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Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary
myelofibrosis: a single center study of 433 patients
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We have previously identified sole þ9, 13q- or 20q-, as
‘favorable’ and sole þ8 or complex karyotype as ‘unfavorable’
cytogenetic abnormalities in primary myelofibrosis (PMF).
In this study of 433 PMF patients, we describe additional sole
abnormalities with favorable (chromosome 1 translocations/
duplications) or unfavorable (�7/7q-) prognosis and also show
that other sole or two abnormalities that do not include i(17q),
�5/5q-, 12p-, inv(3) or 11q23 rearrangement are prognostically
aligned with normal karyotype, which is prognostically favor-
able. These findings were incorporated into a refined two-tired
cytogenetic-risk stratification: unfavorable and favorable karyo-
type. The respective 5-year survival rates were 8 and 51%
(hazard ratio (HR): 3.1, 95% confidence interval (CI): 2.2–4.3;
Po0.0001). Multivariable analysis confirmed the International
Prognostic Scoring System (IPSS)-independent prognostic
value of cytogenetic-risk categorization and also identified
thrombocytopenia (platelets o100� 109/l) as another indepen-
dent predictor of inferior survival (Po0.0001). A similar multi-
variable analysis showed that karyotype (P¼ 0.001) and platelet
count (P¼0.04), but not IPSS (P¼ 0.27), predicted leukemia-free
survival; the 5-year leukemic transformation rates for unfavor-
able versus favorable karyotype were 46 and 7% (HR: 5.5, 95%
CI: 2.5–12.0; Po0.0001). This study provides the rationale and
necessary details for incorporating cytogenetic findings and
platelet count in future prognostic models for PMF.
Leukemia (2011) 25, 82–88; doi:10.1038/leu.2010.234;
published online 14 October 2010
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Introduction

Current drug therapy for primary myelofibrosis (PMF) has not
been shown to prolong survival. Therefore, an increasing
number of patients are considering either allogeneic stem cell
transplantation (allo-SCT) or participation in experimental drug
treatment trials.1–5 Allo-SCT is potentially curative in PMF, but
its utility is limited by the relatively high incidence of treatment-
related mortality and morbidity. The long-term toxicity profile of
new drugs is unknown and they are not necessarily less risky
than allo-SCT.2 In general, it is reasonable to justify the risk
of either allo-SCT or experimental drug therapy for PMF in the
presence of a o5 years life expectancy or 420% 5-year risk of
developing acute leukemia.6 Accordingly, accurate prediction
of both shortened survival and leukemic transformation is an

essential component of the overall therapeutic decision-making
process.7

The International Prognostic Scoring System (IPSS) for PMF is
used to predict survival.8 The IPSS uses five independent
predictors of inferior survival: age 465 years, hemoglobin
o10 g/100ml, leukocyte count 425� 109/l, circulating blasts
X1% and constitutional symptoms.8 The presence of 0, 1, 2 and
X3 adverse factors defines low, intermediate-1, intermediate-2
and high-risk disease with corresponding median survivals
of approximately 11.3, 7.9, 4 and 2.3 years.8 A dynamic
prognostic model (DIPSS) that utilizes the same prognostic
variables but can be applied at any time during the disease
course was recently published.9 DIPSS assigns two, instead of
one, adverse points for hemoglobin o10 g/100ml and risk
categorization is accordingly modified: low (0 adverse points),
intermediate-1 (1 or 2 points), intermediate-2 (3 or 4 points) and
high (5 or 6 points). The corresponding median survivals were
not reached, 14.2, 4 and 1.5 years. Neither IPSS nor DIPSS
considers cytogenetic findings in its prognostic model.

