 1) l]g.0

<@ VG ) ()]l + yI N[0 VI Gy) ()] (3.3)
[K]+3 [K]+J
<Ct 0<1‘*)‘m‘ B +Ct 0<1 *) me %Wf
for y € RN, ¢+ >0, and 7 € (0,1). By (82) and B3] we obtain
N 1 j .
(1)t ‘ / | VISR ()l (y)] dy
{Iy\<Ry} q.¢
¢ [K]
: C/ T )l () dy (3.4)
Iy\<R<9}

L ES B SR o N B
g()( R e ) )/ L wlFlew)ldy.
{lyl<R7}

Combining (31]) and ([B4]) and setting R = ¢, we obtain

N (1_1 J . _
e =D ||| [ wispe e al|| <o lelie, > o,

RN

q,t

which implies assertion (b). Similarly, setting R = et with 0 < & < 1, we have

R (1-1)+m+3

| ISR et dy

q,¢
el ) e K K_la] K
< Ct + > (e L YT le(y)ldy
(<|a|<K {lyl=(et) o}
K¢ [K]+1-K [K]+04+1-K
+Ct e(e 7 e o) el

11



This together with € L} implies that

N (q_1 Ktj—t
1imsupt"<1 q)+m+ 0

t—o00

RN

q,t
[K]+1—K [K]+44+1-K

<c(em0 40 ) el

Since ¢ is arbitrary, we obtain assertion (c¢). Thus Lemma [B.2] follows. O

By Lemmata Bl and B2l we have:

Lemma 3.3 Let f be a measurable function in RN x (0,00). Assume (L3) for some K >0
and 1 < qg<o0. Let 0 <l < K, mée Ny, and j =0,1. Then there exists C > 0 such that

N 1 K+j—¢
T (1—5)+T

t
(t+1) ‘ /T /RN(S ISyt 4 1) f(y, 5) dy ds

. ¢ (3.5)
<C / Exc4lf1(s) ds

!

fort >T > 0. Furthermore,

N(1_1)  EKEtj—¢t
9<1 q>+ 0 :0

q,t

lim ¢
t—o00

T .
/0 /]RN (S * 1)mv.78?(’ Y, t+ 1)f(y7 3) dy ds

forT > 0.
Proof. It follows from Lemma [3.1] that

[ ()l < CEK g[f](s), s>0. (3.6)
This together with Lemma [3.2] (¢) implies that, for any 7' > 0,

N({_ 1\, K+j—¢
lim ¢° (1 q)+ 0
t—o0

RN

=0 (3.7)

(s+1)™ H
q,t

for 0 < s < T'. Furthermore, by (8.6) with Lemma (b) we see that

N 1_%)+K+j—e

(t+1)"( o (s+1)mH VISE(,y,t+ 1) f(y,s)dy

RN
<Ct+1)""(s+1)"f(s)|li,x < CEk4[f](s)

for 0 < s < t. Inequality (B.8) implies [B3]). Furthermore, by ([3.7) and (B8] we apply the
Lebesgue dominated convergence theorem to obtain
-y

lim ¢t ¢
t—o0

q,l (38)

T
‘ /0 /]RN(S + 1)VISR( y, t + 1) f(y, s) dy ds o

q,t
Thus Lemma follows. O

Next we prove the following lemma on the integral kernel T (z,y,t, s).

12



Lemma 3.4 Let 1 < g<o0, and 0 </ < K.