Approximately, one-third of patients with PMF present with
abnormal karyotype, whose prognostic value was revisited in
three recent studies, each comprising 202,10 20011 and 13112

patients evaluated at or within 1 year of diagnosis. All three
studies confirmed the previously reported13 favorable prognostic
impact of sole 20q- or sole 13q-. In addition, two of the three
studies identified sole þ 9 as another favorable cytogenetic
marker.11,12 The list of unfavorable cytogenetic abnormalities
from these and other related studies includes complex karyotype
(X3 abnormalities), sole þ 8 and an abnormal karyotype that
includes abnormalities of chromosomes 5, 7, 17 or 12p-.10–14

The purpose of this study, which includes more than twice the
number of patients included in previous studies,10–12 was to
identify additional prognostically relevant cytogenetic abnorm-
alities in PMF and refine cytogenetic-risk categorization for
overall and leukemia-free survival.

Materials and methods

This study was approved by the Mayo Clinic Institutional
Review Board. Clinical and laboratory data were collected from
consecutive patients with PMF seen at our institution and in
whom cytogenetic information at or within 1 year of diagnosis
was available. The diagnoses of PMF and leukemic transforma-
tion were according to the 2001 World Health Organization
criteria.15 Bone marrow chromosome and JAK2V617F mutation
analysis were performed according to previously published
methods.16,17 Cytogenetic results were interpreted and
reported according to the International System for Human
Cytogenetic Nomenclature; abnormal karyotype was defined by

Received 7 August 2010; revised 30 August 2010; accepted 31
August 2010; published online 14 October 2010

Correspondence: Professor A Tefferi, Division of Hematology,
Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester,
MN 55905, USA.
E-mail: tefferi.ayalew@mayo.edu

Leukemia (2011) 25, 82–88
& 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11

www.nature.com/leu

http://dx.doi.org/10.1038/leu.2010.234
mailto:tefferi.ayalew@mayo.edu
http://www.nature.com/leu


the presence of at least two metaphases with structural
abnormalities or monosomy or three metaphases with polysomy,
regardless of number of metaphases examined.18 In order to be
consistent with methodology used in recent studies,11,12 the
presence of o20 evaluable metaphases did not disqualify
patients from study inclusion as long as X10 metaphases were
examined in those patients with ‘normal’ reports.
In order to examine the prognostic impact of specific

cytogenetic abnormalities, initial cytogenetic group assignment
required the presence of at least five informative cases.11 Sole
cytogenetic abnormalities occurring in less than five patients
were grouped together and classified into two separate
operational subgroups: ‘other high-risk’ and ‘other indetermi-
nate-risk’ sole abnormalities. Assignment to the ‘other high-risk’
category was based on previously published observations on the
prognostic impact of a particular cytogenetic abnormality in
PMF and the sole abnormalities in this regard included �5/5q-,
i(17q), 12p-, 11q23 rearrangement and inv(3).10–14 All other
sole abnormalities that did not meet the threshold criteria of five
informative cases were grouped together as ‘indeterminate-risk
sole abnormalities’. Patients with two cytogenetic abnormalities
were also classified into two ‘high-risk’ and ‘indeterminate-risk’
subgroups based on the presence or absence of an unfavorable
abnormality including þ 8, �7/7q-, �5/5q-, i(17q), 12p-, inv(3)
or 11q23 rearrangement.
All statistical analyses considered parameters at diagnosis

and before the initiation of specific therapy. Differences in the
distribution of continuous variables between categories were
analyzed by either Mann–Whitney (for comparison of two
groups) or Kruskal–Wallis (comparison of three or more groups)
test. Patient groups with nominal variables were compared by w2

test. Overall survival analysis was considered from the date of
diagnosis to date of death (uncensored) or last contact
(censored). Leukemia-free survival was calculated from the date
of diagnosis to date of leukemic transformation (uncensored) or
last contact/date of death (censored). Additional analyses that
censored patients at time of allo-SCT were performed for both
overall and leukemia-free survival in order to avoid possible
confounding of survival effect from the particular treatment
modality. Overall and leukemia-free survival curves were
prepared by the Kaplan–Meier method and compared by the
log-rank test. Cox proportional hazard regression model was
used for multivariable analysis. P-values o0.05 were consi-
dered significant. The Stat View (SAS Institute, Cary, NC, USA)
statistical package was used for all calculations.