(a) Let ¢ € LY with K >0 and j = 0,1. Then there exists Cy > 0 such that

g (204 41y 55 VIT (.t +1,1)p(y) dy

H <Cillelly,  (39)
RN al

fort > 0. Furthermore,

N(q_ 1), K+j—¢t
tim 0 (170) %
t—00

/ VjT(',y,t +1,D)p(y) dy =0. (3.10)
]RN

q,t

(b) Let f be a measurable function in RN x (0,00) and satisfy (L3H). Let j = 0 if
0<60<1andje{0,1} if 1 <0 <2. Then there exists Cy > 0 such that

ﬂ(1—l) Kt ¢ :
o (73 (¢ 4 1) / / VIT (ot + 1,5+ 1) f(y, 5) dy ds
T JRY ol (3.11)
¢ i
< [ (4= P B l)o)ds
T
fort >T > 0. Furthermore,
N 1) T
lim ¢a\" 4/ "0 ‘ / Ty, t+1,s+1)f(y,s)dyds =0 (3.12)
for T > 0.
Proof. Let 0 </ < K and j = 0,1. We find ¢ > 0 such that
(<l 0Ky <l < B(Ky+1). (3.13)
Let z, y € RY and t > 0. It follows that
ol < (e -yl 4 ) <O (14T -yl T IY) . (319)
This together with (II0) implies that
t0lal [VIT (2, y,t,5)]
/ 1 , )
<Cr Bttt [ )01 VG — gt - )| dr
0 (3.15)

Ky
T c<1 +t—%\yrf<) (VG —yt— )+ 3 S™@FVIGy) (e — y,m]

m=0

for 0 < s <t Lety € LY NLYZ with 1 <ry,rg <gq. Let 1 <7 < oo (1 =1,2) be such

that
1 1 1
S=—+=-1

q T r;
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Then we observe from the Young inequality, (2.2]) and (BI5]) that

SN

t VjT('7y7t7 S)l[)(y) dy
RN

q,t

, 1
_e j
<t 93K0+1/0 1167 Gyt — 75) [y 01, dT

K
0

+ OV Go(t = )l llllry + CE IV Ga(t — 8)lus Il 1

Ky
+C ) 8" |:Halnv]G0(t)Hr’2H90Hr2 HT |V Go(O) g el | (3.16)
m=0
11 J

/ 1 N o
< O i et g, [ (- ) g,
0

Lot —s) BT gl + o )

D=

SN (A1) w0 o _K
+Ct 7 e <1+ZS t >(H¢Hrz+t o 1[llrs, )
m=0
for t/2 < s < t. On the other hand, it follows from (B.I3]) that
1 /. 1 ’_
/ (t — Ts)_%<%_%>_(K9+l)+ZTJ dr < (t — s)_%<%_%> / (t — 7—5)—(K9+1)+ZTJ dr
0 0

<C(t- s)_%<%_%)_%3_1t_m}+%

for 0 < s < t. This together with ([3I6]) implies that

- / VT (st 8)ly) dy
RN q,0
_N(1_1\_J K 3.17
<0t =) Doy 5 o) (3.17)
_ﬂ<i_l) i _K
+ 0t T\ (= ) (@l + o)
for t/2 < s < t. Similarly, by (LI0) and (314 we have
£l [V T (2,1, 8)] < O™ (1470w — gl 4+ 475 |y|)

(3.18)

1
x/ ‘(af("Jerng)(x—y,t—Ts)]dT
0
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for 0 < s < t. It follows from the Young inequality, (2.2)), and (3I8]) that

RN
1
< OsKotl /O @K Gy) (= 78) s [0,

f 1
_ :
kot /0 1K1y (t = 78)| 1y o [0l 7

Tles

-
q,t

1
L OsRor / 1O I Gg) (t — 75) | 18Il 1c
0 (3.19)

1 )
§08K0+1||¢||h/ (t — rs)~ 7 (Fmi)=Gr D=5 4
0

, 1 N
L oSSy, / (t -7y (
0

1 N
K N
T oskoty e|||w|||m,K/ (t -7 (
0

N 1 1 ;
< oskor1y ¥ (1) oD, s>—%{||wun n t—%nwum}

;o
Lo D)= (Kot 1)+ 557 dr

T q

L_%>—(Kg+l)—% dr

for 0 < s < t/2.

We prove assertion (a). Since (t+1)/2 <1 for 0 < ¢ < 1, by BI7) with ¢y = ¢ and

r1 = r9 = 1 we have

SN

(t+1)" /RN VIT (L y,t+1,1)0(y) dy

_N(q_1)_J _K
< et T D ol + ¢+ D~ 5 llolllx)

_N(q_1)\_1
<o ¥ (73) g

q,l
(3.20)

for 0 < ¢t < 1. On the other hand, since (¢t +1)/2 > 1 for t > 1 by (BI9]) with ) = ¢ and

r1 = 1 we see that

¢+ 07| [ VTGt 1 D) dy
RN q.0

— N (L) (Kp+1),_4 _K

<0te+ ) DD ol e+ ) F ol
N 1 j
<ot T8y 1y g
for ¢t > 1. This together with 6(Ky+ 1) > K implies (3.10]) and
N(1_ 1)1 -

0 Q)H’(H 1) ' (y,t+1,1)p(y) dy < Cllel
RN a,l K

15
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for t > 1. Combining (3:20) and B21]), we obtain ([3.9]) and (BI0). Thus assertion (a)
follows.

We prove assertion (b). Since (t +1)/2 < s+ 1 for t/2 < s < t, by BI3) and BI7)
with ¢» = f(s) and (r1,72) = (¢, 1) we have

(t+1)70

/ VT (yst + L5+ 1)f(y, s) dy
]RN

q,0
<Ot =551 )Ml + ¢+ DTTF(3)llg.x)

+ o F) g 97+ D E )

for t/2 < s < t. This together with Lemma [B.1] implies that

SN

(t+1)"

/ VT (gt + 1,5+ 1)f(ys ) dy
]RN

q,l
<o(sF0 D D) (G0 ey F) - Bl G2

N

<ot (D@1

K
0

(t— )"0 Ex olf)(s)

for t/2 < s < t. On the other hand, by BI3]) and BI7) with ¢ = f(s) and r;1 =19 =1

we have
@+1r§

/ VT (yst 41,5+ 1) f(y, 5) dy
]RN

q,¢

—%(1—1) i _K
<Ct V(=) o (lf ()l + E+ DT F()]x)
for 0 < s <t/2 with (t+1)/2 < s+ 1. This together with Lemma B.] implies that

u+1r5

/ VT (yst+ 1,5+ 1)f(y, ) dy
RN

q,t
N

<o) (4 )78 4+ 07 F) (- 97 B0 (3.23)

_K
4

(t— )% Exc [ f](s)

for 0 < s <t/2 with (¢t +1)/2 < s + 1. Furthermore, by (319) with ¢ = f(s) and r; =1
we have

<or v (=D @)

@+1r§

/ VT (gt +1o5 + 1)y, ) dy
]RN

q,¢

< O+ 1)Ko 4 1)~ F (05 ~Wor g

Y {uf<s>||1 e 1>—%|||f<s>|||1,K}
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for 0 < s <t/2 with (¢ +1)/2 > s+ 1. This together with Lemma [3.1] again implies that

N VIT Lyt + 1,5+ 1)f(y,8)dy
R

(t+ 1)‘5

q,t
1

< ot (70 (g 1)Kot (¢ 4 1)-(So) (+17F +E+D)77) x (3.24)
X (t — S)_%EK,q[f](S)
< ot 5078 (o 4 1Rt 15 (1 1 1)~ 0D (¢ — )4 B [F](s)

for 0 < s <t/2 with (t+1)/2 > s+ 1. Then, by [B:24), for any 7" > 0, we observe from
0(Kp+1) > K that

. ﬁ<1_1>+1 K-t .
lim ¢to\" /" 0(t+1) @ VIT(y,t+1,s+1)f(y,s)dy =0 (3.25)
t—o0 RN 0.0
for 0 < s < T. Furthermore, by (322)), 8:23)), and (3:24]) we see that
N(_1 - :
10 (3 (4 1) 57 ‘ VIT(yt+ 1,5+ 1) f(y,5) dy
RN q,l (326)