Results

A total of 433 patients with PMF, which included the 200
patients from our previous report,11 constituted this study
population; presenting clinical and laboratory features are
outlined in Table 1. Dates of diagnosis spanned from January
1978 to November 2009. Median age at diagnosis was 65 years
(range 14–92) and 268 (62%) were males. The IPSS-risk
distributions could be accurately assigned for 384 patients:
low in 46 (12%) patients, intermediate-1 in 97 (25%),
intermediate-2 in 93 (24%) and high in 148 (39%). Twenty-six
percent of the patients presented with thrombocytopenia
(platelets o100� 109/l) and 17% with leukopenia (leukocytes
o4� 109/l). JAK2V617F mutation analysis was performed in
174 patients and mutational frequency was 60%.
At the time of this report, 269 (62%) patients had died and

median follow-up of patients who were alive was approximately
4 years. During this period, 34 (8%) cases of leukemic

transformation were documented. As expected, the IPSS13

effectively delineated patient groups with different prognosis
(Figure 1); median survivals in low, intermediate-1, intermedi-
ate-2 and high IPSS-risk categories were 15, 7, 3.6 and 2.2
years, respectively (Po0.0001). The corresponding 5-year
survival rates were 85, 65, 40 and 19% with hazard ratios
(HRs) (95% confidence interval (CI)) of 7.7 (4.4–13.6;
Po0.0001), 4.0 (2.2–7.1; Po0.001), 2.0 (1.1–3.6; P¼ 0.02)
for high, intermediate-2 and intermediate-1-risk groups,
respectively.

Treatment received during disease course was markedly
heterogeneous and mostly pursued for palliative purposes; 57
(14%) cases of splenectomy and 17 (4%) of allo-SCT were
documented, whereas the spectrum of drugs used included
hydroxyurea, androgens, danazol, erythropoiesis stimulating
agents, prednisone, thalidomide, lenalidomide, interferon,
anagrelide, busulfan and experimental agents. As most deaths
occurred elsewhere, cause of death was not accurately
documented in most instances, but when known, included
leukemic transformation (n¼ 28), infection (n¼ 22), ‘progressive
disease’ (n¼ 10), intracerebellar/intracranial bleed (n¼ 5), heart
failure (n¼ 5), non-infectious respiratory failure (n¼ 5), other
malignancies (n¼ 5), myocardial infarction or cardiac arrest
(n¼ 4), stroke (n¼ 3), gastrointestinal bleeding (n¼ 3), intra-
abdominal bleeding (n¼ 3), hepatic failure (n¼ 3), complica-
tions of allo-SCT (n¼ 2), pancreatitis (n¼ 1), disseminated
intravascular coagulopathy (n¼ 1) and motor vehicle accident
(n¼ 1).

Cytogenetic details at presentation
Cytogenetic findings were normal in 275 (64%) patients. Among
the 158 (36%) patients with abnormal karyotype, 109 (69% of
abnormal cases) represented sole abnormalities, 23 (15%) two
abnormalities and 26 (17%) three or more (that is complex)
abnormalities. The most frequent sole abnormality was 20q-
constituting 28% (n¼ 30) of all sole abnormalities, 19% of all
abnormal cases and 7% of the entire study cohort (Table 1).
Other sole abnormalities that met the threshold criteria of five
informative cases, for consideration as a separate cytogenetic
category, included þ 8 (n¼ 14), 13q- (n¼ 10), chromosome 1
translocation/duplication (n¼ 12), þ 9 (n¼ 9) and �7/7q-
(n¼ 5).

Twenty-nine patients had sole abnormalities that were each
seen in less than five patients; these cases were classified into
two separate groups for further analysis, as elaborated in
Materials and methods: ‘other high-risk sole abnormalities’
(n¼ 6) and ‘other indeterminate-risk sole abnormalities’
(n¼ 23). The former included i(17q), �5/5q-, 12p-, 11q23
rearrangement or inv(3) and the latter as outlined in the footnote
of Table 1. Twenty-three patients had two abnormalities that did
(n¼ 8) or did not (n¼ 15) include known or putative unfavor-
able abnormalities including þ 8, �7/7q-, i(17q), �5/5q-, 12p-,
11q23 rearrangement or inv(3). In other words, as was
previously outlined in the context of ‘other’ sole abnormalities,
patients with two cytogenetic abnormalities were sub-classified
into two separate groups for further analysis.