< C(t — 5) 7 Ex o[ f)(s)

for 0 < s < t. This implies BI1). Furthermore, by [B25) and ([B.26]) we apply the
Lebesgue dominated convergence theorem to obtain (BI2]). Thus assertion (b) follows.
The proof of Lemma B4 is complete. O

Now we are ready to complete the proof of Theorem [I]
Proof of Theorem 1.1l Let u and w be as in Theorem [Tl Then, by (LI and (II2])

we have
u(z,t) —w(zx,t)

t
- / T(a,y,t + 1, 1)e(y) dy + / / T(eyt+ Ls +1)f(y,s) dy ds
RN 0 RN

K m
+ 29: ) / Sit(z,y,t+ 1p(y) dy
m—0 m' RN K B

m

Ko o \m ft
+§_:0( 1? /o/RN(SJrl)mS}?(w,y,H1)f(1178)dyd8-

We apply Lemmata 321 B3] and B4l to obtain (L6) and (L8). Then we easily see that
(C9) holds. Thus Theorem [L1] follows. O

Proof of Corollary [ILTL By property (G)-(i) we see that gom(0) € L% is equivalent to
Ga,m(t) € LY. for t > 0. Then Corollary [Tl follows from Theorem 1l O
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Remark 3.1 (i) The arguments of [LIII2[15] are in the frameworks of LY and L. On the
other hand, the arguments in the proof of Theorem [I1l are in the framework of L[}{. This
improvement enables us to obtain HOAE of solutions to the Cauchy problem for nonlinear
fractional diffusion equations such as ([[L2]). See Section 5.

(ii) Let 0 < K < 0 and ¢ = 0. By similar arguments to those in the proof of Theorem [l
we see that Theorem [l holds with E 4 f] replaced by

B A0 =+ 1% |67 D10 + 1FO |+ 17Ok

See also [14, Theorem 1.2].

4 Fractional convection-diffusion equation

In this section we consider the Cauchy problem for a convection type inhomogeneous
fractional diffusion equation

Oru + (—A)%u =divf(z,t) in RY x (0,00), u(xz,0) =¢(x) in RY, (4.1)

where 1 < 0 < 2, ¢ € LY with K >0, and f = (fi,..., fn) is a vector-valued function in
RN x (0,00). Similarly to Theorem [T} we have:

Theorem 4.1 Let N > 1,1 <0 <2, K>0, and 1 <q<oo. Let f = (f1,...,fn) be a
vector-valued measurable function in RN x (0,00) satisfying (LH). Let u € C(RYN x (0, 00))
be a solution to problem (AIl), that is, u satisfies

t
uw.t)= [ Golo—u0pdy+ [ [ VG- yt =) fy)dyds
RN o JRN
for (z,t) € RN x (0,00), where p € L}-. Let 0 < ¢ < K. Then
E<1_1>

sup to\N @ |||u(t) — z2(t)||lqe < o0 for T >0, (4.2)

o<t<r
where

Ky

Z(l‘,t) = Z Z MO&((:D) ga,m($7t)
m=0 ‘a|<K

535Sl

m=0 |a| <K j=1

t
AR TATAI Y EAER)
Furthermore, there exists C' > 0 such that, for any e >0 and T > 0,

07 (D)8 () — 2l <t 5 + 0¥ /T (t—5) S Excglf)s)ds  (43)

holds for large enough t > 0.
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Proof of Theorem 4.3l Let u and z be as in Theorem [l Then, similarly to (TIT])
and ([L.I2), we have

u(x,t) — z(x,t)

t
= T(z,y,t+1,1)o(y) dy + / VT (z,y,t+1,5+1)- f(y,s)dyds
0 RN

—1)m .
+ Y EF [ Set+ Dot dy

K
S (= o
*220 ! /()/RN(S*U VSR (z,y,t+1) - f(y,s) dy ds.

m

Similarly to the proof of Theorem [T we apply Lemmata 3.2l B3] and B4l to obtain (4.2])
and (£3). Thus Theorem A.T] follows. O

5 Nonlinear fractional diffusion equation

Let N>1,0<6 <2, and F € C(RY x [0,00) x R). Consider the Cauchy problem for a
nonlinear fractional diffusion equation

Oyu + (—A)%u = F(x,t,u) in RY x(0,00), u(z,0)=¢(x) in RY, (P)
where p € L1 N L for some K > 0 under the following condition (F):
(F) there exists p > 1+ 6/N such that
|F(,t,v) = Fa,t,w)| < C(jv] + [w)P~ o — wl
for (z,t,v,w) € RN x [0,00) x R2.