Comparison of clinical characteristics among
cytogenetic categories
Based on the above, 12 cytogenetic categories were initially
considered and compared for their presenting clinical and
laboratory features (Table 1). Significant differences were noted
in regards to platelet count considered as a continuous variable
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(Po0.0001), thrombocytopenia (platelet count o100� 109/l;
P¼ 0.0001) and leukopenia (leukocyte count o4� 109/l;
Po0.0001) (Table 1). These differences were also evident when
analysis was restricted to patients with favorable karyotype; the
incidences of leukopenia and thrombocytopenia were highest
in patients with sole 20q- (41 and 38%, respectively) and lowest
in those with sole 13q- (0 and 0%, respectively) (Table 1).

Establishment of a two-tired cytogenetic-risk
stratification
In an effort to identify cytogenetic categories of similar
prognosis, each one of the above-discussed 12 cytogenetic
categories was separately compared with both normal and
complex karyotype.
The survival of patients with sole 13q-, sole 20q-, sole þ 9,

sole chromosome 1 translocation/duplication, ‘other sole
abnormalities of indeterminate-risk’ or ‘two abnormalities
excluding an unfavorable type’ was similar to that of patients
with normal karyotype (P-value of 0.07, 0.96, 0.91, 0.46,
0.3 and 0.3, respectively; Figure 2) and significantly superior to
that of patients with complex karyotype (P-value of o0.0001,
o0.0001, 0.01, 0.0001, 0.0002 and 0.02, respectively;

Figure 2). These cytogenetic subcategories were, therefore,
grouped together with normal karyotype and assigned a
‘favorable karyotype’ prognostic category (Table 2). Of note,
the borderline P-value of 0.07 for survival comparison of normal
karyotype and 13q- was in favor of the latter.

The survival of patients with sole þ 8, sole �7/7q-, ‘other
high-risk sole abnormalities’ or ‘two abnormalities including an
unfavorable type’ was similar to that of patients with complex
karyotype (P-value of 0.30, 0.84, 0.74 and 0.14, respectively;
Figure 2). These cytogenetic categories were accordingly
grouped together with complex karyotype and assigned an
‘unfavorable karyotype’ prognostic category (Table 2).

Table 2 compares the clinical presentation of the above-
defined ‘favorable’ and ‘unfavorable’ cytogenetic-risk groups.
Unfavorable karyotype was associated with thrombocytopenia
(platelet count o100� 109/l; Po0.0001), leukopenia (leuko-
cyte count o4� 109/l; P¼ 0.0004), circulating blasts X1%
(P¼ 0.003), lower hemoglobin level (P¼ 0.003) and high-risk
IPSS score (P¼ 0.01). These findings support the need for
multivariable analysis in deciphering the IPSS-independent prog-
nostic value of cytogenetic-risk categorization. Males were over-
represented in the favorable karyotype group, but the explanation
for this observation is not immediately clear (64%; P¼ 0.01).
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Figure 1 Survival data of patients with primary myelofibrosis stratified by the International Prognostic Scoring System.
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Figure 2 Survival data of patients with primary myelofibrosis stratified by specific cytogenetic categories.
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Comparison of overall and leukemia-free survival
between favorable and unfavorable karyotype
Median survivals of patients with favorable and unfavorable
karyotype were 5.2 and 2.0 years, respectively (Po0.0001;
Figure 3). The corresponding 5-year survival rates were 51 and
8% (HR: 3.1, 95% CI: 2.2–4.3; Po0.0001). Multivariable
analysis, which included variables that were found to
be significant in univariate analysis (Table 2), confirmed
the IPSS-independent prognostic value of cytogenetic-risk

categorization (Po0.0001; HR: 2.1, 95% CI: 1.5–3.1) and also
identified thrombocytopenia (platelet count o100� 109/l) as
another independent predictor of inferior survival (Po0.0001;
HR: 1.9, 95% CI: 1.4–2.6); the HRs (95% CI) for IPSS high-risk,
intermediate-2 and intermediate-1-risk groups were 6.4
(3.6–11.3), 3.7 (2.0–6.7) and 1.9 (1.1–3.4), respectively
(Po0.0001). A similar multivariable analysis showed that
cytogenetic-risk profile (P¼ 0.001; HR: 4.1, 95% CI: 1.7–9.6)
and platelet count (P¼ 0.04; HR: 2.3, 95% CI: 1.0–5.0), but not

Table 2 Cytogenetic-risk groups of 433 patients with primary myelofibrosis

Variables All patients
(n¼433)

Favorable karyotype
(n¼ 374)a

Unfavorable karyotype
(n¼59)b

P-value

Age (years), median (range) 65 (14–92) 65 (14–87) 66 (15–92) 0.23
Age 4 65 years, n (%) 206 (48) 174 (47) 32 (54) 0.27
Males (%) 268 (62) 240 (64) 28 (47) 0.01
Hemoglobin, g/100ml, median (range) 10.2 (5–16.1) 10.3 (5–16.1) 9.8 (6.3–12.9) 0.003
Leukocyte count� 109/l, median (range) 8.3 (0.9–113.2) 8.3 (0.9–113.2) 6.3 (1.5–69.2) 0.08
Platelet count�109/l, median (range) 229 (6–1765) 246 (11–1765) 99 (6–968) o0.0001

IPSS risk group (%) n evaluable¼ 384 0.01
Low 12 13 2
Intermediate-1 25 26 23
Intermediate-2 24 25 19
High 39 36 56

Constitutional symptoms, n (%), n evaluable¼ 418 150 (36) 124 (34) 26 (46) 0.07
Circulating blasts X1%, n (%), n evaluable¼386 211 (55) 172 (52) 39 (74) 0.003
Hemoglobin o10g/100ml, n (%) 222 (52) 184 (50) 38 (66) 0.02
Leukocytes 425�109/l, n (%) 58 (14) 50 (13) 8 (14) 0.94
Platelets o100�109/l, n (%) 110 (26) 80 (22) 30 (52) o0.0001
Leukocytes o4�109/l, n (%) 71 (17) 52 (14) 19 (33) 0.0004
Splenectomy, n (%) 57 (14) 49 (14) 8 (15) 0.85
JAK2V617F status n tested (% positive) 174 (60) 160 (59) 14 (71) 0.37
Transplanted, n (%) 17 (4) 13 (4) 4 (7) 0.2
Deaths, n (%) 269 (62) 220 (59) 49 (83) 0.0004
Leukemic transformations, n (%) 34 (8) 24 (6) 10 (17) 0.005

Abbreviation: IPSS, International Prognostic Scoring System.8
aFavorable karyotype: normal karyotype or sole or two abnormalities that do not include the above-listed unfavorable cytogenetic abnormalities.
bUnfavorable karyotype: complex karyotype or sole or two abnormalities that include +8, �7/7q-, i(17q), �5/5q-, 12p-, inv(3) or 11q23
rearrangement.
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Figure 3 Survival data of patients with primary myelofibrosis stratified by two-tired cytogenetic-risk categorization: unfavorable (complex
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IPSS (P¼ 0.27), predicted leukemia-free survival; the 5-year
leukemic transformation rates for unfavorable and favorable
karyotype were 46 and 7%, respectively (HR: 5.5, 95% CI:
2.5–12.0; Po0.0001). These results, in terms of both overall and
leukemia-free survival analysis, did not change when patients
receiving allo-SCT were censored at the time of their transplant.