Let u € C(RY x (0,00)) be a solution to problem (P) that is, u satisfies
t

) = [ @[S o] s

for (z,t) € RN x (0,00). In this section, under condition (LI3)), we obtain HOAE of the
solution w. Theorem [B.1]is an application of Theorem LIl

Theorem 5.1 Let N > 1,0 < 6 <2, and ¢ € L}{ with K > 0. Assume condition (F).
Let u € C(RN x (0,00)) be a solution to problem (P). Set

F(x,t) == F(x,t,u(z,t), (z,t)€RY x (0,00).
(a) Assume that ¢ € L° with k = min{N + 0, K'}. Let u satisfy (LI3). Then
ﬂ<1_1>_£
sup(t+1) 7+ l[u(®lllg. < o0 (5.1)
>

for1<qg<ooand 0 <l < K with¢ <0+ N(1—-1/q).
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(b) Let u satisfy &1). If p(N +6) > K + N, then
Ex F)(t) <C(t+1)5 %, >0, (5.2)
for 1 < q < oo, where A, :=N(p—1)/6 > 1.

(c) Assume that (5.2) holds. Set

Ky ¢
Uz, t) = > (Ma(cp)—i- / (s—i—l)mMa(F(s))ds) Jam(z, ). (5.3)

m=0|a| <K 0
Then
E(l_l) e
sup tON ) (4 1) 77 |[Ju(t) — Up(t)|]] g < 00 (5.4)
>
and
K
N1 1) ¢ o(t™ o)+ O(t=FY) if A, —1+#K/0,
D) ) U@l = , )
O(t™ % logt) if A,—1=K/0,

ast— o0, for 1 <g<ooand 0 </(<K.

Remark 5.1 Let N > 1,0< 0 <2, and ¢ € L*. Assume condition (F).

(i) There exists 6 > 0 such that, if ||¢||pnep-16 < J, then problem (P) possesses a

solution v € C(RN x (0,00)) satisfying (LI3). See [13L1620].
(ii) Let F(x,t,u) := Mul[P~tu with A < 0. Then the comparison principle implies that
fu(e,0)] < [N | (@), (1) € RN x (0,00).
This together with Lemma 211 implies (LI3]).

We prepare the following lemma, for the proof of Theorem [B.1]
Lemma 5.1 Assume condition (F). Let K > 0. Let v and vy be measurable functions in

RN x (0,00) and h in (0,00) such that

(4 1) D)0l < 000 =12, .
(4 1)% (7078 s (6) — vl e < 1),

fort >0,1<qg<o0, and 0 <l < K with? <0+ N(1—1/q). Assume that p(N + 6) >
K + N. Then

ExqlF(v1) — F(02)](t) < C(t+ 1)~ 4+ o h(t), > 0.
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Proof. Let 0 </ < K and 1 < g < oo. Since p(N 4+ 6) > K + N, we find ¢1, 5 > 0 such
that

1
0</l <O+N, 0§€2<9+N(1—5>, L= (p—1)t; + (5.

Then, by condition (F) and (5.6]) we see that

(04 1)% (7078 F (s () — Flua(s))]lla
(=88 o NEZE + sl (E) — w28l
< ot + )7 ()5 )~ ()]s

<O+ 1) TP ) = Ct+ D) R(E), > o,

<[

<O(t+1)

Thus Lemma [B.1] follows. O

Proof of Theorem [5.I. We prove assertion (a). Since A, = N(p — 1)/ > 1, the
comparison principle together with condition (F) and (LI3)) implies that

ute ) < exp (€ [[ (s 1) ds) [ o] () < € [ ol )

for (x,t) € RV x(0,00). This together with Lemma[ZIlimplies assertion (a). Furthermore,
assertion (b) follows from Lemma [5.J] with v1 = u and vo = 0. On the other hand, by
Theorem [T with (52]) we obtain (5.4]). Furthermore, for any ¢ > 0 and 7' > 0, we have

1 L t
A ute) — U0l < ¥ + 0 [ s+ 0T
T
for large enough ¢t > 0. This implies (55]). Thus assertion (c) follows. The proof of
Theorem 511 is complete. O

As a corollary of Theorem [5.1] we have:

Corollary 5.1 Let N > 1,0 < 0 < 2, and ¢ € Lk with K > 0. Assume condition (F)

and
2K + 6

N

Let u € C(RYN x (0,00)) be a solution to problem (P) and satisfy B). Then there exists
a set {My .} CR, where m € {0,..., Ky} and o € M with |a| < K, such that

p>1+ (5.7)

t%(l_%)_gmu(t)—U*(t)mq,gzo(t_%> as t— o0 (5.8)

for1 <qg< oo and 0 < ¢ < K, where

Ky
=Y D Mamgam(@t). (5.9)

m=0 ‘alSK
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Proof. It follows from (5.7]) that

N 2K
By Theorem [5.1] we have
N £
£ (=075 ut) = Uo(®)lloe = o (t—%) as t— oo (5.11)

for1<g<ooand1</{<K. Here Uy is as in Theorem [5.1]
Let m € {0,...,Kp} and o € M with |a] < K. Assertion (b) of Theorem [5.1] implies
that
IMo(F(1)] < Ct+ 1)~ 4+5 0. (5.12)

Then, by (GI0) we find M, ,, € R such that
Moo = Ma(s) + / Mo(F(s))ds, M = / (s + 1) My (F(s))ds (m > 1),
0 0
Furthermore, by ([22), (53), (59), (GI0), and (GI2) we have

£0 (=08 U0 () = Ul

N(1_1)_¢t o0 m
<Y S ([T 0 i F ) ds) lgnn s
m=0|a|<K !
oL —m—lal > m —Ap+1al —Ap+1
<Y S )T [ ) )T ds <ot p> L
m=0|a|<K t

This together with (BI0) and (5I1]) implies (B.8]). Thus Corollary (1] follows. O

Combining Theorems [[.1] and B we obtain a refined asymptotic expansion of the
solution to problem (P).

Theorem 5.2 Assume the same conditions as in Theorem Bl Let u satisfy (B1I). For
n=1,2,..., define a function U,, = Uy(x,t) in RN x (0,00) inductively by

Un(x,t) :== Ug(x,t) + /Ot [e—(t—s)(—A)e/an_l(S)] () ds

_i > </t(s+1)mMa(Fn—l(3))ds> Gom (2, 1),

0
where Uy is as in Theorem 5.1l and F,,_(x,t) := F(x,t,Up—1(x,t)). Then

E(l_l)_ﬁ
sup t°¢ ) ||u(t) — Un(t)]]]ge < 00 (5.13)
t>0
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and

£ 07078 lu) - Un(®)
ot E) + O A) G (- 1)(A, — 1) # K/, (5.14)
| o ¥ 10gt) if (n+1)(4, —1) = K/6,

ast— oo, for1<g<ooand 0 </ < K.