Discussion

Recent studies have been mostly consistent in their report on the
prognostic value of cytogenetic findings in PMF.10–12 There is
now a general agreement on the favorable prognostic impact
of normal karyotype and sole abnormalities of 20q-, 13q- and
þ 9. All other abnormalities were usually lumped together and
prognostically considered as being unfavorable.10,19 It is
reasonable to assume that this latter group includes prognos-
tically diverse cytogenetic abnormalities and their identification
as such should enable further refinement of cytogenetic-risk
categorization in PMF. It is also important to determine
the prognostic impact of both cytogenetic-risk categorization
and IPSS on leukemia-free survival.
In our previous report of 200 patients with PMF,11 there were

adequate numbers of informative cases that enabled us to
individually associate normal karyotype (n¼ 117) or sole
abnormalities of 20q- (n¼ 21), 13q- (n¼ 8) or þ 9 (n¼ 6) with
favorable survival and complex karyotype (n¼ 13) or sole þ 8
(n¼ 7) with unfavorable survival. This is now confirmed by this
study of 433 PMF patients, which features a higher number of
cases in each of these cytogenetic categories: normal karyotype
(n¼ 275), sole 20q- (n¼ 30), sole 13q- (n¼ 10), sole þ 9 (n¼ 9),
sole þ 8 (n¼ 14) and complex karyotype (n¼ 26). What is new
in this study was the fact that we had sufficient numbers of
patients with sole abnormalities of chromosome 1 including
translocation/duplication (n¼ 12) and �7/7q- (n¼ 5) to examine
their individual impact on survival and label the former as being
prognostically favorable and the latter unfavorable. Of note,
this particular observation is inconsistent with a previously
published study from Japan, which had suggested a similar
survival between patients with �7/7q- and normal karyotype.10

Also new in this study was our successful strategy to
distinguish two prognostically different groups of patients with
other sole abnormalities that did not meet the threshold number
(that is X5 informative cases) for individual assessment of
prognostic impact. As outlined in Materials and methods, these
were operationally categorized into ‘other high-risk’ and ‘other
indeterminate-risk’ subgroups of sole abnormalities based on
putative prognostic relevance derived from previously published
observations.10–14 The former included sole abnormalities of
i(17q), �5/5q-, 12p-, 11q23 rearrangement or inv(3) and we
show that the survival of patients with any one of these
abnormalities was significantly inferior to that of patients with
normal karyotype and similar to that of patients with complex
karyotype, sole þ 8 or sole �7/7q-. In contrast, the survival of
patients with other sole abnormalities that did not include þ 8,
�7/7q-, i(17q), �5/5q-, 12p-, 11q23 rearrangement or inv(3)
was similar to that of patients with normal karyotype and
significantly superior to that of patients with complex karyotype.
The same was true for patients with two abnormalities whose
survival was aligned with either complex or normal karyotype
depending on the presence or absence of the above-mentioned
unfavorable cytogenetic abnormalities. A previous study had
similarly suggested a negative prognostic impact for abnormal-
ities of chromosomes 5, 7 and 17, but the particular observation
was confounded by the inclusion of complex karyotype and
cases with two abnormalities in the analysis.12

Based on the above, we were able to devise a two-tired
cytogenetic-risk stratification with highly significant differences
in overall and leukemia-free survival (Figures 3 and 4):
unfavorable (complex karyotype or sole or two abnormalities
that include þ 8, �7/7q-, i(17q), inv(3), �5/5q-, 12p- or 11q23
rearrangement) and favorable (all other cytogenetic findings
including normal karyotype). The prognostic relevance of
karyotype was independent of other previously established
predictors of overall (IPSS and thrombocytopenia)8,20 and
leukemia-free (thrombocytopenia)21,22 survival in PMF. In the
original IPSS report,8 cytogenetic information was available in
409 patients and the presence of ‘abnormal’ karyotype was
significantly associated with inferior survival.8 Additional
cytogenetic details were not available to delineate the
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prognostic impact of specific cytogenetic categories and
leukemia-free survival analysis was not performed. In this study,
IPSS was not found to be predictive of leukemic transformation.
We instead found a platelet count of o100� 109/l to be a
powerful and independent adverse factor for both overall and
leukemia-free survival. These observations strongly favor the
inclusion
of both cytogenetic information and presence or absence of
thrombocytopenia in future prognostic models for PMF. On the
other hand, additional studies are needed to validate recently
described molecular profiles of potential prognostic importance
before their formal consideration.17,23–27

Finally, it was interesting to note a highly significant
association between sole 20q- and both leukopenia and
thrombocytopenia. Such an association was not evident in
the other favorable cytogenetic categories and suggests a
20q- haploinsufficient gene effect, which might also explain a
previously reported association between MDS with sole
20q- and thrombocytopenia.28

Conflict of interest

The authors declare no conflict of interest.