Proof. Let K > 0. By Theorem 5.1l we have (513) and (B.I4]) with n = 0. Assume that
(BI3) and (GI4]) hold for some n =k € {0,1,...}. Then, by (1) and (BI3]) with n =k

we have

E<1_1>_£
sup t? o) Uk ()]]]g,e
>0 (5.15)

E(l_l)_ﬁ ﬂ(l_l)_ﬁ
Ssup Pl elHu(t)—Uk(t)H\q,ﬁsugt@ o llu(®)]lge < o0
t> t>

for1 <g<ooand 0 </ < K with ¢ <6+ N(1—1/q). On the other hand, it follows that

u(x,t) — t e~ =22 Bl (2) ds
@[ | Fi(9)] (2)d -

= [ @) [ IS () B as

for (z,t) € RN x (0,00). By (52) and (5I5) we apply Lemma 51l to obtain
EK7q[F— Fk] € LOO(O,T) for 7>0

and
o (t=) it (k+1)(4,—-1) < K/6,
ExqlF — Fy)t)={ O (t=4r logt) it (k+1)(4,—-1)=K/0,
0 (t—Ap+%—<k+1><Ap—1>) it (k+1)(4, — 1) > K/6,
as t — 00. Then we apply Theorem [Tl to (5.16)), namely f(z,t) = F(x,t) — Fi(x,t), and

obtain (BI3) and (B.I4) with n = k + 1. Therefore, by induction we obtain (G.I13) and
(ETI4) for n=0,1,2,.... Thus Theorem follows. O

Similarly to the proof of Theorem for the case n = 1, we prove Theorem

Proof of Theorem [I.2l Let 1 < g < ocand 0 < ¢ < K with £ < 6+ N(1 —1/q).
Assume p > 1+6/N and put F(u(x,t)) := Mu(z,t)[P" u(z,t). Assertion (a) follows from
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the similar argument to that of the proof of Corollary Bl Furthermore, for any o > 0,

by [22]) and (512]) we have

E<1_1>_£
toN s O |[Uo(t) — Mag(t)]llg,e

0 o Ky o
SC/t Mo(F(s)lds+C S M@ +C > 3 5 Ma(p)]

I<|al<K m=1|a|<K

< el Y
ey Y el /0(s+1) Mo (F(s))| ds

m=1a| <K

o Y t—(é‘/o |Ma(F(s))| ds

1<|o|<K
-0 (t_(AP_1)> +O(t™ )+ 0t ) +0 <t—1 /ltsl—Ap ds> +0 (t—% /lt 504 ds>
=0 (WD) 4 0@ + Ot 7) = O(hy (1))
as t — oo. This together with (B3] implies that
£5 008 ut) = Mog(®)lllye = 0 (75) + 0o (1) a5 £ 0. (5.17)
Furthermore, combining Lemma 5.1l and (5.17]), we have
ExqlF(u) — Fo(t) = o (t—AP—%) +O (4 hy (1)) (5.18)

as t — oo. On the other hand, it follows that

t 0
w(z,t) = u(z,t) —/ e R E (s)ds
0

0 3 0
B [e_“‘“%] @)+ [ ISR P u(s)) - ()]s
Applying Theorem [Tl for any € > 0 and T > 0, we obtain

t%(l_%)—émw@) — wi(t)]|] 4.0
t (5.19)

<et 0 +CutT 0 / S%EKq[F(u) — Fyo|(s)ds
T

as t — oo, where C is a positive constant independent of ¢ and T and

Ky ¢
wiat) = D (Ma(so) +/ (s + 1) Mo (F (u(s)) — Foo(S))d8> Gom ().

m=0 |a|<K 0
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Since ¢ is arbitrary, by (B.I8]) and (5.19]) we see that

t%<1_%>_§|||w(t) — we()]qe = 0 (t_%) +0 (t_% /Tts%—AphU(s) ds>

as t — oo. This implies assertion (b). Thus Theorem [[2] follows. O

Remark 5.2 Let u be a solution to the Cauchy problem for a nonlinear fractional diffusion
equation and possess the mass conservation law, that is, fRN u(z,t)dz is independent of
t. The mass conservation law has often played an important role in the study of HOAFE
of solutions to various nonlinear problems, see e.g. [BL6LOLI82TH26]. Then the arguments
in the proof of Theorem 1l are valid for the Cauchy problem.
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