References

1 Ballen KK, Shrestha S, Sobocinski KA, Zhang MJ, Bashey A,
Bolwell BJ et al. Outcome of transplantation for myelofibrosis.
Biol Blood Marrow Transplant 2010; 16: 358–367.

2 Pardanani A. JAK2 inhibitor therapy in myeloproliferative
disorders: rationale, preclinical studies and ongoing clinical trials.
Leukemia 2008; 22: 23–30.

3 Kroger N, Mesa RA. Choosing between stem cell therapy and drugs
in myelofibrosis. Leukemia 2008; 22: 474–486.

4 Lasho TL, Tefferi A, Hood JD, Verstovsek S, Gilliland DG,
Pardanani A. TG101348, a JAK2-selective antagonist, inhibits
primary hematopoietic cells derived from myeloproliferative
disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12
mutations as well as mutation negative patients. Leukemia 2008;
22: 1790–1792.

5 Pardanani A, Lasho T, Smith G, Burns CJ, Fantino E, Tefferi A.
CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of
kinase selectivity and preclinical studies using cell lines and
primary cells from polycythemia vera patients. Leukemia 2009; 23:
1441–1445.

6 Tefferi A. Allogeneic hematopoietic cell transplantation versus
drugs in myelofibrosis: the risk-benefit balancing act. Bone Marrow
Transplant 2010; 45: 419–421.

7 Cervantes F, Passamonti F, Barosi G. Life expectancy and
prognostic factors in the classic BCR/ABL-negative myeloprolifera-
tive disorders. Leukemia 2008; 22: 905–914.

8 Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E
et al. New prognostic scoring system for primary myelofibrosis based
on a study of the International Working Group for Myelofibrosis
Research and Treatment. Blood 2009; 113: 2895–2901.

9 Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E,
Pereira A et al. A dynamic prognostic model to predict survival in
primary myelofibrosis: a study by the IWG-MRT (International
Working Group for Myeloproliferative Neoplasms Research and
Treatment). Blood 2010; 115: 1703–1708.

10 Hidaka T, Shide K, Shimoda H, Kameda T, Toyama K, Katayose K
et al. The impact of cytogenetic abnormalities on the prognosis of
primary myelofibrosis: a prospective survey of 202 cases in Japan.
Eur J Haematol 2009; 83: 328–333.

11 Hussein K, Pardanani AD, Van Dyke DL, Hanson CA, Tefferi A.
International Prognostic Scoring System-independent cytogenetic risk
categorization in primary myelofibrosis. Blood 2010; 115: 496–499.

12 Tam CS, Abruzzo LV, Lin KI, Cortes J, Lynn A, Keating MJ et al.
The role of cytogenetic abnormalities as a prognostic marker in

primary myelofibrosis: applicability at the time of diagnosis and
later during disease course. Blood 2009; 113: 4171–4178.

13 Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW.
Cytogenetic findings and their clinical relevance in myelofibrosis
with myeloid metaplasia. Br J Haematol 2001; 113: 763–771.

14 Strasser-Weippl K, Steurer M, Kees M, Augustin F, Tzankov A,
Dirnhofer S et al. Chromosome 7 deletions are associated with
unfavorable prognosis in myelofibrosis with myeloid metaplasia.
Blood 2005; 105: 4146.

15 Vardiman JW, Brunning RD, Harris NL. WHO histological
classification of chronic myeloproliferative diseases. In: Jaffe ES,
Harris NL, Stein H, Vardiman JW (eds). World Health Organiza-
tion Classification of Tumors: Tumours of the Haematopoietic and
Lymphoid Tissues. International Agency for Research on Cancer
(IARC) Press: Lyon, France, 2001, pp 17–44.

16 Dewald GW, Broderick DJ, TomWW, Hagstrom JE, Pierre RV. The
efficacy of direct, 24-h culture, and mitotic synchronization
methods for cytogenetic analysis of bone marrow in neoplastic
hematologic disorders. Cancer Genet Cytogenet 1985; 18: 1–10.

17 Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY et al. Low
JAK2V617F allele burden in primary myelofibrosis, compared to
either a higher allele burden or unmutated status, is associated
with inferior overall and leukemia-free survival. Leukemia 2008;
22: 756–761.

18 Shaffer LG, Slovak ML, Campbell LJ (eds). ISCN 2009: An Inter-
national System for Human Cytogenetic Nomenclature (2009):
Recommendations of the International Standing Committee on
Human Cytogenetic Nomenclature. Karger: Basel, 2009.

19 Rumi E, Passamonti F, Bernasconi P, Arcaini L, Pietra D, Elena C
et al. Validation of cytogenetic-based risk stratification in primary
myelofibrosis. Blood 2010; 115: 2719–2720.

20 Tefferi A, Huang J, Schwager S, Li CY, Wu W, Pardanani A et al.
Validation and comparison of contemporary prognostic models in
primary myelofibrosis: analysis based on 334 patients from a single
institution. Cancer 2007; 109: 2083–2088.

21 Huang J, Li CY, Mesa RA, Wu W, Hanson CA, Pardanani A et al.
Risk factors for leukemic transformation in patients with primary
myelofibrosis. Cancer 2008; 112: 2726–2732.

22 Tam CS, Kantarjian H, Cortes J, Lynn A, Pierce S, Zhou L et al.
Dynamic model for predicting death within 12 months in patients
with primary or post-polycythemia vera/essential thrombocythe-
mia myelofibrosis. J Clin Oncol 2009; 27: 5587–5593.

23 Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J
et al. TET2 mutations and their clinical correlates in polycythemia
vera, essential thrombocythemia and myelofibrosis. Leukemia
2009; 23: 905–911.

24 Tefferi A, Lasho TL, Patnaik MM, Finke CM, Hussein K, Hogan WJ
et al. JAK2 germline genetic variation affects disease susceptibility
in primary myelofibrosis regardless of V617F mutational status:
nullizygosity for the JAK2 46/1 haplotype is associated with
inferior survival. Leukemia 2010; 24: 105–109.

25 Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J,
Caramazza D et al. IDH1 and IDH2 mutation studies in 1473
patients with chronic-, fibrotic- or blast-phase essential thrombo-
cythemia, polycythemia vera or myelofibrosis. Leukemia 2010; 24:
1302–1309.

26 Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A.
Clinical correlates of JAK2V617F presence or allele burden in
myeloproliferative neoplasms: a critical reappraisal. Leukemia
2008; 22: 1299–1307.

27 Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Lo Coco F,
Antonioli E et al. Identification of patients with poorer survival in
primary myelofibrosis based on the burden of JAK2V617F mutated
allele. Blood 2009; 114: 1477–1483.

28 Gupta R, Soupir CP, Johari V, Hasserjian RP. Myelodysplastic
syndrome with isolated deletion of chromosome 20q: an indolent
disease with minimal morphological dysplasia and frequent
thrombocytopenic presentation. Br J Haematol 2007; 139: 265–268.

This work is licensed under the Creative Commons
Attribution-NonCommercial-No Derivative Works

3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/3.0/

Karyotype and prognosis in myelofibrosis
D Caramazza et al

88

Leukemia


	Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients
	Introduction
	Materials and methods
	Results
	Cytogenetic details at presentation
	Comparison of clinical characteristics among cytogenetic categories
	Establishment of a two-tired cytogenetic-risk stratification
	Comparison of overall and leukemia-free survival between favorable and unfavorable karyotype

	Discussion
	References


